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Abstract— Semantic perception in driving scenarios plays a
crucial role in intelligent transportation systems. However, exist-
ing Transformer-based semantic segmentation methods often do
not fully exploit their potential in understanding driving scene
dynamically. These methods typically lack spatial reasoning,
failing to effectively correlate image pixels with their spatial
positions, leading to attention drift. To address this issue, we pro-
pose a novel architecture, the Hierarchical Spatial Perception
Transformer (HSPFormer), which integrates monocular depth
estimation and semantic segmentation into a unified framework
for the first time. We introduce the Spatial Depth Perception
Auxiliary Network (SDPNet), a framework for multiscale feature
extraction and multilayer depth map prediction to establish
hierarchical spatial coherence. Additionally, we design the Hier-
archical Pyramid Transformer Network (HPTNet), which uses
depth estimation as learnable position embeddings to form
spatially correlated semantic representations and generate global
contextual information. Experiments on benchmark datasets such
as KITTI-360, Cityscapes, and NYU Depth V2, demonstrate that
HSPFormer outperforms several state-of-the-art networks, and
achieves promising performance with 66.82% top-1 mIoU on
KITTI-360, 83.8% mIoU on Cityscapes, and 57.7% mIoU on
NYU Depth V2, respectively. The code will be made publicly
available at https://github.com/SY-Ch/HSPFormer.

Index Terms— Semantic segmentation, pyramid transformer,
position embedding, multi modilaty.
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I. INTRODUCTION

SEMANTIC segmentation is a crucial step of scene per-
ception and understanding in Advanced Driver Assistance

System (ADAS), and it assigns distinct categories to individual
road image pixels. This process has led to the development
of insightful algorithms in the fields of computer vision and
intelligent transportation [1], [2], [3], [4], [5], [6], [7]. Most
previous methods rely simply on color and texture information
to distinguish different semantic object classes without consid-
ering the impact of spatial information on target attention [8],
[9], [10], [11], [12]. In complex environments, models may
struggle to focus precisely on target objects, a phenomenon
we refer to as “attention shift” (Fig. 1(a)). When the model’s
attention spreads beyond the target area, the lack of spatial
cues often leads to over-segmentation or under-segmentation
errors (Fig. 1(c)). To address this issue, we propose the
DepthEmbed module, which incorporates depth information
as a spatial prior into the attention mechanism to enhance
the model’s spatial alignment capabilities. DepthEmbed first
processes the depth map through a Convolutional Neural Net-
work (CNN) to suppress noise and improve feature stability.
It then fuses depth features pixel-by-pixel with RGB image
features to create a multimodal representation, which serves
as input to the attention mechanism, accurately establishing
spatial relationships between target and background areas.
Additionally, DepthEmbed introduces depth features as a
bias in the self-attention mechanism, allowing the model to
dynamically adjust attention weights and align precisely with
target contours, thus preventing the attention from spreading to
non-target areas like the sky or road (Fig. 1(b)). By extracting
depth features across multiple scales using a multi-scale con-
volutional structure, DepthEmbed ensures spatial consistency
at various scales, enabling the model to focus more accurately
on target regions within complex backgrounds, improving
boundary precision (Fig. 1(d)).

Recent years, to effectively distinguish the relationships
between objects, Transformer improves the inherent locality
of convolutional neural networks (CNNs) and form atten-
tion perception from a global perspective [13], [14], [15],
[16]. In traditional single-model strategy (Fig. 2(a)), position
embedding (relative [13], absolute [17], and learnable position
embedding [18] etc.) provides location dependence for pixels,
but it does not consider the spatial correlation between image
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Fig. 1. Incorporating depth position embedding into HSPFormer (b, d) has
corrected the issue of attention shift in previous methods (a, c), leading to a
significant improvement in semantic segmentation performance, as highlighted
in red with corresponding IoU.

Fig. 2. Illustration of three different architectures for semantic segmentation.
(a) Image semantic segmentation, (b) Multi-modality semantic segmentation
in dual branch strategy, and (c) Our unified framework strategy to incorporate
monocular depth estimation into semantic segmentation.

pixels and the real world. For instance, adjacent pixels in the
image may have a large distance difference in the real scene.
To incorporate spatial perception into the feature learning
and extraction, many studies have focused on the strategy of
multi-modality data fusion [19], [20], [21], [22], [23], [24],
such as 3D point clouds and depth / disparity images as prior
references for RGB images, as shown in Fig. 2(b). However,
these methods are not suitable for autonomous driving tasks
due to significant computational overheads and the need for
real-time 2D-3D alignment. To this end, we first evaluated
the trade-off between accuracy and speed in traffic scene
perception using RGB images and depth maps. As shown in
Fig. 2(b), we designed the dual-branch structure Hierarchical
Spatial Perception Transformer network named HSPFormer-
DBS, which uses spatial information as explicit position

embedding to establish a connection between pixels and the
real-world scenario. HSPFormer-DBS improved performance
by over 8% while introducing an additional 48M parameters.

