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ABSTRACT

Identifying relations between objects is crucial for understanding the semantics of
a visual scene. It is also an essential step in order to bridge visual and language
models. However, current state-of-the-art computer vision models still lack the
ability to perform spatial reasoning well. Existing datasets mostly cover a rela-
tively small number of spatial relations, all of which are static relations that do not
intrinsically involve motion. In this paper, we propose the Spatial and Temporal
Understanding of Prepositions Dataset (STUPD) – a large-scale video dataset for
understanding spatial and temporal relationships derived from prepositions of the
English language. The dataset contains 150K visual depictions (videos and im-
ages), consisting of 30 static and dynamic spatial prepositions, in the form of ob-
ject interaction simulations generated synthetically using Unity3D. In addition to
spatial relations, we also propose 50K visual depictions across 10 temporal rela-
tions, consisting of videos depicting event/time-point interactions. To our knowl-
edge, no dataset exists that represents temporal relations through visual settings.
In this dataset, we also provide 3D information about object interactions such as
frame-wise coordinates, and descriptions of the objects used. The goal of this
synthetic dataset is to help models perform better in visual relationship detection
in real-world settings. We demonstrate an increase in the performance of various
models over 2 real-world datasets (ImageNet-VidVRD and Spatial Senses) when
pretrained on the STUPD dataset, in comparison to other pretraining datasets.

1 INTRODUCTION

Identifying relationships between objects is crucial for semantic understanding of the visual world.
However, current state-of-the-art computer vision models still find it challenging to understand rela-
tionships (Conwell & Ullman, 2022; Cho et al., 2022; Liu et al., 2021; Thrush et al., 2022; Ramesh
et al., 2022; Zhang et al., 2022). For instance, even for simple relations in 2D pixel space such
as “left”, “right”, “above” and “below”, Cho et al. (Cho et al., 2022) found a large gap between
upper-bound accuracy and the performance of generative transformers. Compared to an upper-
bound accuracy of 99.3%, the average accuracy of 3 models was only 24.7%, with the best model
achieving 51.2%.

In human languages, relational concepts are conveyed using prepositions, which are words used “to
show a relationship in space or time” (Litkowski & Hargraves, 2021a). Examples of prepositions
include “above”, “before” and “with”. Existing computer vision datasets cover English parts-of-
speech such as nouns/objects (Deng et al., 2009a; Krizhevsky et al., 2009), verbs/actions (Sigurdsson
et al., 2016; Ji et al., 2020; Kay et al., 2017), adjectives/attributes (Parikh & Grauman, 2011; Krishna
et al., 2016), etc. However, despite their importance, prepositions are significantly understudied in
computer vision as a distinct class of concepts.

Prepositions may have one or more senses, which are distinct definitions of a word in different con-
texts. For example, the preposition “against” has 2 distinct spatial senses (Litkowski & Hargraves,
2021a). One refers to a situation where 2 objects are moving in opposite directions and the other
where an object is leaning on another. For simplicity, we will henceforth use the term “preposition”
to refer to both prepositions (the words) and their senses (the definitions), except where clear dis-
tinctions are required. A detailed glossary of all terms introduced in this paper is included in the
Appendix.

From Table 1, it can be observed that image datasets that contain hundreds to thousands of relation
classes actually have fewer than 30 prepositions (an exception is the recent VSR dataset (Liu et al.,
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2022) which covers 65 prepositions). As for existing video datasets, only 6-8 prepositions are cov-
ered. Furthermore, datasets thus far contain only static prepositions, which are prepositions that do
not necessarily involve any motion, such as “above” and “behind”. The vast majority of such exam-
ples come from very simple and intuitive preposition classes such as “on” or “near”, which are easier
to label by human annotators. None of the existing datasets include dynamic prepositions, which are
prepositions that intrinsically involve motion, such as “into”, “onto”, etc. Finally, existing datasets
are also extremely imbalanced due to the long-tailed distribution of relationship occurrences.

This kind of highly restrictive relational domain in existing datasets is not an effective approach
towards visual reasoning, because it only focuses on position, while ignoring many fundamental
relational characteristics, such as relative speed, contact and physical forces of interaction. The
prospect of the ability to distinguish between different spatial (as well as temporal) configurations
with higher granularity, thus, makes it worthwhile to study the wider variety of prepositions for
effective visual reasoning. Through this, datasets can be richer in information, and models would be
able to differentiate between many related but different relational categories (such as “above” and
“over”). A granular understanding of prepositional relations also allows for better understanding of
language semantics, which is an equally important and complementary aspect of visual reasoning in
the understanding of a scene.

