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Abstract

Commonsense reasoning simulates the human ability to make presumptions about1

our physical world, and it is an essential cornerstone in building general AI systems.2

We propose a new commonsense reasoning dataset based on human’s Interactive3

Fiction (IF) gameplay walkthroughs as human players demonstrate plentiful and4

diverse commonsense reasoning. The new dataset provides a natural mixture of5

various reasoning types and requires multi-hop reasoning. Moreover, the IF game-6

based construction procedure requires much less human interventions than previous7

ones. Experiments show that the introduced dataset is challenging to previous8

machine reading models with a significant 20% performance gap compared to9

human experts.10

1 Introduction11

There has been a flurry of datasets and benchmarks proposed to address natural language-based12

commonsense reasoning [11, 27, 20, 13, 9, 15, 2, 8, 3, 16, 26]. These benchmarks usually adopt13

a multi-choice form – with the input query and an optional short paragraph of the background14

description, each candidate forms a statement; the task is to predict the statement that is consistent15

with some commonsense knowledge facts.16

These benchmarks share some limitations, as they are mostly constructed to focus on a single17

reasoning type and require similar validation-based reasoning. First, most benchmarks concentrate18

on a specific facet and ask human annotators to write candidate statements related to the particular19

type of commonsense. As a result, the distribution of these datasets is unnatural and biased to a20

specific facet. For example, most benchmarks focus on collocation, association, or other relations21

(e.g., ConceptNet [18] relations) between words or concepts [11, 20, 13, 9]. Other examples include22

temporal commonsense [27], physical interactions between actions and objects [3], emotions and23

behaviors of people under the given situation [16], and cause-effects between events and states [15,24

2, 8]. Second, most datasets require validation-based reasoning between a commonsense fact and a25

text statement but neglect hops over multiple facts. 1 The previous work’s limitations bias the model26

evaluation. For example, pre-trained Language Models (LMs), such as BERT [4], well handled most27

benchmarks. Their pre-training process may include texts on the required facts, enabling adaptation28

to the dominating portion of commonsense validation instances. The powerful LMs with sufficient29

capacity can fit the isolated reasoning type easily. As a result, the above limitations of previous30

benchmarks lead to discrepancies among practical NLP tasks that require broad reasoning ability on31

various facets.32

1Some datasets include a portion of instances that require explicit reasoning capacity, such as [2, 8, 3, 16].
But still, standalone facts can solve most such instances.
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Our Contribution. We derive a new commonsense reasoning dataset from the model-based rein-33

forcement learning challenge of Interactive Fictions (IF) to address the above limitations. Recent34

advances [7, 1, 5] in IF games have recognized several commonsense reasoning challenges, such as35

detecting valid actions and predicting different actions’ effects. Figure 1 illustrates sample gameplay36

of the classic game Zork1 and the required commonsense knowledge. We derive a commonsense37

dataset from human players’ gameplay records related to the second challenge, i.e., predicting which38

textual observation is most likely after applying an action or a sequence of actions to a given game39

state.40

Figure 1: Classic dungeon game Zork1 gameplay sample.
The player receives textual observations describing the cur-
rent game state and sends textual action commands to control
the protagonist. Various commonsense reasoning is illus-
trated in the texts of observations and commands from the
gameplay interaction, such as spatial relations, objective ma-
nipulation, and physical relations.

