CoKYV: Optimizing KV Cache Allocation via Cooperative Game

Anonymous ACL submission

Abstract

Large language models (LLMs) have achieved
remarkable success on various aspects of hu-
man life. However, one of the major chal-
lenges in deploying these models is the sub-
stantial memory consumption required to store
key-value pairs (KV), which imposes signifi-
cant resource demands. Recent research has
focused on KV cache budget allocation, with
several approaches proposing head-level bud-
get distribution by evaluating the importance
of individual attention heads. These methods,
however, assess the importance of heads inde-
pendently, overlooking their cooperative con-
tributions within the model, which may result
in a deviation from their true impact on model
performance. In light of this limitation, we
propose CoKYV, a novel method that models
the cooperation between heads in model infer-
ence as a cooperative game. By evaluating the
contribution of each head within the coopera-
tive game, CoKV can allocate the cache bud-
get more effectively. Extensive experiments
show that CoKV achieves state-of-the-art per-
formance on the LongBench benchmark us-
ing LLama-3-8B-Instruct and Mistral-7B mod-
els. Code is provided in https://anonymous.
4open.science/r/CoKV-40AC.

1 Introduction

Large language models (LLMs) are widely applied
across various domains, including content genera-
tion (Li et al., 2024a), automated services (Chen
et al., 2024a), and decision support systems (Bao
et al., 2023). To enhance the application capa-
bilities of large language models, it is essential
for them to handle long texts. For example, GPT-
4 (OpenAl, 2024) and Llama-3 (Dubey et al., 2024)
support a context size of 128k tokens, while the
context size of Claude 3 (Anthropic, 2024) is up to
200k tokens. LLLMs consist of multiple transformer
blocks that store key and value states (KV) dur-
ing inference. KV cache allows efficient decoding

in token generation without recomputing key and
value states by using previously cached KV pairs.
However, the KV cache grows excessively large
when dealing with long texts, inevitably straining
GPU memory and increasing decoding latency.

Eviction of less important key and value states in
the cache has garnered significant attention. Many
studies have explored methods for ranking the im-
portance of tokens within a single attention head,
retaining only the top k& most significant ones. For
example, H20 (Zhang et al., 2023b) evaluates to-
ken importance using the sum of attention weights.
StreamingL.LLM (Xiao et al., 2024) directly removes
KV from the middle segment of the cache to reduce
the cache size as they incorporate less information.
SnapKV (Li et al., 2024b) calculates token scores
by pooling the attention weights between tokens in
the local window and those in the cache. Recently,
some studies have recognized that the importance
of each attention head varies, enabling methods
like AdaKV (Feng et al., 2025) and HeadKV (Fu
et al., 2025). AdaKV improves budget utilization
by adaptively allocating the overall budget across
different attention heads based on their varied con-
centration degrees. Heads with sparse concentra-
tions require a small cache proportion, whereas
more dispersed heads demand larger allocations.
HeadKYV evaluates the retrieval-reasoning scores
of different heads and allocates a larger cache size
to those with higher scores.

Motivated by evidence that attention heads vary
in importance, we propose a novel approach to bet-
ter evaluate and utilize this variability. We identify
two key insights. First, existing methods evalu-
ate attention head importance independently. For
example, AdaKV evaluates the concentration de-
grees of heads while HeadKV assesses the retrieval-
reasoning capability of each head in isolation as a
measure of importance. However, these approaches
treat heads as isolated units, overlooking the fact
that their true importance emerges from their co-

https://anonymous.4open.science/r/CoKV-40AC
https://anonymous.4open.science/r/CoKV-40AC
https://anonymous.4open.science/r/CoKV-40AC

operation rather than individual capabilities. As
a result, independently assessing head importance
may lead to suboptimal allocation. Second, exist-
ing methods evaluate head importance in a task-
agnostic manner. However, heads that play a criti-
cal role in query answering may not hold the same
level of significance in code generation. Conse-
quently, applying the same importance scores to
heads across all tasks within a model may fail
to reflect the practical need of each specific task
accurately. Based on these insights, we propose
CoKYV (Cooperation-based Key-Value), a method
that evaluates the contribution of all attention heads
in their cooperation within the model and dynami-
cally allocates cache budgets based on their contri-
bution to the specific task.

CoKYV is inspired by the Shapley value (Shapley,
1953) from cooperative game theory. The Shapley
value of a player p; measures the expected marginal
contribution that p; provides to a coalition of play-
ers. Similarly, we can use the Shapley value to
assess the importance of each attention head by
viewing each head as a player. Marginal contribu-
tion is defined as U(S U {p;}) — U(S) where S is
a coalition of players excluding 7 and I/ is the util-
ity function. A simple intuition for computing the
Shapley value of each head in the model is to de-
fine U/ as the model performance metric. However,
calculating the Shapley value is #P-hard (Deng and
Papadimitriou, 1994), as there are an exponential
number of coalitions and corresponding marginal
contributions. As a result, evaluating the Shapley
value for each head in LLMs requires an enormous
number of model inferences. Although many stud-
ies (Jia et al., 2019; Mitchell et al., 2022) have ex-
plored approximating the Shapley value to reduce
computational costs, the process remains costly.

