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Abstract

We consider the graph alignment problem, wherein the objective is to find a vertex
correspondence between two graphs that maximizes the edge overlap. The graph
alignment problem is an instance of the quadratic assignment problem (QAP),
known to be NP-hard in the worst case even to approximately solve. In this paper,
we analyze Birkhoff relaxation, a tight convex relaxation of QAP, and present
theoretical guarantees on its performance when the inputs follow the Gaussian
Wigner Model. More specifically, the weighted adjacency matrices are correlated
Gaussian Orthogonal Ensemble with correlation 1/

√
1 + σ2 . Denote the optimal

solutions of the QAP and Birkhoff relaxation by Π⋆ and X⋆ respectively. We show
that ∥X⋆ − Π⋆∥2F = o(n) when σ = o(n−1) and ∥X⋆ − Π⋆∥2F = Ω(n) when
σ = Ω(n−0.5). Thus, the optimal solution X⋆ transitions from a small perturbation
of Π⋆ for small σ to being well separated from Π⋆ as σ becomes larger than n−0.5.
This result allows us to guarantee that simple rounding procedures on X⋆ align
1− o(1) fraction of vertices correctly whenever σ = o(n−1). This condition on σ
to ensure the success of the Birkhoff relaxation is state-of-the-art.

1 Introduction

Consider two undirected graphs G1 and G2 with vertices [n]. The graph matching/alignment problem
is defined as finding a mapping between the vertices of G1 and G2 such that the edge overlap is
maximized. The graph isomorphism problem is a special case when G1 = G2 up to the permutation of
the vertices. The graph matching problem has widespread applications in network de-anonymization
[28], computational biology [30], pattern recognition [6], etc., underlining the need to design and
study efficient algorithms for this problem.

More formally, let A and B be the adjacency matrices (possibly weighted) of G1 and G2 respectively,
then, the vertex correspondence that maximizes the edge overlap is given by the optimal solution of
the following quadratic assignment problem:

Π⋆ = arg min
X∈Pn

∥AX −XB∥2F , (1)

where Pn is the set of all n × n permutation matrices. Quadratic assignment problems are NP-
hard in the worst case and are known to be difficult to even solve approximately [24]. However,
for typical graphs, one could expect to efficiently solve the graph matching problem. Indeed,
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polynomial time algorithms are known for the graph isomorphism problem when G1 = G2 is an
Erdős-Rényi random graph [5, 7]. More generally, the setting with noise, where G1, G2 are not
exactly equal but are correlated Erdős-Rényi graphs, has been extensively studied in the last decade
[8, 9, 11, 12, 18, 17, 26, 25, 27, 2].

A popular class of algorithms in practice with good empirical and computational performance is
the convex relaxations of (1). We are interested in the Birkhoff relaxation, which is a tight convex
relaxation, wherein the set of permutation matrices Pn is replaced by its convex hull to get

X⋆ = arg min
X∈Bn

∥AX −XB∥2F , (2)

where Bn is the Birkhoff polytope, i.e., the set of all doubly stochastic matrices. Such a relaxation
has been an attractive approach in practice, with strong empirical performance for shape matching
[1] and ordering images in a grid [10]. It is also observed in [23] that Birkhoff relaxation, when
combined with indefinite relaxation, yields excellent empirical performance on real datasets. More
generally, similar relaxations are proposed for gene sequencing [14], and computer vision [4].

While these results highlight the usefulness of the Birkhoff relaxation to practice due to its attractive
computational and empirical performance, there is limited understanding of its theoretical perfor-
mance. Theoretical guarantees for alternate convex relaxations of the QAP (1) are available in the
literature [11, 12, 2], however, they lack in their empirical performance compared to the Birkhoff
relaxation (see Section 5). Motivated by this gap in the literature, we provide the first theoretical guar-
antees on the performance of the Birkhoff relaxation (2) when A,B are sampled from the Gaussian
Wigner Model with correlation 1/

√
1 + σ2. Imposing such distributional assumptions on the input

graphs allows for mathematical analysis, as otherwise, graph matching is an NP-hard problem in the
worst case.

1.1 Gaussian Wigner Model

We say that a matrix A := {Aij}i,j∈[n] is a (GOE) matrix if Aii ∼ N(0, 2/n) for all i ∈ [n],
Aij = Aji ∼ N(0, 1/n) for all i ̸= j, and {Aij : i ≤ j} are mutually independent. We say that
A,B ∈ Rn×n follows the Gaussian Wigner Model when for all i, j ∈ [n], we have Bπ⋆(i),π⋆(j) =

Aij+σZij , where A,Z are i.id. GOE matrices Alternatively, we can write B = (Π̃⋆)T (A+σZ)(Π̃⋆),
where Π̃⋆

ij = 1 {j = π⋆(i)}. Given an observation of A and B, the goal is to infer the ground truth π⋆

that aligns A and B, which corresponds to the optimal solution of QAP (1) for σ2 ≤ O(n/ log n) by
[15, 32]. In particular, [15, 32] shows that Π̃⋆ = Π⋆ with probability 1− o(1) for σ2 ≤ O(n/ log n)
and n large enough. We fix σ ≤ 1 for simplicity.

1.2 Main Contributions

In this paper, we establish bounds on the distance of the optimal solution of the Birkhoff relaxation
X⋆ from the optimal solution of the QAP Π⋆, which is equal to the true permutation Π̃⋆ with high
probability. Our contributions are two-fold.

Firstly, we show that ∥X⋆ −Π⋆∥2F = o(n) whenever σ = o(n−1), asserting that X⋆ is close to the
true permutation Π⋆. This bound in turn implies that one can use simple rounding procedures on X⋆

to correctly align 1 − o(1) fraction of vertices. Our proof technique is motivated by the literature
on the sensitivity analysis of convex problems. In particular, we formulate the dual of a version of
(2) for σ = 0. The novelty of the proof lies in the careful construction of a feasible dual solution,
which in turn, provides us useful bounds on X⋆. Secondly, we show that if σ = Ω(n−0.5), then
∥X⋆ −Π⋆∥2F = Ω(n), and so, X⋆ is far away from the true permutation Π⋆.

