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Graph Neural Networks (GNNs) have recently become the predominant tools for
studying graph data. Despite state-of-the-art performance on graph classification
tasks, GNNs are overwhelmingly trained in a single domain under supervision, thus
necessitating a prohibitively high demand for labels and resulting in poorly transfer-
able representations. To address this challenge, we propose the Label-Propagation
Tensor Graph Neural Network (LP-TGNN) framework to bridge the gap between
graph data and traditional domain adaptationmethods. It extracts graph topological
information holistically with a tensor architecture and then reduces domain discrep-
ancy through label propagation. It is readily compatible with general GNNs and
domain adaptation techniques with minimal adjustment through pseudo-labeling.
Experiments on various real-world benchmarks show that our LP-TGNN outper-
forms baselines by a notable margin. We also validate and analyze each component
of the proposed framework in the ablation study.

1. Introduction
Graph data are ubiquitous in a wide variety of fields, with many objects such as chemical compounds,
molecules, and social networks that are naturally represented by graphs [1]. The problem of graph
classification [2, 3], which aims to predict the properties of whole graphs, is essential in such fields [4].
In recent years, Graph Neural Networks (GNNs) have served as the predominant tool to tackle this
problem [2, 5–8]. The bulk of GNNs follow the message-passing framework [5, 9], which involves
propagating and aggregating information of centroid nodes and their topological neighbors. They
have consistently achieved superior performance on graph learning tasks, thanks to their adaptability,
scalability, and capacity of graph representation learning.

Despite their advances, the overwhelming majority of GNNs are trained in a single domain under
supervision [2, 10], thus demanding a sufficient number of labels that are often prohibitively expen-
sive [11–13]. For example, labeling graphs of gene interactions is extremely expensive due to the
need for expert knowledge, complex data analysis, data quality control, and adherence to ethical
and privacy regulations. A consequent approach is domain adaptation, i.e. to train a graph classifier
that works well on an unlabeled target domain with a labeled source domain.

Although domain adaptation methods have been extensively studied in computer vision [14–19],
such methods for graph classification are challenging to develop due to two fundamental problems:
1) How to effectively extract holistic graph representations? Though GNNs have demonstrated supe-
rior performance in most cases, they are intrinsically unable to fully capture relevant connectivity
information, such as higher-order interactions between atoms and ring-ring interactions within a
molecule that are essential in drug discovery [20–22]. In contrast to node or link prediction problems
where all samples are from a single graph [23], we are faced with a large number of graphs from
distinct feature spaces and domains in graph classification. It is therefore crucial to learn high-quality
representations that holistically encompass graph information and are well located in the embed-
ding space for transfer learning, as illustrated in Figure 1. 2) How to reduce domain discrepancy for
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graphs? While domain adaptation methods are well-studied in computer vision, their applicability
often relies on assumptions such as selection bias (suited for unstructured data) or environmental
changes (attributing spurious correlations to factors like background information) [17, 24–26]. These
assumptions, however, are not directly transferable to structured data such as graphs.

Figure 1: A visualization of domain adaptation
on graph classification. The red line is the deci-
sion boundary of an Enzyme versus Non-Eyzyme
classifier trained on SE and SNE . The labels can
transfer from the source domain to the target do-
main via methods such as label propagation [26].
For effective label propagation between domains,
the intra-class distance is supposed to be smaller
than the inter-class distance [27]. For instance, TE

should be closer to SE than to SNE .

To address the challenges above, we propose to
study the general framework that consists of 1) a
graph encoder that extracts holistic graph repre-
sentation and preserves graph similarities under
its geometric distance, thus 2) readily and effec-
tively integrates with certain domain adaptation
methods. Under the general framework, we pro-
pose a model named Label-Propagation Tensor
Graph Neural Network (LP-TGNN). Specifi-
cally, our choice of graph encoder TGNN par-
tially stems from the recent TTG-NN [28] and
consists of two branches that learn graph infor-
mation both locally and globally. On the one
hand, a graph convolutional branch follows the
message-passing framework and stacks outputs
of different graph convolutional network lay-
ers [5] to enhance its expressive power. On the
other hand, a topological learning branch com-
bines persistent images from multiple filtration
functions of Persistent Homology (PH), thus ex-
tracting the graph topological information from
multiple perspectives. This design is achievable
thanks to a Tensor Transformation layer (TTL)
that seamlessly integrates multiple attributes
while efficiently preserving the discriminative features by tensor low-rank decomposition. We inves-
tigate how different graph embeddings measure graph discrepancies in Euclidean distance with
visualization in Figure 2. The scatterplots show that TTG-NN preserves in-group distance better than
the expressive GIN [2], regardless of the domains. Such findings motivate us to utilize TTG-NN to
convert the structured graph information to vector values that general domain adaptation techniques
will apply.

(a) GIN (b) TTG-NN

Figure 2: An illustration of representations produced by the TTG-NN and the state-of-the-art GIN [2]
on the MUTAG dataset [29]. While both graph encoders separate the three clusters effectively,
TTG-NN well preserves the in-group distance with green points (T0) and blue points (S0) and
pushes away data from a different group: red points (S1). Embeddings plotted using t-SNE [30].

A substantial caveat for adversarial-based domain adaptation methods [24, 31] is that they can lose
critical discriminative information on the target domain by forcing domain-invariant representations.
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On the contrary, label propagation [26] reduces domain discrepancy through regularization. It
encourages the predictions in a set of neighboring data samples to be stable via consistency regu-
larization. With well-spaced representations, as shown in Figure 1 and 2, the label information can
propagate from the source domain to the target domain. However, it requires well-defined sample
distances for the label information to propagate within neighbor sets. While such distances are easy
to define in computer vision tasks, they are ambiguous for structured data like graphs. Rather than
directly computing such a distance, we instead define the neighboring set of a target graph to be the
source graphs whose ground-truth labels are the same as the pseudo-label of the target graph, where
the pseudo-label is given by a multi-layer-perceptron (MLP) classifier.