The derived dataset naturally addresses41

the aforementioned limitations in previous42

datasets. First, predicting the next obser-43

vation naturally requires various common-44

sense knowledge and reasoning types. As45

shown in Figure 1, a primary commonsense46

type is spatial reasoning, e.g., “climb the47

tree” makes the protagonist up on a tree.48

Another primary type is reasoning about ob-49

ject interactions. For example, keys can50

open locks (object relationships); “hatch51

egg” will reveal “things” inside the egg (ob-52

ject properties); “burn repellent with53

torch” leads to an explosion and kills the54

player (physical reasoning). The above in-55

teractions are more comprehensive than the56

relationships defined in ConceptNet as used57

in previous datasets. Second, the rich tex-58

tual observation enables more complex rea-59

soning over direct commonsense validation.60

Due to the textual observation’s narrative61

nature, a large portion of the textual obser-62

vations are not a sole statement of the action63

effect, but an extended narrates about what64

happens because of the effect.2 Third, our65

commonsense reasoning task formulation66

shares the essence of dynamics model learn-67

ing for model-based RL solutions related to68

world models and MuZero [6, 17]. As a re-69

sult, models developed on our benchmarks70

provide direct values to model-based rein-71

forcement learning for text-game playing.72

Finally, compared to previous works that73

heavily rely on human annotation, our74

dataset construction requires minimal hu-75

man effort, providing great expansibility to76

our dataset. For example, with large amounts of available IF games in dungeon crawls, Sci-Fi,77

mystery, comedy, and horror, it is straightforward to extend our dataset to include more data samples78

and cover a wide range of genres. We can also naturally increase the reasoning difficulty by increasing79

the prediction horizon of future observations after taking multi-step actions instead of a single one.80

In summary, we introduce a new commonsense reasoning dataset construction paradigm, collectively81

with two datasets. The larger dataset covers 29 games in multiple domains from the Jericho Environ-82

ment [7], named the Jericho Environment Commonsense Comprehension task (JECC). The smaller83

dataset, aimed for the single-domain test and fast model development, includes four IF games in the84

Zork Universe, named Zork Universe Commonsense Comprehension (ZUCC). We provide strong85

baselines to the datasets and categorize their performance gap compared to human experts.86

2For some actions, such as get and drop objects, the next observations are simple statements. We removed
some of these actions. Details can be found in Section 3.
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2 Related Work87

Previous work has identified various types of commonsense knowledge humans master for text88

understanding. As discussed in the introduction section, most existing datasets cover one or a few89

limited types. Also, they mostly have the form of validation between a commonsense knowledge fact90

and a text statement.91

Semantic Relations between Concepts. Most previous datasets cover the semantic relations be-92

tween words or concepts. These relations include the concept hierarchies, such as those covered93

by WordNet or ConceptNet, and word collocations and associations. For example, the early work94

Winograd [11] evaluates the model’s ability to capture word collocations, associations between95

objects, and their attributes as a pronoun resolution task. The work by [20] is one of the first datasets96

covering the ConceptNet relational tuple validation as a question-answering task. The problem asks97

the relation of a source object, and the model selects the target object that satisfies the relation from98

four candidates. [13] focus on the collocations between adjectives and objects. Their task takes the99

form of textual inference, where a premise describes an object and the corresponding hypothesis100

consists of the object that is modified by an adjective. [9] study associations among multiple words,101

i.e., whether a word can be associated with two or more given others (but the work does not formally102

define the types of associations). They propose a new task format in games where the player produces103

as many words as possible by combining existing words.104

Causes/Effects between Events or States. Previous work proposes datasets that require causal105

knowledge between events and states [15, 2, 8]. [15] takes a text generation or inference form106

between a cause and an effect. [2] takes a similar form to ours – a sequence of two observations is107

given, and the model selects the plausible hypothesis from multiple candidates. Their idea of data108

construction can also be applied to include any types of knowledge. However, their dataset only109

focuses on causal relations between events. The work of [8] utilizes multi-choice QA on a background110

paragraph, which covers a wider range of casual knowledge for both events and statements.111

Other Commonsense Datasets. [27] proposed a unique temporal commonsense dataset. The task112

is to predict a follow-up event’s duration or frequency, given a short paragraph describing an event.113

[3] focus on physical interactions between actions and objects, namely whether an action over an114

object leads to a target effect in the physical world. These datasets can be solved by mostly applying115

the correct commonsense facts; thus, they do not require reasoning. [16] propose a task of inferring116

people’s emotions and behaviors under the given situation. Compared to the others, this task contains117

a larger portion of instances that require reasoning beyond fact validation. The above tasks take the118

multi-choice question-answering form.119

Next-Sentence Prediction. The next sentence prediction tasks, such as SWAG [26], are also related120

to our work. These tasks naturally cover various types of commonsense knowledge and sometimes121

require reasoning. The issue is that the way they guarantee distractor candidates to be irrelevant122

