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Abstract

The Partial Area Under the ROC Curve (PAUC), typically including One-way
Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC), measures the average
performance of a binary classifier within a specific false positive rate and/or true
positive rate interval, which is a widely adopted measure when decision constraints
must be considered. Consequently, PAUC optimization has naturally attracted
increasing attention in the machine learning community within the last few years.
Nonetheless, most of the existing methods could only optimize PAUC approxi-
mately, leading to inevitable biases that are not controllable. Fortunately, a recent
work presents an unbiased formulation of the PAUC optimization problem via dis-
tributional robust optimization. However, it is based on the pair-wise formulation
of AUC, which suffers from the limited scalability w.r.t. sample size and a slow
convergence rate, especially for TPAUC. To address this issue, we present a simpler
reformulation of the problem in an asymptotically unbiased and instance-wise
manner. For both OPAUC and TPAUC, we come to a nonconvex strongly concave
minimax regularized problem of instance-wise functions. On top of this, we em-
ploy an efficient solver enjoys a linear per-iteration computational complexity w.r.t.
the sample size and a time-complexity of O(e~!/3) to reach a e stationary point.
Furthermore, we find that the minimax reformulation also facilitates the theoretical
analysis of generalization error as a byproduct. Compared with the existing results,
we present new error bounds that are much easier to prove and could deal with
hypotheses with real-valued outputs. Finally, extensive experiments on several
benchmark datasets demonstrate the effectiveness of our method.

1 Introduction

AUC refers to the Area Under the Receiver Operating Characteristic (ROC) curve [ ], where the ROC
curve is obtained by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) of a
given classifier for all possible thresholds. Since it is insensitive to the class distribution, AUC has
become one of the standard metrics for long-tail, and imbalanced datasets [, 22, 38]. Consequently,
AUC optimization has attracted increasing attention in the machine learning community ever since
the early 2000s [!3, 5, 35, 17]. Over the last two decades, research on AUC optimization has
evolved from the simplest linear models and decision trees [27, 10, 29, 41] to state-of-the-art deep
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Table 1: Comparison with existing partial AUC algorithms. The convergence rate represents the
number of iterations after which an algorithm can find an e-stationary point, where e-sp is e-stationary
point. A\ implies a natural result of non-convex SGD. n_’f (n® resp.) is the number of positive
(negative resp.) instances for each mini-batch B.

‘ SOPA [44] SOPA-S [44]  TPAUC [3Y] Ours
Convergence Rate (OPAUC) O(e™) O(e™) O(eH* O(e™®)
Convergence Rate (TPAUC) O(e% O(e™) O(e~H4 O(e™®)
Convergence Measure e-sp (non-smooth) €-Sp €-Sp €-Sp
Smoothness non-smooth smooth smooth smooth
. with bias O(1/k)
Unbiasedness Vv X X when w — 0
Per-Iteration Time Complexity O(nfn?B) O(nfn?B) O(n¥n?%) O(n¥ +n?)
learning architectures [ 1, 14, 37, 43, 42, 35]. With such remarkable success, one can now easily
apply AUC optimization to deal with various real-world problems ranging from financial fraud
detection[ | 6, 4, 23], spam email detection [2], to medical diagnosis [24, 38, 37, 43], etc.

Figure 1: The comparison among different AUC variants. (a) The area under the ROC curve (AUC).
(b) The one-way partial AUC (OPAUC). (c) The two-way partial AUC (TPAUC).