In conclusion, our method significantly differs from existing domain-adaptive GNNs as it works
in the graph space rather than the node space, takes advantage of expressive GNNs and adapts
regularization-based domain adaptation methods without stringent mathmatical formulations or
forcing invariant representations across domains. Ourmain contributions are summarized as follows:

• We introduce a framework named LP-TGNN for domain adaptive graph classification that
bridges the gap between computer vision domain adaptation methods like label propagation
and structured data like graphs. We show that the graph learning ability of TGNN endows
its potential to capture the relevance of graphs on the tensor embedding space.

• We design a label propagation scheme to reduce domain discrepancy for graphs. As a
regularization method rather than a conventional distribution matching method, label
propagation performs well with graph data and can be readily integrated with existing
GNNs besides TGNN, resulting in a general framework.

• Experiments on various graph classification benchmarks demonstrate the effectiveness of our
proposed framework and showcase the potential of extending domain adaptation methods
such as label propagation to domain adaptive graph classification tasks.

2. Related Work

2.1. Graph Classification

Graph classification has enormous applications in various fields [32]. Traditional kernel methods
use graph decomposition to capture the similarity in graph sub-structures with specialized kernels.
For example, WeisfeilerLehman [33] proposes a family of kernels for large graphs with discrete node
labels. Recently, Graph Neural Networks have emerged as a primary tool for graph classification [34].
For instance, Graph Convolutional Network [35] updates node representations iteratively by their
neighboring nodes. GraphSAGE [6] performs inductive learning by aggregating information from
local neighborhoods. GAT [36] uses the attention mechanism to capture dependencies between
nodes. To handle large-scale graphs, Top-K pooling [37–39] filters the nodes by their importance
scores. Recently, PersLay [40] and RePHINE [41] utilize Persistent Homology to capture graph
topological features. Their common limitations are: 1) They fail to exploit the rich semantic and
topological graph information holistically from a multi-modal perspective, which is well-addressed
in TTG-NN [28]; 2) They overwhelmingly focus on learning from a single domain and in a supervised
manner, resulting in poorly transferable representations and prohibitive demand for graph labels.

2.2. Domain Adaptation

Domain adaptation aims to develop models that are transferable from a label-rich source domain
to a label-scarce target domain [42, 43]. It has been profoundly investigated for image data with
applications including image classification and semantic segmentation [14, 15, 19], and also ex-
plored for question-answering models [44, 45]. More complex settings such as multi-source [46] and
multi-target [47] domain adaptation have also been studied. In short, the key to domain adaptation
is domain alignment. Traditional statistical methods achieve this by explicitly reducing domain
discrepancy via statistics such as maximum mean discrepancy [48, 49]. Recently, the conventional

3



approaches have been based on adversarial learning [31, 47, 50]. These methods typically employ a
Gradient Reversal Layer (GRL) to force domain-invariant representations from the feature extrac-
tor [24] and utilize pseudo-labeling to allow for self-training [51]. However, while such methods for
computer vision have been extensively studied, those for whole graphs are still in the infant stage.

2.3. Graph Domain Adaptation

Recently, a few methods have been proposed to address domain adaptation on graphs, mostly for
node classification [23, 52–55]. However, for graph classification, graphs reside in diverse feature
spaces instead of a unified space from a single graph as in node classification, leading to a much
more challenging problem setting. To tackle this problem, DEAL [56] utilizes adversarial learning
for domain alignment and distillation for pseudo-labeling. Furthermore, CoCo [57] advances
from adversarial learning to contrastive learning, which consists of coupled branches for graph
representation learning and contrasts between branches and domains. DAGRL [58] uses a similar
architecture combined with adaptive adversarial perturbation to align source and target domains.
Though the problem definition of domain adaptive graph classification has been established in these
works, the problem remains under-explored and demands more effective approaches.

3. Preliminaries

Problem formulation. Suppose an attributed graph G = (V, E ,X), in which V is the set of nodes,
E ∈ V × V is the set of edges, and X ∈ RN×F is the feature matrix of nodes, where N = |V| is the
number of nodes and F is the dimension of node features. The adjacency matrix A ∈ RN×N is a
symmetric matrix with entries as aij = 1 if an edge exists between nodes i and j and 0 otherwise.
Furthermore,D is the degree matrix of Awith entries as dii =

∑
j aij .

In the setting of domain adaptive graph classification, we are given a source domain Ds =
{(Gs

i , y
s
i )}

ns
i=1 with ns labeled samples and a target domain Dt = {Gt

j}
nt
j=1 with nt unlabeled

samples. Ds and Dt share the same label space Y = {1, 2, · · · , C} with covariate shifts, i.e.
PDs(X) 6= PDt(X) and PDs(y|X) = PDt(y|X) [59]. The goal is to learn a graph classification model
on Ds,Dt that predicts the ground-truth labels in Dt accurately.

Tensor low-rank structures. The Tucker, CP, and Tensor Train (TT) low-rank are the conventional
tensor low-rank structures. Specifically, the Tucker low-rank structure is defined by

X = C ×1 U1 ×2 · · · ×M UM + E, (1)

where E ∈ RD1×···×DM is the noise tensor and C ∈ RR1×···×RM is the latent core tensor of the true
low-rank features, and Um, m ∈ [M ] are the loading matrices. CP low-rank is a special case where
the core tensor C has the same dimensions over all modes. TT low-rank is a different kind of low-
rank structure that can compress tensors as significantly as CP low-rank while maintaining a stable
calculation as Tucker low-rank. With tensor low-rank structures, the Tensor Transformation Layer
tackles model complexity and computation concerns that could arise from amalgamating diverse
tensor features while preserving the discriminative features.