greatly simplified the task. In comparison, our task utilizes the IF game engine to ensure actions123

uniquely determining the candidates, and ours has human-written texts.124

Finally, our idea is closely related to [25], which creates a task of predicting valid actions for each IF125

game state. [25, 24] also discussed the advantages of the supervised tasks derived from IF games for126

natural langauge understanding purpose.127

3 Dataset Construction: Commonsense Challenges from IF Games128

We pick games supported by the Jericho environment [7] to construct the JECC dataset.3 We pick129

games in the Zork Universe for the ZUCC dataset.4 We first introduce the necessary definitions in the130

IF game domain and then describe how we construct our ZUCC and JECC datasets as the forward131

prediction tasks based on human players’ gameplay records, followed by a summary on the improved132

properties of our dataset compared to previous ones. The dataset will be released for public usage. It133

can be created with our released code with MIT License.134

3We collect the games 905, acorncourt, advent, adventureland, afflicted, awaken, balances, deephome,
dragon, enchanter, inhumane, library, moonlit, omniquest, pentari, reverb, snacktime, sorcerer, zork1 for training,
zork3, detective, ztuu, jewel, zork2 as the development set, temple, gold, karn, zenon, wishbringer as the test set.

4We pick Zork1, Enchanter, and Sorcerer as the training set, and the dev and sets are non-overlapping split
from Zork3.
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Figure 2: Illustration of our data construction process, taking an example from Zork3. +/−: positive/negative
labels. The red colored path denotes the tuple and the resulted data instance from the human walkthrough.

Table 1: Data statistics of our ZUCC and JECC tasks. WT stands for walkthrough. The evaluation sets
of JECC only consist of tuples in walkthroughs. The evaluation sets of ZUCC consist of all tuples after
post-processing. For JECC the total numbers of tuples in the training games and evaluation games are close.
Yet as discussed in the dataset construction criteria (Section 3.3), we only evaluate the models with tuples from
the walkthroughs to ensure a representative distribution of required knowledge.

#WT
Tuples

#Tuples be-
fore Proc

#Tuples af-
ter Proc

ZUCC
Train 913 17,741 10,498

All Eval 271 4,069 2,098
Dev – – 1,276
Test – – 822

JECC
Train 2,526 48,843 24,801

All Eval 2,063 53,160 25,891
Dev 917 – –
Test 1,146 – –

3.1 Interactive Fiction Game Background135

Each IF game can be defined as a Partially Observable Markov Decision Process (POMDP), namely136

a 7-tuple of 〈 S, A, T , O, Ω, R, γ 〉, representing the hidden game state set, the action set, the state137

transition function, the set of textual observations composed from vocabulary words, the textual138

observation function, the reward function, and the discount factor respectively. The game playing139

agent interacts with the game engine in multiple turns until the game is over or the maximum number140

of steps is reached. At the t-th turn, the agent receives a textual observation describing the current141

game state ot ∈ O and sends a textual action command at ∈ A back. The agent receives additional142

reward scalar rt which encodes the game designers’ objective of game progress. Thus the task of143

the game playing can be formulated to generate a textual action command per step as to maximize144

the expected cumulative discounted rewards E
[∑∞

t=0 γ
trt

]
. Most IF games have a deterministic145

dynamics, and the next textual observation is uniquely determined by an action choice. Unlike146

most previous work on IF games that design autonomous learning agents, we utilize human players’147

gameplay records that achieve the highest possible game scores.148

Trajectories and Walkthroughs. A trajectory in text game playing is a sequence of tuples149

{(ot, at, rt, ot+1)}T−1t=0 , starting with the initial textual observation o0 and the game terminates150

at time step t = T , i.e., the last textual observation oT describes the game termination scenario. We151

define the walkthrough of a text game as a trajectory that completes the game progress and achieves152

the highest possible game scores.153
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3.2 Data Construction from the Forward Prediction Task154

