
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LAYER-WISE SENSITIVITY-AWARE SPARSITY ALLO-
CATION FOR EFFICIENT LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) inference presents substantial computational chal-
lenges when executed on commodity hardware, thereby necessitating the devel-
opment of efficient acceleration techniques. While existing approaches predom-
inantly focus on uniform compression strategies, they neglect the heterogeneous
sensitivity patterns exhibited across different transformer layers. In this paper,
we introduce Adaptive Sparsity Allocation Framework (ASAF), a novel approach
that integrates rotation-based low-bit quantization with layer-wise adaptive spar-
sity allocation. The framework comprises two sequential phases with dynamic
programming strategy. Phase 1: coarse-grained optimization that determines the
optimal number of layer groups and narrows sparsity rate search intervals. Phase
2: fine-grained optimization that determines precise consecutive layer allocation
and exact sparsity rates within each group. The joint optimization of layer group-
ing decisions and sparsity rate assignments creates a combinatorial explosion in
the solution space, rendering brute-force approaches computationally prohibitive.
To address this challenge, we employ a dynamic programming strategy that ef-
ficiently decomposes the exponential search space into manageable subproblems
across both phases, achieving practical computational efficiency while guarantee-
ing global optimality. Extensive experiments conducted on the Llama-2 model
family reveal that our proposed framework sustains benchmark accuracy degra-
dation within 1%, concurrently achieving up to 3.63× prefill acceleration and
12.63% memory reduction on NVIDIA RTX 3090 GPUs. This work advances
beyond uniform compression strategies by recognizing and exploiting the distinct
sensitivity characteristics of different transformer layers, thereby establishing a
new paradigm for adaptive LLM compression on commodity hardware.

1 INTRODUCTION

LLMs underpin contemporary search, dialogue, and recommendation engines, driving a wide spec-
trum of user-facing AI services (Brown et al., 2020; Park et al., 2025). However, the computational
demands of LLM inference impose substantial constraints on memory throughput and processing ca-
pacity of standard hardware accelerators (Frantar & Alistarh, 2023). A single inference pass alone
can exhaust available GPU bandwidth, making each subsequent token generation a performance-
critical bottleneck (Alizadeh et al., 2024). The sequential token-by-token generation inherent to
autoregressive LLMs, where each prediction relies on the preceding context, establishes dependen-
cies that inhibit parallel processing and amplify computational challenges (Korthikanti et al., 2023).

Recent research on efficient LLM inference has converged on two main directions: i) This direction
focuses on low-bit quantization, which compresses activations and weights through orthogonal rota-
tions and uniform low-bit encodings while preserving model accuracy (Dettmers et al., 2022; Ashk-
boos et al., 2024b; Xiao et al., 2023). These quantization approaches typically achieve substantial
memory reduction and computational speedup, but often struggle with activation outliers that can
significantly degrade model quality (Wei et al., 2022); ii) network sparsification through weight
elimination, removing parameters to decrease computational workload (Han et al., 2015; Mishra
et al., 2021; Dettmers et al., 2022). Although sparsification methods can attain high compression
ratios with negligible performance degradation, existing strategies enforce identical sparsity levels
across all network layers, disregarding the distinct sensitivity characteristics and compression re-
sponses exhibited by different architectural components, resulting in inefficient resource utilization

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: (A) Traditional quantization methods and (B) our ASAF framework fusing quantization
and sparsification, achieving 3.63× acceleration with < 1% precision loss.

(Kurtz et al., 2020). Nevertheless, these two approaches are fundamentally orthogonal, and current
deployments usually have to choose one at the expense of the other (Sun et al., 2023).

In this paper, we propose ASAF that unifies rotation-based low-bit quantization and adaptive sparsity
allocation through a two-phase optimization framework, as shown in Figure 1. Phase 1 performs
coarse-grained optimization to determine optimal layer group numbers and sparsity intervals, while
Phase 2 conducts fine-grained optimization for precise layer allocation and exact sparsity rates. The
joint optimization creates combinatorial explosion in the solution space, which we address through
dynamic programming that efficiently decomposes the exponential search space across both phases
while guaranteeing global optimality. We implement our approach with customized low-bit kernels
optimized for layer-grouped sparse operations (NVIDIA, 2023; Dao et al., 2022). ASAF addresses
key limitations of existing approaches: rotation-based quantization mitigates activation outliers that
plague low-bit methods, while adaptive layer-wise sparsity allocation ensures optimal compression
capacity utilization unlike uniform pruning approaches. The main contributions are as follows:

• We identify an under-explored gap in current research where LLM inference optimization
treats all layers uniformly during sparsification, ignoring the heterogeneous sensitivity pat-
terns across transformer layers.

• To the best of our knowledge, this is the first framework that formulates layer-wise spar-
sity allocation as a constrained optimization problem with consecutive layer grouping con-
straints. We develop a two-phase approach that employs dynamic programming across
both phases to efficiently decompose the exponential search space into manageable sub-
problems, achieving efficient optimization while guaranteeing global optimality.