Apart from spatial reasoning, understanding temporal relations is also a crucial component for vi-
sual reasoning. Many relations require understanding dynamics of interactions over time. Visual
representation of temporal relationships is a challenging task because temporal concepts are unin-
tuitive to visualize. This is one of the reasons why temporal relations are heavily underrepresented
in visual reasoning datasets. Without effectively understanding temporal relations, spatial relations
remain isolated, and their progression cannot be understood. Thus spatial and temporal relations
should be treated as equally important aspects of visual reasoning.

Contributions. To address these issues, we created the Spatial and Temporal Understanding of
Prepositions Dataset (STUPD) – the first dataset to include dynamic spatial prepositions and tempo-
ral relations. The contributions of this paper are as follows:

1. Comprehensive synthetic dataset for spatial relations: This paper introduces a dataset
consisting of 150,000 images and videos that capture 30 different spatial relations. The
dataset incorporates physical interactions using a sophisticated physics engine coupled with
diverse backgrounds.

2. Comprehensive synthetic dataset for temporal relations: In addition to the spatial re-
lations dataset, this paper introduces a separate dataset comprising 50,000 sets of videos
depicting 10 different temporal relations. Through this, the paper also introduces a defini-
tive framework for defining and distinguishing between different temporal relations, for
future works to build on.

3. Detailed 3D information and bounding box annotations: To enhance the quality and
usability of the dataset, each image and video in the dataset is accompanied by detailed 3D
information and bounding box annotations.

4. Effective pre-training dataset with real-world applicability: The proposed datasets are
primarily designed to serve as a highly effective pre-training resource for computer vision
models. Pre-training on this dataset provides a solid foundation for subsequent fine-tuning
on real-world datasets. Later in the paper, we demonstrate that pretraining on STUPD
increases performance on real-world visual reasoning tasks.

2 RELATED WORK

2.1 IMAGE DATASETS

In recent years, image-based datasets have attempted to present spatial relationships through simple
2D object interactions (Yang et al., 2019; Krishna et al., 2016; Lu et al., 2016). However, 2D
interactions restrict the scope of distinguishable visual relations. Synthetically generated datasets are
becoming increasing popular as a way to bridge the information gap in image datasets through 3D
spatial relations (Johnson et al., 2017; Liu et al., 2021). An example is the CLEVR dataset (Johnson
et al., 2017) which consists of synthetic images with objects arranged in various configurations to
promote generalization and systematic reasoning.
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Type Dataset Year 3D
info? # Preps Dyn? Tem? Real/

Synth Size

Image VSR (Liu et al., 2022) 2022 N 65 N N Real 10K
Image Liu et al. (Liu et al., 2021) 2021 N 6 N N Synth 83K
Image Rel3D (Goyal et al., 2020) 2020 Y 25 N N Synth 27.3K
Image SpatialSense (Yang et al., 2019) 2019 N 9 N N Real 11.5K
Image CLEVR (Johnson et al., 2017) 2017 N 4 N N Synth 100K
Image Visual Genome 50 (Xu et al., 2017) 2017 N 21 N N Real 108K
Image VRD (Lu et al., 2016) 2016 N 24 N N Real 5K
Image Scene Graphs (Johnson et al., 2018) 2015 N 29 N N Real 5K
VR iGibson 2.0 (Li et al., 2021) 2021 Y 6 N N Synth N/A
Video CATER (Girdhar & Ramanan, 2020) 2020 N 7 N Y Real 5.5K
Video Action Genome (Ji et al., 2020) 2020 N 6 N N Real 1.75K
Video VidOR (Shang et al., 2019) 2019 N 8 N N Real 10K
Video STUPD (ours) 2023 Y 40 Y Y Synth 200K

Table 1: Comparison of relations datasets. (Preps = Prepositions (relations), Dyn = Dynamic in
nature, Tem = Temporal, Synth = Synthetically generated)

However, synthetic datasets in this domain do not provide three-dimensional information about ob-
ject location or orientation, rendering the perceptual input provided as effectively two-dimensional.
Some works such as Goyal et al. (2020) provide annotated synthetic 3D scenes. This allows mod-
els to better understand object interactions and distinguish between subtle visual relations such as
impact and contact.

