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Abstract

Document-level neural machine translation al-
lows models to leverage dependencies beyond
sentence-internal context to produce more co-
herent and consistent translations. However,
these models, predominantly based on trans-
formers, are difficult to scale to long docu-
ments due to the quadratic time and space
complexity of their self-attention layers. Re-
cent efforts on efficient attention variants im-
prove scalability, but it is yet unclear if and
to what extent their inductive biases are suit-
able for document translation. In this paper,
we explore the efficacy of a recent linear atten-
tion model by Peng et al. (2021) on document-
level translation and augment it with a senten-
tial gating mechanism. We evaluate the model
on the IWSLT 2015 and OpenSubtitles 2018
datasets against a strong transformer baseline
and achieve up to 40% decoding speedup with
similar or improved BLEU scores. We show
that the sentential gate further improves trans-
lation quality on IWSLT, a dataset with long
sequences.

1 Introduction

Sentence-level neural machine translation has seen
significant recent progress (Bahdanau et al., 2015;
Vaswani et al., 2017). Document-level translation
facilitates a more general version of translation
when inter-sentential context is accessible, such
as paragraphs, documents, or books (Lopes et al.,
2020; Ma et al., 2021b; Maruf et al., 2021). This
opens up new research avenues to improve transla-
tion and its evaluation for more consistent anaphora
resolution and discourse coherence (Bawden et al.,
2018; Miiller et al., 2018; Voita et al., 2019).
Transformers have enabled state-of-the-art re-
sults for machine translation (Vaswani et al., 2017;
Chen et al., 2018; Wang et al., 2019) and have
become the default architecture for document trans-
lation. However, they do not scale well in the se-
quence length due to the quadratic complexity of

self-attention and hence can be computationally
prohibitive to translate long text. Alternative ar-
chitectures exist, but most are still quadratic in
the context length (Zhang et al., 2018; Voita et al.,
2019) and/or have extra modules that further add
to the inference cost (Tu et al., 2018; Zhang et al.,
2018; Miculicich et al., 2018; Donato et al., 2021).

Recent efficient self-attention variants reduce
complexity (Guo et al., 2019; Child et al., 2019;
Kitaev et al., 2020; Wang et al., 2020, i.a.), though
many do not focus on decoding speed. Random
feature attention (RFA; Peng et al., 2021) admits
a recurrent computation, suitable for autoregres-
sive generation. With few extra parameters, it ap-
proximates softmax attention in linear time and
space and has proved successful in machine trans-
lation. However, it has not been tested on document
translation where its asymptotic improvement is ex-
pected to bring large efficiency gains. In this work,
we investigate its effectiveness on document trans-
lation and achieve up to 40% speedup with similar
BLEU, or sometimes improved BLEU on long se-
quences. We also equip RFA with a sentential gate,
bringing inductive biases tailored to representing
document context for machine translation.

Our main contributions are: (i) we study the effi-
cacy of RFA for document translation; (ii) we incor-
porate a sentential gating mechanism into RFA tai-
lored to document translation; (iii) we experimen-
tally validate that RFA is competitive with trans-
former and up to 40% faster on document transla-
tion. Our proposed gating model yields the best
performance in BLEU for long sequences. To en-
courage research on scalable document-level trans-
lation, we will release our code upon publication.

2 Background

Standard machine translation independently trans-
lates each source sentence into the target. However,
translating sentence-by-sentence discards useful
context information that can assist lexical choice
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Figure 1: The concatenation model for document trans-
lation with a sliding window of length L = 4. Every
window is translated in its entirety, but only the last
translated sentence is used for evaluation. The purple
bars denote the sentence separator token.

and ambiguity resolution. Document-level trans-
lation further conditions on previous source and
target sentences. It respects document context and
preserves sentence interaction to produce more co-
herent translations (Voita et al., 2019).

The Concatenation Model. Many document-
contextual models complicate the transformer ar-
chitecture (Miculicich et al., 2018; Donato et al.,
2021, i.a.). Recent studies have shown that the
simple concatenation model that directly translates
the source document (or a multi-sentence win-
dow) to the target document with a single encoder-
decoder stack performs well (Tiedemann and Scher-
rer, 2017; Ma et al., 2021b), especially on large
datasets (Junczys-Dowmunt, 2019). Figure 1 illus-
trates this model combined with sliding window
decoding. We adopt this model in this work, though
it has poor scalability, which we explain next.