• Our framework achieves up to 3.63× prefill speed-up and a 12.63% memory reduction on
Llama-2-70B, with less than 1% degradation on standard language-understanding bench-
marks, advancing the frontier of adaptive LLM compression on commodity GPUs.

2 MOTIVATION

In the deployment of LLMs, quantization and sparsification have evolved as independent acceler-
ation techniques with limited integration. In our explorations, we conduct a series of attempts to
investigate the fusion of both techniques. Figure 2(Left) demonstrates the inference acceleration
achieved on the Llama-2-7B model in a language generation task, after applying 20% sparsity rate
to various layers and layer combinations (weight matrices at 8-bit precision). We observe a signifi-
cant improvement in model inference speed. Figure 2(Right) shows the model’s performance across
different quantization and sparsification configurations. As the bit-width of quantization decreases
and the sparse ratio increases, the perplexity rises substantially, indicating a clear trade-off between
efficiency and performance. This observation gives rise to two key challenges:

Precision-Compression Integration. The introduction of quantization artifacts fundamentally re-
shapes weight significance patterns, rendering traditional sparsification strategies ineffective since
they are originally developed for full-precision models (Dettmers et al., 2023; Nikolić et al., 2024).
Simultaneously, sparsification operations modify activation characteristics, which subsequently dis-
rupts optimal quantization parameter selection (Guo et al., 2024; Yao et al., 2022). This mutual
interference necessitates a unified optimization framework that can systematically manage the com-
plex interdependencies between these compression mechanisms (Guo et al., 2025).

Solution Space Explosion. The intersection of quantization and sparsification transforms the com-
binatorial optimization problem into a multidimensional challenge involving layer grouping deci-
sions, sparsity rate assignments, and quantization interactions. This exponential growth in combi-
natorial possibilities renders brute-force search strategies computationally prohibitive (Park et al.,
2024; Dettmers et al., 2022; Frantar & Alistarh, 2023). Contemporary approaches suffer from eval-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Performance analysis of Llama-2-7B across various layer group configurations. Left:
Decode-stage speed improvement with uniform sparsity allocation across various configurations.
Right: Quality degradation under different configurations. More details are in Appendix A.1.

Figure 3: (A) Overview of rotation-based quantization framework for LLM transformer layers. (B)
Illustration of dynamic programming approach showing problem decomposition into subproblems.

uation overhead, demanding multiple fine-tuning cycles for performance assessment of each can-
didate configuration (Liu et al., 2025; Ma et al., 2023; Mozafarinia et al., 2024). The critical need
emerges for an efficient algorithm capable of identifying near-optimal layer grouping and sparsity
allocation strategies within just a few epochs of low-precision fine-tuning (Zhang et al., 2022).

3 METHOD

3.1 BACKGROUND

Quantization. The low-bit quantization pipeline (as shown in Figure 3(A)) commences with the
application of a randomized rotation matrix R to the hidden state X in floating-point precision
(Ashkboos et al., 2023). This rotation operation disperses outlier activations, facilitating low-bit
quantization processes (Ashkboos et al., 2024b). Following rotation, the state undergoes quanti-
zation to integer representation. The gate and up-projection weight matrices Wgate and Wup are
pre-processed through multiplication with RT and scaling via the matrix diag(α), which encapsu-
lates the absorbed RMSNorm scaling parameters. After processing through activation function σ,
activations receive an online Hadamard transform (Tseng et al., 2024). The final stage employs a
modified down-projection matrix HWdownR, where H denotes the Hadamard transformation matrix
and R represents the rotation matrix, with quantization to integer precision followed by conversion
to floating-point representation (Ashkboos et al., 2024a). More details are in Appendix A.2.

Dynamic Programming. Dynamic programming is an algorithmic paradigm that solves complex
problems by breaking them down into simpler subproblems and storing the results to avoid redun-
dant computations. The approach is applicable when a problem exhibits optimal substructure and
overlapping subproblems, as shown in Figure 3(B). The optimal substructure property states that an
optimal solution contains optimal solutions to its subproblems. Formally:

OPT(P ) = f(OPT(P1),OPT(P2), . . . ,OPT(Pk)), (1)
where f combines the optimal solutions of subproblems to yield the optimal solution of the original
problem. The overlapping subproblems property enables memoization to avoid redundant computa-
tions as shown in Figure 3(B). The general recurrence relation takes the form:

OPT[i] = min
j
{OPT[j] + Cost(j, i)} , (2)

where OPT[i] represents the optimal solution for a subproblem of size i, and Cost(j, i) denotes the
cost of extending the solution from size j to size i. More details can be found in Appendix A.3.