The above two results establish a phase transition in the behavior of (2): the optimal solution X⋆

transitions from being a small perturbation of Π⋆ for slowly growing σ to moving far away from Π⋆

as σ becomes greater than 1/
√
n. In the next section, we discuss that the population version of (2)

exhibits such a phase transition at 1/
√
n and so we believe our sufficient condition on σ is loose,

i.e., one can possibly show ∥X⋆ −Π⋆∥2F = o(n) for σ = o(n−0.5). Nonetheless, to the best of our
knowledge, the sufficient condition σ = o(n−1) is the state-of-the-art to ensure that (2) succeeds in
recovering the true permutation.
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Note that σ = 0 is the special case of the graph isomorphism problem. As the value of σ increases,
the correlation between the two graphs reduces, which makes it harder to align them. In other words,
noise increases, making it harder to extract the correct signal. Thus, σ serves as a tuning parameter to
increase the hardness of the problem. The takeaway is then to establish that the Birkhoff relaxation
succeeds for large values of σ, establishing the robustness of the relaxation. We make progress in
this direction by improving upon the previously known result [2] that shows the simplex relaxation
succeeds for σ = 0. These results contribute to explaining the strong empirical performance of the
Birkhoff relaxation.

1.3 Related Work

Regarding practical algorithms for graph alignment, there is a rich literature on optimization-based
methods [21, 10, 22, 11, 2] and simple spectral-based methods [31, 13, 16]. The works [11, 2] focus
on the Gaussian Wigner model and are closest to our paper. In particular, [11] proposes the GRAMPA
algorithm which solves the following convex relaxation of (1):

arg min
X:1TX1=n

∥AX −XB∥2F + η∥X∥2F , for some η > 0. (3)

Note that the optimization problem above further relaxes (2) and adds a quadratic regularizer. The
authors in [11] establish that GRAMPA (3) succeeds in recovering Π⋆ whenever σ = O(1/ log n).
While [11] asserts that GRAMPA succeeds with a weaker condition on σ than ours, its empirical
performance is observed to be worse than the Birkhoff relaxation (2). In addition, GRAMPA requires
one to tune the regularization parameter η which is completely avoided for the Birkhoff relaxation
(2). In addition, [2] analyzes the Simplex Relaxation defined as follows:

arg min
X:1TX1=n,X≥0

∥AX −XB∥2F . (4)

They prove that the simplex relaxation (4) succeeds for σ = 0. On the other hand, we consider a
tighter convex relaxation and allow σ to be non-zero. Comparison to these methods is summarized in
Table 1. We refer the reader to [19, 17, 9, 27] and the references within for analysis beyond the GOE
setting.

Paper Algorithm Type Algorithm Name Noise Threshold
[16] Top Eigenvector Alignment EIG1 σ = Θ(n−7/6)
[11] Regularized Convex Relaxation GRAMPA (3) σ = O(1/ log n)
[2] Simplex Relaxation Simplex (4) σ = 0
Our work Birkhoff Relaxation Birkhoff (2) σ = O(n−1)

Table 1: Comparison of the spectral and optimization-based algorithms for graph alignment on the
Gaussian Wigner Model.

2 Main Result

We now present the main theorem of the paper that characterizes when X⋆ is well separated from Π⋆

and when X⋆ is a small perturbation of Π⋆.
Theorem 1. Let A,B ∈ Rn×n follow the Gaussian Wigner model with some σ ≤ 1 (possibly
dependent on n) and let Π⋆ and X⋆ be defined as in (1) and (2) respectively. Then, for any fixed
ϵ > 0 and n large enough, the following statements hold with probability 1− o(1).

• Well-Separation: When σ ≥ n−0.5+ϵ then ∥X⋆ −Π⋆∥2F ≥ δn for some δ > 0.

• Small-Perturbation: When σ ≤ n−1−ϵ then ∥X⋆ −Π⋆∥2F ≤ 10n1−ϵ/32.

Using the small-perturbation result above, one can implement a simple rounding procedure on X⋆ to
recover a 1− o(1) fraction of the permutation π⋆ correctly.
Corollary 2. Under the hypothesis of Theorem 1, let π̂(i) = argmaxj X

⋆
ij for all i ∈ [n]. If

σ ≤ n−1−ϵ for some ϵ > 0, then
∑n

i=1 1 {π̂(i) ̸= π⋆(i)} = o(n) with probability 1 − o(1) for n
large enough.
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In practice, one may want to implement more sophisticated rounding procedure such as Hungarian
projection. Theorem 1 ensures that Hungarian projection also succeeds to recover a 1− o(1) fraction
of the permutation π⋆ correctly.

Corollary 3. Under the hypothesis of Theorem 1, let Π̃ ∈ argmaxΠ∈Pn⟨X⋆,Π⟩. If σ ≤ n−1−ϵ for
some ϵ > 0, then ⟨Π̃⋆, Π̃⟩ ≥ n− o(n) with probability 1− o(1) for n large enough.

We refer the reader to Appendix A for proof details. Note that a similar negative result for the
well-separated case may not hold. In particular, while X⋆ is far away from Π⋆ for σ = Ω(n−0.5), it
does not imply that the Birkhoff relaxation fails to recover the permutation π⋆ correctly, as rounding
procedures like above can be used to post-process X⋆ which could recover Π⋆. As our proof
technique is based on sensitivity analysis of convex problems, we do not explore this direction in this
paper, except in Section 5, where we conduct numerical experiments to provide insights.

To gain intuition, consider the population version of (2), where we replace the objective with its
expected value to get the following optimization problem for Π̃⋆ = I:

min
X∈Bn

(2 + σ2)(n+ 1)∥X∥2F − 2Tr(X)2 − 2⟨X,XT ⟩,

whose optimal value is given by

X̄⋆ = ϵI +
1− ϵ

n
J, where ϵ =

2

2 + σ2(n+ 1)
,

where we denote the all-ones n×n matrix by J . The above can be verified using the KKT conditions.
Now, using the above characterization, we get

∥I − X̄⋆∥F = (1− ϵ)

∥∥∥∥I − J

n

∥∥∥∥ = (1− ϵ)
√
n− 1 ≈ σ2n

√
n

2 + σ2n
=

{
Θ(

√
n) if σ

√
n = Ω(1)

o(
√
n) if σ

√
n = o (1) .