Persistent Homology. Persistent Homology (PH) is a method from algebraic topology that studies
the shape of data across different scales. Given a scale parameter ε, PH builds a sequence of simplicial
complexesGε1 ,Gε2 , . . . ,Gεn , where eachGεi represents the shape at a specific resolution. As ε increases,
new features are "born," and some "die" when they merge into larger structures. These changes are
recorded in a Persistence Diagram (PD), which is a set of points (bρ, dρ) in R2. Each point represents
a topological feature ρ, where bρ is the birth time and dρ is the death time. The difference dρ − bρ is
the lifespan of the feature, showing how long it persists across different scales. PD can be further
converted to Persistent Image (PI) for computational benefits as detailed in appendix A.1.
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4. Methodology

4.1. Overview

Figure 3: The architecture of the proposed LP-TGNN. The graph mini-batches from both domains are
input into both branches. The representations of target samples from each branch are pseudo-labeled
by an MLP classifier and each branch is separately regularized by label propagation. Also, the
representations of source samples from both branches are concatenated and labeled by the MLP
classifier. The model is optimized by the supervised loss and label propagation jointly.

Figure 3 illustrates the architecture of the proposed LP-TGNN. To address the two fundamental
problems in Section 1, the model can be decomposed into two components: 1) The backbone encoder
of TGNN and 2) The domain alignment method of label propagation. On the one hand, the TGNN
holistically encodes graph topological information from a multi-modal perspective through a graph
convolutional branch (See Section 4.3) and a topological learning branch (See Section 4.4) with a
Tensor Transformation Layer (TTL) (See Section 4.2). On the other hand, an MLP classifier is used
to produce the predicted labels for source samples and pseudo-labels for target samples, bridging
the two components. The source samples are used to calculate the supervised loss while the target
samples are used to calculate the consistency regularization of label propagation (See Section 4.5).

Algorithm 1 LP-TGNN
1: Input: Source graphs Ds; Target graphs Dt.
2: Output: GCN parameters θ; CNN parameters φ; MLP parameters η; TTL parameters ψ.
3: while not convergence do
4: Randomly sample mini-batches Bs and Bt from Ds and Dt respectively;
5: Forward propagate Bs and Bt through both branches of TGNN;
6: Forward propagate the representations of Bt from each branch, i.e. Zt

GCN and Zt
Top through the MLP

classifier separately;
7: Forward propagate the representations of Bs from both branches, i.e. Zs through the MLP classifier;
8: Calculate the loss by (9);
9: Update the parameters through backpropagation;
10: end while

4.2. Tensor Transformation Layer (TTL)

The Tensor Transformation Layer: σ
(
L(`) (·)

)
for ` = {1, 2, · · · , L} preserves the tensor structures of

X of dimension D =
∏M

m=1 Dm. A deep Tensor Neural Network is a function in the form of

f(X ) = L(L+1) ◦ σ ◦ L(L) ◦ σ · · · ◦ L(2) ◦ σ ◦ L(1)(X ) (2)
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where σ(·) is an element-wise activation function. The linear transformation L(`)(·), and input and
output tensor of the `-th layer, i.e. H(`+1) andH(`) are defined by

L(`)
(
H(`)

)
:=

〈
W(`),H(`)

〉
+B(`),

and H(`+1) := σ
(
L(`)

(
H(`)

)) (3)

where H(0) = X is the input feature tensor, 〈·, ·〉 is the tensor inner product, with a low-rank weight
tensor W(`) and a bias tensor B(`). The tensor structure takes effect when we incorporate tensor
low-rank structures such as CP, Tucker, and TT.

4.3. Graph Convolutional Branch

The convolutional branch learns the representation of G following the message-passing framework.
It utilizes the adjacency matrixA and feature matrixX of G through a sequence of GCN layers [5]. In
each layer, each node representation is updated by combining its representation and the aggregated
representations of its neighbors from the previous layer. Formally, the representation of G at the `-th
layer is given by

H
(`)
G = σ

(
ÂτH

(`−1)
G Θ(`)

)
(4)

where Â = D̃− 1
2 ÃD̃

1
2 , Ã = A + I, and D̃ is the degree matrix of Ã. The initial representation is

its feature matrix, i.e. H(0)
G = X, H(`)

G ∈ RN×D2 for ` ∈ {1, 2, · · · , L}, σ(·) is an activation function,
and Θ(`) is a trainable weight of the `-th layer. The τ -th power of the normalized adjacency matrix
contains statistics from the τ -th step of a random walk on G, thus enlarging the receptive field of the
convolutional operation.

In this branch, different τ -th steps of random walk on G are combined thanks to TTL, thus boosting
the representation power of GCN. Specifically, we first concatenate all representations of the L-layer
branch to form a tensor denoted by ZGCN

G =
[
H

(1)
G ,H

(2)
G , · · · ,H(L)

G

]
, then feed the tensor into TTL

as H(0) = ZGCN
G , whose `-th layer is defined in (3). Here ZGCN

G is reshaped to a dimension of
N × L×D ×D to facilitate TTL since the output tensors of both branches should have the same
number of dimensions (See Section 4.4), as we set the size ofH(`)

G as N ×D2 so that ZGCN
G can be

unfolded into four dimensions.