3.2 PROBLEM FORMULATION

In order to solve the challenges mentioned in the previous section, we formulate it as a constrained
optimization problem. The primary objective is to find the optimal layer grouping and sparsity

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 4: Overview of ASAF: (Left) Coarse-grained optimization jointly determines optimal group
number and narrows sparsity rate search intervals. (Right) Fine-grained optimization jointly deter-
mines layer allocation within each group and sparsity rates, More details in Appendix A.4.

allocation strategy that minimizes total computational FLOPs while ensuring accuracy degradation
remains within acceptable bounds. The mathematical formulation is defined as follows:

{G∗, {L∗
i }, {s∗i }} = arg min

G,{Li},{si}

G∑
i=1

∑
l∈Li

ϕl × (1− si), (3)

where G denotes the number of layer groups, Li represents the set of consecutive layers in group
i, si is the sparsity rate applied to group i, and ϕl represents the original computational cost (in
FLOPs) of layer l. This optimization problem is subject to the following constraints:

Accuracy degradation constraint:
G∑
i=1

ξ(Li, si) ≤ δmax, (4)

Sparsity constraint: α ≤ si ≤ β, ∀i ∈ {1, 2, . . . , G}, (5)

Completeness constraint:
G⋃
i=1

Li = {1, 2, . . . , p}, Li ∩ Lj = ∅,∀i ̸= j, (6)

Continuity constraint: Li = {l(i)start, l
(i)
start + 1, . . . , l

(i)
end}, (7)

where ξ(Li, si) quantifies the layer sensitivity caused by applying sparsity rate si to layer group Li,
δmax represents the maximum allowable accuracy degradation threshold, α and β define the lower
and upper bounds of the feasible sparsity range, l(i)start and l

(i)
end denote the starting and ending layer

indices of group i, p denotes the total number of layers in the model, and the continuity constraint
ensures consecutive sequences for efficient hardware batch processing, improved memory locality
of adjacent layers, and significantly reduced combinatorial search space (Wang et al., 2023).

3.3 SOLUTION

To solve the formulated optimization problem, we propose the ASAF that decomposes the com-
plex joint optimization into two sequential phases: coarse-grained optimization and fine-grained
optimization. Directly solving Equation 3 is computationally prohibitive due to the exponential
search space created by joint grouping and sparsity decisions, so we effectively decompose it into
two manageable subproblems. The coarse-grained phase determines the optimal number of groups
and narrows sparsity rate search intervals based on layer sensitivity, while the fine-grained phase
determines the exact layer allocation within each group and the precise sparsity rates.

In ASAF, we employ dynamic programming to efficiently explore the search space while maintain-
ing the original objective of minimizing total computational FLOPs subject to accuracy degradation
constraints. Different grouping configurations share common substructures, enabling memoization
techniques to avoid redundant computations and achieve global optimality.

Coarse-grained Optimization. This phase jointly determines the optimal number of groups G∗

and refined sparsity intervals {[Imin
i , Imax

i ]}G∗

i=1 by evaluating all feasible group configurations and
narrowing the search space [α, β] to focused sub-ranges for each group, as shown in Figure 4 (Left).

This phase focuses on determining the optimal number of groups and narrowing the sparsity search
space. The coarse-grained optimization solves:

{G∗, {I∗i }G
∗

i=1} = arg min
G,{Ii}G

i=1

{
G∑
i=1

min
Li,si∈Ii

∑
l∈Li

ϕl × (1− si)

}
, (8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where G represents the number of groups, Ii denotes the sparsity interval for group i, Li represents
consecutive layers in group i, si is the sparsity rate for group i, and ϕl is the original computa-
tional cost of layer l. The constraint ensures

∑G
i=1 ξ(Li, si) ≤ δmax, where ξ(Li, si) quantifies the

accuracy degradation caused by applying sparsity rate si to layer group Li.

We define the dynamic programming state DPcoarse[g][b] as the minimum total FLOP cost when using
exactly g groups with discretized accuracy degradation budget b:

DPcoarse[g][b] = min
{Ii}g

i=1

{
g∑

i=1

min
Li,si∈Ii

∑
l∈Li

ϕl × (1− si)

}
, (9)

where the state represents the optimal cost achievable with g groups under accuracy degradation
budget b×∆ (with ∆ being the discretization step), and the minimization considers all valid interval
partitions and corresponding layer-sparsity assignments.

For each state, we consider all possible ways to add one more group by selecting an appropriate
interval subset:

DPcoarse[g][b] = min
I⊆[α,β]

{OptimalCost(I) + DPcoarse[g − 1][b− ξcost(I)/∆]} , (10)

where I represents the sparsity interval assigned to the g-th group, OptimalCost(I) denotes the
minimum FLOP cost achievable within interval I , and ξcost(I) represents the accuracy degradation.

Algorithm 1 implements this optimization strategy by systematically exploring different group num-
bers while evaluating interval configurations through dynamic programming. The algorithm builds
optimal solutions incrementally, with each state representing the minimum cost configuration for the
given group count and accuracy degradation budget. The tabulation mechanism provides efficient
access to FLOP costs and accuracy degradation values. The group number is explored within the
range G ∈ [1, p] where p is the total number of layers, allowing for complete flexibility from single-
group uniform allocation to maximum granularity with individual layer groups while maintaining
computational tractability.