Scalability of Self-Attention. Transformers con-
tain three types of attention layers: encoder self-
attention, cross attention, and causal attention. In
each, every query q; is dotted with all keys {k;} to
obtain the attention weights, with which a weighted
average of the values {v; } is calculated:

N
attn (qe, {ki}, {vi}) =
ttn (qp, {ki}, {vi}) ;Zé}f:lexp(%'ki’)

where N is the sequence length. This pairwise in-
teraction consumes quadratic time and memory in
N, which is inefficient for the long text sequences
in the concatenation model. This particularly im-
pacts cross and causal attention at decoding time,
which cannot be parallelized (Kasai et al., 2021).

3 Scalable Document-Level Translation

For the first time, we test random feature attention,
which has demonstrated efficiency in autoregres-
sive decoding, as a linear time and space model to
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Figure 2: Our sentential gating mechanism. e; and ey
are at the beginning of two sentences.

improve the scalability of document translation. !
We also augment it with a sentential gate to circum-
vent capacity constraints with a long context.

3.1 Random Feature Attention

RFA approximates the softmax attention
attn (q¢, {k;}, {v:}) in linear time and space:
¢ (qr) - St
RFA (q, {k;}, {vi}) =
(t{l}{l}) ¢(qt) Z

where ¢(+) is a random nonlinear transformation
where ¢(q) - ¢(k) ~ exp q - k in expectation over
¢ (Rahimi and Recht, 2008); S, z summarize the
keys and values. We use RFA in cross and causal at-
tention, which are the most impactful for speed and
memory, so q; is always from the target sentence.
In cross attention, S and z represent the source
sentence and are constant for all query positions
S =Y pk)v] and 2z = 1, p(k;). In
causal attention, they represent the target prefix
) S t: St = Zle ¢(k1)v;r = Stfl + (b (kt) V;r
and z, = >'_, (ki) = 21 + ¢ (k;). These
recurrent computations are analogous to an RNN
with S; and z; as hidden states at step ¢ and enable
constant computation per step. RFA serves as a
drop-in replacement for attn in transformers. The
encoder and other modules, e.g., feed-forward lay-
ers, remain the same. We refer the reader to Peng
et al. (2021) for a complete discussion of RFA.

3.2 Sentential Gating

Schlag et al. (2021) noted, under the lens of Fast
Weight Programmers (Schmidhuber, 1991, 1992,
1993), that accumulating memory in a purely addi-
tive manner, such as as exposed above, will reach a
capacity limitation with sequences longer than the
size of ¢. This is particularly an issue in document-
level translation due to the long sequences.

To address this, inspired by gated RNNs (Cho
etal., 2014, i.a.), we augment RFA with a sentence-

'RFA was the first model to demonstrate decoding speed
improvements in translation, making it appropriate for this
study. Many other linear attention models have been proposed
since this work was carried out (Kasai et al., 2021; Schlag
etal., 2021; Ma et al., 2021a), and it would be exciting future
work to investigate their utility in document translation.



level gate to enable dynamic control of contex-
tual information from the current and previous sen-
tences, and to allow the model to selectively forget
about the history to circumvent the capacity con-
straint. This is illustrated in Figure 2. For a word
x; with representation e;, we compute a forget gate
using the separator token between sentences:

if z; starts a sentence

fi= {({(wf ceq-1 +by)

otherwise

St = fi Se—1+ ¢ (k) vy
2 = fi 21+ ¢ (ki)

where ¢ denotes the sigmoid function. Each sen-

START(7)
1=START(j’) +1 fZ <1

when attending to a previous sentence j’, where
START(+) is the first token in a sentence. This en-
forces an inductive bias that, intuitively, previous
sentences are less important in translation, and their
representations are exponentially decayed.

tence j assigns a weight 0 < [

Relation to Prior Work. While gating is com-
mon in RNNgs, it is less clear how it applies to
transformers. Miculicich et al. (2018) gate at the
sentence level though hierarchically while we gate
recurrently. Ours also contrasts with the per-token
gating of Peng et al. (2021) which they found inef-
fective for machine translation. These two works
also take a weighted average of the previous and
current sentences while we only decay the former.
We show our variant performs better in §5. Schlag
etal. (2021) used a gate that explicitly models mem-
ory removal, but also at the token level.

