
CoKV: Optimizing KV Cache Allocation via Cooperative Game

Anonymous ACL submission

Abstract001

Large language models (LLMs) have achieved002
remarkable success on various aspects of hu-003
man life. However, one of the major chal-004
lenges in deploying these models is the sub-005
stantial memory consumption required to store006
key-value pairs (KV), which imposes signifi-007
cant resource demands. Recent research has008
focused on KV cache budget allocation, with009
several approaches proposing head-level bud-010
get distribution by evaluating the importance011
of individual attention heads. These methods,012
however, assess the importance of heads inde-013
pendently, overlooking their cooperative con-014
tributions within the model, which may result015
in a deviation from their true impact on model016
performance. In light of this limitation, we017
propose CoKV, a novel method that models018
the cooperation between heads in model infer-019
ence as a cooperative game. By evaluating the020
contribution of each head within the coopera-021
tive game, CoKV can allocate the cache bud-022
get more effectively. Extensive experiments023
show that CoKV achieves state-of-the-art per-024
formance on the LongBench benchmark us-025
ing LLama-3-8B-Instruct and Mistral-7B mod-026
els. Code is provided in https://anonymous.027
4open.science/r/CoKV-40AC.028

1 Introduction029

Large language models (LLMs) are widely applied030

across various domains, including content genera-031

tion (Li et al., 2024a), automated services (Chen032

et al., 2024a), and decision support systems (Bao033

et al., 2023). To enhance the application capa-034

bilities of large language models, it is essential035

for them to handle long texts. For example, GPT-036

4 (OpenAI, 2024) and Llama-3 (Dubey et al., 2024)037

support a context size of 128k tokens, while the038

context size of Claude 3 (Anthropic, 2024) is up to039

200k tokens. LLMs consist of multiple transformer040

blocks that store key and value states (KV) dur-041

ing inference. KV cache allows efficient decoding042

in token generation without recomputing key and 043

value states by using previously cached KV pairs. 044

However, the KV cache grows excessively large 045

when dealing with long texts, inevitably straining 046

GPU memory and increasing decoding latency. 047

Eviction of less important key and value states in 048

the cache has garnered significant attention. Many 049

studies have explored methods for ranking the im- 050

portance of tokens within a single attention head, 051

retaining only the top k most significant ones. For 052

example, H2O (Zhang et al., 2023b) evaluates to- 053

ken importance using the sum of attention weights. 054

StreamingLLM (Xiao et al., 2024) directly removes 055

KV from the middle segment of the cache to reduce 056

the cache size as they incorporate less information. 057

SnapKV (Li et al., 2024b) calculates token scores 058

by pooling the attention weights between tokens in 059

the local window and those in the cache. Recently, 060

some studies have recognized that the importance 061

of each attention head varies, enabling methods 062

like AdaKV (Feng et al., 2025) and HeadKV (Fu 063

et al., 2025). AdaKV improves budget utilization 064

by adaptively allocating the overall budget across 065

different attention heads based on their varied con- 066

centration degrees. Heads with sparse concentra- 067

tions require a small cache proportion, whereas 068

more dispersed heads demand larger allocations. 069

HeadKV evaluates the retrieval-reasoning scores 070

of different heads and allocates a larger cache size 071

to those with higher scores. 072

Motivated by evidence that attention heads vary 073

in importance, we propose a novel approach to bet- 074

ter evaluate and utilize this variability. We identify 075

two key insights. First, existing methods evalu- 076

ate attention head importance independently. For 077

example, AdaKV evaluates the concentration de- 078

grees of heads while HeadKV assesses the retrieval- 079

reasoning capability of each head in isolation as a 080

measure of importance. However, these approaches 081

treat heads as isolated units, overlooking the fact 082

that their true importance emerges from their co- 083

1

https://anonymous.4open.science/r/CoKV-40AC
https://anonymous.4open.science/r/CoKV-40AC
https://anonymous.4open.science/r/CoKV-40AC

operation rather than individual capabilities. As084

a result, independently assessing head importance085

may lead to suboptimal allocation. Second, exist-086

ing methods evaluate head importance in a task-087

agnostic manner. However, heads that play a criti-088

cal role in query answering may not hold the same089

level of significance in code generation. Conse-090

quently, applying the same importance scores to091

heads across all tasks within a model may fail092

to reflect the practical need of each specific task093

accurately. Based on these insights, we propose094

CoKV (Cooperation-based Key-Value), a method095

that evaluates the contribution of all attention heads096

in their cooperation within the model and dynami-097

cally allocates cache budgets based on their contri-098

bution to the specific task.099

CoKV is inspired by the Shapley value (Shapley,100

1953) from cooperative game theory. The Shapley101

value of a player pi measures the expected marginal102

contribution that pi provides to a coalition of play-103

ers. Similarly, we can use the Shapley value to104

assess the importance of each attention head by105

viewing each head as a player. Marginal contribu-106

tion is defined as U(S ∪ {pi})− U(S) where S is107

a coalition of players excluding i and U is the util-108

ity function. A simple intuition for computing the109

Shapley value of each head in the model is to de-110

fine U as the model performance metric. However,111

calculating the Shapley value is #P-hard (Deng and112

Papadimitriou, 1994), as there are an exponential113

number of coalitions and corresponding marginal114

contributions. As a result, evaluating the Shapley115

value for each head in LLMs requires an enormous116

number of model inferences. Although many stud-117

ies (Jia et al., 2019; Mitchell et al., 2022) have ex-118

plored approximating the Shapley value to reduce119

computational costs, the process remains costly.120

The computational bottleneck in calculating the121

Shapley value arises from the fact that each sam-122

ple of the marginal contribution only can be ap-123

plied to a single player. Fortunately, Shapley124

value can be expressed as the expectation of the125

weighted complementary contribution, defined as126

U(S)− U(N \ S), where N represents the set of127

all players (Zhang et al., 2023a). Complementary128

contribution has an advantage over marginal con-129

tribution is that U(S)− U(N \ S) can be used to130

update the Shapley values for all players i ∈ S.131

By expressing the Shapley value in terms of com-132

plementary contributions, we can interpret it as133

an expectation over these contributions computed134

at different coalition sizes |S|. However, in the135

LLM setting, the cost of computing the comple- 136

mentary contributions in all coalition sizes is still 137

prohibitively high. We observe that the average 138

complementary contribution at each coalition size 139

exhibits a strong correlation with the Shapley value 140

of the players in Appendix Section B.3. This in- 141

sight allows us to approximate attention head im- 142

portance by computing complementary contribu- 143

tions at only a few selected coalition sizes, rather 144

than evaluating all possible sizes (i.e., from 1 to 145

|N |). By focusing on a few representative coali- 146

tion sizes, we can significantly reduce the computa- 147

tional cost of estimating the contributions of heads. 148

Additionally, we provide a theoretical analysis of 149

this approach and demonstrate its efficiency. 150

CoKV is a simple-yet-effective method and 151

can integrate well with other inference optimiza- 152

tion techniques. We integrate CoKV with widely 153

used methods including FlashAttention (Dao et al., 154

2022) and grouped-query attention (GQA) (Ainslie 155

et al., 2023). CoKV achieves state-of-the-art per- 156

formance in LongBench (Bai et al., 2024) us- 157

ing Llama-3-8B-Instruct (Dubey et al., 2024) and 158

Mistral-7B (Jiang et al., 2023) models. Results 159

from the Llama-3-8B-Instruct model show that 160

when each KV cache retains an average of 128 KV 161

pairs (1.6% of the full cache), it achieves 97.29% 162

of the performance of the full KV cache. Further- 163

more, when each cache retains just 512 tokens on 164

average, CoKV outperforms the full KV cache in 165

terms of average accuracy. This demonstrates that 166

CoKV not only reduces computational costs but 167

also improves inference performance by identify- 168

ing which heads benefit from cache retention and 169

which may have a detrimental effect. Additionally, 170

we evaluate all methods within the token range of 171

1k to 31k in the Needle-in-a-Haystack test, where 172

CoKV also demonstrated the best retrieval capabil- 173

ity. 174

2 Preliminaries 175

2.1 Key-Value Caching and Compression 176

In Multi-Head Attention (MHA), for each atten- 177

tion head hi in one layer, the embedded input 178

X = {x1, x2, . . . , xm} ∈ Rm×dmodel of m tokens is 179

mapped into different subspaces using query WQ
i , 180

key WK
i , and value W V

i ∈ Rdmodel×dh matrices: 181

Qi = XWQ
i ,Ki = XWK

i , Vi = XW V
i ∈ Rm×dh 182

where dh is the dimension of attention heads, dh = 183

d/τ , and τ is the number of heads in one layer. 184

2

All the computed KV for the input sequence185

are cached to avoid recalculating them during the186

subsequent decoding stages. Assume there is a new187

input token x ∈ R1×dmodel , then it will be mapped188

to a new query, key, and value as follows,189

qi = xWQ
i , ki = xWK

i , vi = xW V
i ∈ R1×dh .190

The KV cache is updated by adding the new key
and value pair

Ki = Cat[Ki, ki], Vh = Cat[Vi, vi].