Algorithm 1 Coarse-grained Optimization

Require: Layer count p, sparsity range [α, β], accuracy degradation threshold δmax

Ensure: Optimal group number G∗ and intervals {[Imin
i , Imax

i ]}
1: Initialize DPcoarse[0..p][0..δmax/∆]←∞, set boundary condition: DPcoarse[0][0]← 0
2: Generate interval candidates I = {I : I ⊆ [α, β]}
3: Main DP Loop:
4: for g = 1 to p do
5: for b = 0 to δmax/∆ do
6: for each interval I ∈ I do
7: cost← OptimalCost(I) using tabulation H
8: accuracy cost← Ξmin(I)/∆ using tabulation Ξ
9: if b− accuracy cost ≥ 0 then

10: total cost← cost + DPcoarse[g − 1][b− accuracy cost]
11: DPcoarse[g][b]← min(DPcoarse[g][b], total cost)
12: end if
13: end for (all nested loops)
14: Solution Extraction:
15: G∗ ← argming{minb DPcoarse[g][b]}
16: {Imin

i , Imax
i } ← BacktrackOptimalIntervals(DPcoarse, G

∗)
17: return G∗, {[Imin

i , Imax
i ]}G∗

i=1

Upon completion, the coarse-grained optimization produces: (1) the optimal number of groups G∗

that minimizes computational overhead while satisfying accuracy constraints, and (2) refined spar-
sity intervals {[Imin

i , Imax
i ]}G∗

i=1 that narrow the search space from the original range [α, β].

Fine-grained Optimization. This phase receives the optimal group number G∗ and refined inter-
vals {[Imin

i , Imax
i ]}G∗

i=1 from the coarse-grained phase, then jointly determines the exact consecutive
layer allocation {L∗

i }G
∗

i=1 and precise sparsity rates {s∗i }G
∗

i=1, as shown in Figure 4 (Right).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Given the optimal group number G∗ and refined intervals {[Imin
i , Imax

i ]}G∗

i=1 from the coarse-grained
phase, this phase determines the exact layer allocation and precise sparsity rates:

{{L∗
i }G

∗

i=1, {s∗i }G
∗

i=1} = arg min
{Li}G∗

i=1,{si}G∗
i=1

{
G∗∑
i=1

∑
l∈Li

ϕl × (1− si)

}
, (11)

where {Li}G
∗

i=1 represents the layer allocation with each Li containing consecutive layers, and
{si}G

∗

i=1 denotes the sparsity rates. The constraints ensure
∑G∗

i=1 ξ(Li, si) ≤ δmax, si ∈
[Imin

i , Imax
i ], Li are consecutive,

⋃G∗

i=1 Li = {1, 2, . . . , p}, and Li ∩ Lj = ∅ for i ̸= j.

We define the dynamic programming state DPfine[i][g][b] as the minimum total FLOP cost for opti-
mally partitioning layers [i..p] into exactly g consecutive groups with remaining accuracy degrada-
tion budget b:

DPfine[i][g][b] = min
{Lk}g

k=1,{sk}
g
k=1

{
g∑

k=1

∑
l∈Lk

ϕl × (1− sk)

}
, (12)

where the state covers layers from position i to p, requires exactly g groups, has remaining budget
b, and ensures

⋃g
k=1 Lk = {i, i + 1, . . . , p} with each Lk consecutive, sk ∈ [Imin

k , Imax
k ], and∑g

k=1 ξ(Lk, sk) ≤ b.

For each state, we jointly enumerate all possible first-group formations and sparsity assignments
within the corresponding refined interval. The state transition equation is:

DPfine[i][g][b] = min
j∈[i,p−g+1]

s∈[Imin
g ,Imax

g ]

{GroupCost(i, j, s) + RemainingCost(j + 1, g − 1, b′)} , (13)

where the total cost consists of two components: Current Group Cost: GroupCost(i, j, s) =
H[i][j − i+ 1][s] represents the FLOP cost for assigning layers i to j with sparsity rate s, retrieved
from pre-computed tabulation. Remaining Subproblem Cost: RemainingCost(j + 1, g − 1, b′) =
DPfine[j + 1][g − 1][b′] represents the optimal cost for the remaining layers [j + 1, p] using g − 1
groups with updated budget b′ = b − ⌈Ξ[i][j − i + 1][s]/∆⌉, where Ξ[i][j − i + 1][s] gives the
accuracy degradation cost from tabulation.

Algorithm 2 implements the fine-grained optimization through backward dynamic programming
construction. The algorithm determines precise layer boundaries and sparsity assignments by work-
ing from final layers toward initial layers, ensuring each decision considers all downstream implica-
tions while respecting refined interval constraints from the coarse-grained phase.

Algorithm 2 Fine-grained Optimization

Require: G∗ groups, intervals {[Imin
i , Imax

i ]}, tabulation tables H , Ξ
Ensure: Optimal allocation {L∗

i } and sparsity rates {s∗i }
1: Initialize DPfine[1..p+ 1][0..G∗][0..δmax/∆]←∞, choice[1..p+ 1][0..G∗][0..δmax/∆]← ∅
2: Set boundary condition: DPfine[p+ 1][0][b]← 0 for all b ≥ 0
3: Backward DP Construction:
4: for i = p down to 1 do
5: for g = 1 to min(G∗, p− i+ 1) do
6: for b = 0 to δmax/∆ do
7: for j = i to p− g + 1, s ∈ Discretize([Imin

g , Imax
g ]) do

8: group cost, accuracy cost← H[i][j − i+ 1][s],Ξ[i][j − i+ 1][s]/∆
9: if b− accuracy cost ≥ 0 then