4.4. Topological Learning Branch

The topological branch extracts the topological information of a graph G through PersistentHomology.
In detail, to capture the topological information of G, we employ K vertex filtration functions:
fi : V 7→ R for i = {1, · · · ,K}. Each filtration function fi gradually reveals one specific topological
structure at different levels of connectivity, such as node degree (degree centrality score), node
flow information (betweenness centrality score), information spread capability (closeness centrality
score), etc. With each filtration function fi, we can construct a set of Q persistence images (PIs) of
resolution P × P from their persistence diagrams.

We further combine theQ persistence images of resolution P ×P fromK distinct filtration functions
to form a PI tensor denoted byX G of sizeK×Q×P×P , which extracts and preserves themulti-modal
topological features concealed in G simultaneously. Note the PIs for a given G are deterministic, thus
to make the branch learnable, we append a convolutional neural network (CNN) layer and a pooling
layer to further process the PI tensor. Formally,

ZTop
G =

{
fCNN(X G) if Q = 1

ξPOOL(fCNN(X G)) if Q > 1
(5)

where fCNN is a CNN layer and ξPOOL is a pooling layer such as average pooling or max pooling
to ensure a fixed tensor size regardless of the value of Q. Similarly, ZTop

G is then fed into TTL as
H(0) = ZTop

G , whose `-th layer is defined in (3).
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4.5. Label Propagation

To achieve domain adaptive graph classification, we further leverage label propagation [26] to regu-
larize both branches. In general, label propagation spreads trustworthy labels obtained from a source
task to neighboring data points (possibly in the target domain) through consistency regularization.
The underlying intuition is that neighboring data should have similar labels. Therefore, its success
heavily depends on an appropriate distance metric that defines what neighboring data is exactly,
which can be particularly challenging to define for structured data, such as graphs. To avoid this
obstacle, for a given target sample Gt

j , we consider its neighbor set to be the source samples whose
ground-truth labels are the same as the pseudo-label of that target sample, i.e.

Πj := {i|ysi = ŷtj ,Gs
i ∈ Bs}, Gt

j ∈ Bt (6)

where ŷtj = argmax(qtj) is its pseudo-label, qtj = MLP(Zt
j) is its logits, and Zt

j = Enc(Gt
j) is its

representation from either branch.

Following [26], we implement the consistency regularization from FixMatch [60], i.e.

Lreg =
1

|Bt|
∑

Gt
j∈Bt

1(max(qtj) > τ)H(ŷtj , q
s
j ) (7)

where τ is a threshold to ensure that only target samples with sufficiently confident pseudo-labels
are considered. H(·, ·) is the cross entropy, and qsj = MLP(Zs

j). Here Zs
j represents the aggregated

representations of its neighbor set, e.g. Zs
j = AVG({Zs

i}i∈Πj ), where Zs
i = Enc(Gs

i ). We denote
the regularization term from each branch as LGCN

reg and LTop
reg respectively. The two branches are

separately regularized as they serve different roles, where the GCN branch plays a major role in
graph representation learning, while the other branch provides auxiliary topological information.

For a source sample, we combine its representations from both branches and use it to calculate the
supervised loss:

Lsup =
1

|Bs|
∑

Gs
i ∈Bs

H(ysi , q
s
i ) (8)

Here qsi is its logits. Finally, the supervised loss and the two consistency regularization terms are
combined to form the overall objective and jointly optimize the whole framework:

L = Lsup + LGCN
reg + LTop

reg . (9)

5. Experiments

5.1. Experiment Setup

Datasets. Following [57], we tailor various datasets including MUTAG, Mutagenicity, PROTEINS,
DD, BZR, and COX2 from the popular graph classification benchmark TUDataset [1] to the setting of
domain adaptation. For convenience, P, D, C, CM, B, BM are respectively short for PROTEINS, DD,
COX2, COX2_MD, BZR, BZR_MD. To construct domain discrepancies, we separate Mutagenicity into
four same-size subsets (i.e., M0, M1, M2, M3) by edge density quartiles. The details of the datasets
are in appendix A.2.

Baselines. We validate the performance of the proposed LP-TGNN against various state-of-the-art
methods, including one graph kernel method WL Subtree [61], four graph neural network methods
including GCN [5], GIN [2], CIN [62], GMT [63], four domain adaptative image classification
methods including CDAN [31], ToAlign [64], MetaAlign [65], DUA [66], and two domain adaptative
graph classification methods including DEAL [56] and CoCo [57]. Their details are in appendix A.3.

Implementation details. We conduct our experiments on one NVIDIA Quadro RTX 8000 GPU card
with up to 48GB of memory. The LP-TGNN is trained by the Adam optimizer with a learning rate in
{0.01,0.05,0.1}. The hidden dimension and batch size are both set as 32. All activation functions are set
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as ReLU. We employ a three-layer GCN in the convolutional branch. For the topological branch, we
use four filtration functions, i.e. degree, betweenness, eigenvector, and closeness, setQ in (5) as 1 and
the PI dimension as 50× 50. We follow [28] for the choices of tensor low-rank structures. We use the
CNN as a 2D convolutional layer followed by a max-pooling layer. The classifier is a two-layer MLP
with batch normalization and a dropout rate of 0.5. The threshold for label propagation, i.e. τ in Eq (7)
is set as 0.8. We train the model on all the labeled source samples and all the unlabeled target samples,
and evaluate on the ground-truth labels of target samples that are hidden in training by accuracy as
in [54]. The code is available at https://github.com/TaoWen0309/Label-Propagation-GNN.