4 Experimental Setup

Datasets and Evaluation. We experiment with
the IWSLT 2015 Chinese-to-English (zh-en)
dataset (Cettolo et al., 2015) with multilingual TED
talk captions and the OpenSubtitles2018 English-
to-Russian (en-ru) dataset (Lison et al., 2018) with
movie and TV subtitles. We measure document-
level BLEU (Papineni et al., 2002) with Sacre-
BLEU (Post, 2018).> To quantify discourse consis-
tency, we also use the test sets by Voita et al. (2019)
that are based on OpenSubtitles. We introduce
these datasets in more detail in Appendix A.1.

Data Processing. We process each document
with a stride-one sliding window of L sentences to
We use fairseq’s default setting which has hash

case.mixed+numrefs.?+smooth.exp+tok.none
+version.1.5.0 with standalone 13a-tokenization.

obtain our training set. Following Voita et al. (2019)
and Ma et al. (2021b), we experiment with L = 1,
the sentence-level baseline, and L = 4. During
inference, we use the last translated sentence in
each window for evaluation. For a more granular
analysis, we consider L € [1,4] for consistency
experiments. More details are in Appendix A.1.

Model Settings. We compare RFA and trans-
former with the concatenation model. For RFA, we
experiment with the ungated (RFA) and sentential-
gated (RFA-sgate) versions. To compare our decay-
ing gate choice with prior work (§3.2), we run a
sentential-gated RFA that takes a weighted average
of previous and current text (RFA-sgate-balanced).
We mostly default to fairseq hyperparameters (Ott
et al., 2019), most suitable for the L = 1 trans-
former (see Appendix A.2). We measure decoding
speed in the number of decoded tokens over the for-
ward pass time. We do not benchmark with Open-
Subtitles as its short sequences (= 10 tokens per
sentence; see Table 2, appendix) are not expected
to show a speedup. We believe movie subtitles rep-
resent a different genre from many settings where
long contexts are expected to be useful. We follow
Ott et al. (2018) and cache previous k and v for our
baseline which substantially increases its speed.

5 Results

Speed. Table 1 (top) shows the speedup of the
ungated RFA over transformer.? RFA offers a con-
siderable speedup, consistent across both window
sizes. This is especially pronounced at L =
due to RFA’s linear complexity. This makes RFA
an attractive choice since, as demonstrated below,
models with longer context are the best at capturing
discourse phenomena. In particular, we only ex-
perimented with window size up to 4 in this work,
limited by the dataset design of Voita et al. (2019).
In reality, however, RFA can be combined with an
even longer context to capture longer-range depen-
dency and offer a more prominent speedup.

We note that all decoding is done on GPUs. If
performed on TPUs, as was done in Peng et al.
(2021), the feed-forward layers would be much
faster, and the attention layers would take a larger
fraction of the decoding time. This would make the
RFA speedup more pronounced. For comparison,

3The speed difference between the RFA variants is negligi-
ble as gating requires minimal additional computation. This
is also confirmed by Peng et al. (2021), where their per-token
gating has the same speedup as no gating.



IWSLT  Subtitles
Window Size L 1 4 1 4
= Transformer 150 36 — —
S | RFA 179 49 — —
? Speedup 1.2x 14x — —
Transformer 31.7 304 32.6 33.1
2| RFA 31.0 30.7 329 332
3 RFA-sgate-balanced — 30.8 — 33.0
RFA-sgate — 312 — 332
Table 1: Inference speed, in the number of decoded

tokens / second, and BLEU on IWSLT and OpenSubti-
tles test sets. Bold scores outperform transformer. Our
baselines are optimized: see Appendix A.3 for compar-
ison with prior work. We do not use batch decoding as
it is non-trivial with sliding windows, and we expect it
would help the speed similarly for both models.

Peng et al. (2021) reported 1.8—-1.9x speedup for
single sentence decoding compared to our 1.2x.