10: total cost← group cost + DPfine[j + 1][g − 1][b− accuracy cost]
11: if total cost < DPfine[i][g][b] then
12: DPfine[i][g][b]← total cost, choice[i][g][b]← (j, s)
13: end if (nested conditions)
14: end for (all nested loops)
15: Solution Reconstruction:
16: {L∗

i , s
∗
i } ← BacktrackSolution(choice, 1, G∗, δmax/∆)

17: return {L∗
i }G

∗

i=1, {s∗i }G
∗

i=1

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Upon completion, the two-phase ASAF framework delivers a complete solution: optimal group
number G∗, precise consecutive layer allocation {L∗

i }G
∗

i=1, and adaptive sparsity rates {s∗i }G
∗

i=1 that
jointly minimize computational FLOPs while maintaining accuracy constraints.

Tabulation. The tabulation mechanism provides efficient access to FLOPs and accuracy degra-
dation through pre-computed tables: H[i][len][s] stores FLOP costs for consecutive layers starting
from position i with length len under sparsity rate s, while Ξ[i][len][s] records corresponding accu-
racy degradation costs. These tables enable O(1) lookup during dynamic programming transitions,
transforming expensive evaluations into efficient queries. Construction details are in Appendix A.7.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Software and Hardware Setup. Our ASAF framework is built upon QuaRot (Ashkboos et al.,
2024b) using PyTorch (Paszke et al., 2019) with CUDA-12.1 (NVIDIA Corporation, 2023), evalu-
ated on Llama-2 family models (Touvron et al., 2023). We implement custom CUDA kernels for
dynamic programming tabulation and layer-wise accuracy degradation measurement, with all eval-
uations conducted on NVIDIA RTX 3090 GPUs. More details can be found in Appendix A.8.
Framework Hyperparameters. We explore sparsity allocations where α = 1% and β = 15%
define the feasible sparsity range. The maximum allowable accuracy degradation is set to δmax =
1% with tabulation resolution ∆ = 0.5%. More details can be found in Appendix A.8.
Experimental Configuration. We employ 4-bit GPTQ quantization (Frantar et al., 2022) for
weights with group size 128, symmetric per-token quantization for activations (Xiao et al., 2023),
and asymmetric quantization for KV caches (Dettmers et al., 2022). All configurations utilize clip-
ping ratios of 0.9-0.95 and maintain numerical stability through FP32 accumulation during tabula-
tion construction. More details can be found in Appendix A.8.

4.2 ACCURACY ANALYSIS

Language Generation Tasks. We evaluate our ASAF framework on the WikiText-2 language-
generation benchmark. Table 1 reports the perplexity after quantizing Llama-2 weights to 4 bits with
GPTQ and applying our adaptive sparsity allocation across layer groups. Our framework demon-
strates competitive performance compared to state-of-the-art quantization methods, achieving per-
plexity degradation less than 1% compared to QuaRot while providing additional computational
benefits through optimized sparsity allocation. The layer-group-based pruning approach requires no
additional outlier storage or asymmetric quantization schemes. When using group-size-128 quanti-
zation, ASAF maintains comparable performance with perplexity increases within 1% of QuaRot-
128G while enabling more efficient inference through adaptive sparsity patterns.
Zero-Shot Tasks. We assess ASAF across six established zero-shot benchmarks: PIQA (Bisk et al.,
2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), LAMBADA (Rad-
ford et al., 2019), and ARC-Easy and ARC-Challenge (Clark et al., 2018). Experiments utilize the
LM Evaluation Harness (Gao et al., 2021; 2024) with default configurations. Table 2 shows that
ASAF maintains strong performance across all Llama-2 model sizes, with performance degradation
consistently below 1% compared to QuaRot. The ASAF preserves model capabilities while enabling
computational efficiency gains through optimized layer-group pruning patterns.

4.3 PERFORMANCE ANALYSIS

Prefill Stage Performance Increases. Figure 5 demonstrates the acceleration performance of ASAF
across various batch configurations (1, 4, 16, and 32) with 2048-token sequences on Llama-2 mod-
els. Our adaptive sparsity allocation approach consistently outperforms the QuaRot baseline across
all configurations. The performance gains become more pronounced with larger batch sizes, as the
computational workload increasingly overshadows memory bandwidth limitations. For the largest
70B model, our method reaches peak acceleration of 3.63×. The results reveal a trend where both
increasing model complexity and batch size magnify the effectiveness of our strategy, demonstrating
the scalable nature of the ASAF framework’s adaptive sparsity allocation mechanism.

Memory and Computational Efficiency. This algorithmic efficiency translates directly to memory
benefits during inference. As shown in Table 3, ASAF achieves an average memory reduction of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: WikiText-2 perplexity comparison for
Llama-2 models (2048 sequence length) using
4-bit quantization with adaptive sparsity alloca-
tion. SmoothQuant and OmniQuant results are
from (Shao et al., 2023), and 128G indicates
group-wise quantization with 128 group size.
More details in Appendix A.9.

