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Abstract

Medical image segmentation models are often trained on curated datasets, leading to per-
formance degradation when deployed in real-world clinical settings due to mismatches be-
tween training and test distributions. While data augmentation techniques are widely used
to address these challenges, traditional visually consistent augmentation strategies lack the
robustness needed for diverse real-world scenarios. In this work, we systematically evaluate
alternative augmentation strategies, focusing on MixUp and Auxiliary Fourier Augmenta-
tion. These methods mitigate the effects of multiple variations without explicitly targeting
specific sources of distribution shifts. We demonstrate how these techniques significantly
improve out-of-distribution generalization and robustness to imaging variations across a
wide range of transformations in cardiac cine MRI and prostate MRI segmentation. We
quantitatively find that these augmentation methods enhance learned feature representa-
tions by promoting separability and compactness. Additionally, we highlight how their
integration into nnU-Net training pipelines provides an easy-to-implement, effective solu-
tion for enhancing the reliability of medical segmentation models in real-world applications.
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1. Introduction

Medical image analysis requires deep learning models that are accurate, robust, and gener-
alize well to new and unseen data. However, when deployed in real-world scenarios, deep
neural networks often suffer performance degradation (Hendrycks and Dietterich, 2019; Ka-
mann and Rother, 2021). This generalization gap can be attributed to a range of factors,
including variations in patient populations, differences in image acquisition, and imaging
artefacts. Among strategies to improve generalization are data augmentation techniques like
intensity shifts, affine transforms, and noise addition (Garcea et al., 2023; Goceri, 2023).
As they can demonstrably improve out-of-distribution generalization (Boone et al., 2023),
they are among the standard set of augmentations used in many deep learning segmentation
models, such as nnU-Net (Isensee et al., 2021).

However, standard augmentation strategies cannot cover more complex underlying im-
age formation mechanisms, which in MRI could include bias fields due to coil miscalibration,
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Rician noise when MRI is taken at higher resolutions, ghosting artefacts, or random RF
spikes during acquisition (see Fig. 1). Artifact-specific augmentation policies might miti-
gate this problem (Boone et al., 2023), but such policies are not guaranteed to exist. For
instance, variations may only happen at inference due to data mishandling (Shimron et al.,
2022), and explicitly anticipating all possible variations is often infeasible. Hence, as an
alternative, augmentation strategies that are not specifically designed for any variation and
yet manages to mitigate the effect of multiple variations would greatly benefit medical
imaging with deep learning.

In this work, we systematically investigate general, data-agnostic augmentation strate-
gies, namely MixUp (Zhang et al., 2018) and Auxiliary Fourier Augmentation (AFA) (Vaish
et al., 2024). By data-agnostic, we mean augmentations that do not seek to maintain the
visual consistency of the data being augmented. We demonstrate the effect of these tech-
niques in nnU-Net models for segmentation of cardiac cine MRI and prostate MRI. Neither
MixUp nor AFA explicitly addresses specific sources of variation in these data, yet we show
how they improve segmentation performance in various out-of-distribution generalization
settings. Moreover, we include an analysis of the learned feature representations, show-
ing improved structure and interoperability when MixUp and AFA are used. Our findings
provide new insights into the effectiveness and limitations of these augmentation meth-
ods in medical image analysis scenarios and show that MixUp and AFA can improve the
performance of deep neural networks in multiple tasks and generalization settings.

2. Materials and Methods

2.1. Data

We investigate to what extent data augmentation strategies can mitigate the effects of
distribution shifts in MRI. We perform experiments on cardiac cine MRI and bi-parametric
prostate MRI. For each of these, we include two separate datasets, allowing us to consider
differences within and between datasets.