The first case above asserts that whenever σ ≫ n−0.5, we have ∥I − X̄⋆∥ = Θ(
√
n), i.e., X̄⋆ is

far from I , so, we should not expect X⋆ to be close to I as well. The first assertion of Theorem 1
formalizes this intuition. The above equation also shows that X̄⋆ is close to I whenever σ ≪ n−0.5,
so we expect X⋆ to be a small perturbation of I . Theorem 1 formalizes this only for σ ≪ n−1, which
only partially resolves this case. However, analyzing the Birkhoff convex relaxation (2) is known
to be a challenging task, and this paper provides the first results in understanding this relaxation.
In particular, one of the main difficulties is in handling the non-negativity constraints. The paper
[11] circumvents such a difficulty by relaxing the non-negativity constraints and compensating for it
with a quadratic regularizer in the objective function. Such a modification allows them to obtain a
closed-form expression of X⋆, which is then shown to satisfy certain desirable properties (diagonal
dominance). More recently, [2] preserves the non-negativity constraints, but the result is restricted
to σ = 0 and the proof exploits the structural properties of (2) that hold only when B = A. We,
on the other hand, tackle the challenges head-on presented by non-negativity constraints and also
allow σ > 0. Our proof technique is to carefully construct a suitable feasible solution of the dual of
(2), which provides required bounds on X⋆. The main difficulty in constructing such a feasible dual
certificate is its high dimension as the non-negativity constraints result in n2 dual variables.

3 Proof of Theorem 1

Without loss of generality, we assume that Π̃⋆ = I . Indeed, if Π̃⋆ ̸= I , then, we have

∥AX −XB∥F = ∥AX −X(Π̃⋆)T (A+ σZ)Π̃⋆∥F = ∥AX(Π̃⋆)T −X(Π̃⋆)T (A+ σZ)∥F .

Thus, defining

X̃ = arg min
X∈Bn

∥AX −X(A+ σZ)∥2F ,

we conclude that X̃ = X⋆(Π̃⋆)T and so ∥X⋆ − Π⋆∥F = ∥X̃ − Π⋆(Π̃⋆)T ∥F = ∥X̃ − I∥F , where
the last equality holds as Π̃⋆ = Π⋆ with probability 1− o(1) by [15, 32]. So, in summary, we have
Π̃⋆ = Π⋆ = I without loss of generality.
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3.1 Part I: Well-Separation

Proof of Theorem 1 (Part I):. We start by upper bounding ∥AX⋆ −X⋆B∥ by the objective function
value of (2) for J/n.

Claim 4. For n large enough, with probability at least 1− 4ne−nϵ/4, we have

∥AX⋆ −X⋆B∥2F ≤ 1

n2
∥AJ − JB∥2F ≤ 9nϵ

The proof details of the above claim is deferred to Appendix B.1. We now construct a lower bound
on ∥AX⋆ −X⋆B∥2F as a function of ∥X⋆ − I∥F . We have

∥AX⋆ −X⋆B∥2F = ∥A(I −X⋆)− (I −X⋆)B + σZ∥2F
= ∥A(I −X⋆)− (I −X⋆)B∥2F + σ2∥Z∥2F + 2σ⟨A(I −X⋆)− (I −X⋆)B,Z⟩
= ∥A(I −X⋆)− (I −X⋆)B∥2F + σ2∥Z∥2F + 2σ⟨AZ − ZB, I −X⋆⟩
= ∥A(I −X⋆)− (I −X⋆)B∥2F + σ2∥Z∥2F − 2σ⟨AZ − ZA,X⋆⟩ − 2σ2⟨Z2, I −X⋆⟩

≥ σ2n

2
− 2σmax

i̸=j

∣∣(AZ − ZA)ij
∣∣∑
i ̸=j

X⋆
ij − 2σ2∥Z2∥F ∥I −X⋆∥F , (5)

where the last inequality is true because ∥Z∥2F = 2
n∥z̃∥

2
2, where z̃ ∼ N(0, In(n+1)/2). Thus, by [11,

Lemma 15], with probability at least 1− e−
√
n, we have ∥Z∥2F ≥ n− c̃

√
n ≥ n/2, for a sufficiently

large n since c̃ > 0 is a constant independent of n. We now bound maxi̸=j

∣∣(AZ − ZA)ij
∣∣ in the

following claim.

Claim 5. For n large enough, w.p. 1− 2n2e−nϵ

, we have maxi ̸=j

∣∣(AZ − ZA)ij
∣∣ ≤ 8nϵ/2−0.5.

The proof details of the claim is deferred to Appendix B.2. Substituting the above bound back in (5)
and noting that

∑
i ̸=j X

⋆
ij ≤ n as X⋆ ∈ Bn, we get

∥AX⋆ −X⋆B∥2F ≥ σ2n

2
− 16σn1/2+ϵ/2 − 2σ2∥Z2∥F ∥I −X⋆∥F

≥ σ2n

4
− 2cσ2

√
n∥I −X⋆∥F . (6)

where the last inequality holds for n large enough as σ2n = Θ(n2ϵ) and σn1/2+ϵ/2 = Θ(n3ϵ/2). In
addition, we use the inequality ∥Z2∥F ≤

√
n∥Z2∥2 ≤

√
n∥Z∥22 ≤ c

√
n for some c > 0 sufficiently

large, which holds with probability at least 1− e−n by [3, Lemma 6.3]. Now combining the upper
bound in Claim 4 with the lower bound in (6), we get

2cσ2
√
n∥I −X⋆∥F ≥ σ2n

4
− 9nϵ

∗
≥ σ2n

8
=⇒ ∥I −X⋆∥F ≥

√
n

16c
.

where (∗) holds for n large enough. The above assertion holds with probability at least
1 − 5n2e−nϵ/4 ≥ 1 − e−nϵ/2

for n large enough by the union bound over all the high probability
bounds in the proof. This completes the proof with δ = 1/(16c), a universal constant.

Note that the above proof does not rely on specific properties of a GOE matrices. Thus, such a
conclusion would hold for more general symmetric matrices with i.id. entries that concentrate
sufficiently, e.g., subgaussian concentration.

3.2 Part II: Small-Perturbation

The main idea of the proof is to construct a suitable dual feasible solution that provides an upper
bound on the off-diagonal entries of X⋆. As the primal problem (2) is non-linear, resulting in an
involved dual problem, we start up considering a simpler optimization problem corresponding to
σ = 0 in (2). As we will see below, this analysis, in turn, allows us to conclude meaningful bounds
on X⋆ for σ = o(n−1). For σ = 0, we have minX∈Bn

∥AX − XA∥2F . Note that X = I is an

5



optimal solution as it results in 0 objective function value. Thus, any optimal solution must satisfy
AX −XA = 0, and so, we can further simplify to write the following optimization problem.

min
X∈Bn

0 subject to AX −XA = 0.