Therefore, we proposed a unified framework strategy
HSPFormer-UFS to integrate monocular depth estimation and
semantic segmentation into a unified framework, as shown in
Fig. 2(c). HSPFormer-UFS comprises two main components:
a Spatial Depth Perception Auxiliary Network (SDPNet)
and a Hierarchical Pyramid Transformer Network (HPTNet).
The primary contribution of the proposed method is that
it provides depth information with hierarchical consistency
for features at different layers. More importantly, semantic
features and spatial features have corresponding relationships,
and spatial features at different levels also have corresponding
relationships. Additionally, using depth features predicted by
depth estimation as learnable positional embedding guides
the feature learning and semantic segmentation, effectively
utilizing spatial observation information in visual perception.
By incorporating spatial feature biases into visual features and
modeling the correlation between pixels and real scenes, the
network effectively correct the generation and focus of global
attention. As shown in Fig. 1(b, d), our proposed HSPFormer
focuses attention more accurately on target objects, and the
segmentation results demonstrate a significant improvement
in accuracy due to this focused attention. It significantly
outperforms the CMX [21] and CMNeXt [19] models, with
similar model efficiency (see Fig. 3). The main contributions
of this paper are as follows:

1. The proposed HSPFormer-DBS utilizes depth infor-
mation as position embedding to ensure accurate position
relationship in real-world driving scenarios.

2. We designed HSPFormer-UFS to integrates monocular
depth estimation and semantic segmentation, emphasizing
positional relationships while contributing to the trade-off
between performance and efficiency.

3. HSPFormer excels in real traffic scenarios semantic
segmentation, and its robust scene perception capabilities
contribute to enhancing the safety of autonomous driving. Our
method demonstrates remarkable performance in KITTI-360
with a top mIoU of 67.32%, and outperforms the previous
state-of-the-art method a +2.23% improvement.

II. RELATED WORK

A. Semantic Segmentation

Convolutional Neural Networks (CNNs) have made remark-
able advancements in the domain of semantic segmentation
[25], [26], [27], [28]. CNNs have adopted various strate-
gies [29], [30] to expand their receptive field. Despite these
enhancements, the inherent local nature of their receptive
field still limits their ability to understand global contextual
relationships in high-resolution images. The emergence of
Transformer has greatly improved global feature space learn-
ing. SETR [15] and Swin Transformer [13] have demonstrated
the powerful feature extraction capability of Transformer in
semantic segmentation, making outstanding contributions to
advancing research. They accomplish this with self-attention
that establishes long-range connections among features. Sub-
sequently, there are many methods to introduce the pyramid
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Fig. 3. Performance vs. model efficiency on KITTI-360. HSPFormer-B2,
denoted by red star, achieves a new state-of-the-art 66.82% mIoU while
maintaining competitive efficiency to other state-of-the-art methods.

structure in CNNs to the design of Transformer backbones
[18], [31], [32], [33], [34], [35]. After that, some improve-
ments are made to combine the advantages of CNN and
Transformer to obtain stronger feature representations [36],
[37], [38], [39], [40], [41]. However, current research predom-
inantly explores the stacking and fusion of Transformer blocks
and CNN blocks, without delving into the nuanced fusion
strategies between CNN and Transformer within these blocks

B. Multi-Modality Architecture

RGB images tend to interpret color and texture informa-
tion, but may encounter difficulties in scenarios with similar
textures or lack of textural clues. The introduction of depth
maps enhances a model’s ability to interpret scenes by pro-
viding depth and spatial information. Currently, many studies
have demonstrated that multi-modality data fusion is able to
significantly improve the accuracy of semantic segmentation
[42], [43], [44], [45]. Especially with the fusion of RGB-D
data, the addition of depth information can markedly enhance
the segmentation capabilities of models. Subsequent methods
explore more sophisticated architectures and fusion strate-
gies, such as using dual-branch structures [23], [46], [47]
or designing various fusion modules [20], [48]. Additionally,
some approaches combined monocular depth estimation with
semantic segmentation [49], [50] for mutual optimization and
constraint, providing new insights for our study. Existing
multimodal fusion methods typically treat RGB and depth
maps as two separate components, which does not fully take
into account the structural characteristics of Transformers.
Adding more branches also leads to an increase in the model’s
parameter count. Therefore, it is necessary to design a com-
pletely new fusion approach.

C. Position Embedding

Position embedding is crucial for understanding the token
positions in a sequence in vision Transformer. The vanilla
approaches (fixed-length absolute position embedding [14],
[17], [51]), limited the model’s ability to handle diverse data.
Subsequent methods incorporating relative position embedding

[13], [52], [53] to enhance the performance of Transformer in
image understanding. Furthermore, many research introduced
learnable implicit position embedding using CNNs to under-
stand local relationships among tokens or pixels [31], [37],
[54], [55]. In multimodal tasks such as RGB-D, RGB and
depth images are commonly handled as separate components
for feature extraction. This approach does not relate pixels to
real-world situations or take into account the spatial connec-
tions between pixels.