A common theme across different visual relation datasets is to mix complex actions and preposi-
tional relations (Goyal et al., 2017). For instance, in the Action Genome dataset (Ji et al., 2020),
the action “sitting” and preposition “on” is combined into a single dynamic relation “sitting on a
sofa”. However, actions themselves require a fundamental understanding of spatial relations, as put
forth by Hua et al. (2022), who argue that actions can be decomposed into chains of consecutive
spatial relations between objects. Hence, relation understanding tasks should sit at the root of all
other tasks that involve understanding more complex spatio-temporal relationships. Similarly, many
datasets (Johnson et al., 2018; Liu et al., 2022) present a larger number of spatial relations, which
are overlapping in meaning. For example, “below” and “beneath”, or “adjacent to” and “beside”.
Both pairs includes different prepositions but are essentially describing the same preposition sense.
Hence, the mixing of spatial relations with similar meanings results in redundant representations.
2.1.1 GRAPH-BASED SCENE RELATION REPRESENTATION

Relations can be explicitly modeled as graphs (Ashual & Wolf, 2019; Ji et al., 2020; Krishna et al.,
2016; Xu et al., 2017; Johnson et al., 2018), which can substitute the need for 3D information in a
restricted manner. This form of representation can also allow multiple spatial relations to co-exist,
which may be useful in understanding complex scenes. While these works have shown strong per-
formance in identifying low-level object relationships, understanding of higher-order relationships
are still not clearly understood through this approach.

2.2 VIDEO DATASETS

Many spatial relations have a dynamic nature, meaning that they intrinsically involve motion (e.g.
“onto”), which cannot be represented by image datasets. Various works have proposed video
datasets (Li et al., 2021; Ji et al., 2020; Shang et al., 2019), but they only cover the basic static
positional prepositions (e.g. “behind”, “above” and “below”). Shang et al. (2019) have a few addi-
tional static prepositions such as “(facing) towards”, but overall, dynamic spatial and also temporal
prepositions are severely under-researched. The CATER dataset (Girdhar & Ramanan, 2020) covers
just the 3 most basic temporal prepositions (“before”, “during” and “after”).

2.3 OTHER RELATED VISUAL REASONING TASKS

Various other tasks are related to visual relationship reasoning, which require the use of both spatial
and temporal cues to match visual features with labels for objects and relations. This includes tasks
such as video grounding (Su et al., 2021; Li et al., 2022; Zeng et al., 2020) and visual question
answering (Antol et al., 2015; Yusuf et al., 2022). Hence, many methods from visual relationship
reasoning can be transferred to the above mentioned tasks and vice versa.
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3 THE STUPD DATASET

The STUPD dataset is a dataset for visual reasoning. It contains synthetically generated images and
videos depicting spatial and temporal relations between objects. These relations are derived from
the list of prepositions of the English language, which are words representing relations between
different subjects within a sentence. The STUPD dataset provides 5,000 images/videos for each
preposition, resulting in 150,000 images and videos corresponding to spatial relations (referred to as
Spatial-STUPD) and 50,000 collections of videos corresponding to temporal relations (referred to
as Temporal-STUPD). The videos contains realistic interactions between objects of different kinds.
The dataset is statistically balanced with respect to object combinations. The dataset can be used to
pretrain models to perform visual reasoning better, and we demonstrate this in the paper.

3.1 PREDICATE VOCABULARY

The Prepositions Project (TPP) (Litkowski & Hargraves, 2021b), a database of all prepositions in
the English language, lists 373 prepositions in total. We use TPP as the source for our vocabulary,
and select prepositions only from the two largest groups in TPP (spatial and temporal prepositions)
for this paper. We first apply a structured filtering process on the list of all prepositions from TPP, the
details of which are outlined in the appendix. Through the filtering process, we shortlisted 30 spatial
prepositions and 10 temporal prepositions. These prepositions act as predicate relations for our
visual reasoning dataset. Spatial relation categories are divided into two subcategories – static spatial
relations (relations that do not involve relative movement between objects) and dynamic spatial
relations (relations that involve movement of the objects). We describe all these relation categories,
along with their definitions and context of usage, in Appendix 7.