5.2. Performance Comparison

From Table 1, we observe that 1) LP-TGNN achieves the best performance overall, also LP-GIN
reaches the same average accuracy with CoCo and outperforms DEAL; 2) On average, vanilla
domain adaptation methods outperform supervised graph learning methods even as they were not
developed for graphs, which further demonstrates the low transferability of current graph learning
methods. To sum up, our framework tackles domain adaptive graph classification tasks for two
key reasons: (i) The high-quality representations produced by GIN and TGNN which are essential
for label propagation, and (ii) the efficacy of label propagation in reducing domain discrepancies
while maintaining discriminative information, without the strenuous need to define a strict distance
between graph samples or a contrived GNN architecture.

Table 1: The classification accuracy (in %) on PROTEINS, COX2, and BZR (source→target).

Methods P→D D→P C→CM CM→C B→BM BM→B Avg.
WL Subtree 72.9 41.1 48.8 78.2 51.3 78.8 61.9
GCN 58.7 59.6 51.1 78.2 51.3 71.2 61.7
GIN 61.3 56.8 51.2 78.2 48.7 78.8 62.5
CIN 62.1 59.7 57.4 61.5 54.2 72.6 61.3
GMT 62.7 59.6 51.2 72.2 52.8 71.3 61.6
CDAN 59.7 64.5 59.4 78.2 57.2 78.8 66.3
ToAlign 62.6 64.7 51.2 78.2 58.4 78.7 65.7
MetaAlign 60.3 64.7 51.0 77.5 53.6 78.5 64.3
DUA 61.3 56.9 51.3 69.5 56.4 70.2 60.9
DEAL 76.2 63.6 62.0 78.2 58.5 78.8 69.6
CoCo 74.6 67.0 61.1 79.0 62.7 78.8 70.5
LP-GIN 64.0 71.2 59.1 78.2 69.3 81.0 70.5
LP-TGNN 73.6 69.2 63.4 78.2 67.6 78.8 71.8

5.3. Ablation Study

To validate the effectiveness of each component in LP-TGNN, we design the ablation experiments on
Mutagenicity as shown in Table 2. Specifically, 1) LP-TGNN/TOPO removes the topological learning
branch; 2) LP-TGNN/CONV removes the graph convolutional branch; 3) LP-TGNN/SUP removes
the supervised loss Lsup, and 4) LP-TGNN/LP removes the consistency regularization LGCN

reg and
LTop
reg . Moreover, we compare the results against the state-of-the-art GIN [2] by applying distribution

matching and label propagation to GIN, denoted by DM-GIN and LP-GIN respectively. We also add
the results of label propagation with GAT [36] and GraphSAGE [6], i.e. LP-GAT and LP-SAGE.

We have the following observations from Table 2: 1) By comparing DM-GIN and LP-GIN, it is evident
that label propagation significantly outperforms distribution matching in this task. Therefore, it
is inappropriate to directly apply adversarial-based domain adaptation techniques to graphs. 2)
By comparing LP-TGNN/TOPO and LP-TGNN/CONV, we can further verify the different roles
of the two branches. In other words, the representation learning of the convolutional branch is
crucial, while the topological learning of the other branch provides supplementary information.
3) By comparing LP-TGNN/SUP and LP-TGNN/LP, we can claim that both supervised loss and
consistency regularization are indispensable. More interestingly, for either method, the results on
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the same target domain are identical for any source domain (except LP-TGNN/SUP on M2→M1),
indicating that the framework would lose its transferability without either of the terms. 4) LP-GAT,
-GraphSAGE, -GIN have all obtained good performance on several single tasks, while LP-TGNN
achieves the best performance overall and ascends especially when M3 is involved, also LP-GIN
reaches competitive average accuracy, demonstrating the efficacy of our proposed general framework.

Table 2: The ablation results (in %) on Mutagenicity (source→target).
Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.
DM-GIN 74.6 50.3 63.3 50.3 54.8 46.3 67.0 71.8 49.8 68.6 52.8 63.4 59.4
LP-GIN 76.0 69.3 69.6 70.0 60.2 67.9 75.9 81.6 63.7 61.3 62.3 67.7 68.8
LP-GAT 75.4 70.2 71.2 70.8 58.8 59.3 74.5 77.4 57.8 48.3 57.6 56.7 64.8
LP-SAGE 76.5 69.6 71.9 69.6 60.9 60.2 74.6 78.4 57.6 57.7 62.3 66.7 67.2
LP-TGNN/Topo 74.7 47.7 71.3 51.0 56.5 58.6 63.5 74.8 56.4 70.0 62.2 69.2 63.0
LP-TGNN/Conv 32.6 61.1 37.3 55.3 53.1 55.2 65.8 72.8 53.1 32.6 53.1 62.7 52.9
LP-TGNN/Sup 67.4 55.2 37.3 55.2 53.1 55.2 37.3 32.6 53.1 67.4 53.1 37.3 50.4
LP-TGNN/LP 67.4 44.8 62.7 44.8 46.9 44.8 62.7 67.4 46.9 67.4 46.9 62.7 55.5
LP-TGNN 76.6 71.9 70.8 69.7 62.9 65.2 75.7 77.1 64.9 71.5 64.2 72.8 70.3

5.4. Synthetic Study

The label propagation method was rigorously proved to perform well in computer vision domain
adaptation with subpopulation shift [26]. To validate this property in the graph space, we design a
synthetic study on MUTAG. Specifically, the negative and positive sample size ratio is approximated
to be 1:2 in the source domain and 2:1 in the target domain, constituting a significant subpopulation
shift. The performance of the GIN and TGNNmethods is listed in Table 3, from which we observe
that for the simulated subpopulation shift task: 1) LP-GIN significantly outperforms DM-GIN,
achieving competitive performance; 2) Both terms of supervised loss and consistency regularization
are important; 3) The topological branch is more pronounced compared with that in Table 2.

