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Abstract

Document-level neural machine translation al-001
lows models to leverage dependencies beyond002
sentence-internal context to produce more co-003
herent and consistent translations. However,004
these models, predominantly based on trans-005
formers, are difficult to scale to long docu-006
ments due to the quadratic time and space007
complexity of their self-attention layers. Re-008
cent efforts on efficient attention variants im-009
prove scalability, but it is yet unclear if and010
to what extent their inductive biases are suit-011
able for document translation. In this paper,012
we explore the efficacy of a recent linear atten-013
tion model by Peng et al. (2021) on document-014
level translation and augment it with a senten-015
tial gating mechanism. We evaluate the model016
on the IWSLT 2015 and OpenSubtitles 2018017
datasets against a strong transformer baseline018
and achieve up to 40% decoding speedup with019
similar or improved BLEU scores. We show020
that the sentential gate further improves trans-021
lation quality on IWSLT, a dataset with long022
sequences.023

1 Introduction024

Sentence-level neural machine translation has seen025

significant recent progress (Bahdanau et al., 2015;026

Vaswani et al., 2017). Document-level translation027

facilitates a more general version of translation028

when inter-sentential context is accessible, such029

as paragraphs, documents, or books (Lopes et al.,030

2020; Ma et al., 2021b; Maruf et al., 2021). This031

opens up new research avenues to improve transla-032

tion and its evaluation for more consistent anaphora033

resolution and discourse coherence (Bawden et al.,034

2018; Müller et al., 2018; Voita et al., 2019).035

Transformers have enabled state-of-the-art re-036

sults for machine translation (Vaswani et al., 2017;037

Chen et al., 2018; Wang et al., 2019) and have038

become the default architecture for document trans-039

lation. However, they do not scale well in the se-040

quence length due to the quadratic complexity of041

self-attention and hence can be computationally 042

prohibitive to translate long text. Alternative ar- 043

chitectures exist, but most are still quadratic in 044

the context length (Zhang et al., 2018; Voita et al., 045

2019) and/or have extra modules that further add 046

to the inference cost (Tu et al., 2018; Zhang et al., 047

2018; Miculicich et al., 2018; Donato et al., 2021). 048

Recent efficient self-attention variants reduce 049

complexity (Guo et al., 2019; Child et al., 2019; 050

Kitaev et al., 2020; Wang et al., 2020, i.a.), though 051

many do not focus on decoding speed. Random 052

feature attention (RFA; Peng et al., 2021) admits 053

a recurrent computation, suitable for autoregres- 054

sive generation. With few extra parameters, it ap- 055

proximates softmax attention in linear time and 056

space and has proved successful in machine trans- 057

lation. However, it has not been tested on document 058

translation where its asymptotic improvement is ex- 059

pected to bring large efficiency gains. In this work, 060

we investigate its effectiveness on document trans- 061

lation and achieve up to 40% speedup with similar 062

BLEU, or sometimes improved BLEU on long se- 063

quences. We also equip RFA with a sentential gate, 064

bringing inductive biases tailored to representing 065

document context for machine translation. 066

Our main contributions are: (i) we study the effi- 067

cacy of RFA for document translation; (ii) we incor- 068

porate a sentential gating mechanism into RFA tai- 069

lored to document translation; (iii) we experimen- 070

tally validate that RFA is competitive with trans- 071

former and up to 40% faster on document transla- 072

tion. Our proposed gating model yields the best 073

performance in BLEU for long sequences. To en- 074

courage research on scalable document-level trans- 075

lation, we will release our code upon publication. 076

2 Background 077

Standard machine translation independently trans- 078

lates each source sentence into the target. However, 079

translating sentence-by-sentence discards useful 080

context information that can assist lexical choice 081
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Hi What ? Still in bed ? It's 2pm Fine

嗨 什么 ? 还 在 ? 了

Windows

Source

Target 床上 两点 好吧

Figure 1: The concatenation model for document trans-
lation with a sliding window of length L = 4. Every
window is translated in its entirety, but only the last
translated sentence is used for evaluation. The purple
bars denote the sentence separator token.