However, in such long-tailed applications, we are often interested in a specific region in the ROC curve
where its area is called Partial AUC (PAUC). As illustrated in Fig.1, there are two types of PAUC.
Here, One-way Partial AUC (OPAUC) measures the area within an FPR interval (0 < FPR < 3);
while Two-way Partial AUC (TPAUC) measures the area with FPR < 5, TPR > «. Unlike
the full AUC, optimizing PAUC requires selecting top-ranked or/and bottom-ranked instances,
leading to a hard combinatorial optimization problem. Many efforts have been made to solve the
problem [0, 24, 25, 20, 39]. However, the majority of them rely on full-batch optimization and
the approximation of the top (bottom)-k ranking process, which suffers from immeasurable biases
and undesirable efficiency. Most recently, researchers have started to explore mini-batch PAUC
optimization for deep learning models. [3Y] proposed a novel end-to-end optimization framework
for PAUC. This formulation has a fast convergence rate with the help of a stochastic optimization
algorithm, but the estimation of PAUC is still biased. Later, [++] proposed a Distributional Robust
Optimization (DRO) framework for PAUC optimization, where the bias can be eliminated by a clever
reformulation and the compositional SGD algorithms [2¢]. However, they adopt the pair-wise loss
function which has limited scalability w.r.t. sample size and O(e~4)/O(¢~%) time complexity to
reach the e-stationary point for OPAUC/TPAUC. Considering the efficiency bottleneck comes from
the pair-wise formulation, we will explore the following question in this paper:

Can we design a simpler, nearly asymptotically unbiased and instance-wise formulation to
optimize OPAUC and TPAUC in an efficient way?

To answer this question, we propose an efficient and nearly unbiased optimization algorithm (the bias
vanishes asymptotically when x — 0) for regularized PAUC maximization with a faster convergence
guarantee. The comparison with previous results are listed in Tab.1. We consider both OPAUC and
TPAUC maximization, where for OPAUC, we focus on maximizing PAUC in the region: FPR <
and for TPAUC we focus on the region: FPR < 5 and TPR > «. We summarize our contributions
below.



* With a proper regularization, we propose a nonconvex strongly concave minimax instance-
wise formulation for OPAUC and TPAUC maximization. On top of our proposed formu-
lation, we employ an efficient stochastic minimax algorithm that finds a e-stationary point
within O(e~3) iterations.

* We conduct a generalization analysis of our proposed methods. Our instance-wise reformula-
tion can overcome the interdependent issue of the original pair-wise generalization analysis.
The proof is much easier than the existing results. Moreover, compared with [25, 39], it can
be applied to any real-valued hypothesis functions other than the hard-threshold functions.

* We conduct extensive experiments on multiple imbalanced image classification tasks. The
experimental results speak to the effectiveness of our proposed methods.

2 Preliminaries

Notations. In this section, we give some definitions and preliminaries about OPAUC and TPAUC.
Let X C R? be the input space, ) = {0, 1} be the label space. We denote Dp and D, as positive
and negative instance distribution, respectively. Let S = {z = (x;,v;)}?, be a set of training
data drawn from distribution Dz, where n is the number of samples. Let P (N resp.) be a set
of positive (negative resp.) instances in the dataset. In this paper we only focus on the scoring
functions f : X — [0, 1]. The output range can be simply implemented by any deep neural network
with sigmoid outputs.

Standard AUC. The standard AUC calculates the entire area under the ROC curve. For mathematical
convenience, our arguments start with the pair-wise reformulation of AUC. Specifically, as shown
in [1], AUC measures the probability of a positive instance having a higher score than a negative

instance:
AUC()=_ Pr  [f@)>f@)]. (1)

OPAUC. As mentioned in the introduction, instead of considering the entire region of ROC, we
focus on two forms of PAUC, namely TPAUC and OPAUC. According to [0], OPAUC is equivalent
to the probability of a positive instance x being scored higher than a negative instance x’ within the

specific range /(a’) € [n3(f) 1 st._ Py [f(&') > 5] =
OPAUC(f) = Pr__ [f(@)> f(&), f(z) > ns(f)]. )

~Dp,x'~Dy

Practically, we do not know the exact data distributions Dp, D s to calculate Eq.(2). Therefore, we
turn to the empirical estimation of Eq.(2). Given a finite dataset S with n instances, let n, n_ be
the numbers of positive/negative instances, respectively. For the OPAUC, its empirical estimation
could be expressed as [24]:

ny ’ﬂé E i) — /_
A5 -1 355 o (f(z1) Bf(w[j])>7 5

nyn

where n” = [n—-B]; a:fj] denotes the j-th largest score among negative samples; ¢ 1 (¢) is the 0 — 1
loss, which returns 1 if ¢ < 0 and O otherwise.