We introduce dual variables R ∈ Rn×n
+ , µ, µ̃ ∈ Rn for the non-negativity, row sum, and column sum

constraints, and M ∈ Rn×n for the constraint AX −XA = 0. Then, the Lagrangian is given by

min
X

max
R≥0,µ,µ̃,M

⟨AX −XA,M⟩ − ⟨R,X⟩+ µTX1+ 1TXµ̃− µT1− µ̃T1.

Now, we swap the order of the min and the max to obtain the dual problem.

max
R≥0,µ,µ̃,M

min
X

⟨AX −XA,M⟩ − ⟨R,X⟩+ µTX1+ 1TXµ̃− µT1− µ̃T1

= max
R≥0,µ,µ̃,M

min
X

⟨AM −MA−R+ µ1T + 1µ̃T , X⟩ − µT1− µ̃T1

= max
R≥0,µ,µ̃,M

−µT1− µ̃T1 subject to, AM −MA−R+ µ1T + 1µ̃T = 0.

We are now looking for a dual feasible solution (R,µ, µ̃,M) that also satisfies strong duality. We
construct an approximately feasible dual solution, i.e., we have

µT1+ µ̃T1 = 0, R ≥ 0, AM −MA−R+ µ1T + 1µ̃T ≈ 0 (7)

which implies for any X ∈ Bn with AX −XA = 0

⟨R,X⟩ = ⟨R,X⟩ − ⟨AX −XA,M⟩ − µT1− µ̃T1

= ⟨R,X⟩ − ⟨AM −MA,X⟩ − ⟨µ1T + 1µ̃T , X⟩
= ⟨R−AM +MA− µ1T − 1µ̃T , X⟩ ≈ 0.

To get a meaningful bound, we set R = J − I and appropriately construct (M,µ, µ̃) which implies∑
j ̸=i

Xij ≈ 0.

We formalize this argument in the lemma below:

Lemma 6. Under the hypothesis of Theorem 1, for any X ∈ Bn and any ϵ > 0, for n large enough,
we have ∑

j ̸=i

Xij ≤ 2n3/2+7ϵ/8∥AX −XA∥F + 4n1−ϵ/32 w.p. 1− on(1).

Now to show that the bound obtained in the above lemma is small enough, we upper bound ∥AX −
XA∥F for the optimal solution X = X⋆ in the following lemma.

Lemma 7. Under the setting of Theorem 1, there exists a constant c > 0 such that ∥AX⋆−X⋆A∥F ≤
cσ

√
n with probability at least 1− e−n for n large enough.

The proof strategy of the above lemma is as follows: As I ∈ Bn is a feasible solution to (2),
we immediately obtain ∥AX⋆ − X⋆B∥F ≤ ∥A − B∥F = σ∥Z∥F = O(σ

√
n), where the last

inequality follows as ∥Z∥F = O(
√
n) for a GOE matrix. The rest of the argument is to show

that ∥AX⋆ − X⋆A∥F ≲ ∥AX⋆ − X⋆B∥F + O(σ
√
n) by writing B = A + σZ, expanding

∥AX⋆ −X⋆B∥F , and appropriately bounding terms involving σ. The proof details are deferred to
Appendix C.1.

Proof of Theorem 1 (Part II):. By Lemma 6 and Lemma 7, for σ = n−1−ϵ we get∑
i,j∈[n]:i ̸=j

X⋆
ij ≤ 2cσn2+7ϵ/8 + 4n1−ϵ/32 = 2cn1−ϵ/8 + 4n1−ϵ/32 ≤ 5n1−ϵ/32, (8)
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where the first inequality holds with probability at least 1− e−n − on(1) = 1− on(1) by the union
bound. The last inequality holds for all n large enough (depending on ϵ). We are now ready to obtain
a bound on ∥X⋆ − I∥F .

∥X⋆ − I∥2F =
∑

i,j∈[n]:i ̸=j

(X⋆
ij)

2 +

n∑
i=1

(1−X⋆
ii)

2
= ∥X⋆∥2F + n− 2

n∑
i=1

X⋆
ii

∗
≤ 2n− 2

n∑
i=1

X⋆
ii

= 2
∑

i,j∈[n]:i ̸=j

X⋆
ij

(8)
≤ 10n1−ϵ/32,

where (∗) follows as ∥X∥2F ≤ nmaxj∈[n]

∑n
i=1 X

2
ij ≤ nmaxj∈[n]

∑n
i=1 |Xij | = n for any X ∈

Bn. This completes the second part of the proof of Theorem 1.

Remark 8 (Generalization beyond GOE Matrices). The main difficulties are to get a handle on
the eigenvalues and eigenvectors of A. In particular, we explicitly use the properties of a GOE
matrix in two places in the proof. (1) Eigenvalue separation [Claim 8]: We use tail bounds on the
eigenvalues of a random matrix from [5]. The results of [5] are applicable for all Wigner matrices
(i.id. subgaussian entries), and so Claim 8 can be extended to Wigner matrices. (2) Eigenvector
Concentration [Claim 7]: To prove Claim 7, we rely on the fact that the orthonormal eigenvectors of
a GOE matrix is uniformly distributed on Sn−1 to obtain upper and lower concentrations on ⟨1, ui⟩.
This step is the bottleneck, as we require such concentration results for general Wigner matrices.

4 Proof of Lemma 6

Proof of Lemma 6. For the GOE matrix A, let {λi}ni=1 be the set of eigenvalues and {ui}ni=1 be
the corresponding set of orthonormal eigenvectors. Now, we construct a dual feasible solution
(R,M,µ, µ̃) using eigenvectors of A as the basis vectors. First, we set µ̃ = 0 and

R =

n∑
i,j=1

wijuiu
T
j = J − I, with wij = ⟨ui,1⟩⟨uj ,1⟩ − 1{i = j}.

Now, to ensure approximate dual feasibility and strong duality as in (7), we carefully set (M,µ) as
follows. We have

µ =

n∑
i=1

wiui with wi = ⟨ui,1⟩+
C − 1

⟨ui,1⟩
1

{
|⟨ui,1⟩| ≥ n−ϵ/16

}
where C = 1− n

#{|⟨ui,1⟩|≥n−ϵ/16} , with #
{
|⟨ui,1⟩| ≥ n−ϵ/16

}
=
∑n

i=1 1
{
|⟨ui,1⟩| ≥ n−ϵ/16

}
.