and ambiguity resolution. Document-level trans-082

lation further conditions on previous source and083

target sentences. It respects document context and084

preserves sentence interaction to produce more co-085

herent translations (Voita et al., 2019).086

The Concatenation Model. Many document-087

contextual models complicate the transformer ar-088

chitecture (Miculicich et al., 2018; Donato et al.,089

2021, i.a.). Recent studies have shown that the090

simple concatenation model that directly translates091

the source document (or a multi-sentence win-092

dow) to the target document with a single encoder-093

decoder stack performs well (Tiedemann and Scher-094

rer, 2017; Ma et al., 2021b), especially on large095

datasets (Junczys-Dowmunt, 2019). Figure 1 illus-096

trates this model combined with sliding window097

decoding. We adopt this model in this work, though098

it has poor scalability, which we explain next.099

Scalability of Self-Attention. Transformers con-100

tain three types of attention layers: encoder self-101

attention, cross attention, and causal attention. In102

each, every query qt is dotted with all keys {ki} to103

obtain the attention weights, with which a weighted104

average of the values {vi} is calculated:105

attn (qt, {ki}, {vi}) =
N∑
i=1

exp (qt · ki)∑N
i′=1 exp (qt · ki′)

v>i106

where N is the sequence length. This pairwise in-107

teraction consumes quadratic time and memory in108

N , which is inefficient for the long text sequences109

in the concatenation model. This particularly im-110

pacts cross and causal attention at decoding time,111

which cannot be parallelized (Kasai et al., 2021).112

3 Scalable Document-Level Translation113

For the first time, we test random feature attention,114

which has demonstrated efficiency in autoregres-115

sive decoding, as a linear time and space model to116

···

= [SEP]

Figure 2: Our sentential gating mechanism. e1 and e4
are at the beginning of two sentences.

improve the scalability of document translation.1 117

We also augment it with a sentential gate to circum- 118

vent capacity constraints with a long context. 119

3.1 Random Feature Attention 120

RFA approximates the softmax attention 121

attn (qt, {ki}, {vi}) in linear time and space: 122

RFA (qt, {ki}, {vi}) =
φ (qt) · St

φ (qt) · zt
123

where φ(·) is a random nonlinear transformation 124

where φ(q) ·φ(k) ≈ expq · k in expectation over 125

φ (Rahimi and Recht, 2008); S, z summarize the 126

keys and values. We use RFA in cross and causal at- 127

tention, which are the most impactful for speed and 128

memory, so qt is always from the target sentence. 129

In cross attention, S and z represent the source 130

sentence and are constant for all query positions 131

t: St =
∑|x|

i=1φ(ki)v
>
i and zt =

∑|x|
i=1φ(ki). In 132

causal attention, they represent the target prefix 133

i ≤ t: St =
∑t

i=1φ(ki)v
>
i = St−1 + φ (kt)v

>
t 134

and zt =
∑t

i=1φ(ki) = zt−1 + φ (kt). These 135

recurrent computations are analogous to an RNN 136

with St and zt as hidden states at step t and enable 137

constant computation per step. RFA serves as a 138

drop-in replacement for attn in transformers. The 139

encoder and other modules, e.g., feed-forward lay- 140

ers, remain the same. We refer the reader to Peng 141

et al. (2021) for a complete discussion of RFA. 142

3.2 Sentential Gating 143

Schlag et al. (2021) noted, under the lens of Fast 144

Weight Programmers (Schmidhuber, 1991, 1992, 145

1993), that accumulating memory in a purely addi- 146

tive manner, such as as exposed above, will reach a 147

capacity limitation with sequences longer than the 148

size of φ. This is particularly an issue in document- 149

level translation due to the long sequences. 150

To address this, inspired by gated RNNs (Cho 151

et al., 2014, i.a.), we augment RFA with a sentence- 152

1RFA was the first model to demonstrate decoding speed
improvements in translation, making it appropriate for this
study. Many other linear attention models have been proposed
since this work was carried out (Kasai et al., 2021; Schlag
et al., 2021; Ma et al., 2021a), and it would be exciting future
work to investigate their utility in document translation.
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level gate to enable dynamic control of contex-153

tual information from the current and previous sen-154

tences, and to allow the model to selectively forget155

about the history to circumvent the capacity con-156

straint. This is illustrated in Figure 2. For a word157

xt with representation et, we compute a forget gate158

using the separator token between sentences:159

ft =

{
σ(wf · et−1 + bf ) if xt starts a sentence
1 otherwise

St = ft St−1 + φ (kt)v
>
t

zt = ft zt−1 + φ (kt)

