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ABSTRACT

In recent years, Reinforcement Learning (RL) has achieved remarkable progress,
reaching superhuman performance across a variety of simulated environments,
largely driven by the adoption of standardized training suites, such as Gymnasium
and MuJoCo. However, this success has not been translated directly to real-world
domains, which present inherent challenges that remain underexplored in existing
reference environments. This gap highlights the need for training suites that more
closely reflect real-world conditions and facilitate the practical deployment of RL
solutions. Towards this goal, in this paper, we introduce Gym4ReaL, an open-
source suite of realistic environments developed starting from collaborations with
industry partners and domain experts. The suite offers a diverse collection of
tasks, simulators, and datasets that expose algorithms to real-world complexities
and support the investigation of different methodological approaches. Through
benchmark experiments, we demonstrate that standard RL algorithms remain
competitive against expert-guided rule-based baselines in these settings, motivating
the development of new methods capable of fully harnessing RL’s potential for
real-world applications.

1 INTRODUCTION

In the past few years, Reinforcement Learning (RL) (Sutton & Barto, 2018) has demonstrated above-
human performance across different challenges, ranging from playing Atari games (Mnih et al., 2015)
to beating world champions of Chess and Go (Silver et al., 2017a;b), achieving impressive results
also in the field of robotic control (Kober et al., 2013). However, despite these promising advances,
RL still struggles to gain traction in many real-world applications, where systems are often subject to
uncertainties and unpredictable factors that complicate physical modeling. An additional limitation
lies in the fact that RL algorithms are typically validated on idealized environments, such as those
provided by Gymnasium (Towers et al., 2024) and MuJoCo (Todorov et al., 2012). Despite their great
contribution to RL research, such libraries provide artificial playgrounds able to generate infinite
samples, adapt to any desired configuration, and grant harmless exploration. However, learning and
overfitting these environments does not necessarily reflect skillfulness in real-world tasks, where data
availability is limited, dynamics change, and exploration does not come for free.

From this perspective, the collaboration with industry and domain experts – who can provide
operational objectives, validated simulators, and real datasets – may contribute meaningfully to
RL research. Our work takes a first, practical step in this direction, toward narrowing the gap
between theoretical RL analyses and realistic operational settings, aiming to promote techniques
with demonstrable applicability. We therefore present Gym4ReaL, a reference environment suite
developed in collaborations with industries and research centers and designed to realistically model
several real-world environments under a unified interface, grounded in research-grade simulators and
real-world datasets. The selected tasks included in Gym4ReaL span multiple application domains.
In particular, the suite includes:

• DamEnv, which exploits a mathematically validated model to manage a dam control system
responsible for releasing the appropriate amount of water to meet residential demand;

• ElevatorEnv, which addresses a modified version of the elevator dispatching problem under
dynamic request patterns;
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Table 1: Characteristics and RL Paradigms covered by each environment provided by Gym4ReaL.
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C
on

t.
St

at
es

C
on

t.
A

ct
io

ns

Pa
rt

.O
bs

er
va

bl
e

Pa
rt

.C
on

tr
ol

la
bl

e

N
on

-S
ta

tio
na

ry

V
is

ua
lI

np
ut

Fr
eq

.A
da

pt
at

io
n

H
ie

ra
rc

hi
ca

lR
L

R
is

k-
A

ve
rs

e

Im
ita

tio
n

L
ea

rn
in

g

Pr
ov

ab
ly

E
ffi

ci
en

t

M
ul

ti-
O

bj
ec

tiv
e

R
L

DamEnv ✓ ✓ ✓ ✓ ✓
ElevatorEnv ✓ ✓
MicrogridEnv ✓ ✓ ✓ ✓ ✓
RoboFeederEnv ✓ ✓ ✓ ✓
TradingEnv ✓ ✓ ✓ ✓ ✓ ✓
WDSEnv ✓ ✓ ✓ ✓

• MicrogridEnv, which adopts a digital twin framework to address the optimal energy manage-
ment within a local microgrid, balancing supply, demand, and storage;

• RoboFeederEnv, which simulates in a virtual environment a robotic work cell tasked with
isolating and picking small objects, including both picking and planning challenges;

• TradingEnv, which addresses the development of optimized trading strategies for the foreign
exchange (Forex) market;

• WDSEnv, which employs a hydraulic analysis framework to model a municipal water distribution
system, where the objective is to ensure a consistent supply to meet fluctuating residential demand.