3.2 SETTING AND STRUCTURE

3.2.1 SPATIAL DATASET STRUCTURE

Consider a spatial relation triplet <subject, predicate, object>. For each predicate (relation) in
the STUPD dataset, subject and object are represented by a collection of 3D objects. These 3D
object templates (also referred to as prefabs) were selected from the ShapeNet dataset (Chang et al.,
2015), which contains high-quality annotated 3D templates of real-life objects. The detailed curation
process of the prefabs used is explained in Appendix A.3.

We group all object categories into 8 supercategories based on size and physical properties to sim-
plify the types of interactions between different objects. These 8 supercategories are small objects
(everyday objects that are small enough to be easily maneuvered), furniture, vehicles, person, large-
scale grounded objects (large heavy objects that are usually grounded, e.g. buildings), containers,
track (roads and paths), and tunnels. The idea behind supercategories is that categories within a
supercategory have similar behavior of physical interaction.

Overall, we curated 183 prefab instances varying across 45 object categories and 8 supercategories.
An overview of the 3D prefabs used, along with other design choices are presented in Appendix
A.3.

It should be noted that in the STUPD dataset, the representation of relation triplets (subject, predi-
cate, object) has a slightly different meaning than in previous works. Certain predicate relations in
our vocabulary such as (moving) up and (scattered) all over (the scene) describe the relation between
the predicate and the subject category (and not any object category). Hence, the (object) is empty
for certain spatial relation categories. Note that subjects as well as objects can refer to multiple
instances of the same category of prefabs.

3.2.2 TEMPORAL DATASET STRUCTURE.
Temporal predicates in the STUPD dataset depict a relation between 2 events (a stretch of time
where something occurs) or time points (a single moment of time). Consider the temporal relation
triplet <Event/TimePoint A, relation, Event/TimePoint B>. The challenging part of visual temporal
relation representation is the visual depiction of events and time points. In this dataset, temporal
relations are represented by means of videos, where events and time points are depicted using the
spatial dataset generated. Each event is represented by a spatial relation (static or dynamic) that
occurs over variable time spans. A static event simply means that there is an occurrence of a static
relation a certain number of frames. On the other hand, time points are represented by single frame
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inside the temporal videos, and these are sampled from only static spatial events, since a single
frame cannot represent the temporal nature of a dynamic spatial relation.

3.3 DATASET CHARACTERISTICS

3.3.1 SPATIAL-STUPD DATASET CHARACTERISTICS

All static spatial relations are generated as single RGB images(frames)(f = 1), while dynamic
spatial relations are generated as a collection of f = 30 consecutive RGB images (frames), which
can be combined together to create a video depicting object interactions with dynamic movement.
We synthetically generate 5,000 examples of each spatial relation using the Unity3D perception
platform ((Borkman et al., 2021)), which allows the use of a physics engine to emulate realistic
physical interactions between different objects.

To ensure enough variance in the dataset, we randomize a variety of parameters of the generated
images, such as the selection of the objects (in a constrained manner to only allow selective super-
category interactions, described above), the color of the objects, the distance between the objects, the
relative position and rotation of the objects, the perspective of the camera, and even the background
of the image. All visual relations in the STUPD dataset are with respect to the camera’s perspective,
hence removing any ambiguity of perspective. We provide annotations for each spatial interaction
in the form of subject/object information (including category, supercategory, bounding box informa-
tion and 3D coordinates), as well as the predicate relation category. Note that all spatial relations are
independent of each other. Hence each spatial interaction corresponds to only one predicate relation
category. Some examples of our dataset can be seen in Figure1 as well as in Appendix figures 6 and
7.

3.3.2 TEMPORAL-STUPD DATASET CHARACTERISTICS
We generate pairs of videos of a constant length of W = 150 frames (referred to as the temporal
window), where each video corresponds to the occurrence of a single event or time point. An im-
portant characteristic of temporal relations is the overlapping nature of temporal relation predicates.
Event/TimePoint interactions can represent multiple temporal relations simultaneously. For exam-
ple, consider Event A which occurs just after TimePoint B. In this case, temporal triplets <Event A,
after, TimePoint B > and <Event A, around, TimePoint B> both apply. Hence in the STUPD dataset,
each temporal interaction may have multiple temporal relation categories associated. An overview
of all temporal relations is presented in Figure 2.