160

where σ denotes the sigmoid function. Each sen-161

tence j assigns a weight 0 <
∏START(j)

i=START(j′)+1 fi < 1162

when attending to a previous sentence j′, where163

START(·) is the first token in a sentence. This en-164

forces an inductive bias that, intuitively, previous165

sentences are less important in translation, and their166

representations are exponentially decayed.167

Relation to Prior Work. While gating is com-168

mon in RNNs, it is less clear how it applies to169

transformers. Miculicich et al. (2018) gate at the170

sentence level though hierarchically while we gate171

recurrently. Ours also contrasts with the per-token172

gating of Peng et al. (2021) which they found inef-173

fective for machine translation. These two works174

also take a weighted average of the previous and175

current sentences while we only decay the former.176

We show our variant performs better in §5. Schlag177

et al. (2021) used a gate that explicitly models mem-178

ory removal, but also at the token level.179

4 Experimental Setup180

Datasets and Evaluation. We experiment with181

the IWSLT 2015 Chinese-to-English (zh-en)182

dataset (Cettolo et al., 2015) with multilingual TED183

talk captions and the OpenSubtitles2018 English-184

to-Russian (en-ru) dataset (Lison et al., 2018) with185

movie and TV subtitles. We measure document-186

level BLEU (Papineni et al., 2002) with Sacre-187

BLEU (Post, 2018).2 To quantify discourse consis-188

tency, we also use the test sets by Voita et al. (2019)189

that are based on OpenSubtitles. We introduce190

these datasets in more detail in Appendix A.1.191

Data Processing. We process each document192

with a stride-one sliding window of L sentences to193

2We use fairseq’s default setting which has hash
case.mixed+numrefs.?+smooth.exp+tok.none
+version.1.5.0 with standalone 13a-tokenization.

obtain our training set. Following Voita et al. (2019) 194

and Ma et al. (2021b), we experiment with L = 1, 195

the sentence-level baseline, and L = 4. During 196

inference, we use the last translated sentence in 197

each window for evaluation. For a more granular 198

analysis, we consider L ∈ [1, 4] for consistency 199

experiments. More details are in Appendix A.1. 200

Model Settings. We compare RFA and trans- 201

former with the concatenation model. For RFA, we 202

experiment with the ungated (RFA) and sentential- 203

gated (RFA-sgate) versions. To compare our decay- 204

ing gate choice with prior work (§3.2), we run a 205

sentential-gated RFA that takes a weighted average 206

of previous and current text (RFA-sgate-balanced). 207

We mostly default to fairseq hyperparameters (Ott 208

et al., 2019), most suitable for the L = 1 trans- 209

former (see Appendix A.2). We measure decoding 210

speed in the number of decoded tokens over the for- 211

ward pass time. We do not benchmark with Open- 212

Subtitles as its short sequences (≈ 10 tokens per 213

sentence; see Table 2, appendix) are not expected 214

to show a speedup. We believe movie subtitles rep- 215

resent a different genre from many settings where 216

long contexts are expected to be useful. We follow 217

Ott et al. (2018) and cache previous k and v for our 218

baseline which substantially increases its speed. 219

5 Results 220

Speed. Table 1 (top) shows the speedup of the 221

ungated RFA over transformer.3 RFA offers a con- 222

siderable speedup, consistent across both window 223

sizes. This is especially pronounced at L = 4 224

due to RFA’s linear complexity. This makes RFA 225

an attractive choice since, as demonstrated below, 226

models with longer context are the best at capturing 227

discourse phenomena. In particular, we only ex- 228

perimented with window size up to 4 in this work, 229

limited by the dataset design of Voita et al. (2019). 230

In reality, however, RFA can be combined with an 231

even longer context to capture longer-range depen- 232

dency and offer a more prominent speedup. 233

We note that all decoding is done on GPUs. If 234

performed on TPUs, as was done in Peng et al. 235

(2021), the feed-forward layers would be much 236

faster, and the attention layers would take a larger 237

fraction of the decoding time. This would make the 238

RFA speedup more pronounced. For comparison, 239

3The speed difference between the RFA variants is negligi-
ble as gating requires minimal additional computation. This
is also confirmed by Peng et al. (2021), where their per-token
gating has the same speedup as no gating.

3



IWSLT Subtitles
Window Size L 1 4 1 4

Sp
ee

d Transformer 150 36 — —
RFA 179 49 — —

Speedup 1.2× 1.4× — —

Q
ua

lit
y

Transformer 31.7 30.4 32.6 33.1

RFA 31.0 30.7 32.9 33.2
RFA-sgate-balanced — 30.8 — 33.0
RFA-sgate — 31.2 — 33.2

Table 1: Inference speed, in the number of decoded
tokens / second, and BLEU on IWSLT and OpenSubti-
tles test sets. Bold scores outperform transformer. Our
baselines are optimized: see Appendix A.3 for compar-
ison with prior work. We do not use batch decoding as
it is non-trivial with sliding windows, and we expect it
would help the speed similarly for both models.