The attention output is computed as follows,

Oi = AiVi

where Ai = softmax(qiK
T
i /
√
dh). The final out-

put y ∈ R1×dmodel is obtained through a linear trans-
formation

y = Cat[O1, · · · , Oτ]W
O

where WO ∈ Rd×dmodel output weight matrix.191

Furthermore, KV cache eviction methods can192

be employed to discard unimportant KV cache193

entries while preserving performance. For each194

head hi, the compressed KV cache is reduced to195

K̂i ∈ Rs×dh and V̂i ∈ Rs×dh , where some unim-196

portant KV pairs are evicted and s≪ m, resulting197

in a significant improvement in computational effi-198

ciency and memory usage. Specifically, the com-199

pressed KV cache is updated by appending the new200

key and value pair:201

K̂i = Cat[K̂i, ki], V̂i = Cat[V̂i, vi].202

The attention output for each head hi is computed203

using the compressed KV cache:204

Ôi = ÂiV̂i,205

where the attention weights Ai are calculated as:206

Âi = softmax(qiK̂T
i /
√
dh).207

2.2 Shapley Value208

Consider a set of players N = {p1, . . . , pn}. A209

coalition S is a subset ofN that cooperates to com-210

plete a task. A utility function U(S) (S ⊆ N) is211

the utility of coalition S for the task. The marginal212

contribution of player pi with respect to a coalition213

S is U(S ∪ {pi})−U(S). The Shapley value mea-214

sures the expectation of marginal contribution of215

player pi in all possible coalitions. That is216

SV i =
1

n

∑
S⊆N\{pi}

U(S ∪ {pi})− U(S)(
n−1
|S|

) . (1)217

According to Equation 1, it is evident that comput- 218

ing the exact Shapley value requires enumerating 219

the utilities for all possible subsets of players and 220

each marginal contribution can only be used to up- 221

date the Shapley value of a single player. Therefore, 222

the computational complexity of exactly calculat- 223

ing the Shapley value is exponential. Recently, the 224

Shapley value of player pi is proven to be equal to 225

the weighted complementary contributions (Zhang 226

et al., 2023a) as follows, 227

SV i =
1

n

∑
S⊆N\{pi}

U(S)− U(N \ S)(
n−1
|S|

) . (2) 228

U(S)− U(N \ S) is called complementary contri- 229

bution which has an advantage that can be reused 230

to update Shapley value estimation for all players 231

in S. In the context of KV caches, attention heads 232

are treated as players for evaluating their impor- 233

tance to each specific task. U(S) is defined as the 234

model accuracy when the attention heads in N \ S 235

are masked, we retain only the KV pairs within the 236

local window for masked heads. 237

3 Method 238

Our method consists of two phases. First, we pre- 239

compute the importance scores for each attention 240

head. Second, these scores are utilized for KV 241

cache compression during inference. The overview 242

of our approach is illustrated in Figure 1. 243

3.1 Head Importance Evaluation 244

Although the complementary contribution helps
in increasing efficiency when approximating the
Shapley value, it is still computationally costly,
especially in the LLM setting. Given a set of play-
ers N = {p1, . . . , pn}, a coalition of j players
(1 ≤ j ≤ n) is called a j-coalition. Moreover,
for a player pi (1 ≤ i ≤ n), a j-coalition that
contains pi is called a (i, j)-coalition. Denote by
Si,j = {S ∪ {pi}|S ⊆ N \ {pi}, |S| = j− 1} the
set of (i, j)-coalitions, and by SV i,j the expected
complementary contributions of (i, j)-coalitions.
That is,

SV i,j =
∑

S∈Si,j

U(S)− U(N \ S)(
n−1
j−1

) .

It is clear that SV i = 1
n

∑n
j=1 SV i,j . Computing 245

the Shapley value needs to calculate SV i,j for j 246

ranging from 1 to n, which becomes costly when 247

n is large. 248

3

Layers

…

Layers

H
ea

d
s

Evicted KV

Cached KV

Masked Head

Unmasked Head

Sample 1 Sample MSample

[2 , M-1]

Layer 3

Head 1

Head 2

Head 3

Head 4

Local Window

Figure 1: Overview of our proposed method: (1) Head Importance Evaluation (Upper Part): For a 4-layer ×
4-head model, We measure head importance using the Sliced Shapley Value (SSV). To approximate SSV, we sample
M different sets of masked heads and compute their complementary contributions. The average complementary
contribution of each head is its estimated SSV. (2) KV Cache Compression (Lower Part): Using the 4 heads in
Layer 3 as an example, all heads store KV pairs for a small local window of recent tokens, while heads with higher
SSV (darker in the heatmap) are allocated more cache size to retain KV pairs before the local window.

We observe that the expected complementary249

contributions of j-coalitions for heads in LLMs fol-250

low a similar distribution across different j values,251

as shown in Appendix Section B.3. This suggests252

that the contributions of heads can be effectively253

captured using a subset of j-coalitions. Based on254

this insight, we propose assessing the importance of255

heads using the expected complementary contribu-256

tion of several j-coalitions, which can significantly257

reduce the computation cost while maintaining ef-258

fectiveness. Formally, we introduce a new defini-259

tion called the Sliced Shapley value as follows.260

Definition 1 (Sliced Shapley Value) Let H ⊆261

{1, · · · , n} denote the selected set of j-coalitions,262

representing a specific slice of the coalition size263

space. The Sliced Shapley value of head hi with264

respect toH is defined as:265

SSVHi =
1

|H|

n∑
j=1

SV i,j · I|H|
j ,266

where IHj is an indicator function, which is 1 if j is267

the element inH and 0 otherwise.268

Algorithm Description. The detailed steps of269

approximating SSVHi are shown in Algorithm 1.270

In each iteration, sample a random permutation πk271

of the heads {h1, . . . , hn}, which defines a random272

ordering of the heads. Randomly select a split point273

and create a set S of selected heads. Mask heads274

in the set N \ S, and evaluate the model accuracy275

after masking, which is denoted as U(S). Similarly, 276

calculate U(N \ S) by masking heads in S (Lines 277

3-6). For each head in S, update SVπk(j),i and 278

count matrix mπk(j),i (Lines 7-10). AfterM iter- 279

ations are completed, calculate the approximated 280

Sliced Shapley value for each head by averaging 281

the complementary contributions. 282

Theorem 1 Algorithm 1 returns an (ϵ, δ)- 283

approximation of Sliced Shapley value with time 284

complexity O(T |H|ln 2|H|
δ

ϵ2
) where T is the time cost 285

of evaluating a complementary contribution which 286

is the time to inference on the validation dataset 287

of each task in our setting. In contrast, Shapley 288

value requires the time complexity of O(Tnln 2n
δ

ϵ2
) 289

to achieve an (ϵ, δ)-approximation. The proof is 290

provided in Appendix Section C. 291

3.2 KV Cache Compression 292

Existing KV cache compression methods have par- 293

tially addressed the importance of layers, yet this 294

consideration remains insufficient during cache al- 295

location. While AdaKV attempts to preserve to- 296

kens with larger attention weights across all heads 297

when allocating cache size, it overlooks the varying 298

importance of different attention heads. Conversely, 299

HeadKV acknowledges the differential importance 300

of attention heads but suffers from several limita- 301

tions. First, its evaluation primarily relies on the 302

retrieval capability of individual heads, incorporat- 303

4

Algorithm 1: Evaluating Head Importance
in LLMs.
input :Heads N = {h1, . . . , hn} and

sampling numberM > 0
output :approximate Sliced Shapley value

SSVHi for each head hi
(1 ≤ i ≤ n)

1 SVHi ← 0 (1 ≤ i ≤ n); SV i,j ,mi,j ← 0
(1 ≤ i, j ≤ n);

2 for k=1 toM do
3 let πk be a random permutation of

{1, . . . , n};
4 let i be a randomly selected element

from the setH;
5 S ← {πk(1), . . . , πk(i)};
6 N \ S ← {πk(i+ 1), . . . , πk(n)};

// U(S) is the model performance when heads in
N \ S are masked and vice versa for U(N \ S).

7 u← U(S)− U(N \ S);
8 for j=1 to i do
9 SVπk(j),i+ = u;

10 mπk(j),i+ = 1;

11 for i = 1 to n do
12 SSVHi = 1

H
∑n

j=1 SV i,j/mi,j ;

13 return SSVH1 , . . . ,SSVHn .

ing only basic reasoning abilities that prove inade-304

quate for more complex scenarios, such as few-shot305

learning. Second, it assesses each head in isolation,306

ignoring the discrepancy between a head’s individ-307

ual contribution and its collaborative importance308

when working in conjunction with other heads. Our309

proposed method addresses these limitations by in-310

troducing a SSV-based scoring mechanism, which311

evaluates each head’s importance based on its col-312

laborative contribution to the task. This approach313

offers a more comprehensive and accurate repre-314

sentation of each head’s significance in the overall315

model inference process.316

Budget Allocation. An intuitive approach sug-317

gests that the least important heads, which con-318

tribute minimally or even negatively to the model319

performance, may not require cache allocation.320

Let α represent the number of such heads, which321

serves as the sole hyperparameter in our alloca-322

tion scheme. For the remaining n − α heads, we323

employ a normalization method to normalize their324

importance scores and allocate the cache size pro-325

portionally based on their normalized scores.326

Algorithm 2: Token Eviction Using CoKV.
input :Shared budget size B, local

window size s, tokens in local
window Xwin ∈ Rs×d, KV in local
window {Kwin

i , V win
i }, KV

outside local window {Kout
i , V out

i }
output :Retained KV Cache {K̂i, V̂i}

1 Qwin
i = XwinWQ

i ;
// Compute attention weights of queries in local window

and prefix Keys.

2 Ai = softmax(Qwin
i KT

i);
3 Ai = Ai.maxpooling(dim =

1).mean(dim = 0);
// Calculate token scores outside the local window.

4 Get ci using Algorithm 1 and Equation 3;
5 indices = Ai.topk(ci).indices;
6 Select {K̂i, V̂i} from {Kout

i , V out
i }

according indices;
7 {K̂i, V̂i} = Cat({K̂i, V̂i}, {Kwin

i , V win
i });

// Keep top ci KV pairs in the cache.

8 return Retained KV Cache {K̂i, V̂i}.