5.5. Quality of Pseudo-labels Table 3: The classification accuracy (in
%) on the simulated subpopulation shift
task.

Methods Accuracy

DM-GIN 78.7
LP-GIN 89.4
LP-TGNN/Topo 78.7
LP-TGNN/Conv 80.9
LP-TGNN/Sup 68.1
LP-TGNN/LP 89.4
LP-TGNN 93.6

Below we show the quality of pseudo-labels on the Mu-
tagenicity tasks. We report the accuracy for the convo-
lutional branch as it plays a major role in representation
learning, and the pseudo-labels are filtered by the confi-
dence threshold first as in (7). We can observe that on
average, there exists a positive correlation between pseudo-
label and classification accuracy, which further demon-
strates the quality of pseudo-labels as the bridge between
graph representations and label propagation.

Table 4: The pseudo-label and classification accuracy (in%) on Mutagenicity (source→target).
Accuracy M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2
Pseudo-label 93.3 81.3 94.5 83.4 67.6 80.6 88.3 91.1 67.6 85.7 68.6 86.0
Classification 76.6 71.9 70.8 69.7 62.9 65.2 75.7 77.1 64.9 71.5 64.2 72.8

6. Conclusion
This work addresses the domain adaptative graph classification problem by proposing a framework
named LP-TGNN. Extensive experiment results on various benchmarks validate the efficacy of the
proposed LP-TGNN. Besides, the competitive performance of LP-GIN and other baselines showcases
the general applicability of our framework. Our work serves as a solid step toward transferable
GNNs, as most GNNs so far are trained under full supervision in a single domain. Future work
may extend the approach to large-scale datasets and more complex settings, such as multi-label
classification and multi-target domain adaptation.

9



Acknowledgments
This material is based upon work supported by the U.S. Department of Energy, Office of Science
Energy Earthshot Initiative as part of the project “Learning reduced models under extreme data
conditions for design and rapid decision-making in complex systems" under Award #DE-SC0024721.

This work was supported in part by the National Science Foundation under Grant DMS-2412577.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

References
[1] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.
graphlearning.io.

[2] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of International Conference on Learning Representations, 2018.

[3] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems, volume 31, 2018.

[4] Ryosuke Kojima, Shoichi Ishida, Masateru Ohta, Hiroaki Iwata, Teruki Honma, and Yasushi
Okuno. kGCN: a graph-based deep learning framework for chemical structures. Journal of
Cheminformatics, 12(1), 5 2020. doi: 10.1186/s13321-020-00435-6. URL https://jcheminf.
biomedcentral.com/articles/10.1186/s13321-020-00435-6.

[5] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[7] Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks with
learnable propagation operators. InAndreas Krause, EmmaBrunskill, KyunghyunCho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
9224–9245. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/eliasof23b.
html.

[8] Karolis Martinkus, Pál András Papp, Benedikt Schesch, and Roger Wattenhofer. Agent-based
graph neural networks. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=8WTAh0tj2jC.

[9] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. InDoina Precup andYeeWhye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1263–1272. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.
press/v70/gilmer17a.html.

[10] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. Proceedings of the International Conference on Learning Repre-
sentations, 2018.

10



[11] Zhongkai Hao, Chengqiang Lu, Zhenya Huang, HaoWang, Zheyuan Hu, Qi Liu, Enhong Chen,
and Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular
property prediction. In Proceedings of the 26th ACMSIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 731–752, 2020.

[12] Vignesh Kothapalli. Randomized schur complement views for graph contrastive learning. In
International Conference on Machine Learning, 2023.

[13] Junran Wu, Xueyuan Chen, Bowen Shi, Shangzhe Li, and Ke Xu. SEGA: Structural entropy
guided anchor view for graph contrastive learning. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 37293–37312. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/wu23a.html.

[14] Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. Transferable attention
for domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):
5345–5352, Jul. 2019. doi: 10.1609/aaai.v33i01.33015345. URL https://ojs.aaai.org/index.
php/AAAI/article/view/4472.

[15] Jiangtao Peng, Yi Huang, Weiwei Sun, Na Chen, Yujie Ning, and Qian Du. Domain adaptation
in remote sensing image classification: A survey. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 15:9842–9859, 2022. doi: 10.1109/JSTARS.2022.3220875.

[16] Ziliang Samuel Zhong, Xiang Pan, and Qi Lei. Bridging domains with approximately shared
features. arXiv preprint arXiv:2403.06424, 2024.

[17] Qi Lei, Wei Hu, and Jason Lee. Near-optimal linear regression under distribution shift. In
International Conference on Machine Learning, pages 6164–6174. PMLR, 2021.

[18] Hoang Phan, Andrew Gordon Wilson, and Qi Lei. Controllable prompt tuning for balancing
group distributional robustness. arXiv preprint arXiv:2403.02695, 2024.

[19] Gabriela Csurka, Riccardo Volpi, and Boris Chidlovskii. Unsupervised domain adaptation for
semantic image segmentation: a comprehensive survey, 2021.

[20] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. Advances in neural information
processing systems, 31, 2018.

[21] Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting
molecular interactions with skip-graph networks. Scientific reports, 10(1):1–16, 2020.

[22] Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. Does gnn pretraining help molecular representa-
tion? Advances in Neural Information Processing Systems, 35:12096–12109, 2022.

[23] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation via
theory-grounded spectral regularization. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=OysfLgrk8mk.

[24] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, MarioMarch, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of Machine Learning Research, 17(59):1–35, 2016. URL http://jmlr.org/papers/v17/
15-239.html.

[25] A. Tuan Nguyen, Toan Tran, Yarin Gal, Philip Torr, and Atilim Gunes Baydin. KL guided
domain adaptation. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=0JzqUlIVVDd.