Unlike prior works that address tasks in domain-specific contexts (see Appendix B), the contribution
of Gym4ReaL is to provide a standardized implementation of these environments, fully compatible
with the Gymnasium interface and grounded in realistic simulators and real-world datasets. Beyond
supporting the training of agents tailored to these practical problems, Gym4ReaL is intentionally
designed as a methodologically agnostic suite, enabling RL researchers to systematically evaluate
and benchmark algorithms without requiring specialized domain knowledge.

Scope and Contribution. The primary goal of Gym4ReaL is not merely to supply environments for
solving specific domain tasks, but rather to offer a curated suite of realistic environments encapsulating
crucial challenges inherent to real-world applications for RL researchers, where they can validate
new methods. Across the selected tasks, we emphasize both diversity and generalization in the goals
and characteristics represented within the suite. A comprehensive summary of the suite’s features is
presented in Table 1. In particular, we distinguish between two key aspects: Characteristics, which
refer to modeling properties specific to each environment, and RL Paradigms, which denote the
classes of RL techniques that can be effectively tested and benchmarked within these environments
beyond the classical RL approaches. While in this work we illustrate the utility of Gym4ReaL
through benchmarking standard RL algorithms against expert-informed, rule-based baselines, the
suite is expressly designed to accommodate a broader range of paradigms. For instance, the DamEnv
task includes expert demonstrations that can be leveraged for imitation learning, inverse RL, or
offline RL. Importantly, we include state-of-the-art algorithms to show that RL is well-suited for our
environments: although their performance varies and is not optimal, they consistently outperform
expert rule-based baselines. In this sense, our main goal is to provide a challenging and diverse
environment suite, rather than an exhaustive algorithmic benchmark, which we leave for future work
and for the community to extend. Eventually, Gym4ReaL offers a high degree of configurability.
Users can customize input parameters and environmental dynamics to better reflect domain-specific
requirements, thus extending the suite’s usability to researchers from the respective application
domains. Through this combination of realism, diversity, and flexibility, Gym4ReaL supports a
wide spectrum of research efforts, from benchmarking general-purpose RL algorithms under realistic
conditions to developing domain-specific controllers.
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2 ENVIRONMENTS

This section introduces Gym4ReaL environments, describing each task objective and modeling. Test
results derived by state-of-the-art RL algorithms are included and evaluated against expert-agreed
rule-based baselines to establish that training on these environments is practical and yields sensible
outcomes. Further details on environments and experiments are in Appendices E and F, while
reproducibility instructions are provided in Appendix A.3.

2.1 DAMENV

DamEnv is designed to model the operation of a dam connected to a water reservoir. By providing
the amount of water to be released as an action, the environment simulates changes in the water level,
considering inflows, outflows, and other physical dynamics. The agent controlling the dam aims to
plan the water release in order to satisfy the daily water demand while preventing the reservoir from
exceeding its maximum capacity and causing overflows. Formally, the objective is:

max

T∑
t=1

[rd(at) + rof(at) + rst(at)], (1)

where rd favors actions that meet daily demand, rof actions that prevent water overflows, and rst those
that avoid starvation effects along the time horizon T . The daily control frequency adopted depends
on the data granularity. Moreover, the available historical data derived from human-expert decisions
allows for the development of imitation learning studies.