person among benches table lamps along road

car leaning against table laptops around helmet

display through tunnel

skateboard onto cabinet

STATIC DYNAMIC

Figure 1: Some examples of Spatial-STUPD, which contains 30 spatial relations. These relations
can be divided into two categories - static (involving no motion) and dynamic (involving relative
motion between the subject and object)

3.4 STATISTICS OF THE STUPD DATASET

3.4.1 SPATIAL-STUPD.
Our primary goal, through this dataset, is to create a well balanced dataset, with a wide and balanced
variety of subject-object interactions. Firstly, each spatial and temporal relation has 5,000 datapoints
each. As mentioned above, we constrain the interaction of supercategories to emulate real-world
physical constraints and ensure similarity of size of subject and object. During dataset generation,
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A
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Figure 2: We propose 10 temporal relations representing interactions between different events or
time points within a specified temporal window of W frames. Different temporal prepositions are
used in specific contexts in English. For each relation, A, B, and/or C can be an event(E), time
point(T) or either event or a time point(E/T). Each temporal relation can have multiple types of
event/time point interactions. The translucent shade of certain events in the figure represents the
possible variation in the point of occurrence.

(a) (b)
Figure 3: Dataset statistics. (a) The occurrence of prefab categories is roughly consistent throughout
the dataset. (b) The blue line represents the minimum number of temporal relation occurrence. A
single temporal interaction can have multiple temporal relation predicates associated.

we adjust the number of examples generated for each subject/object supercategory pair based on
the total number of object categories interacting, so that individual category occurrences are more
or less equal throughout the dataset. In Figure 3(a), we include the distribution of all supercategory
occurrences in the STUPD dataset (including both subjects as well as objects). The frequencies are
normalized by the number of prefab categories associated with each supercategory and presented as
a fraction (percent). As can be seen, the normalized distribution of the majority of supercategories
is more or less similar. A couple of observations are as follows.

1. Supercategories ‘track’ and ‘tunnel’ have lower frequencies because of their association
with only a small number of spatial relations (such as “(movement) along track” and “sub-
ject (passing) through a tunnel”.

2. It can be seen that the frequency of ‘small objects’ is slightly lower than others. This is
a conscious design choice, because of the size mismatch between other supercategories,
having much larger sizes (such as buildings, vehicles, or furniture). We, however, try to
maintain balance by including appropriate numbers of interactions between the larger ob-
jects within the small objects supercategory and other supercategories.

3.4.2 TEMPORAL-STUPD.
Since Events/Time Points are randomly sampled from Spatial-STUPD, the distribution of
Events/Time Points is similar to that in Figure 3(a). In Figure 3(b), we illustrate the occurrence of
different supercategories across the 50,000 data points. Each predicate has atleast 5,000 occurrences.
However, because of the overlap between many temporal relations, many temporal predicates occur
more frequently in the dataset. For instance, “before” is a subset of “by”, and hence “by” occurs
whenever “before” occurs, but not necessarily vice versa. Similary, “while” is a subset of “during”
(related to two events occuring simultaneuously) and “since” is a subset of “at” (related to an event
occurring at a particular time instance).
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4 BASELINES

4.1 SPATIAL-STUPD BASELINES

In this subsection, we aim to demonstrate that STUPD is an effective pretraining dataset for real
world visual reasoning tasks. Ideally, visual reasoning models first pretrained on STUPD, and then
transfered to real world datasets, should results in an increase in performance. To demonstrate the
effect of STUPD on real world visual reasoning tasks, we choose two real-world visual reasoning
datasets - the SpatialSense Dataset (Yang et al., 2019) (to demonstrate performance on static spatial
relations) and ImageNet-VidVRD (Shang et al., 2017) (to demonstrate performance on dynamic
spatial relations).

4.1.1 SELECTION OF BASELINE MODELS

We choose six baselines to evaluate our dataset, inspired by the baselining approach following in
(Yang et al., 2019). These models include two simple models (Language-based model, which only
takes verbal phrases as input, and Coordinate-based model, which only takes the coordinates of
objects as input) and four deep-learning based model (DRNet(Dai et al., 2017), VIPCNN (Yikang
et al.), PPRFCN (Zhang et al., 2017b), and VTransE (Zhang et al., 2017a)). While the aforemen-
tioned deep-learning based models were specifically designed for visual relationship reasoning, the
two simple models were chosen to highlight different aspects of Spatial-STUPD as well as other
datasets. For example, the Language-based model (which takes the subject and object phrases from
a relation triplet, and predicts the predicate) highlights the statistical bias related to subject/object
distribution, as is explained in detail in the following subsection. On the other hand, the Coordinate-
based model (which takes relative spatial coordinates of the subject and object, as well as their
bounding box coordinates, and predicts the predicate) highlights the role of coordinate as well as
bounding box information and bounding box, while being isolated from any visual features. Hence,
through the selection of the various baselines, the role of various components of the dataset can be
individually understood.