The Forward Prediction Task. We represent our commonsense reasoning benchmark as a next-155

observation prediction task, given the current observation and action. The benchmark construction156

starts with all the tuples in a walkthrough trajectory, and we then extend the tuple set by including157

all valid actions and their corresponding next-observations conditioned on the current observations158

in the walkthrough. Specifically, for a walkthrough tuple (ot, at, rt, ot+1, ), we first obtain the159

complete valid action set At for ot. We sample and collect one next observation ojt+1 after executing160

the corresponding action ajt ∈ At. The next-observation prediction task is thus to select the next161

observation ojt+1 given (ot, a
j
t ) from the complete set of next observations Ot+1 = {okt+1,∀k}.162

Figure 2 illustrates our data construction process.163

Data Processing. We collect tuples from the walkthrough data provided by the Jericho environ-164

ments. We detect the valid actions via the Jericho API and the game-specific templates. Following165

previous work [7], we augmented the observation with the textual feedback returned by the command166

[inventory] and [look]. The former returns the protagonist’s objects, and the latter returns the current167

location description. When multiple actions lead to the same next-observation, we randomly keep168

one action and next-observation in our dataset. We remove the drop OBJ actions since it only169

leads to synthetic observations with minimal variety. For each step t, we keep at most 15 candidate170

observations in Ot for the evaluation sets. When there are more than 15 candidates, we select the171

candidate that differs most from ot with Rouge-L measure [12].172

During evaluation, for JECC, we only evaluate on the tuples on walkthroughs. As will be discussed173

in 3.3, this helps our evaluation reflects a natural distribution of commonsense knowledge required,174

which is an important criterion pointed out by our introduction. However for ZUCC the walkthough175

data is too small, therefore we consider all the tuples during evaluation. This leads to some problems.176

First, there are actions that do not have the form of drop OBJ but have the actual effects of dropping177

objects. Through the game playing process, more objects will be collected in the inventory at the178

later stages. These cases become much easier as long as these non-standard drop actions have been179

recognized. A similar problem happens to actions like burn repellent that can be performed at180

every step once the object is in the inventory. To deal with such problems, we down-sample these181

biased actions to achieve similar distributions in development and test sets. Table 1 summarizes182

statistics of the resulted JECC and ZUCC datasets.183

3.3 Design Criterion and Dataset Properties184

Knowledge coverage and distribution. As discussed in the introduction, an ideal commonsense185

reasoning dataset needs to cover various commonsense knowledge types, especially useful ones for186

understanding language. A closely related criterion is that the required commonsense knowledge and187

reasoning types should reflect a natural distribution in real-world human language activities.188

Our JECC and ZUCC datasets naturally meet these two criteria. The various IF games cover diverse189

domains, and human players demonstrate plentiful and diverse commonsense reasoning in finishing190

the games. The commonsense background information and interventions are recorded in human-191

written texts (by the game designers and the players, respectively). With the improved coverage of192

commonsense knowledge following a natural distribution, our datasets have the potential of better193

evaluating reasoning models, alleviating the biases from previous datasets on a specific knowledge194

reasoning type.195

Reasoning beyond verification. A reasoning dataset should evaluate the models’ capabilities in196

(multi-hop) reasoning with commonsense facts and background texts, beyond simple validation of197

knowledge facts.198

By design, our datasets depart from simple commonsense validation. Neither the input (current199

observation and action) nor the output (next observation) directly describes a knowledge fact. Instead,200

they are narratives that form a whole story. Moreover, our task formulation explicitly requires using201

commonsense knowledge to understand how the action impacts the current state, then reason the202

effects, and finally verifies whether the next observation coheres with the action effects. These203

solution steps form a multi-step reasoning process.204
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Figure 3: The co-matching architecture for our tasks.