TPAUC. More recently, [30] argued that an efficient classifier should have low FPR and high
TPR simultaneously. Therefore, we also study a more general variant called Two-way Partial AUC

(TPAUC), where the restricted regions satisfy TPR > « and FPR < . Similar to OPAUC,
TPAUC measures the probability that a positive instance @ ranks higher than a negative instance x’

where (@) € 0,70 (Pl 5. Py /(@) < o) = o, /(@) € na(f). 1] 5. Py [f(@) > na] =

TPAUC(f) = Pr  [f(@) > f(@), f(@) < na(f), F@) = ns(f)]. )
Similarly to OPAUC, for the TPAUC, we adopt its empirical estimation [30, 39]:
n Lo f( )
AUCa5(f,5)=1-33" (st [”), (5)
i=1j=1 +

where n§ = |ny - ] and xy; is i-th smallest score among all positive instances.



3 Problem Formulation

In this section, we introduce how to optimize OPAUC and TPAUC in an asymptotically unbiased
instance-wise manner. Note that Eq.(3) and Eq.(5) are hard to optimize since it is complicated to
determine the positive quantile function 7, (f) and the negative quantile function 75(f). So we can
not obtain the bottom-ranked positive instances and top-ranked negative instances directly. In this
section, we will elaborate on how to tackle these challenges.

3.1 Optimizing the OPAUC

According to Eq.(3), given a surrogate loss £ and the finite dataset S, maximizing OPAUC and
AUCg(f, S) is equivalent to solving the following problems, respectively:

i R (/) = Banpp @ty (L@ zan) - €0 (@) = F@))] ©

Inm Rs(f,S) = ZZ ( f(mlj])) . )

i=1 j=1

Step 1: Instance-wise Reformulation. Here, to simplify the reformulation, we will use the most
popular surrogate squared loss /() = (1 — z)?. Under this setting, the following theorem shows
an instance-wise reformulation of the OPAUC optimization problem (please see Appendix.F for the
proof):

Theorem 1. Assuming that f(x) € [0,1], V& € X, F,,(f,a,b,7,t, z) is defined as:

Fop(f,a,b,7,t,2) =[(f(2) — a)® = 2(1 + 1) f(@)ly/p — 7*
[(f(=) = )* + 21+ ) f(@)] - [(1 = 9>/ [(1 = )],

where y = 1 for positive instances, y = 0 for negative instances and we have the following
conclusions:

®)

(a) (Population Version.) We have:

i R E FO ) 7b7 ) ) K 9
min Rp(f) &  min , mex B [Foplfia.b,7m5(f) 2)] €)

where 13(f) = argmin,, cr [Ez'~py [Li(@)> 1) = B]-

(b) (Empirical Version.) Moreover, given a training dataset S with sample size n, denote:

. 1 &
ES[ Op(.faab777’/3 72 op f,ab,’)/,ljj(f> )a

ZN0

3

where 1)5( [) is the empirical quantile of the negative instances in S. We have:

in Rs(f,9) < i E [Ep(f,a, b,y 05(f), 2)], 10
min R (f,5) & |  min |, max  E [Fop(fia.b7,05(f),2)] (10)

Step 2: Differentiable Sample Selection. Thm.1 provides a support to convert the pair-wise loss
into instance-wise loss for OPAUC. However, the minimax problem Eq.(10) is still difficult to solve
due to the operation It (41)>y, (), Which requires selecting top-ranked negative instances. To make
the sample selection process differentiable, we adopt the following lemma.