Specifically, we normalize their contributions 327

using min-max normalization for the n− α heads: 328

NSVHi =
SSVHi −minα(SSVH)

max(SSVH)−minα(SSVH)
, 329

where minα(·) and max(·) extract the α-th small- 330

est and maximum value, respectively. For the α 331

heads with the smallest Sliced Shapley values, we 332

set the normalized score as 0. This ensures that all 333

normalized scores lie in the range [0, 1]. 334

Next, the cache size ci allocated to head hi is 335

determined by the local window size s and lin- 336

early distributing the remaining shared cache size 337

B based on the normalized scores: 338

ci = B · NSVHi∑n
j=1NSV

H
j

+ s. (3) 339

Algorithm Description. First, we allocate the 340

KV cache size for each head based on their nor- 341

malized Sliced Shapley values. Next, we rank the 342

importance of KV pairs within each head using 343

SnapKV. Specifically, the most recent tokens within 344

local windows guide the KV cache selection. At- 345

tention scores from these local windows to the re- 346

maining tokens are aggregated via pooling, with 347

higher-scoring tokens retained in the cache for each 348

head. The detailed eviction steps for a single head 349

are outlined in Algorithm 2. 350

5

4 Experiments351

4.1 Experiment Settings352

Datasets. LongBench is a multitask benchmark353

for long context understanding and exhibits a wide354

range of average input lengths, spanning from355

1,235 to 18,409 tokens.356

Baselines and Settings. We compare CoKV with357

four strong KV cache compression methods. All358

methods keep the same total cache size for fair359

comparison. Besides, we implement all methods360

with GQA (Ainslie et al., 2023) and FlashAtten-361

tion (Dao et al., 2022) for efficient computation.362

• SnapKV (Li et al., 2024b) uses the last several363

tokens as local windows to guide KV cache se-364

lection. Attention scores from these windows to365

the remaining tokens are pooled to cluster and366

guide the selection process.367

• PyramidKV (Cai et al., 2024) allocates more KV368

cache to lower layers to retain key information369

while reducing the budget for higher layers where370

information is already aggregated.371

• Ada-KV (Feng et al., 2025) dynamically allo-372

cates budgets to heads within each layer based on373

their concentration degrees, and can be combined374

with SnapKV or PyramidKV. Ada-SnapKV is375

used as the baseline due to its superior perfor-376

mance over Ada-PyramidKV.377

• HeadKV-R2 (Fu et al., 2025) allocate budgets378

to heads based on their retrieval-reasoning score,379

and it uses SnapKV to rank the importance of380

KV pairs in each head.381

In CoKV, we allocate the KV cache size for each382

head based on the normalized Sliced Shapley value383

ofH = {32, 64, 96, 128}. Following HeadKV-R2,384

we set the local window size to 8, and randomly385

split each dataset into a validation dataset and a test386

dataset, with proportions of 15% and 85%, respec-387

tively. The hyperparameter α is selected from the388

set {1, 5, 10, 15, 20, 30, 40}. The validation dataset389

is used to compute Sliced Shapley value and de-390

termine the optimal α for each task. We evaluate391

CoKV on the Llama-3-8B-Instruct and Mistral-7B-392

Instruct-v0.2 models. Due to the page limit, the393

Mistral-7B-Instruct-v0.2 results are provided in Ap-394

pendix. For test data that exceeds the maximum395

input length of Llama-3-8B-Instruct, we adopt the396

approach of HeadKV by utilizing the first 4k tokens397

and the last 4k tokens. Following standard practices398

in prior studies (Feng et al., 2025; Fu et al., 2025),399

we perform cache eviction after the prefilling phase 400

of each layer for consistent comparison. In GQA, 401

a group of 4 heads shares the same KV cache. We 402

treat each cache within a group as a player in a 403

cooperative game, evaluating their Sliced Shapley 404

value to determine their importance scores. For 405

HeadKV-R2, we calculate the importance score of 406

each group by averaging the retrieval-reasoning 407

scores of the 4 heads within the group. This adapta- 408

tion ensures compatibility with GQA, as HeadKV 409

is implemented with MHA in the original paper. 410

For the efficiency and computation cost analysis 411

of Sliced Shapley value, please refer to Appendix 412

Section B.1. For the test in Needle-in-a-Haystack, 413

please refer to Appendix Section B.5. 414

4.2 Main Results 415

Benchmark Results. The complete benchmark 416

results are presented in Tables 4 and 5 in the ap- 417

pendix. We include a simplified table (Table 1), 418

showing the performance of Llama-3-8B-Instruct 419

when keeping 64-128 KV pairs on average. The 420

results demonstrate that CoKV consistently outper- 421

forms all baseline methods. The average accuracy 422

of the two models on 16 datasets are presented in 423

Figure 2. Notably, in Llama-3-8B-Instruct, with

64 128 256 512 1024
KV size

35

36

37

38

39

40

41

42

43

Av
er
ag
e
Sc
or
e

Llama-3-8B-Instruct

SnapKV
Pyramid
Ada-SnapKV
HeadKV-R2
CoKV
FullKV

64 128 256 512 1024
KV size

32

34

36

38

40

Av
er
ag
e
Sc
or
e

Mistral-7B-Instruct-v0.2

SnapKV
Pyramid
Ada-SnapKV
HeadKV-R2
CoKV
FullKV

Figure 2: Results for varying KV cache sizes (64, 128,
256, 512, 1024), showing the average accuracy across
16 datasets from the LongBench benchmark.

424
an average of 128 tokens cached per group KV 425

cache, CoKV retains 97.29% of the model perfor- 426

mance. Furthermore, CoKV significantly surpasses 427

6

Table 1: Benchmark Results of Llama-3-8B-Instruct

Method
Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64
KV size=64

SnapKV 19.94 13.21 28.91 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 54.35 50.42
Pyramid 20.11 16.54 32.67 40.25 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96
Ada-SnapKV 20.40 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 35.25 4.41 71.57 54.02 51.68
HeadKV-R2 20.30 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49
CoKV 20.77 19.67 35.11 44.37 34.36 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82

KV size=1024

SnapKV 23.95 26.95 37.81 44.03 30.88 20.93 24.26 23.09 25.79 72.35 90.87 41.43 4.31 71.76 59.29 54.91
Pyramid 23.62 26.76 39.44 45.79 33.41 19.87 23.57 22.98 25.13 73.02 90.93 40.86 4.71 71.76 58.43 53.67
Ada-SnapKV 23.52 28.33 40.39 45.20 32.95 20.11 24.55 23.33 25.37 73.53 90.87 41.38 4.46 71.76 58.88 54.65
HeadKV-R2 23.35 29.60 40.09 45.82 35.81 21.39 25.57 23.32 26.30 74.12 90.77 40.27 4.19 71.76 61.58 59.03
CoKV 24.01 31.70 40.64 48.13 37.89 20.64 23.02 23.89 25.71 74.12 91.01 42.02 4.71 71.20 63.33 63.74

FullKV when it maintains an average of over 512428

KV pairs per group cache. When retains an aver-429

age of 1024 KV, the average results of both models430

outperform FullKV. This demonstrates that CoKV431

achieves near-lossless performance under resource-432

constrained settings. The superior performance of433

CoKV arises from its ability to effectively evaluate434

the importance of each cache within a group while435

considering the cooperation among all groups. It436

is not only capable of identifying which groups are437

important but also able to recognize those groups438

that do not contribute or even have a negative con-439

tribution. By optimizing the cache size to enhance440

overall cooperation, CoKV ensures efficient and441

high-quality inference.442

Hyperparameter Free Results. Since both443

HeadKV-R2 and CoKV provide importance scores444

for each group, we conduct an experiment to com-445

pare their effectiveness without introducing any446

additional hyperparameters. In this experiment,447

we mask the caches of groups based on the impor-448

tance scores assigned by each algorithm. Specif-449

ically, we mask the caches of both the highest-450

ranked (top) and lowest-ranked groups (low). The451

complete results are shown in Tables 6 and 7 in452

the appendix. We include a simplified table for453

the results of masking 16,128 groups of Llama-3-454

8B-Instruct model in Table 2. The results show455

that when masking the top-ranked groups identi-456

fied by each method, the performance of CoKV457

degrades more significantly than that of HeadKV-458

R2. Conversely, when masking the unimportant459

groups (low), the performance of CoKV declines460

more gradually than HeadKV-R2. This suggests 461

that CoKV is more effective at ranking group im- 462

portance, as it better distinguishes between critical 463

and non-critical caches. The results of masking 16 464

groups in both models outperformed the FullKV 465

approach as shown in Figure 3. This further demon-

16 32 64 96 128
Masked Groups

5

10

15

20

25

30

35

40

45

Av
er

ag
e

Sc
or

e

Llama-3-8B-Instruct

FullKV
Random
HeadKV-R2(top)
CoKV(top)
HeadKV-R2(low)
CoKV(low)

16 32 64 96 128
Masked Groups

5

10

15

20

25

30

35

40

Av
er

ag
e

Sc
or

e

Mistral-7B-Instruct-v0.2

FullKV
Random
HeadKV-R2(top)
CoKV(top)
HeadKV-R2(low)
CoKV(low)

Figure 3: Results for varying masked groups
(16,32,64,96,128), showing the average accuracy across
16 datasets from the LongBench benchmark.