Limitations Our dataset construction method has certain limitations. One important limitation is205

that it is difficult to get the distribution of the required commonsense knowledge types. This can206

be addressed in future work with human designed commonsense knowledge schema and human207

annotation.208

4 Neural Inference Baselines209

We formulate our task as a textual entailment task that the models infer the next state ot+1 given ot210

and at. We provide strong textual entailment-based baselines for our benchmark. We categorize the211

baselines into two types, namely pairwise textual inference methods and the triplewise inference212

methods. The notations ot, at of observations and actions represent their word sequences.213

4.1 Neural Inference over Textual Pairs214

•Match LSTM [22] represents a commonly used natural language inference model. Specifically, we215

concatenate ot and at separated by a special split token as the premise and use the ojt+1, j = 1, ...N216

as the hypothesis. For simplicity we denote ot, at and a candidate ojt+1 as o, a, õ. We encode the217

premise and the hypothesis with bidirectional-LSTM model:218

Ho,a = BiLSTM([o, a]),H õ = BiLSTM(õ), (1)

where Ho,a and H õ are the sequences of BiLSTM output d-dimensional hidden vectors that corre-219

spond to the premise and hypothesis respectively. We apply the bi-attention model to compute the220

match between the premise and the hypothesis, which is followed by a Bi-LSTM model to get the221

final hidden sequence for prediction:222

H̄ õ = H õGõ,Gõ = SoftMax((W gH õ + bg ⊗ e)THo,a)

M = BiLSTM([Ho,a, H̄ õ,Ho,a − H̄ õ,Ho,a � H̄ õ]).

Here W g ∈ Rd×d and bg ∈ Rd are learnable parameters and e ∈ R|õ| denotes a vector of all 1s.223

We use a scoring function f(·) to compute matching scores of the premise and the hypothesis via a224

linear transformation on the max-pooled output of M . The matching scores for all õ are then fed to a225

softmax layer for the final prediction. We use the cross-entropy loss as the training objective.226

• BERT Siamese uses a pre-trained BERT model to separately encode the current observation-action227

pair (ot, at) and candidate observations õ. All inputs to BERT start with the “[CLS]” token, and we228

concatenate ot and at with a “[SEP]” token:229

ho,a = BERT([o, a]), hõ = BERT(õ),

lj = f([ho,a,hõ,ho,a − hõ,ho,a � hõ]),

where [·, ·] denotes concatenation. ho,a and hõ are the last layer hidden state vectors of the “[CLS]”230

token. Similarly, the scoring function f computes matching scores for candidate next-observations231
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by linearly projecting the concatenated vector into a scalar. The matching scores of all õ are grouped232

to a softmax layer for the final prediction.233

• BERT Concat represents the standard pairwise prediction mode of BERT. We concatenate o and a234

with a special split token as the first segment and treat õ as the second. We then concatenate the two235

with the “[SEP]” token:236

lj = f(BERT([o, a, õ])).

The scoring function f linearly projects the last-layer hidden state of the “[CLS]” token into a scalar,237

and the scores are grouped to a softmax layer for final prediction. This model is much less efficient238

than the former two as it requires explicit combination of observation-action-next-observation as239

inputs. Thus this model is impractical due to the huge combinatorial space. Here we report its results240

for reference.241

4.2 Neural Inference over Textual Triples242

Existing work [10, 19, 21] has applied textual matching and entailment among triples. For example,243

when applying to multi-choice QA, the entailment among triples is to predict whether a question q, an244

answer option a can be supported by a paragraph p. In this section, we apply the most commonly used245

co-matching approaches [23] and its BERT variant to our task. Figure 3 illustrates our co-matching246

architecture.247

Table 2: Evaluation on our datasets. Human performance (*) is computed on subsets of our data. BERT-concat
(†) performs not well on JECC dev set, because the dev instances are longer on average. The concatenated inputs
are more likely beyond BERT’s length limit. Inference speeds of models are evaluated on the development set
of our JECC dataset with a single V100 GPU.

ZUCC JECC Inference Speed #ParametersMethod Dev Acc Test Acc Dev Acc Test Acc (#states/sec)

Random Guess 10.66 16.42 7.92 8.01 – –

Textual Entailment Baselines
Match LSTM 57.52 62.17 64.99 66.14 33.8 1.43M
BERT-siamese 49.29 53.77 61.94 63.87 9.1 109.49M
BERT-concat 64.73 64.48 67.39† 72.16 0.6 109.48M

Triple Modeling Baselines
Co-Match LSTM 72.34 75.91 70.01 71.64 25.8 1.47M
Co-Match BERT 72.79 75.56 74.37 75.48 7.0 110.23M