Peng et al. (2021) reported 1.8–1.9× speedup for240

single sentence decoding compared to our 1.2×.241

BLEU Score. Table 1 (bottom) shows BLEU242

scores on IWSLT and OpenSubtitles. Overall, RFA243

performs slightly better than transformer. The only244

exception is the high IWSLT performance of the245

sentence-level transformer, which could be due to246

defaulting to fairseq hyperparameters that are de-247

signed for this setting. The gated RFA model is the248

best on IWSLT at L = 4, demonstrating its utility,249

but gating has no effect on OpenSubtitles. We hy-250

pothesize that with only ≈ 10 tokens per sentence,251

half of the average length of IWSLT sentences (see252

Table 2, appendix), gating is less useful on this253

dataset. Our gate also outperforms the balanced254

variant in Miculicich et al. (2018) and Peng et al.255

(2021), showing its better suitability for document256

translation. Similar to previous work (Voita et al.,257

2019; Ma et al., 2021b), longer context does not258

clearly lead to better BLEU scores, though it im-259

proves consistency metrics, to which we turn next.260

Discourse Consistency Scores. Figure 3 plots261

the consistency scores in four phenomena for RFA262

and transformer. As gating is not helpful for Open-263

Subtitles in BLEU, we only compare with ungated264

RFA. We also compare to a random baseline and265

the concatenation models from Voita et al. (2019)266

and Ma et al. (2021b), conceptually the same as267

our L = 4 transformer, though with unavoidable268

implementation discrepancies that explain their per-269

formance differences. Though it is not clear for270

BLEU, longer context almost monotonically yields271

Figure 3: Model performance on the consistency test
set, broken down into phenomena. Transformer and
RFA are tested with window sizes from 1 to 4. We com-
pare with the baselines in Voita et al. (2019) and Ma
et al. (2021b) corresponding to our Transformer L = 4.

better consistency scores. This highlights the ben- 272

efit of translating with longer context, a setting 273

where RFA achieves better speedup, shown above. 274

RFA slightly underperforms transformer in most 275

settings. We hypothesize that the direct query-key 276

interaction in softmax attention is more suitable 277

for precise long-distance information extraction, 278

usually required for consistency metrics, than the 279

RFA approximation. RFA is not able to learn lex- 280

ical cohesion, comparing to the random baseline. 281

This is also the case for Voita et al. (2019)’s base- 282

line. And while Ma et al. (2021b)’s performs better, 283

it is still much worse than our transformer base- 284

line. Zhang et al. (2020) also noted this difficulty 285

whose proposed method also underperforms our 286

random baseline. They used the Partial Copy mech- 287

anism (Jean et al., 2019) as a remedy, though at the 288

expense of other metrics. This is orthogonal to our 289

approach. Our results reveal that, while efficient 290

transformers may provide an attractive speedup 291

while retaining or improving some automatic eval- 292

uation scores, they may do worse on other metrics. 293

We, therefore, call for a more holistic evaluation of 294

these models to fully understand all the trade-offs. 295

6 Conclusion 296

We explored the effectiveness of random feature 297

attention, combined with sentential gating, on doc- 298

ument translation. We demonstrated that our model 299

provides a speedup over transformer by up to 40% 300

with similar BLEU scores. Our sentential gate also 301

proves effective, especially on long sequences. 302
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Dataset Lg. Train Dev. Test Sent. Tok.
Docs Docs Docs /doc /sent.

IWSLT
zh

1713 8 56 121.5
20.4

en 22.6

Sub.
en

1.5M 10K 10K 4
10.3

ru 9.5

Sub.- en
— 2K 16K 4

10.5
Cons. ru 9.6

Table 2: Dataset statistics of IWSLT, OpenSubtitles,
and the consistency test sets for OpenSubtitles. We
follow Ma et al. (2021b) in treating the four-sentence
windows of OpenSubtitles as separate documents. The
number of sentences per document and BPE tokens
per sentence are averaged across all splits, except for
OpenSubtitles-Consistency, which are only averaged
across the development and test sets.