Note that ⟨µ,1⟩ = 0 which ensures strong duality. One can quickly verify it as follows:

⟨µ,1⟩ =
n∑

i=1

wi⟨ui,1⟩ =
n∑

i=1

⟨ui,1⟩2 + (C − 1)#
{
|⟨ui,1⟩| ≥ n−ϵ/16

}
=

n∑
i=1

⟨ui,1⟩2 − n = 0.

Next, we set

M =
∑

i,j∈[n]:i ̸=j

w̃ij

λi − λj
uiu

T
j with w̃ij = (⟨ui,1⟩⟨uj ,1⟩ − ⟨ui,1⟩wj)1{i ̸= j}.

Now, we show that (R,µ, µ̃,M) is approximately dual feasible as in (7). By construction, we have

R− (AM −MA)− 1µT =

n∑
i=1

wiiuiu
T
i +

∑
i,j∈[n]:i̸=j

⟨ui,1⟩wjuiu
T
j − 1µT

=

n∑
i=1

wiiuiu
T
i +

∑
i,j∈[n]:i ̸=j

⟨ui,1⟩wjuiu
T
j −

n∑
i=1

⟨ui,1⟩uiµ
T

=

n∑
i=1

wiiuiu
T
i −

n∑
i=1

⟨ui,1⟩wiuiu
T
i

= −
∑

i∈[n]:|⟨ui,1⟩|≤n−ϵ/16

uiu
T
i − C

∑
i∈[n]:|⟨ui,1⟩|≥n−ϵ/16

uiu
T
i

∆
= D.
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Now, we show that ∥D∥2F = o(n) asserting that R− (AM −MA)−1µT is small. As the Frobenius
norm is unitary invariant, we have

∥D∥F =
√
#
{
|⟨ui,1⟩| ≤ n−ϵ/16

}
+ C2#

{
|⟨ui,1⟩| ≥ n−ϵ/16

}
≤
√
#
{
|⟨ui,1⟩| ≤ n−ϵ/16

}
+ C2n.

Next, we get a handle on C using the following claim, proved at the end of this section.

Claim 9. There exists a constant c > 0 such that, for large enough n > 0, we have, with a probability
of at least 1− e−cn1−ϵ/16

, #
{
|⟨ui,1⟩| ≤ n−ϵ/16

}
≤ 3n1−ϵ/16.

To prove the above claim, we use the fact that the orthonormal eigenvector basis of a GOE matrix
is uniformly distributed on Sn−1 and the details are provided in Appendix C.2. Thus, ⟨ui,1⟩ is
approximately a standard normal and so #

{
|⟨ui,1⟩| ≤ n−ϵ/16

}
≈ n1−ϵ/16. By the above claim

0 ≥ C = 1− n

n−#
{
|⟨ui,1⟩| ≤ n−ϵ/16

} ≥ 1− n

n− 3n1−ϵ/16
≥ −5n−ϵ/16, (9)

where the last inequality follows for n > 0 large enough (depending on ϵ). The bound on C implies

∥D∥F ≤
√
#
{
|⟨ui,1⟩| ≤ n−ϵ/16

}
+ C2n ≤

√
3n1−ϵ/16 + 25n1−ϵ/8 ≤ 2n1/2−ϵ/32, (10)

where the last inequality holds for n large enough (depending on ϵ). Now, for any X ∈ Bn, we have
⟨R− (AM −MA)− 1µT , X⟩ = ⟨R,X⟩ − ⟨AM −MA,X⟩ − ⟨1µT , X⟩

=
∑

i,j∈[n]:i ̸=j

Xij − ⟨M,AX −XA⟩ − ⟨µ,1⟩ =
∑

i,j∈[n]:i ̸=j

Xij − ⟨M,AX −XA⟩,

where the last inequality holds as ⟨µ,1⟩ = 0 by construction. Thus, we have∑
i,j∈[n]:i ̸=j

Xij = ⟨M,AX −XA⟩+ ⟨X,D⟩
(10)
≤ ⟨M,AX −XA⟩+ 2n1−ϵ/32,

where the last inequality holds as ⟨X,D⟩ ≤ ∥X∥F ∥D∥F and ∥X∥2F ≤ nmaxj∈[n]

∑n
i=1 X

2
ij ≤

nmaxj∈[n]

∑n
i=1 |Xij | = n for any X ∈ Bn. Now, to complete the proof, we upper bound

⟨M,AX −XA⟩ below. Let X =
∑n

i,j=1 xijuiu
T
j for some xij ∈ R for all i, j ∈ [n]. Then,

⟨M,AX −XA⟩ =

〈 ∑
i,j∈[n]:i ̸=j

w̃ij

λi − λj
uiu

T
j ,

∑
i,j∈[n]:i ̸=j

xij(λi − λj)uiu
T
j

〉

=

〈 ∑
i,j∈[n]:i ̸=j

w̃ij

|λi − λj |+ n−1−ϵ
uiu

T
j ,

∑
i,j∈[n]:i̸=j

xij

(
|λi − λj |+ n−1−ϵ

)
uiu

T
j

〉

∗
≤

√√√√ ∑
i,j∈[n]:i ̸=j

w̃2
ij

(|λi − λj |+ n−1−ϵ)
2 ·
(
∥AX −XA∥F + n−0.5−ϵ

)
(11)

where (∗) follows from the Cauchy-Schwarz inequality. In addition, we upper bound the second
term by using the triangle inequality and noting that n ≥ ∥X∥2F =

∑n
i,j=1 x

2
ij ≥

∑
i,j∈[n]:i̸=j x

2
ij

for all X ∈ Bn. In addition, we also note that
∑

i,j∈[n]:i ̸=j x
2
ij(λi − λj)

2 = ∥AX −XA∥2F . Now,
we focus on getting a handle on the term involving the eigenvalue separation (λi − λj). We have√√√√ ∑

i,j∈[n]:i ̸=j

w̃2
ij

(|λi − λj |+ n−1−ϵ)
2

= (1− C)

√√√√ ∑
i,j∈[n]:i ̸=j

⟨ui,1⟩2

⟨uj ,1⟩2 (|λi − λj |+ n−1−ϵ)
21
{
|⟨uj ,1⟩| ≥ n−ϵ/16

}
∗
≤ 2nϵ/16

√√√√ ∑
i,j∈[n]:i ̸=j

⟨ui,1⟩2

(|λi − λj |+ n−1−ϵ)
2

∗∗
≤ 2nϵ/8

√√√√ ∑
i,j∈[n]:i ̸=j

1

(|λi − λj |+ n−1−ϵ)2
, (12)