466
strates that CoKV can identify groups that have a 467

negative impact on the model. By removing the 468

KV pairs from these groups, the model inference 469

not only optimizes storage and decoding speed but 470

also enhances overall performance. 471

7

Table 2: Results of masking groups with Llama-3-8B-Instruct

Method
Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64
Masking 16 groups

Random 20.93 28.48 33.69 44.93 20.01 20.6 28.43 23.7 26.67 74.12 91.07 41.12 4.26 71.76 49.83 40.55
HeadKV-R2(top) 19.45 12.97 27.75 34.2 17.33 14.32 19.74 22.76 22.05 67.06 87.91 35.53 4.71 68.49 26.62 26.53
CoKV(top) 6.55 9.46 9.47 10.19 12.27 5.67 5.73 16.96 4.47 43.53 71.21 23.77 3.91 34.98 11.58 17.18
HeadKV-R2(low) 21.83 14.36 33.34 31.37 27.23 12.55 27.29 23.82 26.99 74.12 91.03 42.18 4.12 70.59 37.35 38.55
CoKV(low) 23.74 33.76 41.71 49.27 40.48 19.99 29.13 23.25 27.79 74.12 91.45 42.37 4.71 70.55 63.38 61.26

Masking 128 groups

Random 3.34 2.50 5.33 10.59 5.12 2.73 2.15 9.19 0.16 44.12 31.33 9.05 4.18 66.74 12.27 9.23
HeadKV-R2(top) 2.34 2.17 5.38 7.21 7.19 1.85 1.80 10.34 0.31 34.71 26.08 7.87 4.71 66.92 13.94 11.76
CoKV(top) 0.59 0.80 1.38 2.96 3.42 1.11 1.16 4.05 0.13 34.12 2.89 7.17 1.09 7.52 2.91 3.55
HeadKV-R2(low) 12.02 7.97 8.92 14.87 12.83 5.26 2.41 9.12 1.42 55.88 40.96 10.2 4.71 68.42 10.14 6.03
CoKV(low) 15.31 12.15 28.44 35.35 23.27 10.67 2.93 12.24 9.41 73.82 76.32 37.70 4.71 68.24 22.20 24.93

4.3 Decoding Latency and Memory Usage472

We conduct experiments using the Mistral-7B-473

Instruct-v0.2 model, which supports a maximum474

context window of 32k tokens, with FlashAttention475

enabled as the default setting, on an A100 GPU476

with 40GB of memory. We design two key exper-477

iments with the average KV cache size set to 128478

tokens(comparative experiments showed less than479

2% variation across 64/256/512/1024 tokens).480

Figure 4: Results of Decoding Latency and Peak Mem-
ory Usage, demonstrating that CoKV maintains compa-
rable performance with other baseline methods while
achieving significant improvements over FullKV.

Decoding Latency With a fixed input context 481

length of 28k tokens, we measure decoding la- 482

tency (including both the pre-filling time and the 483

decoding time) across different generation lengths 484

(1/512/1024/2048/4096 tokens). As shown in the 485

Decoding Latency of Figure 4, CoKV achieves less 486

than 50% of the total latency compared to the Ful- 487

lKV baseline, with negligible differences observed 488

between the other baselines. 489

Peak Memory Usage Under fixed generation 490

length (1 token), we measure the peak GPU 491

memory usage (including model parameters and 492

runtime states) across varying input contexts 493

(1k/2k/4k/8k/16k/32k tokens). As shown in the 494

Peak Memory Usage of Figure 4, CoKV reduces 495

memory usage by 64% compared to FullKV base- 496

line at 32k input length. 497

5 Conclusion 498

Large language models (LLMs) face significant 499

challenges in handling long texts due to the exces- 500

sive memory and latency overhead caused by the 501

growing size of the KV cache. To this end, we intro- 502

duce the Sliced Shapley value (SSV) to evaluate the 503

collaborative importance of attention heads and a 504

novel method called CoKV to dynamically allocate 505

cache sizes based on SSV. Our experimental results 506

demonstrate that CoKV achieves state-of-the-art 507

performance across 16 LongBench datasets, outper- 508

forming the full KV cache in 9 datasets while reduc- 509

ing memory and latency overhead. CoKV provides 510

a scalable and practical solution for enhancing the 511

efficiency of LLMs in real-world applications. 512

8

Limitations513

Our work has two main limitations that suggest514

future research directions:515

Task-specific constraint: CoKV requires cal-516

culating head importance scores for different517

tasks. While experiments in Appendix Section B.4518

demonstrate strong generalizability across datasets519

within the same task category. Despite this520

constraint, CoKV is highly practical for LLM521

providers serving diverse users. Users can sim-522

ply select their task type, and the model will apply523

the corresponding head importance scores for KV524

cache compression. Importantly, the underlying in-525

ference process remains consistent across all tasks;526

only the cache budget allocation varies based on527

the task-specific importance scores. This ensures528

both flexibility and efficiency, enabling the model529

to adapt to various user needs without requiring530

significant changes to its core architecture.531

Precomputation cost: The computation of im-532

portance based on cooperative game theory for533

attention heads is computationally intensive. Al-534

though we propose the Sliced Shapley Value (SSV),535

which significantly reduces the computational cost,536

our precomputation overhead remains higher than537

that of baseline methods. However, our experi-538

ments in Appendix Section B.1 demonstrate that539

this precomputation is still entirely acceptable. We540

plan to address optimizing computational complex-541

ity as one of our future research directions by de-542

veloping efficient approximation algorithms and543

parallel computing strategies.544

References545

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury546
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.547
2023. GQA: Training generalized multi-query trans-548
former models from multi-head checkpoints. In The549
2023 Conference on Empirical Methods in Natural550
Language Processing.551

Anthropic. 2024. The claude 3 model family: Opus,552
sonnet, haiku. https://www-cdn.anthropic.com/553
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/554
Model_Card_Claude_3.pdf. Accessed: 2025-02-555
04.556

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,557
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao558
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,559
and Juanzi Li. 2024. LongBench: A bilingual, multi-560
task benchmark for long context understanding. In561

Proceedings of the 62nd Annual Meeting of the As- 562
sociation for Computational Linguistics (Volume 1: 563
Long Papers), pages 3119–3137, Bangkok, Thailand. 564
Association for Computational Linguistics. 565

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, 566
Fuli Feng, and Xiangnan He. 2023. Tallrec: An ef- 567
fective and efficient tuning framework to align large 568
language model with recommendation. In Proceed- 569
ings of the 17th ACM Conference on Recommender 570
Systems, RecSys 2023, Singapore, Singapore, Septem- 571
ber 18-22, 2023, pages 1007–1014. ACM. 572

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu 573
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao 574
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv: 575
Dynamic kv cache compression based on pyramidal 576
information funneling. Preprint, arXiv:2406.02069. 577

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, 578
Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong 579
Chen, Xingmei Wang, Kai Zheng, Defu Lian, and 580
Enhong Chen. 2024a. When large language models 581
meet personalization: perspectives of challenges and 582
opportunities. World Wide Web (WWW), 27(4):42. 583

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, 584
Size Zheng, Xiuhong Li, Xuechao Wei, Shengen Yan, 585
Meng Li, and Yun Liang. 2024b. Arkvale: Efficient 586
generative LLM inference with recallable key-value 587
eviction. In Advances in Neural Information Pro- 588
cessing Systems 38: Annual Conference on Neural 589
Information Processing Systems 2024, NeurIPS 2024, 590
Vancouver, BC, Canada, December 10 - 15, 2024. 591

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, 592
and Christopher Re. 2022. Flashattention: Fast and 593
memory-efficient exact attention with IO-awareness. 594
In Advances in Neural Information Processing Sys- 595
tems. 596

Xiaotie Deng and Christos H. Papadimitriou. 1994. 597
On the complexity of cooperative solution concepts. 598
Math. Oper. Res., 19(2):257–266. 599

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 600
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 601
Akhil Mathur, Alan Schelten, Amy Yang, Angela 602
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 603
Archi Mitra, Archie Sravankumar, Artem Korenev, 604
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien 605
Rodriguez, Austen Gregerson, Ava Spataru, Bap- 606
tiste Rozière, Bethany Biron, Binh Tang, Bobbie 607
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe 608
Bi, Chris Marra, Chris McConnell, Christian Keller, 609
Christophe Touret, Chunyang Wu, Corinne Wong, 610
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al- 611
lonsius, Daniel Song, Danielle Pintz, Danny Livshits, 612
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, 613
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, 614
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, 615
Emily Dinan, Eric Michael Smith, Filip Radenovic, 616
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor- 617
gia Lewis Anderson, Graeme Nail, Grégoire Mialon, 618
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han- 619
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, 620

9

https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://doi.org/10.1287/MOOR.19.2.257

Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan621
Misra, Ivan Evtimov, and et al. 2024. The llama 3622
herd of models. CoRR, abs/2407.21783.623

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and624
S. Kevin Zhou. 2025. Ada-kv: Optimizing kv cache625
eviction by adaptive budget allocation for efficient626
llm inference. Preprint, arXiv:2407.11550.627

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue628
Dong, and Wen Xiao. 2025. Not all heads matter:629
A head-level KV cache compression method with630
integrated retrieval and reasoning. In The Thirteenth631
International Conference on Learning Representa-632
tions.633

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,634
Jiawei Han, and Jianfeng Gao. 2024. Model tells you635
what to discard: Adaptive KV cache compression for636
LLMs. In The Twelfth International Conference on637
Learning Representations.638

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,639
Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang,640
Dawn Song, and Costas J. Spanos. 2019. Towards641
efficient data valuation based on the shapley value.642
In Proceedings of the Twenty-Second International643
Conference on Artificial Intelligence and Statistics,644
volume 89 of Proceedings of Machine Learning Re-645
search, pages 1167–1176. PMLR.646

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-647
sch, Chris Bamford, Devendra Singh Chaplot, Diego648
de las Casas, Florian Bressand, Gianna Lengyel, Guil-649
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,650
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,651
Thibaut Lavril, Thomas Wang, Timothée Lacroix,652
and William El Sayed. 2023. Mistral 7b. Preprint,653
arXiv:2310.06825.654

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,655
and Ji-Rong Wen. 2024a. Pre-trained language mod-656
els for text generation: A survey. ACM Comput.657
Surv., 56(9):230:1–230:39.658

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat659
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,660
Patrick Lewis, and Deming Chen. 2024b. SnapKV:661
LLM knows what you are looking for before gener-662
ation. In The Thirty-eighth Annual Conference on663
Neural Information Processing Systems.664

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao665
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-666
lidis, and Anshumali Shrivastava. 2023. Scis-667
sorhands: Exploiting the persistence of importance668
hypothesis for LLM KV cache compression at test669
time. In Thirty-seventh Conference on Neural Infor-670
mation Processing Systems.671