BLEU Score. Table 1 (bottom) shows BLEU
scores on IWSLT and OpenSubtitles. Overall, RFA
performs slightly better than transformer. The only
exception is the high IWSLT performance of the
sentence-level transformer, which could be due to
defaulting to fairseq hyperparameters that are de-
signed for this setting. The gated RFA model is the
best on IWSLT at L = 4, demonstrating its utility,
but gating has no effect on OpenSubtitles. We hy-
pothesize that with only = 10 tokens per sentence,
half of the average length of IWSLT sentences (see
Table 2, appendix), gating is less useful on this
dataset. Our gate also outperforms the balanced
variant in Miculicich et al. (2018) and Peng et al.
(2021), showing its better suitability for document
translation. Similar to previous work (Voita et al.,
2019; Ma et al., 2021b), longer context does not
clearly lead to better BLEU scores, though it im-
proves consistency metrics, to which we turn next.

Discourse Consistency Scores. Figure 3 plots
the consistency scores in four phenomena for RFA
and transformer. As gating is not helpful for Open-
Subtitles in BLEU, we only compare with ungated
RFA. We also compare to a random baseline and
the concatenation models from Voita et al. (2019)
and Ma et al. (2021b), conceptually the same as
our I = 4 transformer, though with unavoidable
implementation discrepancies that explain their per-
formance differences. Though it is not clear for
BLEU, longer context almost monotonically yields

Deixis Lexical Cohesion
90
ol 60
> 801 >
g g
2 70 2 55
g £
S 60 5 50
50 17 e
1 2 3 4 1 2 3 4
Window Size (L) Window Size (L)
Ellipsis (infl.) Ellipsis (VP)

.
=]
L

(=] 2]

o o

| ! 1

Consistency

[=1] 2]

(=] (=]

1 1

L

Consistency

n
=]
L

Window Size (L)
—— RFA

window Size (L)
—=- Random
® \Voita et al. (2019)

—— Transformer
® Ma etal (2021b)

Figure 3: Model performance on the consistency test
set, broken down into phenomena. Transformer and
RFA are tested with window sizes from 1 to 4. We com-
pare with the baselines in Voita et al. (2019) and Ma
et al. (2021b) corresponding to our Transformer L = 4.

better consistency scores. This highlights the ben-
efit of translating with longer context, a setting
where RFA achieves better speedup, shown above.

RFA slightly underperforms transformer in most
settings. We hypothesize that the direct query-key
interaction in softmax attention is more suitable
for precise long-distance information extraction,
usually required for consistency metrics, than the
RFA approximation. RFA is not able to learn lex-
ical cohesion, comparing to the random baseline.
This is also the case for Voita et al. (2019)’s base-
line. And while Ma et al. (2021b)’s performs better,
it is still much worse than our transformer base-
line. Zhang et al. (2020) also noted this difficulty
whose proposed method also underperforms our
random baseline. They used the Partial Copy mech-
anism (Jean et al., 2019) as a remedy, though at the
expense of other metrics. This is orthogonal to our
approach. Our results reveal that, while efficient
transformers may provide an attractive speedup
while retaining or improving some automatic eval-
uation scores, they may do worse on other metrics.
We, therefore, call for a more holistic evaluation of
these models to fully understand all the trade-offs.

6 Conclusion

We explored the effectiveness of random feature
attention, combined with sentential gating, on doc-
ument translation. We demonstrated that our model
provides a speedup over transformer by up to 40%
with similar BLEU scores. Our sentential gate also
proves effective, especially on long sequences.
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Dataset L Train Dev. Test Sent. Tok.
& Docs Docs Docs /doc /sent.
zh 20.4
IWSLT . 1713 8 56 121.5 6
sub. ™ 1sM 10k 10k 4 103
ru 9.5
Sub.- en 10.5
Cons. m 2K 16K 4 9.6

Table 2: Dataset statistics of IWSLT, OpenSubtitles,
and the consistency test sets for OpenSubtitles. We
follow Ma et al. (2021b) in treating the four-sentence
windows of OpenSubtitles as separate documents. The
number of sentences per document and BPE tokens
per sentence are averaged across all splits, except for
OpenSubtitles-Consistency, which are only averaged
across the development and test sets.