Observation Space. The observation space is composed as follows:
st =

(
lt, d̄t, cos(φy

t ), sin(φy
t )
)
, (2)

where lt is the water level at time t, d̄t is the moving average of past water demands, and φy
t ∈ [0, 2π]

represents the angular position of the current time over the entire year, given by φy =
2πτy
Ty

, where
τy ∈ [0, Ty] is the current time in seconds and Ty is the total number of seconds in a year.

Action Space. The action is a continuous variable at ∈ R+, representing the amount of water to
release per unit of time.

Reward Function. The reward at time t is rt = [rd(at) + rof(at) + rst(at)] + λ1rclip(at) +
λ2rw(at), where rd(at), rof(at) and rst(at) are the quantities in Equation 1, while rclip(at) and rw(at)
are two terms designed to discourage actions beyond the physical constraints of the environment and
to discourage water releases that are higher than the daily demand, respectively. The two positive
hyperparameters λ1 and λ2 regulate the importance of these two additional penalty terms. The
presence of multiple contrastive components enables the development of MORL paradigms.

Benchmarking. We employed an off-the-shelf implementation of the Proximal-Policy Optimization
(PPO) (Schulman et al., 2017) algorithm as a benchmark state-of-the-art RL approach for the DamEnv
task. We evaluated the trained agent against four rule-based baselines: the Random policy, which
selects actions uniformly at random; the Mean policy, which selects the mean value of the action
space; the Max policy, which selects the maximum value of the action space; and the EAD policy,
which sets actions based on an exponential moving average of previous demands. The experiments
conducted on 13 test episodes highlight the capability of the PPO agent to perform better than
rule-based strategies. In particular, we can observe a better daily control of the PPO agent throughout
one year, as shown in Figure 1a, and a larger average return with small variability, as highlighted
in Figure 1b. Detailed results show that PPO avoids dam overflows much more effectively than the
baselines, as detailed in the Appendix.

2.2 ELEVATORENV

ElevatorEnv is a simplified adaptation of the well-known elevator scheduling problem introduced
by Crites & Barto (1995). Similarly to a subsequent work (Yuan et al., 2008), we design a discrete
environment that simulates peak-down traffic, typical of scenarios such as office buildings at the end
of a workday. In this environment, a single elevator serves a multi-floor building with F floors and is
tasked with transporting employees to the ground floor (f = 0). The episode unfolds over T discrete
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Figure 1: Test performances with confidence intervals on DamEnv. Thirteen different episodes have
been considered with a time horizon of one year.

time steps. At each floor f ∈ {1, . . . , F}, new passengers arrive according to a Poisson process with
rate λf .

Arriving passengers join a queue on their respective floor, provided the queue length is below a
predefined threshold Wf,max. Otherwise, they opt to take the stairs. The goal of the elevator controller
is to minimize the cumulative waiting time of all transported passengers throughout the episode. This
can be formalized as minimizing the cost:

min

T∑
t=1

( F∑
f=1

wf,t + ct

)
, (3)

where wf,t denotes the total waiting time of individuals at floor f at time t. This setting defines a
challenging load management problem, involving a trade-off between serving higher floors with longer
queues and minimizing elevator travel time. Furthermore, the discrete and restrained formulation
of ElevatorEnv facilitates the development of provably efficient RL methods, without losing the
connection with the underlying real-world task.

Observation Space. The observation space is structured as follows:
st = (ht, ct,wt,kt), (4)

where ht ∈ {0, . . . , H} denotes the vertical position of the elevator within the building at time t,
being H the maximum reachable height, ct ∈ {0, . . . , Cmax} indicates the current load of the elevator,
in number of passengers, up to the maximum capacity Cmax, and wt ∈ NF and kt ∈ NF represent
the actual number of people waiting in the queue and the new arrivals at each floor.

Action Space. The action space is defined by the discrete action variable at ∈ {u, d, o} which
indicates whether the elevator has to move upwards (u), move downwards (d), or stay stationary and
open (o) the doors. Actions are mutually exclusive and applied at each time step t.