8



where (∗) follows for n large enough by (9). In addition, (∗∗) follows with probability 1−ne−nϵ/8/8−
ne−n1/4

. Indeed, one can combine the union bound over i ∈ [n] with |⟨ui,1⟩| = |⟨z,1⟩|
∥z∥2

≤ 2|⟨z,1⟩|√
n

≤
nϵ/16, where z ∼ N(0, In). The second inequality holds with probability 1 − e−n1/4

for n large
enough (e.g. see: [11, Lemma 15]). In addition, the last inequality holds with probability 1−e−nϵ/8/8

(e.g. see: [11, Lemma 13]). Now, we get a handle on the eigenvalue separation in the following
claim:

Claim 10. For n large enough, w.p. 1− on(1), we have
∑

i,j∈[n]:i ̸=j
1

(|λi−λj |+n−1−ϵ)2 ≤ n3+3ϵ/2.

Note that naively bounding (|λi − λj | + n−1−ϵ)−2 ≤ n2+2ϵ results in a weaker upper bound of
n4+2ϵ. We perform a much tighter analysis by carefully using the tail bounds for the separation of
the eigenvalue from [29]. In particular, depending on whether |i− j| is small or large, we perform a
separate analysis to lower bound |λi − λj |. The analysis is especially delicate when |i− j| is small:
directly using the tail bounds of [29] combined with a union bound over i ∈ [n] is not sufficient.
We instead use the tail bounds to first compute E

[∑
|i−j|=O(1)

1
(|λi−λj |+n−1−ϵ)2

]
and then use the

Markov’s inequality to get a tighter upper bound. Note that the trick to introduce n−1−ϵ in (11) is
crucial here to ensure the finiteness of the expectation. The proof details of this claim are deferred to
Appendix C.3. Now, we continue with the proof of Lemma 6 below.

Using the above claim along with (11) and (12), for n large enough, we get

⟨M,AX −XA⟩ ≤ 2n3/2+7ϵ/8
(
∥AX −XA∥F + n−0.5−ϵ

)
which further implies∑

i̸=j

Xij ≤ 2n3/2+7ϵ/8∥AX −XA∥F + 2n1−ϵ/8 + 2n1−ϵ/32

≤ 2n3/2+7ϵ/8∥AX −XA∥F + 4n1−ϵ/32,

where the last inequality holds for n large enough (depending on ϵ). This completes the proof with
probability 1− on(1) for n large enough by the union bound over all the bounds in the proof.

5 Simulations
We conduct simulations on the Gaussian Wigner Model to verify our results and provide further
insights (The code is publicly available at https://github.com/smv30/convex_rel_
for_graph_alignment). We set n = 400 (unless otherwise specified) and consider σ ∈
{0, 0.1, 0.2, . . . , 1}. For these parameters, we test the performance of three convex relaxations:
GRAMPA [11], simplex [2], and Birkhoff. We set the regularization parameter to 0.2 in GRAMPA
as suggested by the authors. The convex relaxations are solved using the cvxpy library in Python
using SCS (Splitting Conic Solver) and we set use_indirect to True, recommended for large
instances for better memory management. We then project the solution of the convex relaxation to
the set of permutation matrices using the Hungarian algorithm. For each n and σ, we repeat the
simulation 10 times and report the average fraction of correctly matched vertices in Figure 1. We run
the simulations on a CPU with 50GB of memory and impose a maximum run time of 3 hours for
each instance.

On the left of Figure 1, we observe that the Birkhoff relaxation outperforms both Simplex and
GRAMPA by exactly aligning all vertices for σ up to 0.5. On the other hand, the performance
of Simplex and GRAMPA starts degrading for σ = 0.4 and σ = 0.2 respectively. Such a strong
empirical performance motivates the theoretical analysis of the Birkhoff relaxation.

In the center plot of Figure 1, we plot the fraction of matched vertices and ∥X⋆ − Π⋆∥F /
√
n as a

function of σ for Birkhoff relaxation. In conjunction with Theorem 1 (case I), ∥X⋆ − Π⋆∥F /
√
n

increases rapidly and converges to one as a function of σ. However, even when ∥X⋆ −Π⋆∥F /
√
n

is close to one for σ ∈ [0.3, 0.5], the Birkhoff relaxation still manages to align all the vertices. In
particular, while the optimal solution X⋆ is not close to Π⋆, it has a slight bias toward Π⋆ as opposed
to other permutation matrices. So, X⋆ is projected to Π⋆ in the post-processing step of projection
onto the set of permutation matrices. This result suggests that Birkhoff relaxation combined with
post-processing could succeed beyond σ ∼ n−0.5.
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Figure 1: Fraction of Matched Vertices and ∥X⋆ − Π⋆∥F /
√
n as a function of σ for the Gaussian

Wigner Model: Performance of GRAMPA [11], Simplex [2], and Birkhoff Relaxations
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Figure 2: Log-log plot for σ such that ∥X⋆−Π⋆∥F√
n

= 0.5 as a function of n.

In the right plot of Figure 1, we test the performance of Birkhoff relaxation for n ∈
{100, 200, 300, 400, 500}. Although the fraction of correctly matched vertices as a function of
σ worsens as n increases, the performance degradation is gradual. Such an empirical observation
hints that the Birkhoff relaxation combined with post-processing could succeed for nearly constant σ.
Although we take a first step in this direction, non-trivial ideas are needed for stronger guarantees.

In Figure 2, we empirically compute the value of σ at which ∥X⋆ −Π⋆∥F transitions from o(
√
n)

to Ω(
√
n). In particular, for each n ∈ {100, . . . , 500}, we implement the Birkhoff relaxation for

σ ∈ {0, 0.01, . . . , 1} to infer the value of σ at which ∥X⋆ −Π⋆∥F /
√
n = 0.5. A linear regression

between these thresholds (log σ) and log n outputs a slope of −0.45, supporting the phase transition
at σ = Θ(1/

√
n) as in Theorem 1.

6 Conclusion and Future Work
In this paper, we study Birkhoff relaxation, a tight convex relaxation of the Quadratic Assignment
Problem (QAP). The input is sampled from a Gaussian Wigner model with correlation 1/

√
1 + σ2.