A Appendix465

A.1 Dataset and Processing Details466

The IWSLT 2015 dataset contains multilingual467

TED talk captions. Following Miculicich et al.468

(2018), we use the Chinese-to-English (zh-en) por-469

tion and use the dev2010 subset for development470

and tst2010-2013 for testing. We also use the pro-471

cessed OpenSubtitles2018 English-to-Russian (en-472

ru) dataset by Voita et al. (2019). The consistency473

test sets by Voita et al. (2019) measure (i) pronomi-474

nal formality consistency (deixis), (ii) word choice475

consistency (lexical cohesion), (iii) inflection pre-476

diction accuracy of syntactically ambiguous words477

due to ellipsis (ellipsis (inflection)), and (iv) elided478

verb prediction accuracy (ellipsis (VP)). Models479

choose the candidate translation most consistent480

with the context and are scored with accuracy. Ta-481

ble 2 summarizes dataset statistics.482

We follow the tokenization of Miculicich et al.483

(2018). For all datasets, we first tokenize and true-484

case English and Russian with Moses (Koehn et al.,485

2007) and tokenize Chinese using Jieba.4 We then486

run byte-pair encoding (Sennrich et al., 2016) on487

the concatenation of the training sets of the source488

and target languages using 30k splits, separately489

done for each dataset.490

A.2 Hyperparameters and Training Details491

Following Vaswani et al. (2017) and Peng et al.492

(2021), we use 6-layer transformers with 512 hid-493

4https://github.com/fxsjy/jieba

den dimension and 8 attention heads for both the 494

encoder and decoder. Both RFA and the trans- 495

former baseline have 53M trainable parameters for 496

IWSLT and 49M for OpenSubtitles, with the dif- 497

ference caused by different vocabulary sizes. We 498

train all models in mixed-precision. We use the 499

Adam optimizer (Kingma and Ba, 2015) with peak 500

learning rate searched in {0.0005, 0.001} warmed 501

up through 8000 updates and an effective batch 502

size of 16,384 in the number of tokens. We use 503

beam size 4 for decoding. All other hyperparam- 504

eters follow the recommendation in fairseq (Ott 505

et al., 2019).5 For RFA-sgate, to better enforce the 506

inductive bias where sentences further away are 507

less important, we treat the initialization of bf in 508

the sentential gating equation as a hyperparameter, 509

searched in {1, 2}, instead of setting it to zero as in 510

RFA. We search the RFA cross attention projection 511

dimension + causal attention projection dimension 512

in {128 + 64, 256 + 32}. We only employ gating 513

in causal attention as we found it to hurt the perfor- 514

mance when added in cross attention in preliminary 515

experiments. 516

We use early stopping with a patience of 10 517

epochs based on development set performance. 518

Voita et al. (2019) observed that BLEU and con- 519

sistency scores exhibit different training dynamics. 520

We, therefore, train separate OpenSubtitles models 521

when measuring BLEU versus consistency and use 522

the respective metric for early stopping. 523

We manually tune the hyperparameters men- 524

tioned above based on the development set perfor- 525

mance with the corresponding metric (i.e., BLEU 526

or consistency). All final models use 0.001 learn- 527

ing rate. The final IWSLT RFA models use bf = 2 528

and RFA projection dimension 256 + 32; Open- 529

Subtitles (BLEU) RFA models use bf = 1 and 530

RFA projection dimension 256 + 32; OpenSubti- 531

tles (consistency) RFA models use RFA projection 532

dimension 128 + 64. 533

We perform all training and decoding on a single 534

NVIDIA 2080 Ti GPU. 535

A.3 Comparison to Previous Work 536

We note that our transformer baseline model in Ta- 537

ble 1 is very optimized. We offer a few points of ref- 538

erence in this section, though the numbers are not 539

directly comparable as we used SacreBLEU (Post, 540

2018), which offers a standard BLEU computation 541

5https://github.com/pytorch/fairseq/
tree/v0.10.0/examples/translation#
iwslt14-german-to-english-transformer
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and enables better comparability across research542

works, while they did not. Also, Miculicich et al.543

(2018) evaluated on a sentence basis while we eval-544

uated document-level BLEU following Ma et al.545

(2021b). On IWSLT, our baseline (31.7 BLEU)546

outperforms the baseline reported in Miculicich547

et al. (2018) with 16.87 BLEU when L = 1. On548

OpenSubtitles, our baselines also outperform the549

ones in Voita et al. (2019) which achieved 32.40550

(L = 1) and 31.56 (L = 4) BLEU, compared to551

our 32.6 and 33.1.552
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