Cardiac cine MR We use the Automated Cardiac Diagnosis Challenge (ACDC) (Bernard
et al., 2018), which contains 150 cardiac cine MRI scans (100 training, 50 test) acquired at
Hospital of Dijon, France (in-plane resolution 1.37-1.67mm, slice thickness 5-10mm). As an
external test set used to measure generalization performance, we include the M&Ms (Campello
et al., 2021) test set of 268 scans with different pathologies from multiple centers (in-plane
resolution 0.85-1.45mm, slice thickness 10mm). In both ACDC and M&Ms, manual anno-
tations of the left ventricle (LV), myocardium (MYO), and right ventricle (RV) are provided
in end-diastolic (ED) and end-systolic (ES) frames.

Prostate MRI We include prostate bi-parametric MRI (bpMRI) scans from the Prostate
158 (P158) dataset (Adams et al., 2022), which has 139 scans for training and 19 scans for
testing. This data set contains patients with prostate cancer (PCa) lesions. In addition, as
an external test set to measure generalization, we use the ProstateX (PX) dataset (Armato
et al., 2018), which includes 141 test scans. Both datasets provide T2w scans at an in-plane
resolution of 1.45-1.5 mm, ADC maps at 0.45-0.5 mm, and slice thicknesses of 3-4mm.
Segmentation masks of the transitional zone (TZ) and the prostate peripheral zone (PZ)
are available in all images. The test masks for PX are taken from (Xu et al., 2023).
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Figure 1: Corruptions (severity level 3) in cardiac cine MRI images and the T2w channel
of prostate bpMRI images as a result of our image variation model.

2.2. Modelling Image Variation

We simulate image variation in a controlled manner by applying a range of transformations
to images. This allows a thorough evaluation of model robustness under different augmen-
tation strategies. Following the methodology outlined in ROOD-MRI (Boone et al., 2023),
we apply elastic deformation, isotropic downsampling, anisotropic downsampling, bias field
amplification, contrast compression, contrast expansion, ghosting, random motion, Rician
noise addition, and smoothing, at five different levels (1: mild, 5: severe). In addition, we
include spike noise artifacts (radio frequency noise) and k-space subsampling, again at five
severity levels. In total, we apply 14 corruptions to each image (see Fig. 1 for examples).

2.3. Augmentation Strategies

We conduct experiments in which we train models with three different kinds of augmentation
strategies within the nnU-Net framework (Isensee et al., 2021). In all experiments, we keep
the pre-processing and post-processing fixed to the default nnU-Net options.

Base augmentations By default, nnU-Net employs eight augmentation strategies, namely
rotation, scaling, Gaussian noise injection, Gaussian blurring, brightness and contrast ad-
justments, simulation of low-resolution imaging, gamma correction, and mirroring.

MixUp In this strategy, new samples are generated through linear interpolation of pairs
of training samples. Here a sample consists of input xi and label yi. Formally, given two
samples (xi, yi) and (xj , yj), MixUp creates a new synthetic sample as:

xmix = λxi + (1− λ)xj , ymix = λyi + (1− λ)yj

where λ ∈ [0, 1] is drawn from a Beta distribution. We adapt the original MixUp setup,
in which yi is a one-hot encoded sample label, to segmentation by linearly interpolating
one-hot encoded segmentation masks.
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Table 1: DSC and HD95 on the original and transformed test set of ACDC and P158
using either using no augmentations or a combination of base, MixUp, and AFA
augmentations. Blue and red colors indicate statistically significant (p < 0.05)
differences between models without and with MixUp or AFA. Bold-faced numbers
indicate the best result for each column.

ACDC P158

Augmentation Original Transformed Original Transformed

Base MixUp AFA DSC HD95 (mm) DSC HD95 (mm) DSC HD95 (mm) DSC HD95 (mm)

0.891 5.81 0.755 12.68 0.789 4.63 0.705 8.23
✓ 0.889 6.08 0.760 12.86 0.786 4.99 0.696 8.29

✓ 0.866 6.48 0.801 9.67 0.786 4.77 0.724 6.84
✓ ✓ 0.876 6.35 0.804 10.67 0.780 5.15 0.711 7.85