Reward Function. The instantaneous reward is rt = −(
∑

f wf,t + ct) + 1{ct=0}β ct−1, i.e., at
each step t we penalize the presence of individuals, either waiting in queues (wf,t) or inside the
elevator (ct), as in Equation equation 4. In addition, we grant a positive reward when passengers
are successfully delivered to the ground floor, i.e., when the elevator becomes empty. The positive
hyperparameter β > 0 controls the reward magnitude for offloading ct−1 passengers.

Benchmarking. For the ElevatorEnv task, we adopt two well-known tabular RL algorithms:
Q-Learning (Watkins & Dayan, 1992) and SARSA (Sutton & Barto, 2018). Such methods are
evaluated against different rule-based strategies, i.e., the Random policy, and the Longest-First (LF)
and the Shortest-First (SF) policies, which prioritize the floor with a higher or lower number of
waiting people, respectively. As shown in Figure 2a, both RL algorithms consistently outperform the
other rule-based solutions, considerably reducing the global waiting time. In particular, as reported in
Figure 2b, Q-Learning shows higher performance than SARSA, which, due to its inherent nature,
tends to play more conservative actions.
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Figure 2: Performance of baselines in terms of mean cumulative reward (a) and average return (b) on
ElevatorEnv. Results collected over 30 different episodes.

2.3 MICROGRIDENV

MicrogridEnv simulates the operation of a microgrid within the context of electrical power
systems. Microgrids are decentralized components of the main power grid that can function either
in synchronization or in islanded mode. In this scenario, the control point is placed on the battery
component, which must find the best strategy to manage the accumulated energy over time optimally.
Formally, the controller wants to maximize its total profit over a time horizon of T . Hence, the
objective is:

max

T∑
t=1

[rtrad(at) + rdeg(at)], (5)

where rtrad(at) ∈ R is the reward/cost gained from the exchanges of energy with the market, and
rdeg(at) < 0 is the cost due to battery degradation. The benchmark leverages real-world datasets, as
detailed in the Appendix, and the battery behavior is modeled using a digital twin of a BESS (Salaorni
et al., 2025). Each episode is formulated as an infinite-horizon problem and terminates either when
the dataset is exhausted or the battery reaches its end-of-life condition. Moreover, the presence of
energy market trends allows the usage of MicrogridEnv for frequency adaptation analysis.

Observation Space. The observation space comprises variables regarding the internal state of the
system and uncontrollable signals received from the environment. Formally:

st =
(
σt,Kt, P̂D,t, P̂G,t, p

buy
t , psell

t , cos(φd
t ), sin(φd

t ), cos(φy
t ), sin(φy

t )
)
, (6)

where σt is the storage state of charge, Kt is the battery temperature, P̂D,t is the estimate of energy
demand PD,t, P̂G,t is the estimate of energy generation PG,t, p

buy
t and psell

t are the buying and selling
energy market prices, respectively, φd

t ∈ [0, 2π] is the angular position of the clock in a day, and
φy
t ∈ [0, 2π] is the angular position of the time over the entire year.

Action Space. The action space is determined by the continuous action variable at ∈ [0, 1],
representing the proportion of energy to dispatch (take) to (from) the BESS. The action operates with
the net power computed as PN,t = PG,t − PD,t. If PN,t > 0, it regulates the proportion of energy
used to charge the battery or sold to the main grid. Conversely, if PN,t < 0, the action balances the
proportion of energy taken from the energy storage or bought from the market.

Reward Function. The instantaneous reward is rt = [rtrad(at) + rdeg(at)] + λrclip(at), where
rclip(at) is a penalty that discourages actions that do not respect physical constraints, weighted by the
hyperparameter λ. The first two elements, instead, are the same components of the objective function
in Equation equation 5, whose contrastive optimization enables multi-objective RL approaches.