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,672
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and673
Xia Hu. 2024. KIVI: A tuning-free asymmetric 2bit674
quantization for KV cache. In Forty-first Interna-675
tional Conference on Machine Learning, ICML 2024,676
Vienna, Austria, July 21-27, 2024. OpenReview.net.677

Rory Mitchell, Joshua Cooper, Eibe Frank, and Geof- 678
frey Holmes. 2022. Sampling permutations for shap- 679
ley value estimation. J. Mach. Learn. Res., 23:43:1– 680
43:46. 681

OpenAI. 2024. Gpt-4 technical report. Preprint, 682
arXiv:2303.08774. 683

Lloyd S Shapley. 1953. A value for n-person games. 684
Contribution to the Theory of Games, 2. 685

Noam Shazeer. 2019. Fast transformer decod- 686
ing: One write-head is all you need. Preprint, 687
arXiv:1911.02150. 688

Qiheng Sun, Jiayao Zhang, Jinfei Liu, Li Xiong, Jian 689
Pei, and Kui Ren. 2024. Shapley value approxima- 690
tion based on complementary contribution. IEEE 691
Transactions on Knowledge and Data Engineering, 692
36(12):9263–9281. 693

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan 694
Hong, Danning Ke, Yiwu Yao, and Gongyi Wang. 695
2025. Razorattention: Efficient KV cache compres- 696
sion through retrieval heads. In The Thirteenth Inter- 697
national Conference on Learning Representations. 698

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao 699
Peng, and Yao Fu. 2025. Retrieval head mechanis- 700
tically explains long-context factuality. In The Thir- 701
teenth International Conference on Learning Repre- 702
sentations. 703

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian 704
guo, Shang Yang, Haotian Tang, Yao Fu, and Song 705
Han. 2025. Duoattention: Efficient long-context 706
LLM inference with retrieval and streaming heads. In 707
The Thirteenth International Conference on Learning 708
Representations. 709

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 710
Han, and Mike Lewis. 2024. Efficient streaming lan- 711
guage models with attention sinks. In The Twelfth 712
International Conference on Learning Representa- 713
tions. 714

June Yong Yang, Byeongwook Kim, Jeongin Bae, 715
Beomseok Kwon, Gunho Park, Eunho Yang, 716
Se Jung Kwon, and Dongsoo Lee. 2024. No to- 717
ken left behind: Reliable KV cache compression 718
via importance-aware mixed precision quantization. 719
CoRR, abs/2402.18096. 720

Jiayao Zhang, Qiheng Sun, Jinfei Liu, Li Xiong, Jian 721
Pei, and Kui Ren. 2023a. Efficient sampling ap- 722
proaches to shapley value approximation. Proc. ACM 723
Manag. Data, 1(1). 724

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 725
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 726
dong Tian, Christopher Re, Clark Barrett, Zhangyang 727
Wang, and Beidi Chen. 2023b. H2o: Heavy-hitter 728
oracle for efficient generative inference of large lan- 729
guage models. In Thirty-seventh Conference on Neu- 730
ral Information Processing Systems. 731

10

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://proceedings.mlr.press/v89/jia19a.html
https://proceedings.mlr.press/v89/jia19a.html
https://proceedings.mlr.press/v89/jia19a.html
https://arxiv.org/abs/2310.06825
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://jmlr.org/papers/v23/21-0439.html
https://jmlr.org/papers/v23/21-0439.html
https://jmlr.org/papers/v23/21-0439.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://doi.org/10.1109/TKDE.2024.3438213
https://doi.org/10.1109/TKDE.2024.3438213
https://doi.org/10.1109/TKDE.2024.3438213
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.1145/3588728
https://doi.org/10.1145/3588728
https://doi.org/10.1145/3588728
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