✓ 0.925 3.37 0.801 9.40 0.825 4.60 0.730 7.39
✓ ✓ 0.924 3.49 0.842 7.90 0.832 4.35 0.758 6.78
✓ ✓ 0.920 3.72 0.850 7.61 0.826 4.79 0.760 6.67
✓ ✓ ✓ 0.921 3.60 0.862 7.02 0.829 4.29 0.770 6.33

Auxiliary Fourier Augmentation (AFA) augments images in the frequency domain
under the hypothesis that visual augmentation techniques are unable to cover the vulnera-
bility of neural networks to perturbations in the frequency domain (Vaish et al., 2024). AFA
samples frequency basis functions and adds them to the training samples, leaving the label
unchanged. Formally, let F denote the Fourier transform operator. For a training sample
(xi, yi), the n-dimensional Fourier transform of xi is given by Xi = F(xi). To augment the
data, a perturbation α is added at a randomly chosen frequency coordinate (k1, k2, . . .) in
the Fourier domain, modifying Xi as:

Xaug
i (k1, k2, . . .) = Xi(k1, k2, . . .) + α.

The augmented image in the spatial domain, xaugi , is then obtained by applying the inverse
Fourier transform: xaugi = F−1(Xaug

i ). The model training involves a joint optimization of
an AFA-augmented image and a non-AFA-augmented image.

2.4. Quantitative Evaluation

We segment all structures separately, namely LV, MYO, RV in cardiac cine MRI, and TZ
and PZ in prostate MRI. Results are reported as average Dice Similarity Coefficients (DSC)
and 95th percentile Hausdorff Distances (HD95), over all structures, and frames (ED, ES)
in cine MRI. For all settings, we perform a 5-fold cross-validation and test for statistical
significance using the paired t-test at p < 0.05.

3. Experiments and Results

3.1. Synthetically Corrupted Images

We train a total of sixteen nnU-Net models with different combinations of base augmenta-
tions, MixUp, and AFA, for both the ACDC cardiac cine MR dataset and the P158 prostate
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cancer dataset. For each dataset, we evaluated results on the original test set and the test
set with the transformations described in Sec. 2.2. Note that we do not apply any of these
corruptions to the training sets. Tab. 1 lists DSC and HD95 values for this experiment.
Fig. 2 shows the relation between the severity of individual transformations and DSC values
obtained for ten nnU-Net models.

Cardiac cine MRI For cardiac cine MRI, when not using any data augmentation, there
is a large performance gap between the original ACDC test set and the transformed test
set, i.e., DSC 0.891 vs. 0.755, indicating poor generalization to out-of-distribution data.
We find that adding either MixUp or AFA to this model improves performance on the
transformed test set, to DSC 0.760 and 0.801, respectively. Moreover, the combination of
both augmentation strategies improves performance further to DSC 0.804. The gain on the
transformed test set exceeds the performance drop on the original test set.

A similar pattern unfolds when we combine MixUp and AFA with base augmentations.
Here, we see a performance increase in all settings for both the original and transformed
data. Notably, base augmentations lead to a DSC of 0.801 on the transformed test set, com-
pared to DSC 0.755 when no augmentation is used. This indicates that these augmentations
are able to improve performance on some of the out-of-distribution samples. However, we
find that MixUp and AFA can lead to significant (p < 0.05) performance gains on top of
these augmentations, up to DSC 0.862 and HD95 7.02 when both are used. Moreover, when
MixUp and AFA are used in combination with base augmentations, the performance drop
on the original test set is smaller and not significant.

The results in Fig. 2 indicate that adding MixUp and AFA improves robustness to all
imaging variations. Moreover, while these techniques do not explicitly target variations like
k-space subsampling and Rician noise, they are very effective in overcoming challenges posed
by these corruptions. We also find that the performance increase is largest at higher severity
levels. Furthermore, while the bias field can be reasonably simulated using intensity shifts,
which is a base augmentation, only adding MixUp or AFA further enhances the performance.