Benchmarking. For the MicrogridEnv, we compare an RL agent trained with PPO against
several rule-based policies: the Random policy; the Only-market (OM) policy, which forces the
interaction with the grid without using the battery; the Battery-first (BF) policy, which fosters the
battery usage; and the 50-50 policy, which adopts a behavior in the middle between OM and BF.
Figure 3a shows that, during testing, PPO achieves higher profit than rule-based strategies. However,
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Figure 3: Performance of baselines in terms of mean cumulative reward (a) and average return (b) on
MicrogridEnv. Results have been collected over 28 different episodes.

as reported in Figure 3b, PPO has a large variance, suggesting the need for novel RL algorithms to
achieve more consistent behavior.

2.4 ROBOFEEDERENV

RoboFeederEnv is a collection of environments designed to pick small objects from a workspace
area with a 6-degree-of-freedom (6-DOF) robotic arm. This task involves two primary challenges:
determining the picking order of the objects and identifying the precise grasping point on each
object for successful pickup and placement. To closely mimic the behavior of the commercial robotic
system, a simulation emphasizing contact interactions is conducted using MuJoCo. This environment
supports goal-oriented training, enabling the robot to learn how to identify the appropriate grasping
points and, more broadly, to determine the most efficient order of picking. Unlike most robotic
simulators, RoboFeederEnv is uniquely tailored to operate at the trajectory planning level rather
than through low-level joint control, which is more realistic in industrial applications, given the
impossibility of accessing and modifying proprietary kinematic controllers.

Due to the hierarchical nature of the problem, we split the setting into two underlying environments:
RoboFeeder-picking and RoboFeeder-planning.

2.4.1 ROBOFEEDER-PICKING

Gym4ReaL includes two types of picking environments of increasing difficulty:

• picking-v0: a simpler environment where the top-down image is pre-processed by cropping
around detected objects, reducing the complexity of the visual input, thus of the observation space;

• picking-v1: a more challenging environment where the observation is the full camera image.

Observation Space. The observation is defined by the visual input st = Xt ∈ RH×W×C , where
each image Xt is represented by a tensor of height H , width W , and channel C, and is captured by a
camera positioned on top of the working area. Within the picking-v0 environment, the image
tensor is restricted to X̂t ∈ RĤ×Ŵ×C , with Ĥ and Ŵ cropped image dimensions.

Action Space. The action space is determined by the continuous action at = (xt, yt), where (xt, yt)
are relative coordinates within the segmented image, corresponding to the target grasping point.

Reward Function. The reward function is designed to foster successful object picking while
penalizing unfeasible or suboptimal actions. Formally, the instantaneous reward is rt = 1 if the object
is correctly picked up, rt = −1 if the action is unfeasible, or rt = −1 + rd,t + rθ,t otherwise, where
rd,t is a distance-based shaping term that rewards proximity of the end-effector to the object, and rθ,t
is a rotation-based shaping term that incentivizes alignment with the desired grasping orientation.

Benchmarking. We evaluate the performance of a trained PPO agent against a fixed action rule-based
strategy on the picking-v0 environment. The task involves objects uniformly distributed within
the workspace, requiring non-trivial generalization capabilities. Figures 4a and 4b report how the
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Figure 4: Heatmap of the success rate of picking tasks across the entire workspace with baseline
(a) and PPO (b) (the higher, the better). Comparison between Random policy and PPO within the
planning problem (c) (average return over 50 episodes and 5 different random seeds).

baseline exhibits consistently poor performance, while the PPO agent achieves higher and more
evenly distributed success rates, highlighting its capability to learn an effective picking strategy.

2.4.2 ROBOFEEDER-PLANNING

The RoboFeeder-planning is an environment aiming to decide the order to follow for picking
the objects in the work area. It is a high-level task w.r.t. RoboFeeder-picking, not involving
the direct control of the robot, but only concerning the optimal picking schedule.

Observation Space. The observation space is defined by the vector of visual input st =
[X1,t, . . . ,XN,t], with Xi,t ∈ RH×W×C , where N is the maximum number of images that can be
processed and Xi,t is an image defined as in the picking-v0 task. Each of the N image patches
corresponds to a cropped and scaled region of a detected object.