We show that X⋆ (optimal solution of Birkhoff relaxation) is a small perturbation of Π⋆ (optimal
solution of QAP) when σ ≪ n−1, and X⋆ is far away from Π⋆ when σ ≫ n−0.5. More specifically,
we show that ∥X⋆−Π⋆∥2F = o(n) when σ = o(n−1) and ∥X⋆−Π⋆∥2F = Ω(n) when σ = Ω(n−0.5).
This result allows us to align 1− o(1) fraction of vertices whenever σ = o(n−1).

Based on heuristic calculations using the population version of the Birkhoff relaxation, we believe the
condition to ensure ∥X⋆ −Π⋆∥2F = o(n) can be improved to σ = o(n−0.5), which is an immediate
future work. In addition, while we show that ∥X⋆ −Π⋆∥2F = Ω(n) when σ = Ω(n−0.5), it does not
imply the failure of Birkhoff relaxation, i.e., one can still post-process X⋆ appropriately to recover Π⋆.
Hence, another future direction is to establish the success of post-processing procedures combined
with the Birkhoff relaxation for σ greater than n−0.5.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Theorem 1 and Corollary 2 formalize the claims in the abstract and introduction.
To the best of our knowledge, these results are the state-of-the-art for Graph Alignment via
Birkhoff Relaxation.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 2 (Main Result) and Section 6 (Conclusion and Future Work), we
discuss that our theoretical results can be improved on and how they pave the way for further
research on Birkhoff Relaxation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proof of Corollary 2 is provided in Section 2. In addition, Section 3 is
dedicated to the proof of Theorem 1, while Section 4 and the Appendix include all the
necessary proofs of Lemmas and Claims.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 5 (Simulations), we mention the Python functions (including
the arguments) used to solve the convex problems discussed in the paper. Values of all
hyperparameters used are also indicated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code can be found on this link: https://github.com/smv30/
convex_rel_for_graph_alignment.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 5 (Simulations), we mention the Python functions (including
the arguments) used to solve the convex problems discussed in the paper. Values of all
hyperparameters used are also indicated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each set of parameters, we repeat the simulation 10 times and report the
complete distribution of the objective in Figure 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the CPU specifications and run time in the simulation
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper provides theoretical guarantees for a well-known algorithm that has
already been used in practice. A better theoretical understanding allows for more confidence
while deploying such an algorithm in practice.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The results (simulations and otherwise) do not pose any such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve any LLMs.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Rounding Procedures

Proof of Corollary 2. We bound the number of incorrectly matched indices as follows:
n∑

i=1

1 {π̂(i) ̸= π⋆(i)} ≤
n∑

i=1

1

{
X⋆

iπ⋆(i) ≤
1

2

}
≤ 4

n∑
i=1

(
1−X⋆

iπ⋆(i)

)2
≤ 4∥X⋆ − Π̃⋆∥2F

∗
= 4∥X⋆ −Π⋆∥2F ≤ 40n1−ϵ/32,

where (∗) holds as Π̃ = Π⋆ with probability 1− o(1) by [15, 32]. The last inequality is followed by
the second part of Theorem 1 with probability 1− o(1).

Proof of Corollary 3. Similar to the proof of Theorem 1, let Π̃⋆ = Π⋆ = I without loss of generality.
Now, let Π̃ ∈ argmaxΠ∈Pn

⟨X⋆,Π⟩. Then, we have

⟨X⋆, Π̃⟩ ≥ ⟨X⋆, I⟩
(8)
≥ n− o(n).

Also, we have

⟨X⋆, Π̃⟩ = ⟨I, Π̃⟩+ ⟨X⋆ − I, Π̃⟩ ≤ ⟨I, Π̃⟩+ ∥X⋆ − I∥F ∥Π̃∥F ≤ ⟨I, Π̃⟩+ o(n),

where the last inequality follows by Theorem 1 for σ ≥ n−1−ϵ. Combining the above two inequalities,
we get ⟨I, Π̃⟩ ≥ n−o(n) showing that the Hungarian solution Π̃ overlaps with the correct permutation
I for at least 1− o(1) fraction of the vertices, concluding the proof.

B Technical Details for Part I: Well-Separation

B.1 Proof of Claim 4

We have

∥AX⋆ −X⋆B∥2F ≤ 1

n2
∥AJ − JB∥2F =

1

n2
∥AJ − JA− σJZ∥2F

∗
≤ 3

n2

(
∥AJ∥2F + ∥JA∥2F + σ2∥JZ∥2F

)
∗∗
≤ 6

n

n∑
i=1

(
n∑

k=1

Aik

)2

+
3

n

n∑
i=1

(
n∑

k=1

Zik

)2

≤ 9nϵ, (13)

where (∗) uses the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), and (∗∗) holds as σ ≤ 1. Moreover,
the last inequality follows with probability at least 1 − 4ne−nϵ/4 for n large enough. Indeed,∑n

k=1 Aik ∼ N(0, 1+1/n) and so
∣∣∣∣∑n

k=1 Aik

∣∣∣∣ ≤ nϵ/2 for all i ∈ [n] with probability 1− 2e−nϵ/4

for n large enough. Thus, since A,Z are i.i.d., by the union bound,
∑n

i=1 (
∑n

k=1 Aik)
2 ≤ n1+ϵ and∑n

i=1 (
∑n

k=1 Zik)
2 ≤ n1+ϵ with probability at least 1− 4ne−nϵ/4.

B.2 Proof of Claim 5

For any i, j ∈ [n], we have

(AZ)ij =

n∑
k=1

AikZkj

∗
≤ 2nϵ/2

√
n

∥Ai,:∥2 w.p. at least 1− e−nϵ

∗∗
≤ 4nϵ/2

√
n

,

where (∗) is true because {Zkj : k ∈ [n]} are independent from each other, and independent from
A. Thus, (∗) follows by conditioning on A and using [11, Lemma 13]. Next, (∗∗) holds with
probability at least 1− e−

√
n as ∥Ai,:∥2 ≤

√
2√
n
∥z∥2, where z ∼ N(0, In) and by [11, Lemma 15],
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∥z∥22 ≤ n+ c̃
√
n ≤ 2n for sufficiently large n. Thus, by the union bound, (AZ)ij ≤ 4nϵ/2−1/2 with

probability at least 1− 2e−nϵ

. By further employing union bound on i, j ∈ [n], with probability at
least 1− 2n2e−nϵ

, we have

max
i ̸=j

∣∣(AZ − ZA)ij
∣∣ ≤ 2max

i̸=j

∣∣(AZ)ij
∣∣ ≤ 8nϵ/2

√
n

.