III. METHOD

Our goal is to accommodate monocular depth estima-
tion to the semantic segmentation simulating multi-modality
operation, and then utilize depth information to generate
hierarchy-coherent representations to address the concern
of attention shift in semantic segmentation. To this end,
we develop Hierarchical Spatial Perception Transformer (HSP-
Former) network as shown in Fig. 4 (Sec. III-A), consisting
of a Spatial Depth Perception Auxiliary network (SDPNet)
(Sec. III-B) and a Hierarchical Pyramid Transformer network
(HPTNet) (Sec. III-C).

A. HSPFormer: Hierarchical Spatial Perception Transformer

Unlike typical semantic segmentation methods (Fig. 2(a))
that solely extract image features for prediction, in HSP-
Former, we aim to enable the image itself to learn the
underlying spatial relationships of scene objects and formalize
them as depth position embedding at different scales to assist
in refining pixel category predictions. Meanwhile, HSPFormer
is an efficient segmentation framework without hand-crafted
and computationally demanding modules. HSPFormer consists
of two main components: (1) a spatial depth perception auxil-
iary network based on monocular depth estimation to generate
multi-scale spatial information; and (2) corresponding hierar-
chical pyramid Transformer network to fuse images features
and spatial information coarse-to-fine to produce multi-level
semantic features, as depicted in Fig. 4.

For an image of size H × W × 3, it serves as input
for the SDPNet to obtain multi-level features at resolution
of 1

2 , 1
4 , 1

8 , 1
16 relative to the raw image. Differing from the

dual-branch strategy (Fig. 2(b)) of existing RGB-D semantic
segmentation methods, we simultaneously extract features
from the image and predict the depth features (Fig. 2). There-
fore, the depth estimation head is added within the auxiliary
network to predict depth information at the corresponding res-
olution, realizing spatial perception. During the training phase,
the network is supervised on the predicted depth features.

Subsequently, in the HPTNet, we design parallel Trans-
former encoders to further learn the image features. In the
Transformer encoder, the learned depth features are used as
position embedding to correct the attention shift caused by the
traditional methods being disconnected from the actual scene
in global attention. The features generated by the Transformer
encoders maintain resolution consistency. Then, we pass multi-
level features to the decoder to restore them to the original
resolution at H × W × Ncls for prediction after feature fusion,
where Ncls is the number of classes.
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Fig. 4. The proposed HSPFormer framework consists of two main modules: A spatial depth perception auxiliary network (SDPNet) to extract coarse features
and estimate multi-level depth maps; and a hierarchical pyramid Transformer network (HPTNet) to fuse images and spatial features coarse-to-fine and predict
the segmentation mask. Note that supervision for depth estimation is conducted during training stage.

B. SDPNet: Spatial Depth Perception Auxiliary Network

The goal of this network is, given an input image,
to generate both multi-level features and corresponding depth
predictions. These features obtained by the feature extractor
are enhanced during the process of transitioning resolution
from high to low and granularity from coarse to fine, which
promotes local understanding for semantic segmentation. More
precisely, the four-layer network structure generates features
F R

i at four different scales, with size of H
2i ×

W
2i × Ci , where

i ∈ 1, 2, 3, 4, and Ci ∈ 64, 128, 256, 512. Subsequently, the
multi-scale features are sent to parallel Transformer encoders
for global feature transformation and encoding.

1) Dual Branch Strategy: Considering that Transformer
require position embedding to provide sequence relationships
as priors for the image, traditional position embedding often
rely on fixed-value sequences that lack relevance to the actual
scene, such as sine/cosine and conditional position embedding,
etc. This leads to attention shifts, resulting in incomplete object
segmentation. Therefore, we aim to adopt a multi-modality
strategy by treating the depth image as an additional input,
thereby forming a dual branch strategy (DBS) as shown in
Fig. 2(b). We employ depth features as learnable position
embedding to assist in image feature extraction, establishing
a correspondence between sequence relationships and actual
scene, ultimately optimizing semantic segmentation. We use
shared-weight CNN with the image extractor to generate depth
features F D

i at size of H
2i ×

W
2i × Ci . Subsequently, we per-

form element-wise summation with image features. However,
this approach increases computational demands and reduces
inference speed. Moreover, depth images typically generated
from point cloud projection are sparse, and even though depth
completion can be performed, it introduces additional noise.