11



[26] Tianle Cai, Ruiqi Gao, Jason Lee, and Qi Lei. A theory of label propagation for subpopulation
shift. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 1170–1182.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/cai21b.html.

[27] Jeff Z. HaoChen, Colin Wei, Ananya Kumar, and Tengyu Ma. Beyond separability: An-
alyzing the linear transferability of contrastive representations to related subpopulations.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Ad-
vances in Neural Information Processing Systems, volume 35, pages 26889–26902. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
ac112e8ffc4e5b9ece32070440a8ca43-Paper-Conference.pdf.

[28] Tao Wen, Elynn Chen, and Yuzhou Chen. Tensor-view topological graph neural network. In
Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li, editors, Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings of Machine Learning
Research, pages 4330–4338. PMLR, 02–04 May 2024. URL https://proceedings.mlr.press/
v238/wen24a.html.

[29] A K Debnath, R L Lopez de Compadre, G Debnath, A J Shusterman, and C Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation
with molecular orbital energies and hydrophobicity. J. Med. Chem., 34(2):786–797, February
1991.

[30] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

[31] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional adversarial
domain adaptation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 16471657, Red Hook, NY, USA, 2018. Curran Associates Inc.

[32] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

[33] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

[34] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph
learning: A survey. IEEE Trans AI, 2(2):109–127, 2021.

[35] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. Proceedings of the International Conference on Learning Representations, 2017.

[36] Petar Velikovi, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. Proceedings of International Conference on Learning Representa-
tions, 2018.

[37] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards
sparse hierarchical graph classifiers. Workshop on Relational Representation Learning, NeurIPS,
2018.

[38] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the International Conference on
Machine Learning, pages 2083–2092, 2019.

[39] M. Horn, E. De Brouwer, M. Moor, Y. Moreau, B. Rieck, and K. Borgwardt. Topological graph
neural networks. In Proceedings of International Conference on Learning Representations, 2021.

12



[40] M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda. Perslay: A neural network
layer for persistence diagrams and new graph topological signatures. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, pages 2786–2796, 2020.

[41] Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using
persistent homology. In 37th Conference on Neural Information Processing Systems (NeurIPS), 2023.
URL https://nips.cc/. Conference on Neural Information Processing Systems, NeurIPS ;
Conference date: 10-12-2023 Through 16-12-2023.

[42] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models
to new domains. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer
Vision – ECCV 2010, pages 213–226, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN
978-3-642-15561-1.

[43] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference onMachine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 1180–1189, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/ganin15.html.

[44] Anas Awadalla, Mitchell Wortsman, Gabriel Ilharco, Sewon Min, Ian Magnusson, Hannaneh
Hajishirzi, and Ludwig Schmidt. Exploring the landscape of distributional robustness for
question answering models, 2022.

[45] JohnMiller, Karl Krauth, BenjaminRecht, and Ludwig Schmidt. The effect of natural distribution
shift on question answering models. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 6905–6916. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/miller20a.html.

[46] Chuan-Xian Ren, Yong-Hui Liu, Xi-WenZhang, andKe-KunHuang. Multi-source unsupervised
domain adaptation via pseudo target domain. IEEE Transactions on Image Processing, 31:21222135,
2022. ISSN 1941-0042. doi: 10.1109/tip.2022.3152052. URL http://dx.doi.org/10.1109/TIP.
2022.3152052.

[47] Subhankar Roy, Evgeny Krivosheev, Zhun Zhong, Nicu Sebe, and Elisa Ricci. Curriculum graph
co-teaching for multi-target domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021.

[48] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain
confusion: Maximizing for domain invariance, 2014.

[49] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 97–105, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/long15.html.

[50] Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario Marchand.
Domain-adversarial neural networks, 2015.

[51] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method for
deep neural networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL), 07
2013.

[52] Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li. Struc-
tural re-weighting improves graph domain adaptation. In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pages 21778–21793. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/liu23u.html.

13



[53] Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. Dane: Domain adaptive
network embedding. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pages 4362–4368. International Joint Conferences on Artificial Intelligence
Organization, 7 2019. doi: 10.24963/ijcai.2019/606. URL https://doi.org/10.24963/ijcai.
2019/606.

[54] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In Proceedings of The Web Conference 2020, WWW
’20, page 14571467, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450370233. doi: 10.1145/3366423.3380219. URL https://doi.org/10.1145/3366423.
3380219.

[55] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Over-
coming the limitations of localized graph training data. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 27965–27977. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf.

[56] Nan Yin, Li Shen, Baopu Li, Mengzhu Wang, Xiao Luo, Chong Chen, Zhigang Luo, and Xian-
Sheng Hua. Deal: An unsupervised domain adaptive framework for graph-level classification.
In Proceedings of the 30th ACM International Conference on Multimedia, MM ’22, page 34703479,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392037. doi:
10.1145/3503161.3548012. URL https://doi.org/10.1145/3503161.3548012.

[57] Nan Yin, Li Shen, Mengzhu Wang, Long Lan, Zeyu Ma, Chong Chen, Xian-Sheng Hua, and
Xiao Luo. CoCo: A coupled contrastive framework for unsupervised domain adaptive graph
classification. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 40040–40053. PMLR,
23–29 Jul 2023. URL https://proceedings.mlr.press/v202/yin23a.html.

[58] Siyang Luo, Ziyi Jiang, Zhenghan Chen, and Xiaoxuan Liang. Domain adaptive graph classifi-
cation, 2023. URL https://arxiv.org/abs/2312.13536.

[59] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000.
ISSN 0378-3758. doi: https://doi.org/10.1016/S0378-3758(00)00115-4. URL https://www.
sciencedirect.com/science/article/pii/S0378375800001154.