Action Space. The action space is determined by the discrete action at ∈ {0, 1, . . . , N}, selecting
the image from 1 to N containing the object to pick. Action 0, instead, is a special idle action that can
be chosen when no graspable objects are available. This formulation enables continuous deployment
since the robot can remain idle while waiting for the arrival of new objects.

Reward Function. The immediate reward is rt = 1, if the selected object is correctly picked,
rt = −1 if it is not picked, and rt = −

∑M
i=1 1{obji not picked but graspable} if the agent plays the idle

action at = 0 while graspable objects are present, with M being the currently available objects.

Benchmarking. In Figure 4c, we compare the efficiency of a trained PPO agent against a Random
strategy. Results highlight the agent’s capability to determine an optimal picking schedule by
distinguishing objects placed in a favorable position to be picked up. Moreover, as the number of
objects increases, the gap between the average return of PPO and the baseline increases too.

2.5 TRADINGENV

TradingEnv provides a simulated market environment, trained with historical foreign exchange
(Forex) data relative to the EUR/USD currency pair, where the objective is to learn a profitable
intraday strategy. The problem is framed as episodic: each episode starts at 8:00 EST and ends at
18:00 EST when the position must be closed. At each step, based on its expectations, the agent can
open a long position (i.e., buy a fixed amount of the asset), remain flat (i.e., take no action), or open a
short position (i.e., short sell a fixed amount of the asset). Typical baselines include passive strategies,
such as Buy&Hold (B&H) and Sell&Hold (S&H), which consist of maintaining fixed positions.

Trading tasks are typically subjected to several challenges. For example, the state has to be carefully
designed to deal with the low signal-to-noise ratio, and it is typically large-dimensional, including past
prices and temporal information. Moreover, the environment is partially observable, and financial
markets are non-stationary. Another relevant aspect is the calibration of the trading frequency,
considering the amount of noise and transaction costs. In addition, risk-aversion approaches can be
of interest, considering not only the profit-and-loss (P&L) but also the variance among episodes.

Observation Space. The observation space is composed of two components: market state and agent
state. The market state includes calendar features and recent price variations, namely the last 60 delta
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Figure 5: Performances of PPO and DQN against baselines B&H and S&H on Test (a) Daily
Performance on Test (b) on TradingEnv. Mean and Confidence Intervals computed using 6 seeds.

mid-prices, where a delta mid-price is defined as dk,t =
pt−k−pt−k−1

pt−k−1
, with k ∈ {0, . . . , 59}. The

agent state component, on the contrary, includes the current position zt, that is, the action that was
previously played. Formally, the state in this setting is:

st =
(
dt, cos(φday

t ), sin(φday
t ), zt

)
, (7)

where dt = [d0,t, . . . , d59,t] is the vector of the last 60 delta mid prices at time t, φday
t ∈ [0, 2π] is

the angular position of the current time over the trading period, and zt = at−1 is the agent position.

Action Space. The action space is determined by a discrete variable at ∈ {s, f, l}, where s (short)
indicates that the agent is betting against EUR, supposing a decline in the value relative to USD; f
(flat) indicates no market exposition; and l (long) means that the agent expects that the relative EUR
value will increase. Each action refers to a fixed amount of capital C to trade.

Reward Function. The immediate reward at time t is the signal rt = at−1(pt − pt−1)− λ|at − zt|,
where the first term is related to the P&L obtained from a price change, and the second component
regards the commissions paid when the agent changes its position, being λ, a constant transaction fee.

Benchmarking. We trained agents using off-the-shelf implementations of PPO and Deep Q-Network
(DQN) (Mnih et al., 2015) on TradingEnv. Their performance against common passive baselines,
B&H and S&H, are evaluated on a test year (Figure 5a). As expected, neither PPO nor DQN is able
to consistently outperform the baselines, due to the complexity of the problem. However, RL remains
a valid candidate to tackle trading tasks, as it significantly reduces the daily variability of the P&L
(Figure 5b).