2) Unified Framework Strategy: In contrast to the DBS,
we exclusively utilize images as inputs to extract multi-level
features while concurrently predicting the corresponding depth
information, as shown in Fig.2(c). Specifically, we incorporate
the depth estimation module at each layer. The depth estima-
tion module consists of a MLP and a convolution layer with

padding. Features xi+1 from i +1 layer are fused with features
xi from layer i after passing through the MLP. The fused
features are then processed through convolution to obtain the
depth prediction. The calculation process can be formalized as
follows:

Depthout = Conv(Cat (xi , M L P(xi+1))) + xi (1)

where Cat denotes the operation of concatenating features
along channels. Finally, We adopt the smooth L1 loss [56] to
supervise the predicted depth map. The discrepancy between
the predicted Dpred(i, j) and GT Dtrue(i, j) at pixel location
(i, j) is denoted by 1D(i, j) = Dpred(i, j) − Dtrue(i, j). The
smooth L1 loss is expressed as:

Lsmooth =
1

h × w

h∑
i=1

w∑
j=1

SmoothL1(1D(i, j)) (2)

SmoothL1(1D) =

{
0.5(1D)2 if |1D| < 1,

|1D| − 0.5 otherwise.
(3)

where h and w denote the height and width of the depth map.
It is important to note that this supervision is only applied
during training stage.

C. HPTNet: Hierarchical Pyramid Transformer Network

In the HPTNet, we design parallel Transformer encoders for
global feature extraction. Subsequently, lightweight decoders
are appended to process the obtained features to generate the
final prediction. In contrast to the conventional approach of
adding Transformer encoders at the end of CNNs, we believe
that this approach fixes local context within the features and
makes it challenging to effectively represent global contextual
information. Therefore, we use parallel modules to gradually
generate rich feature representations.

1) ConvEmbed: For each Transformer encoder, we employ
a consistent structure. To model the local continuity informa-
tion, unlike the patch embedding process in ViT, we utilize the
ResNet [57] to extract pixel-level ConvEmbed generated from
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SDPNet to tokenize image features, unifying a Hi × Wi × Ci
vector into Hi Wi × Ci , where Hi , Wi , and Ci denote the
dimension of features in i layer.

2) DepthEmbed: The DepthEmbed module functions to
provide spatial prior information within the model, helping
it more accurately capture spatial relationships in the image.
For the input image and the estimated depth prediction,
the DepthEmbed module first receives the depth map and
preprocesses it through a CNN, performing noise suppression
and smoothing to obtain more reliable depth features. The
processed depth features are then pixel-wise added to the RGB
features extracted by the ConvEmbed module, embedding the
depth into the image feature sequence. This step produces a
multimodal feature, which serves as the input F f use

i to the
shrink attention block.

3) Shrink Attention: Subsequently, we transform F f use
i into

Q, K , and V vectors, followed by linear spatial reduction
operations on K and V , as described in PVT v2. Thus, the
process of attention block is:

Attention = Sof tmax(
Q(S R A(K ))T

√
d

)S R A(V ) (4)

where S R A operation means average pooling spatial reduc-
tion. Then, we apply a FFN with an activation function and a
normalization layer to process the features. The output vector
has the same dimension as the input.

4) MLP Decoder: HPTNet incorporates a lightweight
decoder consisting only of MLP layers, avoiding the com-
putationally overheads in other methods. Firstly, multi-level
features from the Transformer encoders are compressed to a
uniform number C of channels. Then, they are upsampled at
the size of H

4 ×
W
4 × C individually. Thirdly, aggregation is

performed by concatenation. Finally, an additional MLP layer
is applied to predict the segmentation mask at the size of
H
4 ×

W
4 × Ncls from the fused features.

IV. EXPERIMENT

A. Datasets and Metric

1) KITTI-360 [58]: The large-scale street scene dataset was
recorded in various suburbs of Karlsruhe in Germany, serving
as an extension of the original KITTI dataset [60]. It offers rich
sensory information and full annotations for dense semantic
segmentation. The dataset includes 49,004 training images and
12,276 testing images with the resolution of 1, 408 × 376 .
The semantic label definitions are consistent with Cityscapes
[61], encompassing 19 classes for evaluation. Furthermore,
the depth data is predicted using the binocular estimation
algorithm IGEV [62].

2) NYU Depth V2 [59]: The NYU Depth V2 dataset
comprises 1,449 RGB-D images of indoor scenes used for
semantic segmentation, with 795 images for training and
645 images for testing. The image resolution is 640 × 480
pixels, and annotations are available for 40 different categories.

3) Cityscapes [61]: Cityscapes is an RGB-D dataset
designed for urban street scene analysis during road-driving
conditions. It comprises a collection of 5,000 images, cate-
gorized into training, validation, and testing (2,975 / 500 /

1,525) subsets. Each image is meticulously annotated with
dense labels across 19 categories. The dataset encompasses a
diverse range of urban environments, representing 50 unique
cities, and with image shape of 2, 048 × 1, 024.

4) Metric: The mean Intersection over Union (mIoU) is
used as the evaluation metric to validate the performance of
semantic segmentation.