Method Weight #Outlier Llama-2
Quantization Features 7B 13B 30B 70B

Baseline - - 5.47 4.88 4.09 3.32

SmoothQuant (Xiao et al., 2023) RTN 0 83.12 35.88 - -
OmniQuant (Shao et al., 2023) RTN 0 14.26 12.30 - -

QUIK-4B (Ashkboos et al., 2023) GPTQ 256 8.87 7.78 7.28 6.91
QuaRot GPTQ 0 6.10 5.40 4.41 3.79

ASAF (Ours) GPTQ 0 6.14 5.44 4.44 3.82

Atom-128G (Zhao et al., 2023)
GPTQ-128G

128 6.03 5.26 - -
QuaRot-128G 0 5.93 5.26 4.25 3.61

ASAF-128G (Ours) 0 5.98 5.30 4.28 3.64

Table 2: Zero-shot accuracy of Llama mod-
els with our ASAF framework on PIQA (PQ),
WinoGrande (WG), HellaSwag (HS), Arc-Easy
(A-e), Arc-Challenge (A-c), and LAMBADA
(LA).

Model Method PQ WG HS A-e A-c LA Avg.

Llama2-7B
FP16 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot 76.77 63.77 72.16 69.87 40.87 70.39 65.64
ASAF (Ours) 76.00 63.23 71.47 69.17 40.52 69.69 65.01

Llama2-13B
FP16 80.47 72.22 79.39 77.48 49.23 76.75 72.59

QuaRot 78.89 70.24 76.37 72.98 46.59 73.67 69.79
ASAF (Ours) 78.26 69.68 75.76 72.25 46.19 72.97 69.19

Llama2-30B
FP16 81.13 73.94 80.72 78.52 51.65 77.59 73.93

QuaRot 79.94 72.03 77.99 75.20 49.46 75.18 71.63
ASAF (Ours) 79.14 71.42 77.37 74.60 48.99 74.58 71.02

Llama2-70B
FP16 82.70 77.98 83.84 80.98 57.34 79.58 77.07

QuaRot 82.43 76.24 81.82 80.43 56.23 78.73 75.98
ASAF (Ours) 81.77 75.48 81.12 79.71 55.81 77.98 75.31

Figure 5: Acceleration comparison of ASAF framework versus QuaRot on Llama-2 models using
NVIDIA RTX 3090 GPUs with 2048-token sequences across different batch sizes.

Table 3: GPU memory consumption comparison between QuaRot and our ASAF framework across
different Llama-2 model sizes. All measurements in MB for inference with 2048 sequence length at
batch size 1. Compression ratios reflect adaptive sparsity allocation. More details in Appendix A.9

.

Method Llama-2
7B 13B 30B 70B

QuaRot 3,255 MB 5,753 MB 11,408 MB 20,536 MB
ASAF (Ours) 3,013 MB 5,276 MB 10,110 MB 17,943 MB
Compression Ratio 7.43% 8.29% 11.38% 12.63%

9.93% across all model sizes, ranging from 7.43% for the 7B model to 12.63% for the 70B model,
demonstrating our sensitivity-aware sparsity allocation strategy that applies conservative pruning
to smaller models while aggressively leveraging sensitivity patterns in larger architectures. ASAF
enables efficient sparse matrix operations that preserve computational patterns favorable to modern
GPU architectures. Details about computational efficiency are in Appendix A.10.

Prefill Stage Performance on NVIDIA 4090 GPU. The Figure in Appendix A.11 (due to page
limit) reports prefill acceleration experiments across different models and methods. ASAF achieves
up to 3.89× acceleration on Llama-2-70B, validating hardware scalability.
Zero-Shot Tasks on Llama-3 Family. The Table in Appendix A.12 (due to page limit) reports
zero-shot evaluation across different models and methods. ASAF demonstrates generalizability and
consistently maintains <1% performance degradation versus QuaRot.

4.4 ABLATION STUDIES

RTN Quantization Strategy. To evaluate the robustness of our adaptive sparsity allocation ap-
proach, we compare ASAF’s performance under RTN quantization, where GPTQ serves as the
default weight quantization strategy. Table 4 demonstrates that at 8-bit precision, RTN maintains
accuracy nearly identical to full precision for both approaches. At 4-bit quantization, while both
methods experience some quality degradation, our ASAF framework consistently maintains perfor-
mance within 1% of QuaRot results across all model sizes. In both INT4 and INT8 configurations,
these findings confirm that layer-group-based adaptive sparsity allocation can be effectively com-
bined with RTN quantization without introducing significant accuracy loss, validating the general-
izability of our optimization framework.

Group-Wise Quantization. The Table in Appendix A.13 (due to page limit) reports WikiText-2 per-
plexity for our ASAF framework when weights and activations are quantized group-wise with group
sizes of 256, 128, and 64. As expected, smaller groups yield better accuracy because per-group scale
factors more precisely capture local statistics, though they incur additional scale storage and slightly

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: WikiText-2 perplexity (PPL) and zero-shot accuracy of our ASAF framework for Llama-2
models. More details can be found in Appendix A.9.