2.6 WATERDISTRIBUTIONSYSTEMENV

WaterDistributionSystemEnv simulates the evolution of a hydraulic network in charge of
dispatching water across a residential town. A network is composed of different entities, such as
storage tanks, pumps, pipes, junctions, and reservoirs, and the main objective of the system is the
safety of the network. To achieve such a goal, we have to ensure optimal management of hydraulic
pumps, which are in charge of deciding how much water should be collected from reservoirs and
dispatched to the network. The pumps’ controller must guarantee network resilience by maximizing
the demand satisfaction ratio (DSR) while minimizing the risk of overflow. Formally, the objective is

max

T∑
t=1

[rDSR(at) + rof(at)], (8)

where rDSR(at) ∈ [0, 1] is the ratio between the supplied demand on the expected demand at time t,
and rof(at) ∈ [0, 1] is a normalized penalty associated with the tanks’ overflow risk.

The environment leverages the hydraulic analysis framework Epanet (Rossman, 2000), which provides
the mathematical solver for water network evolution, and realistic datasets of demand profiles.

8
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Figure 6: Performance of baselines in terms of mean cumulative resilience (a) and average return (b)
on WDSEnv. Results have been collected over 20 different episodes.

Therefore, WDSEnv may also be suitable to test imitation learning methods, having at disposal an
expert policy from the .inp configuration file of networks read by Epanet.

Observation Space. The observation space includes the internal state of the network and an
estimation of the global demand profile that the system is asked to deal with. Formally:

st =
(
ht,pt, d̂t, cos(φd

t ), sin(φd
t )
)
, (9)

where ht ∈ RL is the vector of L tank levels at time t, pt ∈ RJ is the vector of J junction pressures
at time t, d̂t is the estimated total demand at time t, and φd

t ∈ [0, 2π] is the angular position of the
clock in a day. Finally, although all tanks must be monitored, we can reduce the dimensionality of
the observation space by considering only junctions placed in strategic positions.

Action Space. The discrete action variable at ∈ N can assume values in {0, . . . , 2P − 1}, with P
number of pumps within the system. The action determines the combination of open/closed pumps.

Reward Function. The instantaneous reward given by the environment is rt = rDSR,t(at)+rof,t(at),
where the terms are those described in the objective function in Equation equation 8.

Benchmarking. The WDSEnv is benchmarked adopting DQN, which is compared with different
rule-based baselines: the Random policy, P78 and P79 policies, which act by keeping active only
the relative pump (namely P78 or P79, respectively), and the Default policy, which executes the
default control rules contained within the .inp configuration file of the network, changing the control
action depending on the current tank level. As depicted in Figure 6a, DQN achieves a higher level of
resilience with respect to other baselines. Moreover, Figure 6b shows that it has a more consistent
behavior and low variance, a crucial characteristic for the resilience and safety of the water network.

3 DISCUSSION AND CONCLUSIONS

In this work, we presented Gym4ReaL, a reference environment suite developed in collaborations
with industries and research centers and designed to realistically model several real-world environ-
ments, built on research-grade simulators and real-world datasets. Unlike standard RL suites, such as
Gymnasium and MuJoCo, Gym4ReaL represents a novel library that allows for evaluating new RL
methods in realistic applications. Notably, the Gym4ReaL suite includes environments designed to
capture common real-world challenges, such as limited data availability, realistic assumptions about
physical process dynamics, and constrained exploration, fostering research toward broader adoption
of RL methods in practical applications. Indeed, the variety of tasks and challenges tackled with the
presented suite offers the opportunity to address multiple RL Paradigms across environments with
different Characteristics, as highlighted in Table 1. Given the standardized and flexible interface
offered by our suite, a broader range of real-world problems could be easily integrated into our
framework. We believe that a collective effort from the RL community can significantly advance the
development of realistic, impactful benchmarks. Hence, we encourage researchers and practitioners
to explore, contribute to, and adopt Gym4ReaL to evaluate RL algorithms in real-world scenarios.

9
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