B. Implementation Details

Our model training was conducted on four
NVIDIA 4090 GPUs, with a batch size of 4 per GPU. Initially,
the network model was pre-trained on ImageNet-1K [64].
During training, we applied various data augmentation
techniques to enhance the model’s generalization capability,
including random flipping, random scaling within the range
of [0.5, 2], random color jittering, and random Gaussian blur.
We opted for the AdamW optimizer with a weight decay of
0.05. The initial learning rate was set to 6e-5, and a cosine
annealing strategy with a warm-up phase was employed
for learning rate scheduling. To simplify the training and
evaluation process, we used a basic cross-entropy loss
function for supervised segmentation prediction and a smooth
L1 loss function for supervised depth map prediction. When
evaluating the mIoU of PVT and HSPFormer, we did not
employ a sliding window approach; instead, we predicted
directly from the original images.

C. Backbone Selection

As shown in Tab. I, we assess the performance, parameters,
and efficiency of different backbone networks. On one hand,
the SegFormer with MiT-B2 as the backbone outperforms PVT
v2-B2 due to its sliding window and MLP decoder. However,
when removing the sliding window and MLP decoder, the
mIoU of SegFormer decrease to 59.18%, which is lower than
the 59.70% of PVT v2. On the other hand, PVT v2 has
the same parameters and inference speed with SegFormer.
Therefore, we select PVT v2 as the backbone network for
the subsequent experiments.

D. Experimental Design

In our experiments, we conducted two comparative studies
and six ablation studies. Tab. I presents the performance of
our method on the KITTI360 and NYU DepthV2 datasets and
demonstrates its advantages on the Cityscapes dataset. Tab. II
details the experimental results for 16 common categories in
the KITTI360 dataset, highlighting the significant improve-
ments achieved by our model. Tab. III analyzes the impact
of different modules and frameworks on the baseline, includ-
ing parameters, mIoU, and accuracy. It is noteworthy that
the DepthEmbed module, specifically designed for handling
depth maps, was not tested with pure RGB inputs. Tab. IV
compares our proposed DepthEmbed position embedding with
other mainstream position embedding methods to validate the
effectiveness our DepthEmbed. Tab. V shows the effects of
integrating DepthEmbed into other Transformer architectures,
illustrating its versatility. Tab. VI evaluates the accuracy of our
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TABLE I

MAIN RESULTS ON KITTI-360 [58], NYU DEPTH V2 [59] AND CITYSCAPES [61]. THE BEST RESULTS ARE IN BOLD. THE PARAMETERS AND MIOUS
ARE REPORTED FROM CMX [21] AND CMNEXT [19]

TABLE II
PERFORMANCE COMPARISON USING DIFFERENT BACKBONE MODELS FOR MULTIPLE CATEGORIES. THE BEST RESULTS ARE IN BOLD. (%)

TABLE III
ABLATION STUDY OF THE PROPOSED MODULES ON KITTI-360 VAL SET. THE BEST RESULTS ARE IN BOLD. WE COMPARED THE PROPOSED METHOD

WITH PVT V2 [54], WHICH SERVED AS THE BASELINE

TABLE IV
SEMANTIC SEGMENTATION PERFORMANCE OF DIFFERENT POSITION

EMBEDDINGS (PES) ON KITTI-360 VAL SET. THE BEST RESULTS ARE
IN BOLD. WE APPLY DIFFERENT PES TO THE PVT V2-B2 [54] TO

ENSURE FAIRNESS IN THE COMPARISON

model in inferring depth maps on the NYU Depth V2 dataset
and compares it with specialized depth estimation models.
Tab. VII explores the impact of depth map completeness on

model performance. Finally, Tab. VIII examines the influence
of various CNN scales on ConvEmbed and DepthEmbed,
ultimately selecting ResNet34 as the backbone for HSPFormer
in the B2 specification, balancing computational load and
mIoU.

E. Comprehensive Evaluation

1) Qualitative Results: We conduct qualitative experiments
on KITTI-360 and NYU Depth V2 datasets. In this section,
we provide a detailed showcase of the visualization results
and compare with state-of-the-art methods to demonstrate the
effectiveness of out approach.

2) KITTI-360: Fig. 5 shows the representative visual
results on the KITTI-360 dataset. As seen, HSPFormer yields
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Fig. 5. Qualitative results on KITTI-360 [58]. The depth maps are predicted by SDPNet in our framework. Compared to CMX [21] and CMNeXt [19], Our
HSPFormer predicts masks with substantially finer details near boundaries and reduces wide range errors, as highlighted in red boxes.

Fig. 6. Qualitative results on NYU Depth V2 [59]. Compared to CMX and CMNeXt, our HSPFormer predicts masks with correct labels and complete
targets.

more precise segmentation results in comparison with some
top-performing methods and shows strong robustness to var-
ious scenarios with occlusions, shadows, textures, densely
arranged targets and small objects. Specifically, HSPFormer
effectively distinguishes between sidewalks and roads with
similar textures, identifies complete buildings and trucks, and
recognizes small objects. This is due to the auxiliary spatial
observations for semantic segmentation under our unified
framework of depth estimation. As shown in the second
column of Fig. 5, the depth maps predicted by UFS produce
the position and distance information for the pixel positions
in the real world. HSPFormer uses depth position embedding
to provide powerful visual feature learning and representation

ability to generate correct attention, significantly enhanc-
ing the completeness and accuracy of the boundaries of
objects.