Lemma 1. Zle x[) is a convex function of (v1,--- ,x,) where xy; is the top-i element of a
set {x1,x9, - ,Xn}. Furthermore, for x;;i = 1,---,n, we have %Zle xp) = ming{s +
+ 30 [xi — s|+}, where a4 = max{0,a}. The population version is Ey[z - I,>p)] =

ming LE,[as + [z — s]4], where n(e) = argmin,cr[E;[I.>y] = o] (please see Appendix.F
for the proof).



Lem.1 proposes an Average Top-k (ATk) loss which is the surrogate loss for top-£ loss to eliminate
the sorting problem. Optimizing the ATk loss is equivalent to selecting top-ranked instances. Actually,
for Rs(f), we can just reformulate it as an Average Top-k (ATK) loss. Denote (_ (') = (f(z') —
b)?2 +2(1 +~) f(z'). In the proof of the next theorem, we will show that /_ (z’) is an increasing
function w.r.t. f(z’), namely:

Eornpylly@nzns () - - (@) f (@) 2 ns(1))] =msin%~Em'~DN[ﬁs+[€f(w’)—S]+]~ (11)

The similar result holds for 7@5( f,S). Then, we can reach to Thm.2 (please see Appendix.F for the
proof):

Theorem 2. Assuming that f(x) € [0,1], for all x € X, we have the equivalent optimization for
OPAUC:

E [Fop(fvaa b7’yan5(f)’ z)]

min max
f,(a,b)€[0,1]2 v€[-1,1] 2~Dz=

< min  max min B [Ge(f,a,b,7,2,5)], (12)
fy(a,b)€[0,1]2 v€Qy s'€Qy 2~Dz
f7(a,Il})lieI[lo,1] Vel 2~s [ Fop(f,a,b,7:105(f), 2)) 13)
@ D e i, L [Coplf 0.0y 25,
where Q0 = [b—1,1], Qy = [0,5] and
Gop(f,a,b7,2,8") = [(f(z) — ) =21+ ) f(@)]y/p = 0

+ (85 + [(f(@) = 02 + 20+ (@) = 5], ) (1= 9)/180 = p)].

Step 3: Asymptotically Unbiased Smoothing. Even with Thm.2, it is hard to optimize the min-
max-min formulation in Eq.(13). A solution is to swap the order max., and min, to reformulate it as
a min-max problem. The key obstacle to this idea is the non-smooth function [-],. To avoid the [-];,
we apply the softplus function [ 2]:

rulz) = log(1—|—exp(/£-ac))7 (15)

KR

as a smooth surrogate. It is easy to show that r,.(z) “=° [z],. Denote G o(fra,b,7,2,5") the
surrogate objective where the -], in G,,(f,a,b,7, 2z, s’) is replaced with r,.i( ). We then proceed
to solve the surrogate problem:
i i E GK: b ) b’ b ) !
o8l e JER, T, Conl 002 "
max min E G" (f,a,b,7, 2,5,
f(ab)e[ 1]2 v€Q, s'€Q 2~ [ "P(f v )
respectively for the population and empirical version. In Appendix.B, we will proof that such a
approximation has a convergence rate O(1/k).

Step 4: The Regularized Problem. It is easy to check that r, () has a bounded second-order deriva-

tion. In this way, we can regard Ggp(f, a,b,7, z,s') as a weakly-concave function [3] of 7. By
employing an ¢, regularization, we turn to a regularized form:

GSéw(f7a?b)77z75/) = Ggp(f7 a’ab7’y7z75/) —W- 72’

With a sufficiently large w, Gf;”(f,a,b,7, 2,s") is strongly-concave w.r.t. v when all the other
variables are fixed. Note that the regularization scheme will inevitably bias. As a very general result,
regularization will inevitably induce bias. However, it is known to be a necessary building block to
stabilize the solutions and improve generalization performance. We then reach a minimax problem in
the final step.