Prostate MRI Our findings in the prostate MRI data set match those found in the
cardiac cine MRI data set to a large extent. We find that in the model without any aug-
mentations, there is a performance gap between the original (DSC 0.789) and transformed
(DSC 0.705) data sets. Using AFA, either stand-alone or in combination with MixUp, nar-
rows this gap. However, we also find that using only MixUp has a detrimental effect on
model performance. Similar to the cardiac cine MRI set, we find that MixUp and AFA re-
duce performance on the original data set when used without base augmentations; however,
they only significantly reduce when using both MixUp and AFA. In contrast to cardiac cine
MRI, adding MixUp and AFA to base augmentations not only leads to a significant per-
formance increase on the transformed data set but also on the original dataset. Results for
prostate MRI in Fig. 2 show similar trends as for cardiac cine MRI, confirming the general
nature of our findings and added value of MixUp and AFA over base augmentations.

3.2. Real-World Distribution Shifts

In our previous experiments, we synthesized corruptions in data to explore the robustness of
models with and without augmentation. We now consider generalization between datasets
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Figure 2: Trend of DSC per severity for test sets corrupted with bias field, ghosting, k-space
subsampling, Rician noise and spike noise. We notice that MixUp and AFA are
effective in mitigating the challenges posed by complex image corruptions.

originating from similar yet different distributions. Differences may be a result of different
demographics, protocols, or scanner vendors. As in our previous experiment, we train with
combinations of base, MixUp and AFA augmentation. For clarity, we omit results trained
without base augmentations. Tab. 2 lists results for cardiac cine MRI and prostate MRI.

Cardiac cine MR We train segmentation models on the ACDC data set and use M&Ms
as a test set. We find that a model trained on ACDC with only base augmentations
experiences a performance drop compared to a model trained on M&Ms with only base
augmentations, with Dice coefficients of 0.870 and 0.882. However, when combinations
of MixUp with AFA are added, we find consistent performance improvements across all
augmentation combinations. Furthermore, we find that for models that use a combination
of base augmentations, MixUp, or both MixUp and AFA, we approach the DSC and HD95
score of the model that was trained on M&Ms itself, bridging the generalization gap.

Prostate MRI The segmentation of the prostate bpMRI presented a more significant
domain shift challenge. We train the segmentation model on P158 and use the PX dataset
as the test set. As noted earlier, the large variability in prostate glands poses a difficult
challenge and substantially impacts model performance. Despite this challenge, a model
trained with base augmentations, along with MixUp (DSC 0.737, HD95 6.60), is a significant
improvement over using only the base augmentations (DSC 0.705, HD95 7.87), indicating
improved generalization capabilities in this setting where there is large variance in anatomy.
Models in combination with AFA also showcase significantly improved performance.
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Table 2: DSC and HD95 performance under distribution shift for Cardiac Cine MR, testing
on M&Ms, and Prostate bpMRI, testing on PX, with various data augmentation
strategies. Highlighted numbers denote significantly improved results when models
using MixUp or AFA compared to model only using base augmentation (p < 0.05).

Augmentation Cardiac Cine MR Prostate bpMRI

Base MixUp AFA Trained On DSC HD95 (mm) Trained On DSC HD95 (mm)

✓ 0.870 7.97 0.705 7.87
✓ ✓ 0.880 5.74 0.737 6.60
✓ ✓ 0.874 6.92 0.718 7.67
✓ ✓ ✓

ACDC

0.880 5.70

P158

0.732 7.52

M&Ms† 0.882 5.02 PX+ 0.826 4.77

Best model trained on the test dataset from † (Campello et al., 2021) and + (Xu et al., 2023).