3) NYU Depth V2: Fig. 6 shows the qualitative results on
NYU Depth V2, where HSPFormer provides complete targets
and correct labels than CMX and CMNeXt. For example, the
integrity of objects such as sofas, windows and walls is greatly
improved while boundary segmentation is also improved.

4) Quantitative Results: Tab. I presents a comparison of our
proposed HSPFormer with several state-of-the-art semantic
segmentation models in terms of parameter (M), mIoU (%),
and inference time (s) on the KITTI-360, NYU Depth V2, and
Cityscapes datasets, respectively.
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TABLE V
THE PROPOSED DEPTHEMBED IS INSTALLED FOR PERFORMANCE COM-

PARISON WITH OTHER TRANSFORMER BACKBONE NETWORKS ON
KITTI-360 VAL SET. THE BEST RESULTS ARE IN BOLD. THE SF

DENOTES THE SEGFORMER [31], AND ST DENOTES THE SWIN-
TRANSFORMER [13]

5) KITTI-360: As shown in Tab. I, the proposed
HSPFormer-UFS with single RGB input and PVT v2-B2
backbone achieves a 7.12% improvement in mIoU compared
to the baseline, a 9.29% improvement over PVT, and a 5.45%
improvement over SegFormer. When we use PVT v2-B1 as
the backbone, our method also shows significant improvement
over other approaches, with at least a 2% increase in mIoU
while maintaining the fastest inference speed.

Tab. I reveals that multimodal inputs consistently outper-
form single RGB inputs. Notably, RGB-Depth performs better
than both RGB-Event and RGB-LiDAR. We attribute this
difference to the fact that RGB-LiDAR inputs do not directly
use point cloud data but rather project it into a 2D space, gen-
erating a pseudo-depth map. These pseudo-depth maps have
discrepancies compared to the original RGB images, and any
misalignment (semantic or spatial information) can adversely
affect the prediction accuracy. Additionally, Event images lose
a significant amount of static scene information during capture,
further affecting their performance. Our proposed model,
HSPFormer-DBS, demonstrates the best performance with
RGB-Depth input by integrating depth positional information
encoded by DepthEmbed with RGB image features processed
by ConvEmbed. This highlights the critical role of depth infor-
mation in enhancing scene understanding accuracy. Although
HSPFormer-UFS sacrifices some precision, it significantly
reduces the number of parameters while maintaining excellent
performance with pure RGB inputs. This trade-off between
precision and parameter efficiency underscores the versatility
of model in practical applications. Notably, the B1 version
of HSPFormer-UFS achieves a 4.03% improvement in mIoU
with fewer parameters than PVT v2-B2. Furthermore, the B2
version of HSPFormer-UFS surpasses CMX and CMNeXt in
terms of efficiency while achieving higher mIoU accuracy.
These results indicate that our HSPFormer-UFS successfully
inherits and refines the design principles of HSPFormer-DBS,
especially in the efficiency and performance trade-off.

Tab. II presents the comparison results of HSPFormer-UFS
with four state-of-the-art models in terms of IoU across sixteen
common categories in driving scenarios. The HSPFormer-UFS
achieves the best performance across all categories. Notably,
the IoU of RGB-Depth models surpasses that of PVT v2

Fig. 7. Radar chart comparing the predictive performance of six prominent
categories in the KITTI-360 dataset. HSPFormer-UFS is used for comparison
with four top-leading methods.

and SegFormer in most categories, highlighting the significant
benefits of depth information. Despite the HSPFormer only
utilizing RGB images as input, it outperforms both single RGB
input models (PVTv2 and SegFormer) and multi-modal RGB-
Depth input models (CMX and CMNeXt) when guided by
depth information. Particularly, the predicted spatial informa-
tion is crucial for accurate segmentation of tiny targets such
fences, poles, and traffic signs. This underscores the crucial
role and effectiveness of depth information as a positional
embedding. Fig. 7 illustrates the IoU comparison of the four
algorithms in six more frequently encountered categories in
driving scenes. The proposed method exhibits more robustness
in traffic environment.

This demonstrates that (1) spatial observations can mimic
human visual characteristics by distinguishing different objects
based on their spatial positions. Depth information is able
to effectively differentiate pixels with distance variations
in space, even if these pixels are adjacent in the image.
(2) Performing depth estimation from a single RGB image is
able to provide spatial information bias for image semantic
segmentation without relying on additional input informa-
tion. Moreover, the information predicted by depth estimation
maintains hierarchical consistency with the original image,
simultaneously representing absolute and relative structural
relationships.