Step 5: Min-Max Swapping. According to min-max theorem [ ], if we replace G, (f, a,b,, 2, s')
with G7(f, a,b,7, 2, "), the surrogate optimization problem satisfies:

min max min E [G5X] & min max E [G7], 17
fi(a,b)€[0,1]2 v€Q, s'€Qy z~Dz fi(a,b)€[0,1]2,s’€Q,s vEQ~ 2~Dz




i ax min £ [G5¥] < ax [ [GE], 18
f,(a,IbI)neI[lO,l]Q wnén)f, sfnelgl wa[ on'] f.(a,b)e [o 1]2 s'EQ %QX ZNs[ o | (18)

where Gi° = G*(f,a,b,7, 2, 8'). In this sense, we come to a regularized non-convex strongly-
concave problem. In Sec.4, we will employ an efficient solver to optimize the parameters.

3.2 Optimizing the TPAUC

According to Eq.(5), given a surrogate loss ¢ and finite dataset S, maximizing TPAUC and
AUC,, s(f,S) is equivalent to solving the following problems, respectively:

min Ra,5(f) = Eenvp ondy [L@)zns () L@snan) -0 (@) = f@)]. A9

( @[;)) f ([ ))

min R 5(/, S Z Z 0 (20)
=1 j=1 —

Due to the limited space, we present the result directly, please refer to Appendix.D for more details.

Similar to OPAUC, we apply the function 7, (z), regularization «-y? and min-max theorem to solve
the problem. In this sense, we can use

i ax E [GLY b,v,z,8,8 21
f,(a,b)E[O,lI]n,lSEQNS eq., ’I;IéQX 2~Dx [ tp (f7 a,0,7,%2,8,8 )] ) ( )

where ., = [max{—a,b— 1}, 1] and

E GHM} ) 7ba IR ] ' ’ 22
ftomeio ko, veq, 150 B 1657 00,7,2,5,5)] .

to minimize R, 5(f), and Rq_ 5 (f), respectively. Here:

Gy (f.a,0,7.2,5,8") = (as + 1 (f(@) — a)* = 2(1 +7) f (@) — 5)) y/(ap) — (w + 1)

+ (88" + 1 ((f(x) = 0)* +2(1 +9) f(z) = 8')) (1 = y)/[B(1 - p)]. o3

According to Thm.2 of [37], we have the following corollary:

Corollary 1. We can reformulate Eq.(18) and Eq.(23) as an off-the-shelf minimax problem where
the coupled constraint is replaced with the Lagrange multipliers (6, for OPAUC, 6y, 0, for TPAUC).
For OPAUC:

K,w

min max E [G5x] min max E .
f.(a,b)€[0,1]2,5€Q, vE[b—1,1] 2~Dz " P £.(a,b)€[0,1]2,5€Q,0,€[0,M1] vE[-1,1] 2~Dz" P (24)
—0(b—1—-17)
For TPAUC:
min max E [G”]
f,(a,b)€[0,1]2,5€Q,,s' €, yE[max{—a,b—1},1] 2~Dz
max [E [Gfp”] (25)
f,(a,b)e[o,l]Q,seQS,s’eQS, ,04,€[0,M2],0,€[0,M3] v€[—1,1] 2~D=

— (b — 1 —7) — bu(—a — 7).

The tight constraint 6, € [0, M;]/6, € [0, Ms], 8, € [0, Ms] comes from the fact that optimum 6,, ,,
are both finite since the objective function is bounded from above. In the experiments, to make sure
that M7, M5, M3 are large enough, we set them as M; = My = M3 = 109,

4 Training Algorithm

According to the derivations in the previous sections, our goal is then to solve the resulting empirical
minimax optimization problems in Eq.(18) and Eq.(22). It is easy to check that they are strongly-
concave w.r.t v whenever £ < 2 + 2w, when (f(x),a,b) € [0,1]3, v € [-1,1], s € Q4,5 € Q.