[60] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-
fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 596–608. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf.

[61] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(77):
2539–2561, 2011. URL http://jmlr.org/papers/v12/shervashidze11a.html.

[62] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montufar, and
Michael M. Bronstein. Weisfeiler and lehman go cellular: CW networks. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=uVPZCMVtsSG.

[63] Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations
with graph multiset pooling. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=JHcqXGaqiGn.

14



[64] Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, and Zhibo Chen. Toalign: Task-
oriented alignment for unsupervised domain adaptation. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=XP9SZpjZkq.

[65] Guoqiang Wei, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Metaalign: Coordinating domain
alignment and classification for unsupervised domain adaptation. InProceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 16643–16653, June 2021.

[66] M. Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on:
Dynamic unsupervised domain adaptation by normalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 14765–14775, June 2022.

[67] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images:
A stable vector representation of persistent homology. Journal of Machine Learning Research, 18,
2017.

[68] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. J. Med. Chem., 48(1):312–320, January 2005.

[69] Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of Molecular Biology, 330(4):771–783, 2003. ISSN 0022-2836.
doi: https://doi.org/10.1016/S0022-2836(03)00628-4. URL https://www.sciencedirect.com/
science/article/pii/S0022283603006284.

[70] Jeffrey J Sutherland, Lee A O’Brien, and Donald F Weaver. Spline-Fitting with a genetic
algorithm: A method for developing classification {Structure–Activity} relationships. J. Chem.
Inf. Comput. Sci., 43(6):1906–1915, November 2003.

A. Appendix

A.1. Persistent Images

Definition 1 (Persistence Image). Let g : R2 7→ R be a non-negative weight function
for the persistence plane R. The value of each pixel z ∈ R2 is defined as PIDg(z) =∫∫
z

∑
µ∈T (Dg)

g(µ)
2πδxδy

e
−
(

(x−µx)2

2δ2x
+

(
y−µy

)2
2δ2y

)
dydx,where T (Dg) is the transformation of the PD Dg (i.e.,

for each (x, y), T (x, y) = (x, y − x)), µ = (µx, µy) ∈ R2, and δx and δy are the standard deviations of
a differentiable probability distribution in the x and y directions respectively.

We can calculate a set of Persistent Diagrams (PDs) for each filtration function fi, i.e., PH(G, fi) =−→
Dgi = {Dg

(1)
i , . . . , Dg

(Q)
i }, where Q ∈ Z+

0 is the number of graph topological features. Moreover,
to encode the above topological information presented in a Dg into the embedding space, we use
its vectorized representation, i.e., persistence image (PI) [67]. The PI is a finite-dimensional vector
representation obtained through a weighted kernel density function and can be computed in the
following two steps. First, we map the PD Dg to an integrable function %Dg : R2 7→ R2, which is
referred to as a persistence surface. The persistence surface %Dg is constructed by summing weighted
Gaussian kernels centered at each point in Dg. In the second step, we integrate the persistence
surface %Dg over each grid box to obtain the value of the PIDg .

A.2. Details of Datasets

• MUTAG [29] contains 188 nitroaromatic compounds. The goal is to predict whether a
molecule has a mutagenic effect on a given bacterium or not.
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• Mutagenicity [68] consists of 4337 molecular structures with their corresponding Ames test
data. The goal is to predict whether a molecule is a mutagen or not.

• PROTEINS: PROTEINS [69] and DD [61] contain 1113 and 1178 proteins, where each label
indicates whether a protein is an enzyme or not. We denote them in short as P and D
respectively.

• COX2: COX2 and COX2_MD [70] are both chemical compounds that consist of 467 and 303
cyclooxygenase-2 inhibitors. We denote them in short as C and CM respectively.

• BZR: BZR and BZR_MD [70] are both chemical compounds that consist of 405 and 306
ligands for the benzodiazepine receptor. We denote them in short as B and BM respectively.

A.3. Details of Baselines

1. Graph learning methods:
• WLSubtree [61] presents a family of efficient graph kernels using theWeisfeiler-Lehman

test to measure the similarity of graphs.
• GCN [5] follows the message-passing framework to update node representations itera-

tively with neighboring nodes.
• GIN [2] is a state-of-the-art message-passing neural networkwith increased expressivity

by MLPs.
• CIN [62] extends message-passing Simplicial Networks to regular Cell Complexes and

increases the expressivity.
• GMT [63] is based on multi-head attention and captures the interaction between nodes

according to their structural dependencies.
2. Domain alignment methods:

• CDAN [31] proposes an adversarial learning framework and conditions on the discrim-
inative information from classifier predictions.

• ToAlign [64] decomposes source domain features into task-related features for alignment
and task-irrelevant features to be avoided, based on classification meta-knowledge.

• MetaAlign [65] treats the optimization of domain alignment and classification tasks as
meta-train and meta-test tasks, maximizing the inner product of their gradients during
training.

• DUA [66] proposes an effective and efficient normalization strategy by continuously
adapting batch normalization layers.

3. Domain adaptive graph classification methods:
• DEAL [56] utilizes adversarial learning and adaptive perturbation for domain alignment

and distillation for pseudo-labeling.
• CoCo [57] consists of coupled branches for graph representation learning and con-

trastive learning between branches and domains.

A.4. Run-time analysis

To show the computational complexity of LP-TGNN, the running time for the LP-TGNN experiments
in Table 2 is given as follows:

Table 5: The running time per epoch (in seconds) of LP-TGNN in Table 2.
M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2

5.37 4.81 5.27 4.90 4.95 4.49 4.68 4.61 4.34 4.38 4.55 4.48
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