6) NYU Depth V2: Our method maintains robustness across
different scenarios. HSPFormer-UFS/DBS outperforms the
top-leading CMX and CMNeXt by 0.9% / 0.1%, respec-
tively. With RGB as the input, our method obtains (+5.2%)
improvements over PVT v2 when using the same backbone.
Compared with the CNN-based methods, our proposed frame-
work demonstrates a significant improvement.

7) Cityscapes: Our methodology demonstrates superior per-
formance across a variety of outdoor settings. Specifically,
when utilizing RGB-D input, the HSPFormer-DBS B4 model
markedly outperforms the CMX B4 model, registering a
significant enhancement of +1.2%. This trend persists even
when solely employing single RGB input. Additionally, the
HSPFormer-UFS B2 model not only attains results comparable
to the CMX B4 model but also exhibits a noteworthy advance-
ment, with a substantial improvement of +1.5% over the
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TABLE VI
COMPARATIVE QUANTITATIVE ASSESSMENT OF DEPTH MAPS: EVALUATING HSPFORMER-UFS AGAINST ESTABLISHED DEPTH ESTIMATION

ALGORITHMS ON THE UYN DEPTHV2 DATASET. ↑DENOTES HIGHER THE BETTER AND ↓ DENOTES LOWER THE BETTER

Fig. 8. Visualization results of depth estimation on the KITTI and NYU Depth V2 datasets.

PVTv2 B2 model, highlighting its effectiveness and robustness
in complex visual processing tasks.

8) Discussion: HSPFormer establishes the new state-of-the-
art both in the KITTI-360, NYU Depth V2 and Cityscapes.
These results clearly demonstrate the efficacy of our semantic
segmentation framework. While our UFS model falls slightly
behind the DBS model (66.82% vs. 67.32%, 57.0% vs.
57.8%, 83.2% vs. 83.8%), the strategy of optimizing position
embedding for depth estimation based on RGB input main-
tains performance and significantly increases model efficiency
(52.5M vs. 77.1M).

F. Ablation Studies

To validate the necessity and effectiveness of the proposed
modules, we conducted comprehensive ablation experiments
in the KITTI-360 dataset to demonstrate their roles and
performance within the network.

1) Model Analysis: Ablation experiments of our modules
are reported in Tab. III. We see that all designs are able to
improve the model in terms of performance and parameter
number. Comparing #2 and #3 or #5 and #7, the model with
ConvEmbed obtains better mIoU (61.4% vs. 63.5% or 62.3%
vs. 63.8%) and better Acc (69.0% vs. 71.5% or 66.7% vs.
72.3%) than the baseline. Specifically, comparing #6 and # 8 or
#7 and #9, the model with DepthEmbed shows improvements
of approximately 4.0% or 3.5% in mIoU and 4.7% or 6.0% in
Acc, respectively. DepthEmbed is effective because it is able to
model the association between images and real-world scenes
while ensuring the continuity of pixel relationships. As shown

TABLE VII
ANALYSIS OF THE PROPOSED MODEL WITH DEPTH MAPS OF VARYING

QUALITY. THE BEST RESULTS ARE IN BOLD. WE CONDUCT EXPERI-
MENTS ON NYU DEPTH V2 DATASET

in Tab. III #4, our Unified Framework Strategy effectively
reduces the parameters and computational overheads intro-
duced by the network while maintaining performance stability
to a certain extent (−0.5% mIoU and -2.1% Acc with -24.6M
parameters).

As shown in Table III, configuration #4 demonstrates that
our UFS framework effectively reduces network parameters
and computational overhead while largely maintaining perfor-
mance stability, with only a minimal drop of 0.5% in mIoU
and 2.1% in accuracy alongside a parameter reduction of
24.6M. Compared to configurations #7 and #8, which have
similar parameter counts, the UFS model increases parameters
by less than 1M but achieves accuracy gains of 3% and
0.5%, respectively. These results highlight that integrating
ConvEmbed and DepthEmbed within the UFS framework
provides an advantageous balance between model efficiency
and performance.
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TABLE VIII
PERFORMANCE COMPARISON USING DIFFERENT BACKBONE MODELS TO

OBTAIN CONVEMBED AND DEPTHEMBED. THE BEST RESULTS ARE IN
BOLD

2) DepthEmbed Importance: Compared to the previous
position embedding strategies, DepthEmbed is a learnable
position embedding that contains the relationship between
pixels and the real world and the consistency of multilevel
features. As shown in Tab. IV, our DepthEmbed achieves the
best performance of 66.3% mIoU against previous position
embeddings. Even when using UFS to predict the depth map
as DepthEmbed, we achieve (+6.8% / +4.5% / +1.9%) mIoU
improvement over previous methods. This is attributed to the
predicted depth map maintaining pixel continuity, locality, and
global correlation.