Therefore, we can adopt the nonconvex strongly concave minimax optimization algorithms to solve
these problems [ ! 5]. In this section, following the work [ 5], we employ an accelerated stochastic
gradient descent ascent (ASGDA) method to solve the minimax optimization problem. We denote
0 < RY as the parameters of function f, 7 = {0, a,b,s,s’,0,,0,} € €, as the variables for the
outer min-problem. Alg.1 shows the framework of our algorithm (we adopt the accelerated algorithm
in [15] to solve our problem). There are two key steps. At Line 5-6 of Algorithm 1, variables 741
and ;41 are updated in a momentum way. Moreover, the convex combination ensures that they are
always feasible given that the initial solution is feasible. At Line 9-10, using the momentum-based
variance reduced technique, we can estimate the stochastic first-order partial gradients v; and w; in a
more stable manner.

Algorithm 1 Accelerated Stochastic Gradient Descent Ascent Algorithm

1: Input: Dataset X, learning parameters {v, A, k,m, ¢1,co, T}
2: Initialize: Randomly select 19 = {80, ag, bo, 50, 5§, O, O} from Q, vy = 0976, wy = 0.
Randomly select 7o from €2, ¢ = 0,
fort=0,1,--- ,Tdo
Compute the learning rate 7, = W;
Update 7411 = (1 — ne)7¢ + mePa., (1t — vvy);
Update vi41 = (1 —1¢)ve + n:Pa, (e + Awy);
Compute pyy1 = c1n? and &1 = can?;
Sampling mini-batch data 3,1, from dataset X’;
Update viy1 = Ve Gy (Tea1, Yeg15 Bea) + (1= prga) [vr = V2 GO (72,71, Bega ) ;
10 Update wiy1 = Vo GOy (T, Yea1: Brgn) + (1= Gepn) [we = Vo G (76,76, Bry);
11: end for
12: Return 7,

YRR N AW

With the following smoothness assumption, we can get the convergence rate in Thm.3.
Assumption 1. G?_’)” (1,7; B) has Lipschitz continuous gradients, i.e., there is a positive scalar L¢
such that for any 7,7 € Qr, 7,7 € Q,,

IVGEY (7,7 B) = VG (7,75 B) || < La(llm = /[ + Iy = ). (26)
Theorem 3. (Theorem 9 [15]) Supposing that Asm.1 holds, let {T¢,~:} be a sequence generated by
our method, if the learning rate satisfies:

L2972 TSI
=3 T 2=
1 27
m > max(2, k%, (c1k)3, (c2k)?), A < min <6Lg’ 16”) @7
< min( AT 2b mt/3 )
v < min , ‘ .
2L¢ \| 822 4+ 75(La /)b Q(LG-F%)]{
Then we have:

1o [|I1 2V3M"m'/S  2V/3M"

T;E |:HV(Tt—PQT(Tt—V’Ut))H:| < Ti/2 + T3 (28)
where || (1, — Po., (1o — vV E(\(1¢)))| is the ly-norm of gradient mapping metric for the outer
problem [7, |1, 30] with F(.y(T;) = maxyeq, G'Z’f(n,w). When b = 1, it is easy to verify that
k=01), A=0(u), v =0(Lg/p), c1 = O(1), c2 = O(LE) and m = O(L,). Then we have

/ /
M" = O(L%,/3). Thus, the algorithm has a convergence rate of O( (LGT/J/‘? : ). By (LGT/I’;_%B ’ <e

then the iteration number to achieve e-first-order saddle point which satisfies: T > (Lg/p)*%e=3.