Additionally, a random baseline is also presented. The models are evaluated on a single label predi-
cate classification task (unlike various previous approaches where the task is a binary classification
task to evaluate if the relation triplet, when given as input, holds true). The architecture of the mod-
els are adjusted according to the task and dataset used. Further details can be found in appendix
A.8. It should be noted that since the architecture of various models has been slightly adjusted to fit
the task as well as training dataset, we refer to a model X as ‘X-based’, to differentiate between the
original proposed architecture and the model used in this paper.

4.1.2 MODEL PERFORMANCE ON SPATIAL-STUPD
Firstly, to validate the sanity of the STUPD dataset from a model training perspective, we train the
baseline models on only the Spatial-STUPD dataset, and present the results in Table2. We note the
suboptimal accuracy on the language-based model. This is infact, a positive outcome. Predicting the
predicate based on only the subject and object category information represents imbalance and/or bias
within the dataset. A well-balanced dataset should produce low accuracy on this task, as is seen in
the accuracy results. Next, we observe the best performance on Spatial-STUPD is achieved through
the VTranseE-based model, followed by the coordinate-based model, which is a relatively simple
model. This demonstrates the higher importance of spatial coordinate/bounding box information
over visual features. We also observe the higher performance on dynamic predicates in comparison
to static predicates, with the exception of the DRNet-based model. This indicates that dynamic data
is loaded with more information for spatial reasoning, hence establishing the need for datasets with
dynamic information. On the other hand, DRNet-based (Dai et al., 2017) model outperforms all
models on static data. This special suitability towards images rather than videos may be because of
architectural design choices such as the isolation of bounding box feature maps.

4.1.3 COMPARISON BETWEEN DIFFERENT PRETRAINING DATASETS

We propose STUPD primarily as an effective pretraining dataset before transfering on real-world
dataset. To demonstrate the effect of pretraining a model on STUPD , we compare the results of
pretraining on various datasets. For each of the two real-world datasets, we compare the perfor-
mance with two pretraining datasets – ImageNet dataset (Deng et al., 2009b)(for the SpatialSense
dataset)/KINETICS-400 dataset (Carreira & Zisserman, 2017)(for the ImageNet-VidVRD dataset),
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Model Overall Accuracy Static Accuracy Dynamic Accuracy
Random 3.34 3.34 3.34
Language-based 28.90 26.76 31.66
Coordinate-based 75.60 72.54 78.32
VIPCNN-based 64.24 61.52 70.37
PPRFCN-based 68.19 66.41 69.47
VTransE-based 76.58 72.22 80.39
DRNet-based 70.32 81.35 60.70

Table 2: Visual reasoning performance trained on all 30 spatial relations in the Spatial-STUPD
dataset. The values presented are accuracy metrics in percent.

(SpatialSense training) Pretraining dataset
Model no pretraining ImageNet CLEVR Spatial-STUPD
Random 16.67 16.67 16.67 16.67
Language-based 43.13 N/A 43.04 42.91
Coordinate-based 47.45 N/A 47.62 49.59
VipCNN-based 41.17 41.94 41.11 44.28
PPRFCN-based 44.12 42.61 42.08 44.98
VTransE-based 49.81 49.85 46.98 50.84
DRNet-based 51.93 52.54 52.84 54.28

Table 3: Effect of Spatial-STUPD pretraining on the SpatialSense (Yang et al., 2019) dataset. The
values presented are accuracy metrics in percent.

and the CLEVR dataset (Johnson et al., 2017). While the ImageNet/KINETICS-400 dataset serve as
general large-scale pretraining datasets for many real-world tasks, the CLEVR dataset is a sythetic
dataset with a similar setting as Spatial-STUPD. In general, one of the main purpose of any syn-
thetic dataset is to aid models through additional data proxies for real-world settings, hence serving
as effective pretraining options. The results of pretraining on Spatial-STUPD is compared with no
pretraining (i.e. direct training on the real world dataset) and other pretraining datasets in Table 3
and Table 4. The details of the training tasks are included in Appendix A.8.