Model Method Precision PPL ↓ PQ ↑ WG ↑ HS ↑ A-e ↑ A-c ↑ LA ↑ Avg. ↑

7B

Baseline FP16 5.47 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot-RTN INT4 8.37 72.09 60.69 65.40 58.88 35.24 57.27 58.26
INT8 5.50 78.94 68.67 75.80 74.79 45.39 74.33 69.65

ASAF-RTN (Ours) INT4 8.44 71.48 60.23 64.81 58.38 34.98 56.75 57.77
INT8 5.54 78.31 68.09 75.12 74.19 45.00 73.66 69.06

13B

Baseline FP16 4.88 80.47 72.22 79.39 77.48 49.23 76.75 72.59

QuaRot-RTN INT4 6.09 77.37 67.32 73.11 70.83 43.69 70.66 67.16
INT8 4.90 80.52 71.59 79.38 77.31 49.15 76.79 72.46

ASAF-RTN (Ours) INT4 6.14 76.67 66.71 72.45 70.19 43.30 70.02 66.56
INT8 4.94 79.84 70.91 78.67 76.65 48.68 76.10 71.81

30B

Baseline FP16 4.42 81.13 73.94 80.72 78.52 51.65 77.59 73.93

QuaRot-RTN INT4 5.51 78.36 69.65 75.05 72.84 46.08 72.56 69.09
INT8 4.43 81.18 73.35 80.65 78.36 51.58 77.63 73.82

ASAF-RTN (Ours) INT4 5.56 77.69 68.99 74.37 72.22 45.64 71.91 68.47
INT8 4.47 80.45 72.69 79.92 77.65 51.12 76.93 73.13

70B

Baseline FP16 3.32 82.70 77.98 83.84 80.98 57.34 79.58 77.07

QuaRot-RTN INT4 4.14 80.69 75.14 79.63 77.57 51.71 77.02 73.63
INT8 3.33 82.97 77.98 83.67 80.77 58.11 79.53 77.17

ASAF-RTN (Ours) INT4 4.18 79.92 74.46 78.83 76.83 51.24 76.25 72.92
INT8 3.36 82.14 77.24 82.92 79.96 57.56 78.81 76.44

more complex kernels. Across every group size, our adaptive sparsity allocation framework tracks
QuaRot’s dense counterparts to within 1%, demonstrating that layer-group-based sparsity optimiza-
tion can be achieved without meaningful quality loss. The consistent performance across different
group sizes validates the robustness of our ASAF approach under various quantization granularities.

5 RELATED WORK

Recent advances in LLM compression have significantly improved inference efficiency while pre-
serving model capabilities. Structured pruning techniques eliminate entire components like atten-
tion heads or layers, providing coarse-grained compression with predictable memory reduction but
limited optimization flexibility (Dutta et al., 2024; Muralidharan et al., 2024). Weight quantization
methods reduce numerical precision while maintaining computational accuracy, with notable frame-
works including GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2024), and OmniQuant (Shao et al.,
2023). Knowledge distillation approaches like MiniLLM (Gu et al., 2023) and GKD (Agarwal et al.,
2024) enable effective knowledge transfer from larger teacher models to compact student networks.

Unstructured pruning offers flexibility by removing weights, enabling fine-grained sparsity patterns
that achieve better accuracy-efficiency trade-offs at high compression ratios. Recent techniques
include SparseGPT (Frantar & Alistarh, 2023), applying layer-wise reconstruction using second-
order approximations, Wanda (Sun et al., 2023), using activation-aware magnitude selection, and
advanced methods like OWL (Yin et al., 2023), ALPS (Meng et al., 2024), and DSnoT (Zhang et al.,
2023). Model quantization addresses the critical outlier problem where activations dominate quan-
tization ranges. Rotation-based approaches like QuaRot (Ashkboos et al., 2024b) and QuIP (Chee
et al., 2023) employ orthogonal transformations to redistribute outlier energy, while SmoothQuant
(Xiao et al., 2023) migrates difficulty from activations to weights. System optimizations include
FlashAttention (Dao et al., 2022), PagedAttention (Kwon et al., 2023), and inference frameworks
like vLLM and DeepSpeed-Inference (Aminabadi et al., 2022). Recent work (Yuan et al., 2025)
demonstrates training-time attention sparsity through hardware-aligned kernels. However, existing
approaches treat quantization and pruning independently without considering layer sensitivity.

6 CONCLUSION

We present the ASAF that systematically allocates sparsity across layer groups to minimize compu-
tational FLOPs while maintaining model accuracy. Our two-phase strategy employs dynamic pro-
gramming with tabulation to achieve efficient optimization with manageable computational com-
plexity, making large-scale optimization tractable for practical deployment. Experimental results
demonstrate that ASAF maintains accuracy degradation within 1% while achieving up to 3.63×
prefill acceleration and 12.63% memory reduction on Llama-2 models compared to QuaRot.

While our framework shows substantial improvements in LLM inference efficiency, limitations in-
clude extensive pre-computation requirements for tabulation and uniform treatment of layer groups,
which may be suboptimal for models with heterogeneous sensitivity characteristics.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research focuses on developing efficient infer-
ence methods for large language models. We identify the following ethical considerations:

Privacy. No personally identifiable information is collected or processed.