Human Performance* 96.40 – 92.0 – – –

• Co-Matching LSTM [23] jointly encodes the question and answer with the context passage. We248

extend the idea to conduct the multi-hop reasoning in our setup. Specifically, similar to Equation 1,249

we first encode the current state observation o, the action a and the candidate next state observation250

õ separately with a BiLSTM model, and use Ho,Ha,H õ to denote the output hidden vectors251

respectively.252

We then integrate the co-matching to the baseline readers by applying bi-attention described in253

Equation 2 on (Ho, H õ), and (Ha, H õ) using the same set of parameters:254

H̄o = HoGo,Go = SoftMax((W gHo + bg ⊗ eo)TH õ)

H̄a = HaGa,Ga = SoftMax((W gHa + bg ⊗ ea)TH õ),

where W g ∈ Rd×d and bg ∈ Rd are learnable parameters and eo ∈ R|o|, ea ∈ R|a| denote vectors of255

all 1s. We further concatenate the two output hidden sequences H̄o and H̄a, followed by a BiLSTM256

model to get the final sequence representation:257

M = BiLSTM(

[
H õ, H̄o,H õ − H̄o,H õ � H̄o

H õ, H̄a,H õ − H̄a,H õ � H̄a

]
) (2)

A scoring function f linearly projects the max-pooled output of M into a scalar.258
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• Co-Matching BERT replaces the LSTM encoders with BERT encoders. Specifically, it separately259

encodes o, a, õ with BERT. Given the encoded hidden vector sequences Ho,Ha and H õ, it follows260

Co-Matching LSTM’s bi-attention and scoring function to compute the matching score.261

5 Experiments262

We first evaluate all the proposed baselines on our datasets. Then we conduct a human study on a263

subset of our development data to investigate how human experts perform and the performance gap264

between machines and humans.265

Implementation Details. We set learning rate of Adam to 1e−3 for LSTM-based models and 2e−5266

for BERT-based models. The batch size various, each corresponds to the number of valid actions267

(up to 16 as described in data construction section). For the LSTM-based models, we use the Glove268

embedding [14] with 100 dimensions. For both match LSTM, co-match LSTM and co-match BERT,269

we map the final matching states M to 400 dimensional vectors, and pass these vectors to a final270

bi-directional LSTM layer with 100-dimensional hidden states.271

All the experiments run on servers using a single Tesla V100 GPU with 32G memory for both training272

and evaluation. We use Pytorch 1.4.0; CUDA 10.2; Transformer 3.0.2; and Jericho 2.4.3.273

5.1 Overall Results274

Table 2 summarizes the models’ accuracy on the development and test splits and the inference275

speed on the JECC development set. First, all the baselines learned decent models, achieving276

significantly better scores than a random guess. Second, the co-matching ones outperform their277

pairwise counterparts (Co-Match BERT > BERT-Siamese/-Concat, Co-Match LSTM > Match LSTM),278

and the co-match BERT performs consistently best on both datasets. The co-matching mechanism279

better addressed our datasets’ underlying reasoning tasks, with a mild cost of additional inference280

computation overhead. Third, the co-match LSTM well balances accuracy and speed. In contrast, the281

BERT-concat, although still competitive on the accuracy, suffers from a quadratic time complexity on282

sequence lengths, prohibiting practical model learning and inference.283

BERT-Concat represents recent general approaches to commonsense reasoning tasks. We manually284

examined the incorrect predictions and identified two error sources. First, it is challenging for the285

models to distinguish the structures of current/next observations and actions, especially when directly286

taking as input complicated concatenated strings of multiple types of elements. For example, it may287

not learn which parts of the inputs correspond to inventories. Second, the concatenation often makes288

the texts too long for BERT.289

Albeit the models consistently outperform random guesses, the best development results on both290

datasets are still far below human-level performance. Compared to the human expert’s near-perfect291

performance, the substantial performance gaps confirm that our datasets require important common-292

sense that humans always possess.293

Remark on the Performance Consistency. It seems that the BERT-Concat and co-match294