Appendix732

A Related Works733

KV Cache Compression The memory overhead734

of storing key-value (KV) pairs for LLM has moti-735

vated extensive research on KV cache compression.736

StreamingLLM (Xiao et al., 2024) preserves the737

initial and recent tokens, which empirically exhibit738

higher informativeness during generation. Simi-739

larly, Scissorhands (Liu et al., 2023) proposes the740

persistence of importance to identify and retain piv-741

otal tokens. H2O (Zhang et al., 2023b) employs742

a heavy-hitter oracle to drop tokens with low at-743

tention scores. SnapKV (Li et al., 2024b) uses744

the attention scores of the recent tokens to retain745

critical tokens. While these methods reduce mem-746

ory usage and accelerate inference, they implicitly747

assume uniform importance across attention heads,748

limiting their applicability. Recent works address749

head diversity through layer-wise and head-wise750

optimizations. PyramidKV (Cai et al., 2024) im-751

plements a hierarchical allocation strategy, assign-752

ing larger cache budgets to lower layers based on753

the observed attention patterns across layers. Fast-754

Gen (Ge et al., 2024) is an adaptive KV cache755

compression method that reduces LLMs’ mem-756

ory usage by profiling attention modules and con-757

structing caches adaptively. RazorAttention (Tang758

et al., 2025) and Duoattention (Xiao et al., 2025) di-759

vide attention heads into retrieval heads(critical for760

long-context processing (Wu et al., 2025)) and non-761

retrieval heads, apply full KV cache to retrieval762

heads and compressed KV cache to non-retrieval763

heads. ArkVale (Chen et al., 2024b) proposes a764

page-based KV cache manager that asynchronously765

copies filled pages into external memory (e.g.,766

CPU memory) as a backup and supports the recall767

of important tokens that were previously evicted.768

AdaKV (Feng et al., 2025) dynamically adjusts769

cache budgets across heads based on their concen-770

tration degrees and HeadKV (Fu et al., 2025) cal-771

culates head importance scores to allocate cache772

budget before inference. However, these methods773

assess heads in isolation, neglecting their collabora-774

tive interactions. For example, the standalone score775

of a head may not reflect its true contribution when776

working synergistically with others. Additionally,777

these approaches overlook the task-dependent vari-778

ations in head importance. Our approach tackles779

these limitations by modeling head interactions as780

a cooperative game, dynamically allocating cache781

resources based on the varying complementary con-782

tributions of heads across different tasks. 783

In addition to KV cache eviction methods, KV 784

cache quantization is also one of the mainstream 785

approaches for KV cache compression (Yang et al., 786

2024; Liu et al., 2024). However, while eviction 787

methods can be used to retain less than 1% of the 788

cache, KV cache compression cannot be applied 789

to such an extent because it must preserve at least 790

1 bit. Nevertheless, the combination of these two 791

methods is an interesting direction for future re- 792

search. 793

Model Architecture and Computation Optimiza- 794

tion Modern LLMs employ architectural opti- 795

mizations to balance efficiency and performance. 796

Multi Query Attention (MQA) (Shazeer, 2019) 797

shares a single key-value pair across all attention 798

heads, drastically reducing memory usage but po- 799

tentially sacrificing performance. Group Query 800

Attention (GQA) (Ainslie et al., 2023) strikes a 801

balance by grouping heads to share key-value pairs, 802

preserving performance while maintaining memory 803

efficiency, which is widely adopted in recent LLMs 804

like Llama (Dubey et al., 2024) and Mistral (Jiang 805

et al., 2023). Concurrently, Flash Attention (Dao 806

et al., 2022) optimizes hardware utilization by min- 807

imizing memory reads/writes during attention com- 808

putation, significantly accelerating inference. No- 809

tably, our approach is fully compatible with GQA 810

and Flash Attention, ensuring seamless integration 811

with current LLMs. 812

Cooperative Game Theory Cooperative game 813

theory offers a principled framework for under- 814

standing how multiple players can jointly con- 815

tribute to overall system performance. Shapley 816

value (Shapley, 1953), a classic solution in coop- 817

erative game theory, provides a method for fairly 818

allocating joint benefits based on the marginal con- 819

tribution of each player. However, traditional Shap- 820

ley value computation methods allow each sample 821

to be used to calculate the marginal contribution 822

of only a single player. Recent works (Zhang 823

et al., 2023a; Sun et al., 2024) address this limi- 824

tation through complementary contributions that 825

enable simultaneous estimation of multiple players’ 826

contributions. In the context of LLMs, these meth- 827

ods still encounter scalability issues, as the cost of 828

computing complementary contributions across all 829

coalition sizes remains prohibitively high. We pro- 830

pose the Sliced Shapley value, which samples only 831

a subset of coalition sizes. This approach not only 832

accelerates the computation but also accurately re- 833

11

flects the contributions of different heads.834

B Supplementary experiments835

We introduce the detailed information of Long-836

Bench in Table 3, including the task types, evalu-837

ation metrics, average length, languages, and the838

number of samples for each task. .839

B.1 Computation Efficiency840

We conduct experiments to demonstrate the effi-841

ciency of approximating the Sliced Shapley value842

using the qasper dataset with the Llama-3-8B-843

Instruct model. We randomly select 15% of the844

qasper dataset as the validation set to compute the845

Sliced Shapley value. The experiments are per-846

formed on a server equipped with 8 RTX 3090847

GPUs. We compute the Sliced Shapley value for848

coalition sizes of {32, 64, 96, 128}. GPUs 0-3 are849

assigned to compute the complementary contribu-850

tions for coalitions of sizes {32, 64, 96, 128}, re-851

spectively, while GPUs 4-7 compute another in-852

dependent Sliced Shapley value. Table 8 shows853

the computation time for each GPU from 50 to854

500 samples of complementary contributions, as855

well as the mean absolute error (MAE) between856

the two independently computed Sliced Shapley857

values. The MAE is calculated as:858

MAE =

∑n
i=1 |SSV

H
i − SSV

H′

i |
n

,859

where SSVHi and SSVH
′

i represent the Sliced860

Shapley values from the two independent computa-861

tions. The experimental results show that when the862

number of samples reaches 250 for each coalition863

size, the MAE is 3.8e − 3 ≤ 1/256 with 20.93864

hours. In GQA inference, the Llama-3-8B-Instruct865

model has a total of 32 × 8 = 256 groups. Since866

the model accuracy lies in the range [0, 1], when867

the MAE between two sampling runs is less than868

1/256, the sum of absolute errors across all groups869

is less than 1. At this point, the Sliced Shapley870

value can reliably reflect the contributions of the871

groups.872

We recommend performing two independent873

sampling runs when computing the Sliced Shapley874

value for a task. The sampling results are consid-875

ered stable when the mean absolute error between876

the two runs is less than 1/n, where n represents877

the number of players in the cooperative game. At878

this point, the results from the two sampling runs879

can be averaged and used as the importance scores880

of the heads in the model.881

B.2 Distribution of Sliced Shapley Value 882

Figures 5 and 6 illustrate the distribution of the 883

Sliced Shapley values computed for selected coali- 884

tion sizes H = {32, 64, 96, 128} in our experiment. 885

We observe that the distributions of Sliced Shap- 886

ley values exhibit significant differences across 887

datasets of different task categories, while showing 888

relatively smaller variations within datasets of the 889

same domain type. 890

B.3 Distribution of j-coalition 891

Complementary Contribution 892

In Figures 7 and 8, we present the distributions 893

of the expected complementary contributions of 894

heads in Llama-3-8B-Instruct model on the hot- 895

potqa dataset (multi-document question answer- 896

ing) and the lcc dataset (code generation), with 897

coalition sizes of {32, 64, 96, 128, 160, 192, 224}. 898

We observe strong correlations in the distributions 899

across all coalition sizes. Additionally, the distribu- 900

tions of the expected complementary contributions 901

for coalition sizes S and n−|S| are nearly identical, 902

exhibiting symmetry around the size of 128. To op- 903

timize computational efficiency, we restrict the cal- 904

culation of complementary contributions to coali- 905

tions with sizes below 128. These observations pro- 906

vide a justification for our approach of computing 907

complementary contributions using only a small 908

subset of coalition sizes, as it effectively captures 909

the contributions of the heads. 910

B.4 Generalization 911

To validate the generalization capability of our 912

method, we conduct cross-dataset evaluations on 913

two task categories: 1. Multi-Document QA includ- 914

ing 2WikiMQA and Musique datasets. 2. Code 915

Processing including Lcc and RB-P datasets. 916

Following Section 4.2, we mask top and low- 917

ranked attention heads but cross-apply head impor- 918

tance scores between datasets within the same task 919

(e.g., mask 2WikiMQA using Musique-derived 920

scores). As shown in Table 9 and Table 10, our 921

method maintains superior accuracy over baselines 922

across both models, confirming that learned impor- 923

tance scores can generalize across datasets within 924

shared task domains. 925

B.5 Needle-in-a-Haystack Test 926

To evaluate the performance of different KV cache 927

compression methods in long-context retrieval 928

tasks, we conduct a Needle-in-a-Haystack bench- 929

mark test using the Mistral-7B-v0.2 model. With 930

12

Table 3: Details of 16 Datasets in LongBench

Label Task Type Eval metric Avg
len

Language Sample
Num

NrtvQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MF-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMQA Multi-Doc. QA F1 4,887 EN 200
Musique Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PCount Synthetic Accuracy 11,141 EN 200
PRe Synthetic Accuracy 9,289 EN 200

Lcc Code Edit Sim 1,235 Python/
C#/Java 500

RB-P Code Edit Sim 4,206 Python/
Java 500

the average KV cache size 128, we systematically931

insert target texts (needles) at ten equidistant po-932

sitions (11%, 22%, ..., 100%) across varying con-933

text lengths ranging from 1,000 to 31,000 tokens934

(in 1,000-token increments). Experimental results935

demonstrate that CoKV outperforms other baseline936

methods, achieving an average score of 95.89% -937

the closest performance to the uncompressed Ful-938

lKV benchmark.939

C Proof940

In this section, we give the proof of Theorem 1.941

Denote H the selected coalition sizes. The ap-942

proximation of SV i,j(1 ≤ i, j ≤ n) is unbiased,943

which can be proven following Corollary 1 in (Sun944

et al., 2024). So it is evident that SSV i, being the945

weighted average of SV i,j , serves as an unbiased946

estimator of SSV i. Hence, we have947

P(|SSVHi − SSVHi | ≥ ϵ)948

≤P(
∑
j∈H
|SV i,j − SV i,j | ≥ ϵ)949

≤
∑
j∈H

P(|SV i,j − SV i,j | ≥
ϵ

|H|
)950

951

Then,we have 952∑
j∈H

P(|SV i,j − SV i,j | ≥
ϵ

|H|
) 953

≤2|H| exp(−
2(ϵ

|H|)
2∑M/|H|

k=1 (bj − aj)2
) 954

≤ 2|H| exp(−
2(ϵ

H)2

Mr2

|H|
), 955

according to Hoeffding’s inequality where (aj , bj) 956

denotes the range of complementary contribution 957

of j-coalitions, and r is max(b1− a1, · · · , bj − aj). 958

. Since we want the right hand side to be at most 959

δ, we have M ≥ Hr2ln 2H
δ

2ϵ2
. Thus, Alogorithm 1 960

returns an (ϵ, δ)-approximation of Sliced Shapley 961

value with time complexity O(T |H|ln 2|H|
δ

ϵ2
) where 962

T is the time cost of evaluating each complemen- 963

tary contribution. The analysis of the time com- 964

plexity of approximating Shapley value starts from 965

P(|SV1−SV i| ≥ ϵ) ≤ P(
∑n

j=1 |SV i,j−SV i,j | ≥ 966

ϵ) Following similar steps, we can proof that the 967

time complexity of approximating Shapley value is 968

O(Tnln 2n
δ

ϵ2
). Thus, we complete the proof. 969

970

13

Table 4: Benchmark Results of Llama-3-8B-Instruct

Method
Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64
KV size=64

SnapKV 19.94 13.21 28.91 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 54.35 50.42
Pyramid 20.11 16.54 32.67 40.25 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96
Ada-SnapKV 20.40 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 35.25 4.41 71.57 54.02 51.68
HeadKV-R2 20.30 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49
CoKV 20.77 19.67 35.11 44.37 34.36 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82

KV size=128

SnapKV 20.37 14.73 34.24 43.32 28.94 19.74 19.68 22.15 20.68 64.71 90.69 39.03 4.41 71.76 58.48 51.70
Pyramid 20.32 19.28 33.81 41.13 28.21 19.94 19.70 22.97 21.11 67.65 89.89 37.77 4.30 71.76 55.93 51.30
Ada-SnapKV 20.86 18.14 35.17 45.12 30.39 20.43 19.93 21.84 21.25 69.41 90.29 38.08 4.75 71.76 57.99 53.16
HeadKV-R2 21.30 21.28 39.85 42.07 29.91 19.92 20.18 22.54 22.87 71.18 90.63 38.58 4.46 71.76 60.75 57.17
CoKV 20.40 23.25 38.93 45.11 37.60 20.40 19.78 23.16 21.14 73.59 91.21 40.96 4.71 71.76 58.34 59.37

KV size=256

SnapKV 22.98 21.02 36.27 44.24 31.02 19.72 20.90 22.63 22.45 69.41 90.77 39.64 4.26 71.76 59.44 54.35
Pyramid 22.18 22.83 35.95 41.85 31.74 21.14 21.27 22.65 22.83 71.18 90.83 40.50 4.35 71.37 57.69 51.49
Ada-SnapKV 23.58 23.76 35.65 43.83 32.24 20.50 21.26 22.77 22.69 71.76 90.87 40.36 4.21 71.76 58.79 54.70
HeadKV-R2 23.13 25.55 39.97 43.60 31.12 21.26 22.02 22.68 24.47 71.76 90.63 38.32 5.13 71.08 61.81 59.25
CoKV 22.69 28.23 42.34 46.32 36.38 21.17 21.17 23.64 23.08 72.94 90.93 42.07 4.71 71.76 62.40 61.92

KV size=512

SnapKV 22.92 22.86 39.33 43.89 32.70 20.87 22.24 22.39 23.97 71.18 90.87 41.14 4.54 71.76 59.98 55.00
Pyramid 23.59 25.70 38.21 44.34 32.48 20.59 22.94 22.49 24.07 72.35 90.87 40.92 4.75 71.76 58.22 52.54
Ada-SnapKV 23.47 28.41 39.02 44.87 32.77 20.52 23.14 22.96 24.47 72.12 90.93 39.85 4.71 71.76 58.59 54.65
HeadKV-R2 22.52 29.32 40.34 45.64 34.52 20.53 23.92 22.61 25.73 72.35 90.93 39.28 4.41 71.76 61.59 59.22
CoKV 24.56 29.18 40.60 46.11 37.53 21.33 23.02 23.51 24.77 72.94 91.09 41.29 4.76 71.50 63.06 63.55

KV size=1024

SnapKV 23.95 26.95 37.81 44.03 30.88 20.93 24.26 23.09 25.79 72.35 90.87 41.43 4.31 71.76 59.29 54.91
Pyramid 23.62 26.76 39.44 45.79 33.41 19.87 23.57 22.98 25.13 73.02 90.93 40.86 4.71 71.76 58.43 53.67
Ada-SnapKV 23.52 28.33 40.39 45.20 32.95 20.11 24.55 23.33 25.37 73.53 90.87 41.38 4.46 71.76 58.88 54.65
HeadKV-R2 23.35 29.60 40.09 45.82 35.81 21.39 25.57 23.32 26.30 74.12 90.77 40.27 4.19 71.76 61.58 59.03
CoKV 24.01 31.70 40.64 48.13 37.89 20.64 23.02 23.89 25.71 74.12 91.01 42.02 4.71 71.20 63.33 63.74