S Generalization Analysis

In this section, we theoretically analyze the generalization performance of our proposed estimators
for OPAUC (please see the Appendix.G for the TPAUC). According to Thm.2 in Sec.3, we know



that the generalization error of OPAUC with a surrogate loss ¢ can be measured as:

R i i E GO ) )b7 ) ) ! ) 29
ﬁ(f) x (a,br)rél[r&l]Z %%zfe%a%, ztz[ p(f “ V28 >] ( )

and

R i in E [Gop(f,a,b,7v,2 ), 30
B(f) x (a,br)rél[{)l,l]2 'grel?)}is’nelglg/ Z’\«S[ p(f @ 7 %8 )] ( )

Following the ERM paradigm, to prove the uniform convergence result over a hypothesis class F of
the scoring function f, we need to show that:

sup | Rs(f) = Rp(f)] < e
fer
According to the aforementioned discussion, we only need to prove that:

su min max min E [G a,b,v,z,s
feE‘[(mb)E[O,l]QWEQwS’EQs/ zwz[ oplfr 8,7, 2,5)

— min  max min E [G a,b,v,z, )| <e.
(a,b)6[0,1]2 ’YGQWS/GQS/ ZNS[ Op(fa 0,7, 2, )] =

To prove this, we need to define the measure of the complexity of the class F. Here we adopt the
Radermacher complexity ¥ as in [7]. Specifically, we come to the following definition:

Definition 1. The empirical Rademacher complexity of positive and negative instances with respect
to S is defined as:

. 1 &
Ri(F)=E|sup — > oif(xi)], 31)
R 1 n_
R_(F)=E |sup — Y o,f(z) (32)
)= | -3 osf(e)
where (01, ,0,,) and (01,--- ,0,_) are independent uniform random variables taking values

in {—1,+1}.

Finally, we come to the generalization bound as follows:
Theorem 4. For any § > 0, with probability at least 1 — § over the draw of an i.i.d. sample set S of
size n, for all f € F we have:

min max min E [G a,b,7v,2,)] < min max min E [G a,b,v,z, s
(a,b)€[0,1]2 vEQ s’ €N, zNDg[ on(fr 0,07, 2, )]*(a,b)e[o,u? NEQ, S EQ, ZNS[ on(f> 0,67, 2, 5')]

+ORL(F)+R_(F)+ 0 +p =7

Remark 1. Although the results we obtain are similar to some previous studies. [39, 5], our
generalization analysis is simpler and does not require complex error decomposition. Moreover,
our results hold for all real-valued hypothesis class with outputs in [0, 1], while the previous results
[59, 25] only hold for hard-threshold functions.

6 Experiment

In this section, we conduct a series of experiments on different datasets for both OPAUC and
TPAUC optimization. Due to space limitations, please refer to the Appendix.E for the details of
implementation and competitors. The source code is available in

6.1 Setups

We adopt three imbalanced binary classification datasets: CIFAR-10-LT [#], CIFAR-100-LT [19] and
Tiny-ImgaeNet-200-LT following the instructions in [39], where the binary datasets are constructed
by selecting one super category as positive class and the other categories as negative class. Please see

Appendix.E for more details. The evaluation metrics in experiments are AUC g and AUCa,B .


https://github.com/Shaocr/PAUCI
https://github.com/Shaocr/PAUCI

6.2 Overall Results

In Tab.2, Tab.3, we record the performance on test sets of all the methods on three subsets of
CIFAR-10-LT, CIFAR-100-LT, and Tiny-Imagent-200-LT. Each method is tuned independently for
OPAUC and TPAUC metrics. From the results, we make the following remarks: (1) Our proposed
methods outperform all the competitors in most cases. Even for failure cases, our methods attain
fairly competitive results compared with the competitors for OPAUC and TPAUC. (2) In addition,
we can see that the normal AUC optimization method AUC-M has less reasonable performance
under PAUC metric. This demonstrates the necessity of developing the PAUC optimization algorithm.
(3) Approximation methods SOPA-S, AUC-poly, and AUC-exp have lower performance than the
unbiased algorithm SOPA and our instance-wise algorithm PAUCI in most cases. Above all, the
experimental results show the effectiveness of our proposed method.