LSTM/BERT models achieve inconsistent results on the ZUCC and JECC. We point out that295

this inconsistency is mainly due to the different distributions – for the JECC we hope to keep a296

natural distribution of commonsense challenges, so we only evaluate on walkthrough tuples. To297

clarify, we also evaluate the three models on all tuples from JECC development games. The re-298

sulted accuracies are 59.84 (BERT-Concat), 68.58 (co-match LSTM), and 68.96 (co-match BERT),299

consistent with their ranks on ZUCC.300

5.2 Human Evaluation301

We present to the human evaluator each time a batch of tuples starting from the same observation302

ot, together with its shuffled valid actions At+1 and next observations Ot+1. For JECC, only the303

walkthrough action at+1 is given. The evaluators are asked to read the start observation ot first, then304

to align each o ∈ Ot+1 with an action a ∈ At+1. For each observation o, besides labeling the action’s305
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Table 3: Improvement from LSTM to BERT.

Performance ∆BERT-LSTM
∆Human-LSTMDataset LSTM BERT Human

Multi-choice QA
RACE 50.4 66.5 94.5 37%
DREAM 45.5 63.2 95.5 35%

Commonsense Reasoning
Abductive NLI 50.8 68.6 91.4 44%
Cosmos QA 44.7 67.6 94.0 46%
Our ZUCC 72.3 72.8 96.4 2%
Our JECC 70.0 74.4 92.0 20%

alignment, the subjects are asked to answer a secondary question: whether the provided ot, o pair is306

sufficient for them to predict the action. If they believe there are not enough clues and their action307

prediction is based on a random guess, they are instructed to answer “UNK” to the second question.308

We collect human predictions on 250 ZUCC samples and 100 JECC samples. The annotations are309

done by one of the co-authors who have experience in interactive fiction game playing (but have not310

played the development games before). The corresponding results are shown in Table 2, denoted as311

Human Performance. The human expert performs 20% higher or more compared to the machines on312

both datasets.313

Finally, the annotators recognized 10.0% cases with insufficient clues in ZUCC and 17.0% in JECC,314

indicating an upper-bound of methods without access to history observations.5315

5.3 Comparison to the Other Datasets316

Lastly, we compare our JECC with the other datasets to investigate how much we can gain by317

merely replacing the LSTMs with pre-trained LMs like BERT for text encoding. It is to verify318

that the language model pre-training does not easily capture the required commonsense knowledge.319

When LMs contribute less, it is more likely deeper knowledge and reasoning are required so that320

the dataset can potentially encourage new methodology advancement. Specifically, we computed321

the models’ relative improvement from replacing the LSTM encoders with BERT ones to measure322

how much knowledge BERT has captured in pre-training. Quantitatively, we calculated the ratio323

between the improvement from BERT encoders to the improvement of humans to LSTM models,324

∆BERT-LSTM/∆Human-LSTM. The ratio measures additional information (e.g., commonsense) BERT325

captures, compared to the full commonsense knowledge required to fill the human-machine gap.326

Table 3 compares the ratios on different datasets. For a fair comparison, we use all the machine327

performance with co-matching style architectures. We compare to related datasets with co-matching328

performance available, either reported in their papers or leaderboards. These include Commonsense329

Reasoning datasets Abductive NLI [2] and Cosmos QA [8], and the related Multi-choice QA datasets330

RACE [10] and DREAM [19]. Our datasets have significantly smaller ratios, indicating that much of331

the required knowledge in our datasets has not been captured in BERT pre-training.332

6 Conclusion333

Interactive Fiction (IF) games encode plentiful and diverse commonsense knowledge of the physical334

world. In this work, we derive commonsense reasoning benchmarks JECC and ZUCC from IF335

games in the Jericho Environment. Taking the form of predicting the most likely observation when336

applying an action to a game state, our automatically generated benchmark covers comprehensive337

commonsense reasoning types such as spatial reasoning and object interaction, etc. Our experiments338

show that current popular neural models have limited performance compared to humans. To our best339

knowledge, we do not identify significant negative impacts on society resulting from this work.340

5Humans can still make a correct prediction by first eliminating most irrelevant options then making a random
guess.
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