It can be seen that Spatial-STUPD dataset, when used as a pretraining dataset for visual relationship
reasoning tasks, improves performance on real-world datasets, especially for deep learning models.
On the other hand, CLEVR does not lead to a significant increase in performance in comparison
to from-scratch training in most cases. Finally, it can be seen that ImageNet (or KINETICS-400)
pretraining infact does not help improve performance in any significant manner. Overall, STUPD
is well aligned for various visual relation reasoning tasks, in comparison to other similar synthetic
datasets, as well as very large general pretraining datasets like ImageNet/KINETICS.

The fact that ImageNet/KINETICS-400 pretraining does not lead to significant improvement in
performance indicates the fact that higher quality visual features do not contribute towards visual
relationship reasoning. Effective visual relationship reasoning is a result of other forms of data
including bounding box information and relative spatial positioning. This can be confirmed by the
performance of Coordinate-only model in the case of ImageNet-VidVRD training, in comparison
to any pretraining. It can also be noticed that the jump in accuracy after pretraining is much more
pronounced in the case of ImageNet-VidVRD training than SpatialSense training. This indicates the
importance of dynamic information for effective visual relationship reasoning.

4.2 TEMPORAL-STUPD BASELINES

Extending the pretraining premise from Spatial-STUPD, we formulate a similar task for Temporal-
STUPD to demonstrate that models benefit on real-world temporal datasets when pretrained on this
dataset. An obvious domain which can benefit directly from pretraining on Temporal-STUPD is
visual question answering (VQA) (Manmadhan & Kovoor, 2020), because of the intersection of vi-
sually grounded spatial informatin and diverse language-based event descriptions. For the purpose of
finetuning a Temporal-STUPD finetuned model on a real world VQA dataset, we choose the NeXT-
QA dataset (Xiao et al., 2021), which contains structured language-based questions accompanying
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(ImageNet-VidVRD training) Pretraining dataset
Model no pretraining KINETICS-400 CLEVR Spatial-STUPD
Random 10.00 10.00 10.00 10.00
Language-based 54.35 N/A 55.25 54.71
Coordinate-based 54.49 N/A 52.11 54.79
VipCNN-based 50.68 50.54 58.44 86.95
PPRFCN-based 51.72 51.87 49.87 62.64
VTransE-based 56.60 56.88 64.64 73.97
DRNet-based 57.98 57.29 68.07 87.29

Table 4: Effect of Spatial-STUPD pretraining on the ImageNet-VidVRD (Shang et al., 2017) dataset.
The values presented are accuracy metrics in percent.

(NeXT-QA training) (Temporal) Pretraining Dataset
Model no pretraining KINETICS-400 Temporal-STUPD
Language-based 50.75 N/A 51.37
EVQA-based 62.69 57.52 71.42
STVQA-based 64.24‘ 58.76 70.52

Table 5: Effect of Temporal-STUPD pretraining on the NeXT-QA (Xiao et al., 2021) dataset. The
values presented are balanced accuracy metrics, which represent the average of class-wise recall
values, in percent. This metric is chosen because of the unbalanced nature of the two relevant classes
in NeXT-QA. For this reason, we also omit the random baseline, since in skewed distributions,
random predictions lose their value.

videos of everyday events. In Xiao et al. (2021), the authors point out that disambiguation between
even simple temporal relations like before/after is difficult for models (both language-only, and
vision-language based). We slightly modify the traditional VQA grounding task in order to match
the structure of NeXT-QA and Temporal-STUPD. NeXT-QA presents language annotations in the
form of multiple choice natural-language questions. Corresponding to temporal prepositions, NeXT-
QA presents three types of visual questions – An event occuring before another event, an event oc-
curing after another event, and an event occuring at a specific moment in the video. To match the
triplet format Temporal-STUPD (<Event/TimePoint A, relation, Event/TimePoint B>), we split the
question-answer pair string by the relational word – giving us a viable proxy to Events/TimePoints
A and B. This temporal relation triplet extraction method is described through examples in the Ap-
pendix A.5.1.