3.3. Model Interpretation

To investigate whether our empirical findings reflect characteristics of the trained models
under data augmentation, we quantify the separability and compactness of their learned
features using k-variance gradient-normalized margins (kVGM) (Chuang et al., 2021). A
positive higher value for this metric indicates that the model has learned more separable and
compact clusters of representations, while negative values mean that the model misclassifies.
Fig. 3 visualizes the position of voxels from the transformed test set in the feature space of
ten of our trained models (dimensionality reduced via PCA), along with the kVGM of each
model. These plots show that the absence of augmentation leads to poor feature separation
while using only base augmentations leads to better clustering features that are not easily
separable. Adding AFA alone improves separability, and MixUp alone enhances compact-
ness, and when combined, they appear to promote both compactness and separability. The
kVGM metric, in increasing order for generalisability, ranks the models starting from no
augmentations, followed by base augmentations, base with AFA, base with MixUp, and fi-
nally base with both AFA and MixUp. This supports our finding that these augmentations
enrich feature representations, leading to enhanced out-of-distribution generalization.

4. Discussion and Conclusion

In this study, we have demonstrated how non-standard augmentation techniques that
do not target specific variations, specifically MixUp and Auxiliary Fourier Augmentation
(AFA), can enhance the robustness of state-of-the-art segmentation frameworks like nnU-
Net against many variations in MRI.

While MixUp has been known to be an effective augmentation for various tasks (Eaton-
Rosen et al., 2018; Thulasidasan et al., 2019; Gazda et al., 2022), we find it is very well
suited for overcoming challenging medical image conditions as well. However, we also ob-
serve that without base augmentations on P158, MixUp alone leads to a (non-significant)
decline in performance. Our results highlight the advantage of combining augmentation
strategies that intrinsically exploit different mechanisms. For example, AFA follows a fun-
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Figure 3: PCA projection of learned features, for final features from nnU-Net trained with
different augmentation techniques for samples from the transformed test sets (top:
ACDC, bottom: P158) with the corresponding kVGM metric.

damentally different strategy than MixUp by directly perturbing k-space data. The effect
of this is shown in our results, in which the combination of both always improves over their
individual use. This is corroborated by an evaluation of the feature space using k-variance
gradient-normalized margins. We consider this metric a promising tool for studying model
generalizability.

Our results align with studies incorporating general augmentation strategies into nnU-
Net (Atya et al., 2021), and MixUp and AFA are straightforward additions with a lot of
benefits. However, augmentations cannot address all generalization gaps. We find that
prostate zonal segmentation remains challenging due to significant inter-subject variabil-
ity. One example is the effect of age, where younger cohorts have sharper tissue bound-
aries (Allen et al., 1989; Situmorang et al., 2012) and such differences are difficult to address
without prior knowledge, regardless of augmentations.

While the augmentations we treat in this work are valuable tools for improving ro-
bustness, there remains substantial potential for further advancements in this domain. For
example, we have here used a base version of MixUp which has been previously shown to be
sufficient (Atya et al., 2021; Liu et al., 2024), but there are many variants (Cao et al., 2024).
There are other data-agnostic augmentations as well which are out of scope of discussion,
and would need to be adapted for medical domain, like PRIME (Modas et al., 2022) which
seeks to maximise image entropy. Therefore, our work should be viewed as a stepping stone
toward broader research on using simple general augmentations for out-of-distribution gen-
eralization in medical imaging, as opposed to more complicated methods like model-based
methods like GANs and diffusion models (Garcea et al., 2023).

In conclusion, we find that adding non-standard data-agnostic augmentation to a state-
of-the-art nnU-Net model can consistently and significantly increase segmentation perfor-
mance under various generalisation challenges, for cardiac cine MRI and prostate MRI.
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Appendix A. More Examples of Variations

We show an example of all the image variations that we make part of the transformations.
In Fig. 4 we show an example image from each transformed test set for ACDC and in Fig. 5
we show an example image from each transformed test set of P158.

The images show while the object of interest remains discernable to the human eye, the
difference to the original sample is large. Some variations are not diagnostically relevant,
like smoothing, severe random motion, but they serve as interesting examples of where
human expertise might still outperform sophisticated deep learning methods, and through
this study we explore how to bridge this gap to unknown variations without explicitly using
them as augmentations.