14

Table 5: Results of Mistral-7B-Instruct-v0.2

Method
Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45
KV size=64

SnapKV 16.99 18.26 38.29 29.51 23.24 13.46 18.24 20.48 18.05 48.82 81.45 36.18 2.54 43.79 46.13 39.30
Pyramid 17.51 18.60 40.49 31.92 22.08 13.81 18.68 20.94 18.80 57.06 81.71 37.42 1.68 46.23 46.05 40.03
Ada-SnapKV 17.93 18.68 40.03 29.99 22.67 14.92 18.84 20.87 18.53 54.12 81.43 37.25 2.30 45.20 46.84 39.37
HeadKV-R2 22.75 25.37 45.36 36.52 25.39 13.82 20.45 22.06 21.48 65.29 83.56 37.95 2.43 50.78 47.76 42.86
CoKV 21.07 21.41 42.87 37.74 28.93 15.60 18.03 21.08 19.70 67.65 86.52 39.54 3.68 54.22 49.20 42.13

KV size=128

SnapKV 23.02 20.73 41.91 31.39 22.88 14.55 20.92 21.83 21.25 62.35 83.21 38.99 3.14 51.16 49.94 43.61
Pyramid 22.06 21.82 43.73 32.33 24.12 13.80 20.27 21.65 21.34 65.29 83.78 38.37 2.63 53.59 49.21 42.69
Ada-SnapKV 22.32 22.71 44.40 32.63 23.29 13.79 21.15 22.50 21.77 66.47 84.28 39.68 3.04 51.87 49.57 44.84
HeadKV-R2 24.81 27.66 48.29 36.87 26.66 14.75 23.30 22.88 23.26 67.65 84.93 39.75 2.50 49.31 50.79 45.57
CoKV 24.42 24.12 46.95 38.28 28.85 17.18 21.11 21.91 22.02 68.82 86.14 40.48 4.21 54.12 51.08 46.25

KV size=256

SnapKV 23.01 23.47 45.38 33.15 24.12 13.93 22.80 22.89 22.85 67.65 84.62 40.39 2.36 59.18 51.34 46.74
Pyramid 22.98 25.66 46.12 34.47 25.81 13.98 22.86 22.54 22.88 68.90 85.07 40.92 2.39 58.74 53.13 46.59
Ada-SnapKV 23.54 26.02 45.92 34.45 26.09 14.12 22.79 22.64 23.32 68.82 85.32 41.93 2.04 58.62 52.10 47.70
HeadKV-R2 25.40 27.42 47.05 37.98 25.57 17.08 25.31 22.72 25.03 69.41 84.93 40.24 2.58 52.94 53.48 49.21
CoKV 25.70 26.10 48.43 38.96 30.06 17.33 23.42 22.55 23.73 70.00 86.19 42.35 3.65 56.37 53.97 48.79

KV size=512

SnapKV 25.24 26.30 47.85 37.16 25.07 14.57 24.43 22.98 24.61 68.82 85.72 43.04 2.00 58.63 54.06 49.03
Pyramid 24.43 27.09 48.49 37.57 25.35 16.20 24.40 22.85 24.16 68.82 85.81 42.07 1.87 56.93 53.05 48.22
Ada-SnapKV 25.01 26.76 49.10 37.12 26.68 15.63 24.42 22.94 24.61 69.41 85.56 41.88 1.87 57.93 54.09 48.94
HeadKV-R2 25.80 28.73 48.34 37.43 27.03 17.28 28.22 23.22 26.65 70.59 85.72 40.15 2.69 56.15 53.24 49.22
CoKV 25.25 28.13 49.91 38.87 32.33 18.27 25.00 23.08 25.50 70.59 86.37 43.46 3.06 59.20 55.54 49.38

KV size=1024

SnapKV 26.38 29.70 48.13 37.36 25.52 16.88 27.31 22.63 26.10 69.41 85.72 42.43 1.54 56.87 55.05 49.33
Pyramid 25.09 28.59 47.78 37.74 25.83 17.53 25.88 23.05 25.91 68.24 85.95 42.77 1.59 57.82 54.47 48.85
Ada-SnapKV 25.70 29.95 47.50 37.68 26.18 17.10 26.63 22.93 26.10 70.00 85.72 43.16 1.68 56.28 54.52 49.10
HeadKV-R2 27.48 29.94 49.49 37.49 26.45 18.69 30.73 23.31 26.74 70.59 85.92 42.05 3.15 56.37 54.73 49.30
CoKV 26.15 29.82 49.47 38.54 34.39 17.98 27.76 23.33 26.49 70.59 86.23 43.54 2.48 59.32 55.47 49.92

15

Table 6: Results of masking groups with Llama-3-8B-Instruct

Method
Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64
Masking 16 groups

Random 20.93 28.48 33.69 44.93 20.01 20.6 28.43 23.7 26.67 74.12 91.07 41.12 4.26 71.76 49.83 40.55
HeadKV-R2(top) 19.45 12.97 27.75 34.2 17.33 14.32 19.74 22.76 22.05 67.06 87.91 35.53 4.71 68.49 26.62 26.53
CoKV(top) 6.55 9.46 9.47 10.19 12.27 5.67 5.73 16.96 4.47 43.53 71.21 23.77 3.91 34.98 11.58 17.18
HeadKV-R2(low) 21.83 14.36 33.34 31.37 27.23 12.55 27.29 23.82 26.99 74.12 91.03 42.18 4.12 70.59 37.35 38.55
CoKV(low) 23.74 33.76 41.71 49.27 40.48 19.99 29.13 23.25 27.79 74.12 91.45 42.37 4.71 70.55 63.38 61.26

Masking 32 groups

Random 20.69 18.60 29.63 39.12 18.50 6.94 22.40 22.33 26.45 74.12 89.82 33.80 4.71 61.12 30.78 40.71
HeadKV-R2(top) 17.33 6.98 9.37 13.50 9.37 5.11 13.18 20.86 15.24 45.88 75.30 27.21 4.76 66.21 11.24 13.64
CoKV(top) 1.40 3.49 3.78 7.94 9.32 2.32 2.64 11.74 0.58 34.71 21.37 6.96 4.14 16.93 3.54 5.17
HeadKV-R2(low) 21.51 11.16 25.33 19.52 14.48 7.42 16.73 23.91 14.58 74.12 89.09 40.69 4.66 70.09 33.13 32.39
CoKV(low) 22.45 33.06 38.34 45.82 39.62 20.18 28.39 24.04 26.67 74.12 91.14 41.70 4.71 71.76 52.24 64.94

Masking 64 groups

Random 13.22 7.34 20.57 20.58 9.11 6.76 7.50 21.22 19.18 72.35 71.92 36.09 4.71 52.80 21.27 18.07
HeadKV-R2(top) 7.49 2.95 5.05 11.06 12.01 2.46 3.63 14.43 5.06 34.71 48.92 8.05 3.97 70.67 21.03 16.14
CoKV (top) 0.76 1.76 2.45 4.85 5.58 1.93 2.48 5.65 0.20 34.12 3.33 7.34 3.16 12.18 2.45 3.83
HeadKV-R2(low) 19.23 12.19 21.33 19.61 14.21 6.63 6.45 20.17 6.16 71.76 77.40 31.52 4.41 53.48 16.00 14.58
CoKV(low) 21.98 29.85 38.95 44.21 36.65 17.71 28.04 24.49 25.92 74.71 91.66 40.80 4.54 71.76 47.04 52.77

Masking 96 groups

Random 5.19 4.04 6.85 8.15 10.33 5.08 2.21 10.77 2.82 40.00 61.54 13.38 4.64 54.29 15.37 9.81
HeadKV-R2(top) 2.89 4.34 7.90 11.83 9.14 2.93 4.37 13.21 3.80 34.12 30.32 8.46 4.78 71.76 13.55 14.76
CoKV(top) 1.36 1.14 1.82 3.66 3.79 1.48 1.20 4.63 0.13 34.12 2.40 7.52 0.54 6.71 2.41 3.54
HeadKV-R2(low) 19.28 8.23 15.65 20.89 16.80 8.00 3.32 11.81 0.99 58.82 58.70 15.72 4.71 61.88 10.56 11.05
CoKV(low) 20.24 18.97 35.28 41.37 30.02 13.87 19.95 17.33 20.76 74.71 84.08 41.23 4.71 68.24 38.11 38.08

Masking 128 groups

Random 3.34 2.50 5.33 10.59 5.12 2.73 2.15 9.19 0.16 44.12 31.33 9.05 4.18 66.74 12.27 9.23
HeadKV-R2(top) 2.34 2.17 5.38 7.21 7.19 1.85 1.80 10.34 0.31 34.71 26.08 7.87 4.71 66.92 13.94 11.76
CoKV(top) 0.59 0.80 1.38 2.96 3.42 1.11 1.16 4.05 0.13 34.12 2.89 7.17 1.09 7.52 2.91 3.55
HeadKV-R2(low) 12.02 7.97 8.92 14.87 12.83 5.26 2.41 9.12 1.42 55.88 40.96 10.2 4.71 68.42 10.14 6.03
CoKV(low) 15.31 12.15 28.44 35.35 23.27 10.67 2.93 12.24 9.41 73.82 76.32 37.70 4.71 68.24 22.20 24.93

16

Table 7: Results of masking groups with Mistral-7B-Instruct-v0.2

Method
Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45
Masking 16 groups

Random 25.92 31.73 50.29 37.84 27.19 17.83 24.91 21.92 27.04 70.59 85.93 43.8 3.22 53.82 52.38 48.24
HeadKV-R2(top) 23.38 16.66 37.13 37.41 22.76 14.29 18.8 21.74 23.23 54.12 82.96 35.22 4.12 21.76 39.49 35.66
CoKV(top) 16.1 23.35 18.49 14.34 13.39 7.89 20.5 19.98 17.25 38.24 52.51 26.32 4.17 40.85 24.6 14.35
HeadKV-R2(low) 24.78 29.37 48.78 38.07 24.88 16.93 31.25 23.08 27.64 71.18 84.55 42.52 2.1 58.82 54.22 49.4
CoKV(low) 26.57 32.3 49.94 40.38 34.0 19.11 31.25 22.97 26.85 70.59 87.3 44.39 3.29 58.03 56.6 50.74