Environmental Impact. While our method reduces computational costs and energy consumption
compared to baseline approaches, LLM inference still requires significant computational resources.
We report detailed computational requirements in Appendix A.8.

Potential Harms. Our compression technique could potentially be applied to harmful applica-
tions. We emphasize the importance of responsible deployment and adherence to AI safety guide-
lines.

REPRODUCIBILITY STATEMENT

To facilitate reproduction of our results:

Code. We will release our complete implementation, including training scripts, evaluation code,
and CUDA kernels, upon paper acceptance to facilitate reproduction of our results.

Experimental Details. Hyperparameters and experimental setup are fully specified in Appendix
A.8. Hardware specifications are provided in Appendix A.8.

Data. We use publicly available datasets (WikiText-2, PIQA, etc.).

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.

Keivan Alizadeh, Seyed Iman Mirzadeh, Dmitry Belenko, S Khatamifard, Minsik Cho, Carlo C
Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a flash: Efficient large lan-
guage model inference with limited memory. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12562–12584, 2024.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Quik: Towards end-to-end 4-bit inference on generative large language
models. arXiv preprint arXiv:2310.09259, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024a.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024b.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36:4396–4429, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Oshin Dutta, Ritvik Gupta, and Sumeet Agarwal. Efficient llm pruning with global token-
dependency awareness and hardware-adapted inference. In Workshop on Efficient Systems for
Foundation Models II@ ICML2024, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. arXiv preprint arXiv:2306.08543, 2023.

Hang Guo et al. Optimal brain restoration for joint quantization and sparsification of llms. arXiv
preprint arXiv:2509.11177, 2025.

Jinyang Guo, Jianyu Wu, Zining Wang, Jiaheng Liu, Ge Yang, Yifu Ding, Ruihao Gong, Hao-
tong Qin, and Xianglong Liu. Compressing large language models by joint sparsification and
quantization. In Proceedings of the 41st International Conference on Machine Learning, pp.
16945–16957. PMLR, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer models.
Proceedings of Machine Learning and Systems, 5:111–126, 2023.

11

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://zenodo.org/records/12608602


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Bill Nell, Nir Shavit, et al. Inducing and exploiting activa-
tion sparsity for fast inference on deep neural networks. In International conference on machine
learning, pp. 5533–5543. PMLR, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

D Liu, Y Zhu, Z Liu, Y Liu, C Han, J Tian, R Li, and W Yi. A survey of model compression
techniques: past, present, and future. Frontiers in Robotics and AI, 12:1518965, 2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul Mazumder. Alps: Improved optimization
for highly sparse one-shot pruning for large language models. arXiv preprint arXiv:2406.07831,
2024.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Mahsa Mozafarinia et al. Towards explaining deep neural network compression through a proba-
bilistic latent space. arXiv preprint arXiv:2403.00155, 2024.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076–41102, 2024.

Miloš Nikolić, Ghouthi Boukli Hacene, Ciaran Bannon, Alberto Delmas Lascorz, Matthieu Cour-
bariaux, Omar Mohamed Awad, Isak Edo Vivancos, Yoshua Bengio, Vincent Gripon, and An-
dreas Moshovos. Bitpruning: Learning bitlengths for aggressive and accurate quantization. In
2024 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2024.

NVIDIA. Nvidia cutlass library, 2023. URL https://github.com/NVIDIA/cutlass/.

NVIDIA Corporation. NVIDIA CUDA Toolkit 12.1. NVIDIA Corporation, Santa Clara, CA, 2023.
URL https://developer.nvidia.com/cuda-toolkit.

Gunho Park et al. Sparq: An accelerator architecture for large language models with joint sparsity
and quantization techniques. In Proceedings of the 26th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems. ACM, 2024.

Sihyeong Park, Sungryeol Jeon, Chaelyn Lee, Seokhun Jeon, Byung-Soo Kim, and Jemin Lee. A
survey on inference engines for large language models: Perspectives on optimization and effi-
ciency. arXiv preprint arXiv:2505.01658, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

12

https://github.com/NVIDIA/cutlass/
https://developer.nvidia.com/cuda-toolkit


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 48630–48656. PMLR, 2024.

Xiaorui Wang, Jun Wang, Xin Tang, Peng Gao, Rui Fang, and Guotong Xie. Filter pruning
via filters similarity in consecutive layers. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023. doi:
10.1109/ICASSP49357.2023.10096721.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. Advances in Neural Information Processing Systems, 35:23778–23790, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Ron-
grong Ji. Learning best combination for efficient n:m sparsity. Advances in Neural Information
Processing Systems, 35:30964–30977, 2022.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms.
arXiv preprint arXiv:2310.08915, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

A APPENDIX

All appendices are provided in the supplementary text.

13


	Introduction
	Motivation
	Method
	BACKGROUND
	Problem Formulation
	Solution

	Experiment
	Implementation Details
	Accuracy Analysis
	Performance Analysis
	Ablation Studies

	Related Work
	Conclusion
	Appendix