C Technical Details for Part II: Small-Perturbation

C.1 Proof of Lemma 7

We prove the desired inequality in the event where
∥Z∥2F ≤ c̃2n,

for some constant c̃ > 0, which occurs with probability at least 1− e−n if c̃ is large enough, from
[11, Lemma 15], because ∥Z∥2F is a sum of n(n+1)

2 independent squared Gaussian variables with
variance 2

n .

First, we show that ∥AX⋆ −X⋆B∥F = O(σ
√
n). As X⋆ is the minimizer of (2) and I ∈ Bn,

∥AX⋆ −X⋆B∥2F ≤ ∥A−B∥2F = σ2∥Z∥2F ≤ c̃2σ2n.

We now obtain an upper bound on ∥AX⋆ −X⋆A∥F using the upper bound on ∥AX⋆ −X⋆B∥F :
∥AX∗ −X∗A∥F ≤ ∥AX∗ −X∗B∥F + ∥X∗(A−B)∥F

= ∥AX∗ −X∗B∥F + σ∥X∗Z∥F
≤ c̃σ

√
n+ σ∥X∗∥2∥Z∥F

≤ c̃σ
√
n+ c̃σ

√
n∥X∗∥2

≤ 2c̃σ
√
n.

The last inequality follows as X⋆ ∈ Bn and the spectral norm of a doubly stochastic matrix is at most
1, e.g., see [20]. It completes the proof with c = 2c̃.

C.2 Proof of Claim 9

Let U ∈ Rn×n be the matrix whose lines are u1, . . . , un. It is orthogonal, and its distribution is
uniformed on the set of orthogonal matrices. Therefore, U1 is uniformly distributed in

√
nSn−1, so

that it is equal in distribution to
√
n z

∥z∥2
, for z ∼ N(0, In). In particular,

P
(
#
{
|⟨ui,1⟩| ≤ n−ϵ/16

}
> 3n1−ϵ/16

)
= P

(
#
{
|zi| ≤ n−1/2−ϵ/16∥z∥2

}
> 3n1−ϵ/16

)
≤ P

(
#
{
|zi| ≤ 2n−ϵ/16

}
> 3n1−ϵ/16

)
+ P

(
∥z∥2 > 2

√
n
)

∗
≤ P

(
n∑

i=1

1

{
|zi| ≤ 2n−ϵ/16

}
> 3n1−ϵ/16

)
+ e−c1n (for some constant c1 > 0)

∗∗
≤ P

(
n∑

i=1

(
1

{
|zi| ≤ 2n−ϵ/16

}
− E1

{
|zi| ≤ 2n−ϵ/16

})
> n1−ϵ/16

)
+ e−c1n

∗∗∗
≤ e−c2n

1−ϵ/16

+ e−c1n (for some constant c2 > 0).

Inequality (∗) is true, again, from [11, Lemma 15]. Inequality (∗∗) is true because

E

(
n∑

i=1

1

{
|zi| ≤ 2n−ϵ/16

})
=

n√
2π

∫ 2n−ϵ/16

−2n−ϵ/16

e−
t2

2 dt ≤ 2n

√
2

π
n−ϵ/16 ≤ 2n1−ϵ/16.

Inequality (∗ ∗ ∗) is due to Bernstein’s inequality. This completes the proof of claim with c = c2/2

as e−c2n
1−ϵ/16

+ e−c1n ≤ e−c2n
1−ϵ/16/2 for n large enough.
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C.3 Proof of Claim 10

We pick L > 0 (constant depending on ϵ) such that min|i−j|>L |λi−λj | ≥ n−1−ϵ/2 with probability
at least 1− o(1) by [29, Corollary 2.5]. So we have

∑
i ̸=j

1

(|λi − λj |+ n−1−ϵ)
2 =

⌈ n
L⌉∑

k=0

∑
|i−j|∈[kL,(k+1)L]

1

(|λi − λj |+ n−1−ϵ)
2

≤
∑

|i−j|≤L

1

(|λi − λj |+ n−1−ϵ)
2 +

⌈ n
L⌉∑

k=1

∑
|i−j|∈[kL,(k+1)L]

1

(λi − λj)
2

≤
∑

|i−j|≤L

1

(|λi − λj |+ n−1−ϵ)
2 +

⌈ n
L⌉∑

k=1

∑
|i−j|∈[kL,(k+1)L]

n2+ϵ

k2

≤
∑

|i−j|≤L

1

(|λi − λj |+ n−1−ϵ)
2 + n3+ϵL

⌈ n
L⌉∑

k=1

1

k2

≤
∑

|i−j|≤L

1

(|λi − λj |+ n−1−ϵ)
2 + 10Ln3+ϵ.

Now, we bound the remaining terms below. We have

E

[
1

(|λj − λi|+ n−1−ϵ)
2

]

=

∫ ∞

0

P

(
1

(|λj − λi|+ n−1−ϵ)
2 > x

)
dx

=

∫ ∞

0

P
(
|λj − λi| <

1√
x
− n−1−ϵ

)
dx

=

∫ n2+2ϵ

0

P
(
|λj − λi| <

1√
x
− n−1−ϵ

)
dx+

∫ ∞

n2+2ϵ

P
(
|λj − λi| <

1√
x
− n−1−ϵ

)
dx

≤
∫ n2+2ϵ

0

P
(
|λj − λi| <

1√
x

)
dx ≤ 2c0n

2+ϵ,

where the last inequality holds by [29, Corollary 2.2] for some constant c0 > 0. Using the above
inequality, we get

E

 ∑
|i−j|≤L

1

(|λj − λi|+ n−1−ϵ)2

 ≤ 2c0Ln
3+ϵ.

Now, by the Markov’s inequality, with probability 1− n−ϵ/4, we get∑
|i−j|≤L

1

(|λj − λi|+ n−1−ϵ)2
≤ 2c0Ln

3+5ϵ/4.

Thus, we get ∑
i̸=j

1

(|λi − λj |+ n−1−ϵ)
2 ≤ 2c0Ln

3+5ϵ/4 + 10Ln3+ϵ ≤ n3+3ϵ/2,

where the last inequality holds for n large enough (depending on ϵ). The proof is now complete.
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