Masking 32 groups

Random 22.62 31.72 47.20 38.13 22.55 11.92 25.64 23.27 26.75 68.82 84.55 41.34 1.93 49.71 50.14 47.18
HeadKV-R2(top) 20.82 15.40 28.72 34.31 20.31 12.86 13.56 19.83 17.80 46.47 79.25 30.10 4.71 24.31 33.41 30.47
CoKV(top) 9.05 15.38 7.61 9.88 8.07 6.38 0.59 11.72 4.70 35.88 26.87 11.85 4.65 10.88 15.23 11.14
HeadKV-R2(low) 23.76 27.40 44.80 32.85 23.55 13.28 24.37 22.71 28.09 71.18 79.24 42.24 4.26 49.90 52.89 48.85
CoKV(low) 26.70 30.44 49.57 40.41 32.28 18.33 30.26 23.27 26.85 70.59 87.48 44.04 2.93 56.27 56.34 50.38

Masking 64 groups

Random 13.43 24.46 30.97 22.62 16.93 15.65 14.07 22.16 19.86 55.29 82.16 35.85 4.12 38.94 38.07 28.39
HeadKV-R2(top) 11.04 9.09 17.45 18.57 13.79 8.07 9.83 17.30 12.60 35.29 55.36 18.65 4.54 19.85 26.25 21.23
CoKV(top) 3.28 3.50 4.65 4.30 3.42 2.55 0.79 4.66 1.08 34.71 8.41 6.00 3.53 3.53 11.22 11.57
HeadKV-R2(low) 18.81 21.42 35.18 18.03 14.26 7.41 22.56 22.41 20.24 57.65 75.72 37.03 4.11 45.46 38.78 39.22
CoKV(low) 26.87 25.74 48.19 39.61 30.86 16.88 24.45 22.84 27.29 71.18 87.16 43.43 3.34 50.18 53.76 47.52

Masking 96 groups

Random 4.84 6.33 13.77 12.00 10.41 8.43 0.88 17.55 21.83 51.76 63.48 22.32 4.47 34.19 21.30 17.65
HeadKV-R2(top) 9.21 7.05 11.34 13.30 14.22 3.99 7.67 15.43 8.84 34.71 29.87 9.97 4.44 30.16 17.73 16.24
CoKV(top) 2.13 4.13 4.58 4.09 6.52 0.64 0.00 2.44 0.15 34.71 2.16 4.40 4.12 2.94 7.16 8.39
HeadKV-R2(low) 8.17 10.62 18.76 13.07 10.10 5.44 3.75 19.42 6.51 46.47 50.84 23.98 4.57 29.89 34.95 32.57
CoKV(low) 24.62 24.71 48.04 38.72 30.29 16.37 19.35 22.84 27.18 70.59 79.48 42.01 3.75 48.29 50.78 43.53

Masking 128 groups

Random 4.15 8.45 9.73 8.38 7.80 2.07 0.51 13.19 3.40 42.94 34.04 8.82 3.85 3.53 23.74 18.34
HeadKV-R2(top) 5.22 4.78 8.63 7.04 6.15 3.89 5.64 14.59 5.64 35.88 25.98 8.36 3.82 18.53 18.68 18.52
CoKV(top) 1.33 9.43 1.03 4.24 5.54 1.41 0.09 0.78 0.01 33.53 1.06 4.50 2.94 2.94 6.94 6.22
HeadKV-R2(low) 4.41 4.53 11.12 12.8 7.20 6.64 0.46 10.48 0.61 47.65 31.61 10.45 2.91 9.92 24.09 24.48
CoKV(low) 20.43 19.12 44.82 34.23 23.31 13.97 14.22 21.28 24.65 70.59 73.98 39.73 4.10 45.21 42.14 38.14

Table 8: Time and MAE of the Sliced Shapley values estimation.

Sample Num 50 100 150 200 250 300 350 400 450 500
Time 4.19 8.37 12.56 16.75 20.93 25.12 29.3 33.49 37.68 41.86
MAE 8.2e-3 5.3e-3 4.8e-3 4.8e-3 3.8e-3 3.4e-3 3.2e-3 2.9e-3 2.8e-3 2.8e-3

17

(1) NtrQA (2) Qasper (3) MF-en (4) HotpotQA

(5) 2WikiMQA (6) Musique (7) GovReport (8) QMSum

(9) MultiNews (10) TREC (11) TriviaQA (12) SAMSum

(13) PCount (14) PRe (15) Lcc (16) RB-P

Figure 5: Heatmap of Llama-3-8B-Instruct.

18

(1) NtrQA (2) Qasper (3) MF-en (4) HotpotQA

(5) 2WikiMQA (6) Musique (7) GovReport (8) QMSum

(9) MultiNews (10) TREC (11) TriviaQA (12) SAMSum

(13) PCount (14) PRe (15) Lcc (16) RB-P

Figure 6: Heatmap of Mistral-7B-Instruct-v0.2.

19

(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

Figure 7: The expected complementary contributions for the lcc dataset across different coalition sizes.

(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

Figure 8: The expected complementary contributions for the hotpotqa dataset across different coalition sizes.

20

Figure 9: Needle-in-a-Haystack test results on Mistral-7B-v0.2 with average KV cache = 128

21

Table 9: Generalization results of masking groups with
Llama3-8B-Instruct

Method
Multi-Doc. QA Code

2W
ikiM

QA

M
usique

Lcc
RB-P

Full Cache 34.56 21.09 58.10 51.64
Masking 16 groups

Random 20.01 20.6 49.83 40.55
HeadKV-R2(top) 17.33 14.32 26.62 26.53
CoKV(top) 10.78 5.43 14.41 15.33
HeadKV-R2(low) 27.23 12.55 37.35 38.55
CoKV(low) 39.92 20.9 64.04 61.22

Masking 32 groups

Random 18.50 6.94 30.78 40.71
HeadKV-R2(top) 9.37 5.11 11.24 13.64
CoKV(top) 6.71 3.45 4.39 5.78
HeadKV-R2(low) 14.48 7.42 33.13 32.39
CoKV(low) 38.1 18.22 64.75 58.28

Masking 64 groups

Random 9.11 6.76 21.27 18.07
HeadKV-R2(top) 12.01 2.46 21.03 16.14
CoKV(top) 5.68 1.82 2.5 3.66
HeadKV-R2(low) 14.21 6.63 16.00 14.58
CoKV(low) 34.17 16.29 49.97 48.93

Masking 96 groups

Random 10.33 5.08 15.37 9.81
HeadKV-R2(top) 9.14 2.93 13.55 14.76
CoKV(top) 4.38 1.28 2.74 3.07
HeadKV-R2(low) 16.80 8.00 10.56 11.05
CoKV(low) 28.08 12.92 38.62 40.55

Masking 128 groups

Random 5.12 2.73 12.27 9.23
HeadKV-R2(top) 7.19 1.85 13.94 11.76
CoKV(top) 2.93 0.94 2.48 3.84
HeadKV-R2(low) 12.83 5.26 10.14 6.03
CoKV(low) 24.34 9.37 23.38 24.11

Table 10: Generalization results of masking groups with
Mistral-7B-v0.2

Method
Multi-Doc. QA Code

2W
ikiM

QA

M
usique

Lcc
RB-P

Full Cache 26.07 17.81 55.10 49.45
Masking 16 groups

Random 27.19 17.83 52.38 48.24
HeadKV-R2(top) 22.76 14.29 39.49 35.66
CoKV(top) 13.02 6.99 17.97 23.38
HeadKV-R2(low) 24.88 16.93 54.22 49.4
CoKV(low) 26.25 18.18 54.58 50.03

Masking 32 groups

Random 22.55 11.92 50.14 47.18
HeadKV-R2(top) 20.31 12.86 33.41 30.47
CoKV(top) 10.23 5.16 11.8 13.64
HeadKV-R2(low) 23.55 13.28 52.89 48.85
CoKV(low) 26.61 17.62 55.35 49.92

Masking 64 groups

Random 16.93 15.65 38.07 28.39
HeadKV-R2(top) 13.79 8.07 26.25 21.23
CoKV(top) 4.52 2.11 13.14 13.31
HeadKV-R2(low) 14.26 7.41 38.78 39.22
CoKV(low) 33.11 16.97 52.68 49.54

Masking 96 groups

Random 10.41 8.43 21.30 17.65
HeadKV-R2(top) 14.22 3.99 17.73 16.24
CoKV(top) 2.09 3.04 10.96 8.32
HeadKV-R2(low) 10.10 5.44 34.95 32.57
CoKV(low) 31.51 17.39 47.71 45.37

Masking 128 groups

Random 7.80 2.07 23.74 18.34
HeadKV-R2(top) 6.15 3.89 18.68 18.52
CoKV(top) 1.19 3.42 9.81 6.0
HeadKV-R2(low) 7.20 6.64 24.09 24.48
CoKV(low) 23.76 12.12 42.01 36.7

22

	Introduction
	Preliminaries
	Key-Value Caching and Compression
	Shapley Value

	Method
	Head Importance Evaluation
	KV Cache Compression

	Experiments
	Experiment Settings
	Main Results
	Decoding Latency and Memory Usage

	Conclusion
	Related Works
	Supplementary experiments
	Computation Efficiency
	Distribution of Sliced Shapley Value
	Distribution of j-coalition Complementary Contribution
	Generalization
	Needle-in-a-Haystack Test

	Proof