Table 2: OPAUC (FPR < 0.3) on testing data of different imbalanced datasets. The highest and the

second best results are highlighted in and , respectively.
‘ CIFAR-10-LT ‘ CIFAR-100-LT ‘ Tiny-Imagenet-LT
Methods | Subset 1 Subset2 Subset 3 | Subset 1 Subset2 Subset 3 |Subset 1 Subset2 Subset 3
SOPA [44] 0.8483 | 0.8157 0.9037 0.9066
SOPA-S [44] 0.7548 0.9674 0.7542 | 0.9033 0.9860 0.8449 | 0.8180 0.9095

AGD-SBCD [44]| 0.7526  0.9615 0.7497 | 0.9105 0.9814 0.8406 | 0.8135 0.9081 0.9057
AUC-poly [29] | 0.7542 0.9672 0.7538 | 0.9027 0.9859 0.8441 | 0.8185 0.9084
AUC-exp [39] | 0.7347 0.9620 0.7457 | 0.8987 0.9850 0.8407 | 0.8127 0.9026 0.9049

CE 0.7417 09431 0.7428 | 0.8903 0.9695 0.8321 | 0.8023 0.8917 0.8878

MB [1¢] 0.7492 0.9648 0.7500 | 0.9003 0.9804 0.9072  0.9091

AUC-M [41] 0.7334 0.9609 0.7442 | 0.8996 0.9845 0.8403 | 0.8102 0.9011 0.9043
PAUCI | | |

Table 3: TPAUC (TPR > 0.5, FPR < 0.5) on testing data of different imbalanced datasets.

| CIFAR-10-LT | CIFAR-100-LT | Tiny-Imagenet-LT
Methods | Subset 1 Subset2 Subset 3| Subset 1 Subset2 Subset 3 |Subset 1 Subset2 Subset 3
SOPA [44] 0.7485

SOPA-S [44] | 0.6603 0.9456 0.6917 | 0.8617 0.9812 0.7419 | 0.7354 0.8666 0.8628
AUC-poly [39]| 0.6804 0.9543 0.6974 | 0.8618 0.9835 0.7431 | 0.7349 0.8676 0.8627
AUC-exp [39] | 0.6669 0.9493 0.6930 | 0.8613 0.9827 0.7447 | 0.7328 0.8672 0.8626

CE 0.6420 0.9353 0.6798 | 0.8467 0.9603 0.7311 | 0.7223 0.8517 0.8478

MB [1¢] 0.6437 09492 0.6913 | 0.8665 0.9677 0.7348 0.8651 0.8624

AUC-M [41] | 0.6520 0.9381 0.6821 | 0.8505 0.9822 0.7324 | 0.7361 0.8517 0.8598
PAUCI | | |

6.3 Convergence Analysis

In the convergence experiments, for sake of fairness, we did not use warm-up. All algorithms use
hyperparameters in the performance experiments. We show the plots of training convergence in Fig.4
and Fig.5 on CIFAR-10 for both OPAUC and TPAUC. Due to the space limitation, the other results
could be found in Appendix.E. According to the figures, we can make the following observations: (1)
Our algorithm and SOPA converge faster than other methods for OPAUC. However, for TPAUC
optimization, the SOPA converges very slowly due to its complicated algorithm, while our method
still shows the best convergence property in most cases. (2) It’s notable that our algorithm converges
to stabilize after twenty epochs in most cases. That means our method has better stability in practice.

7 Conclusion

In this paper, we focus on designing an efficient and asymptotically unbiased algorithm for PAUC.
We propose a nonconvex strongly concave minimax instance-wise formulation for OPAUC and
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Figure 3: Convergence of TPAUC optimization.

TPAUC. In this way, we incorporate the instances selection into the loss calculation to eliminate
the score ranking challenge. For OPAUC and TPAUC, we employ an efficient stochastic minimax
algorithm that ensures we can find a e-first order saddle point after O(e~3) iterations. Moreover,
we present a theoretical analysis of the generalization error of our formulation. Our conclusion
may contribute to future work about AUC generalization. Finally, empirical studies over a range of
long-tailed benchmark datasets speak to the effectiveness of our proposed algorithm.
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