4.2.1 MODEL PERFORMANCE ON TEMPORAL-STUPD
Table 5 presents the results of pretraining experiments on Temporal-STUPD. Similar to the Spatial-
STUPD, we observe sub-optimal performance in the language-based model, and only marginal im-
provement as a result of pretraining. This is expected, since a language-only model only highlights
the statistical nature of However, when language and spatio-temporal fatures are combined, we
observe significant improvements in the performance of the models when pretrained on Temporal-
STUPD, in comparison to when models are trained on NeXT-QA from scratch. On the other hand,
we observe that models, in-fact, perform worse than a model trained from scratch, when pretrained
on KINETICS-400. This reinforces two key observations – rich real-world spatial information is not
sufficient (or helpful) in effective temporal relation reasoning, and that pretraining on a diverse set
of rich temporal relation dataset (like Temporal-STUPD) boosts real-world training significantly.

5 LIMITATIONS AND FUTURE WORK

The STUPD dataset was designed with simplicity in mind. A prepositional word can have multiple
senses, sometimes with subtle differences in meaning or usage in different contexts. In the case of
spatial relations, we restrict context of usage by limiting subjects and objects to physical objects,
thus allowing us to group different senses into a single preposition. Further works may focus on
creating visual datasets to disambiguate between the subtle meanings of different senses of a prepo-
sition. Another dataset design choice was to limit the types of objects to at most 2 types (categories)
per image, for simplicity. However, this somewhat limits with number of potential prepositions
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included, as some comparative prepositions require 3 types of objects in order to be depicted prop-
erly. An example is as far as, which depicts a comparison between two distances. This cannot be
represented by a scene with interactions between only two objects.

Finally, while 3D information is readily available in STUPD due to its synthetic nature, this was not
utilized in this paper, primarily in order to compare the results with previous works. Future works
may examine whether and how 3D information may help with certain reasoning tasks.

6 CONCLUSION

Static representations such as image based datasets are not sufficient for machine learning systems
to fully understand spatial relations well. Spatial relations have many subtle characteristics such as
relative movement, velocity, direction, orientation, which can only be fully justified through flexible
dynamic representations such as synthetic based videos. In this paper, we introduced a novel dataset
which aims to cover the subtle differences between different spatial relations through simple object
interactions. Through various experiments, it is evident that the dynamic nature of senses helps
model identify relations better. Our studies also demonstrate the nature of spatio-temporal learning
in 3D deep learning models. It is observed that models initially rely more on spatial cues, but slowly
learn about temporal cues as well, and the combination of spatio-temporal cues results in higher
accuracy.

Although this dataset consists of simple object interactions, we hope that it can be used to make
models understand more complex scene structures, such as nuanced contexts of preposition use in
the English language, or for understanding the underlying dynamics of actions better in various
action recognition tasks.

10
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7 ETHICS STATEMENT

In the course of conducting our research and developing the dataset for this study, we were commit-
ted to upholding ethical standards and ensuring the fair representation of individuals from diverse
backgrounds. Our ethical considerations and actions are outlined as follows:

1. Equitable Representation of Races: We acknowledge the importance of addressing po-
tential biases in data collection and dataset construction. To mitigate racial biases and
ensure fairness, we took deliberate steps to create a dataset where all races are equally
represented.

2. Equitable Representation of Ethnicities: Recognizing the significance of inclusivity, we
made concerted efforts to equally represent various ethnicities within our dataset. We un-
derstand that ethnicity encompasses a wide range of cultural and regional identities, and
our dataset was designed to reflect this diversity.

3. Equitable Representation of Age Groups: Age diversity is a fundamental aspect of our
dataset construction. We recognized the importance of capturing the experiences and per-
spectives of individuals across different age groups.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility and transparency of our research. In accordance
with the guidelines set forth by ICLR 2024, we provide detailed information to facilitate the repli-
cation of our experiments and results.

1. Code Availability: All code used for our experiments is available.
2. Data Availability: Any publicly accessible datasets used in our research are specified in

the paper, along with their sources and access information.
3. Experimental Details: We have documented the specific details of our experiments, in-

cluding hyper-parameters, model architectures, and pre-processing steps, to enable others
to replicate our results.

We are dedicated to supporting the scientific community in replicating and building upon our work.
We welcome feedback and collaboration to ensure the robustness and reliability of our research
findings.
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