A Appendix

A.1 Dataset and Processing Details

The IWSLT 2015 dataset contains multilingual
TED talk captions. Following Miculicich et al.
(2018), we use the Chinese-to-English (zh-en) por-
tion and use the dev2010 subset for development
and #s12010-201 3 for testing. We also use the pro-
cessed OpenSubtitles2018 English-to-Russian (en-
ru) dataset by Voita et al. (2019). The consistency
test sets by Voita et al. (2019) measure (i) pronomi-
nal formality consistency (deixis), (ii) word choice
consistency (lexical cohesion), (iii) inflection pre-
diction accuracy of syntactically ambiguous words
due to ellipsis (ellipsis (inflection)), and (iv) elided
verb prediction accuracy (ellipsis (VP)). Models
choose the candidate translation most consistent
with the context and are scored with accuracy. Ta-
ble 2 summarizes dataset statistics.

We follow the tokenization of Miculicich et al.
(2018). For all datasets, we first tokenize and true-
case English and Russian with Moses (Koehn et al.,
2007) and tokenize Chinese using Jieba.* We then
run byte-pair encoding (Sennrich et al., 2016) on
the concatenation of the training sets of the source
and target languages using 30k splits, separately
done for each dataset.

A.2 Hyperparameters and Training Details

Following Vaswani et al. (2017) and Peng et al.
(2021), we use 6-layer transformers with 512 hid-

*nttps://github.com/fxsjy/jieba

den dimension and 8 attention heads for both the
encoder and decoder. Both RFA and the trans-
former baseline have 53M trainable parameters for
IWSLT and 49M for OpenSubtitles, with the dif-
ference caused by different vocabulary sizes. We
train all models in mixed-precision. We use the
Adam optimizer (Kingma and Ba, 2015) with peak
learning rate searched in {0.0005,0.001} warmed
up through 8000 updates and an effective batch
size of 16,384 in the number of tokens. We use
beam size 4 for decoding. All other hyperparam-
eters follow the recommendation in fairseq (Ott
etal., 2019).5 For RFA-sgate, to better enforce the
inductive bias where sentences further away are
less important, we treat the initialization of by in
the sentential gating equation as a hyperparameter,
searched in {1, 2}, instead of setting it to zero as in
RFA. We search the RFA cross attention projection
dimension + causal attention projection dimension
in {128 + 64, 256 + 32}. We only employ gating
in causal attention as we found it to hurt the perfor-
mance when added in cross attention in preliminary
experiments.

We use early stopping with a patience of 10
epochs based on development set performance.
Voita et al. (2019) observed that BLEU and con-
sistency scores exhibit different training dynamics.
We, therefore, train separate OpenSubtitles models
when measuring BLEU versus consistency and use
the respective metric for early stopping.

We manually tune the hyperparameters men-
tioned above based on the development set perfor-
mance with the corresponding metric (i.e., BLEU
or consistency). All final models use 0.001 learn-
ing rate. The final IWSLT RFA models use by = 2
and RFA projection dimension 256 + 32; Open-
Subtitles (BLEU) RFA models use by = 1 and
RFA projection dimension 256 + 32; OpenSubti-
tles (consistency) RFA models use RFA projection
dimension 128 + 64.

We perform all training and decoding on a single
NVIDIA 2080 Ti GPU.

A.3 Comparison to Previous Work

We note that our transformer baseline model in Ta-
ble 1 is very optimized. We offer a few points of ref-
erence in this section, though the numbers are not
directly comparable as we used SacreBLEU (Post,
2018), which offers a standard BLEU computation

Shttps://github.com/pytorch/fairseq/
tree/v0.10.0/examples/translation#
iwsltl4-german-to-english-transformer
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and enables better comparability across research
works, while they did not. Also, Miculicich et al.
(2018) evaluated on a sentence basis while we eval-
uated document-level BLEU following Ma et al.
(2021b). On IWSLT, our baseline (31.7 BLEU)
outperforms the baseline reported in Miculicich
et al. (2018) with 16.87 BLEU when L = 1. On
OpenSubtitles, our baselines also outperform the
ones in Voita et al. (2019) which achieved 32.40
(L = 1) and 31.56 (L = 4) BLEU, compared to
our 32.6 and 33.1.