Appendix B. Performance per Severity for All Corruptions

We plot the trend of DSC metric per severity for each transformation considered under
image variations. Trends for DSC for ACDC are shown in Fig. 6 and HD95 in Fig. 7.
Trends for DSC for P158 are shown in Fig. 8 and HD95 in Fig. 9.

Original Aniso Downsample Bias Field Compression Expansion

Ghosting Iso Dowsample k-Space Sub. Random Motion Rician Noise

Elastic Deform. Rotation Scale Smoothing Spike Noise

Figure 4: Visualization of the 14 data variations, alongside the original image (top-left) for
a test sample in the ACDC dataset. All transforms visualised at severity 3.
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Original Aniso Downsample Bias Field Compression Expansion

Ghosting Iso Dowsample k-Space Sub. Random Motion Rician Noise

Elastic Deform. Rotation Scale Smoothing Spike Noise

Figure 5: Visualization of the 14 data variations, alongside the original image (top-left) for
a test sample in the P158 dataset. All transforms visualised at severity 3.

We see that while base augmentations are really effective in improving generalisation
to some transformations, rotation, scale contrast compression and expansion, and iso-
downsample. These are transformations that base augmentations also overlap with. How-
ever, more complicated transformations are not completely overcome, for instance, bias field,
ghosting, rician noise, k-space subsampling, spike noise, smoothing, aniso-downsampling
and random motion.

The augmentations MixUp and AFA also seem to complement each other. Using AFA
without MixUp can reduce performance on HD95 metric on some transformations, which
can be understood by the fact that regularising frequency components leads to difficulty
delineating boundaries (typical high frequency changes) while MixUp does not deteriorate
boundary delineation, but it is unable to regularise frequency components leading to per-
formance decline on various variations. However, using both MixUp and AFA in general
leads to the best performance for each metric, and this pattern is consistent between both
test datasets.

Appendix C. Qualitative Segmentation Performance

Fig. 10 visualizes the effect of using base, MixUp, and AFA augmentations on the trans-
formed test set. Notably, while intensity shift augmentation is among the base augmenta-
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Figure 6: Trend of DSC per severity for test sets transformed with 14 different transforma-
tions for the ACDC dataset, including from the 5 repeated from the main paper.

tions, the top row shows that AFA and MixUp are required to correct for the bias field in
the data.

Appendix D. Evidence of Regularisation

L2 regularisation is often used in training deep neural networks to reduce overfitting to noise
by promoting learnt weights to have a lower l2-norm. We see that while we do not explicitly
regularise the models using l2-norm, base augmentations and MixUp lead to substantially
lower norms of the learnt convolutional kernels on models trained for both cardiac cine MR
(Fig. 11) and prostate bpMRI (Fig. 12).
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Figure 7: Trend of HD95 per severity for test sets transformed with 14 different transfor-
mations for the ACDC dataset.
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Figure 8: Trend of DSC per severity for test sets transformed with 14 different transforma-
tions for the P158 dataset, including the 5 presented from the main paper.
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Figure 9: Trend of DSC per severity for test sets transformed with 14 different transforma-
tions for the P158 dataset.
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Correct Under Segmentation Misclassification Over Segmentation

Figure 10: In the first column, we show the ground truth with the expert annotated mask
and in the following columns, we show the model predictions made by nnU-Net
with augmentations, alone or in combination with MixUp and/or AFA. In pres-
ence of AFA and/or MixUp we see a substantial improvement in segmentation
coverage under difficult imaging conditions.
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Figure 11: The norm of the weights of convolutional kernels W at different depths, d, for
different nnU-Nets trained on ACDC with different augmentation techniques.
The plot highlights the regularisation effect the methods have on the model
weights.
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Figure 12: The norm of the weights of convolutional kernels W at different depths, d, for
different nnU-Nets trained on P158 with different augmentation techniques. The
plot highlights the regularisation effect the methods have on the model weights.
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