To validate the effectiveness of depth information,
we present visual examples of depth estimation using our
HSPFormer in Fig. 8. On the KITTI-360 dataset, our predicted
depth map effectively distinguishes objects in the streetscape,
such as vehicles and vegetation. More importantly, in the
third and fourth rows of the Fig. 8, HSPFormer is able to
clearly provide distance information for utility poles and trees.
This offers powerful spatial prior information for subsequent
semantic segmentation based on depth information. Further-
more, to verity the robustness, we provide depth estimation
results for indoor scenes. Obviously, the predicted depth map
provides spatial distance variations between adjacent pixels
in the image, such as separating furniture with hierarchical
relationships. Therefore, indoor spatial priors can enhance
sensitivity to details and the integrity of target segmentation.

Tab. VI illustrates that the primary design objective of
HSPFormer-UFS was to enhance transformers by embedding
implicit positional information through the prediction of depth
maps. While the core focus of this design is to refine positional
embedding rather than depth map production, the quality of the
resultant depth maps is commendable. Notably, HSPFormer-
UFS demonstrates formidable performance, holding its ground
against algorithms dedicated to monocular depth estimation.
This outcome underscores a significant insight: the profi-
ciency of HSPFormer-UFS in depth map prediction, though
a secondary objective, is substantial and merits recognition,
underscoring the model’s comprehensive capability and adapt-
ability.

As shown in the Tab. V, after incorporating the depth
embedding, the performance of SegFormer improved from
61.3% to 66.0%, Swin Transformer improved from 57.6%
to 61.7%, and our method improved from 57.6% to 66.8%,
respectively. These results indicate that the multi-scale

Fig. 9. Performance comparison of different input scales for our method and
four top-leading methods.

Transformer structures experience a significant boost when
using the UFS framework, while the DBS framework shows
a less pronounced improvement. This difference can be
attributed to the fact that UFS integrates and optimizes both
DepthEmbed and ConvEmbed modules, whereas DBS only
incorporates DepthEmbed without ConvEmbed. Since Swin
Transformer is a single-scale model, it does not benefit from
the advantages provided by ConvEmbed, resulting in less
impressive performance gains with the UFS framework. Since
the acquired depth map usually carries a large number of
missing values. Hence, we have considered the impact of
supervising the network with different standards of depth
images on the NYU Depth V2 dataset, and the results are
presented in Tab. VII. The repair data, as opposed to the sparse
raw data, maintain pixel continuity, facilitating more realistic
position embedding when matched with RGB image features.

3) The CNNs of Both DepthEmbed and ConvEmbed Con-
tribute to a Better Model: The multi-scale features extracted
by the CNN provide multilevel ConvEmbed and DepthEmbed
to the pyramid transformer embeddings. Therefore, the perfor-
mance of CNNs is crucial to the quality of the features. From
Tab. VIII, it can be observed that deeper CNNs contribute
to better feature extraction performance of ConvEmbed and
DepthEmbed.

4) Computational Overhead Analysis: As shown in Fig. 9,
with increasing input scale, the growth rate of GFLOPs is as
follows: CMNext-B2 > CMX-B2 > HSPFormer-DBS-B2 >

HSPFormer-UFS-B2 > PVT v2-B2. These results prove that
our proposed methods are able to achieve high-performance
semantic segmentation while maintaining computational effi-
ciency to a certain extent.

V. CONCLUSION

In this paper, we introduce HSPFormer, a novel uni-
fied framework that integrates monocular depth estimation
as learnable position embeddings with Transformers for
semantic segmentation. HSPFormer leverages the relation-
ship between pixels and the real world to identify spatial
differences among pixels. Through hierarchical feature extrac-
tion and depth estimation, consistent spatial features are
established for structured scene analysis at corresponding
resolutions. By exploiting spatial disparities between pixels,
spatial observations can be used to generate more effective
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pixel representations, thereby clearly distinguishing objects at
different locations.

Comprehensive experiments demonstrate that HSPFormer
outperforms many existing semantic segmentation models on
three well-known datasets. On the KITTI-360 and Cityscapes
traffic environment datasets, our method achieved top mIoU of
67.32% and 83.8%, respectively, exhibiting 2.23% and 1.2%
improvements over the previous state-of-the-art approaches.
On the NYU Depth V2, HSPFormer achieved a top mIoU of
57.8%. Furthermore, HSPFormer shows significant advantages
in real traffic scenarios and the accuracy of various targets
segmentation. Thus, the proposed is able to improve the safety
and robustness of autonomous systems in ADAS.

Limitations: The model relies on depth data for supervi-
sion during training to accurately model spatial relationships
between objects; however, this dependency limits its adaptabil-
ity in scenarios lacking real depth maps. To overcome these
limitations, future research could introduce unsupervised depth
generation algorithms (e.g., Depth Anything) to provide train-
ing supervision, thereby reducing reliance on real depth maps
and enhancing the model’s generalization and applicability.
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