The computational bottleneck in calculating the
Shapley value arises from the fact that each sam-
ple of the marginal contribution only can be ap-
plied to a single player. Fortunately, Shapley
value can be expressed as the expectation of the
weighted complementary contribution, defined as
U(S) —UN \'S), where N represents the set of
all players (Zhang et al., 2023a). Complementary
contribution has an advantage over marginal con-
tribution is that U(S) — U(N \ S) can be used to
update the Shapley values for all players i € S.
By expressing the Shapley value in terms of com-
plementary contributions, we can interpret it as
an expectation over these contributions computed
at different coalition sizes |S|. However, in the

LLM setting, the cost of computing the comple-
mentary contributions in all coalition sizes is still
prohibitively high. We observe that the average
complementary contribution at each coalition size
exhibits a strong correlation with the Shapley value
of the players in Appendix Section B.3. This in-
sight allows us to approximate attention head im-
portance by computing complementary contribu-
tions at only a few selected coalition sizes, rather
than evaluating all possible sizes (i.e., from 1 to
|INV]). By focusing on a few representative coali-
tion sizes, we can significantly reduce the computa-
tional cost of estimating the contributions of heads.
Additionally, we provide a theoretical analysis of
this approach and demonstrate its efficiency.
CoKYV is a simple-yet-effective method and
can integrate well with other inference optimiza-
tion techniques. We integrate CoKV with widely
used methods including FlashAttention (Dao et al.,
2022) and grouped-query attention (GQA) (Ainslie
et al., 2023). CoKYV achieves state-of-the-art per-
formance in LongBench (Bai et al., 2024) us-
ing Llama-3-8B-Instruct (Dubey et al., 2024) and
Mistral-7B (Jiang et al., 2023) models. Results
from the Llama-3-8B-Instruct model show that
when each KV cache retains an average of 128 KV
pairs (1.6% of the full cache), it achieves 97.29%
of the performance of the full KV cache. Further-
more, when each cache retains just 512 tokens on
average, CoKV outperforms the full KV cache in
terms of average accuracy. This demonstrates that
CoKYV not only reduces computational costs but
also improves inference performance by identify-
ing which heads benefit from cache retention and
which may have a detrimental effect. Additionally,
we evaluate all methods within the token range of
1k to 31k in the Needle-in-a-Haystack test, where
CoKYV also demonstrated the best retrieval capabil-

ity.
2 Preliminaries

2.1 Key-Value Caching and Compression

In Multi-Head Attention (MHA), for each atten-
tion head h; in one layer, the embedded input
X ={x1,29,..., 2} € R™Xmotel of m tokens is
mapped into different subspaces using query WiQ,
key WZK , and value Wiv € RfmodetXdn matrices:

Qi = XWE K; = XWEK,V; = XW) e R™*

where dj, is the dimension of attention heads, dj;, =
d /T, and 7 is the number of heads in one layer.

All the computed K'V for the input sequence
are cached to avoid recalculating them during the
subsequent decoding stages. Assume there is a new
input token z € R1*dmotelthen it will be mapped
to a new query, key, and value as follows,

g = xWiQ, ki = 2WE v; = 2WY € R,

The KV cache is updated by adding the new key
and value pair

Ki == Cat[Ki, k‘z], Vh == Cat[Vi,vi].
The attention output is computed as follows,
O0; = AV,

where A; = softmax(q; K} /\/d},). The final out-
put y € R1Xdmeael js obtained through a linear trans-
formation

y = Cat[Oy,---,0,]W°

where WO € R%*dmosel output weight matrix.

Furthermore, KV cache eviction methods can
be employed to discard unimportant KV cache
entries while preserving performance. For each
head h;, the compressed KV cache is reduced to
K; € R*dn and V; € R¥*% where some unim-
portant KV pairs are evicted and s < m, resulting
in a significant improvement in computational effi-
ciency and memory usage. Specifically, the com-
pressed KV cache is updated by appending the new
key and value pair:

Ki = Cat[f(,-, k?l]7 ‘72 - Cat[f/ia Ui]'

The attention output for each head h; is computed
using the compressed KV cache:

where the attention weights A; are calculated as:
A; = softmax(q; K //dy,).

2.2 Shapley Value

Consider a set of players N' = {p1,...,pn}. A
coalition S is a subset of N that cooperates to com-
plete a task. A utility function U(8S) (S C N) is
the utility of coalition S for the task. The marginal
contribution of player p; with respect to a coalition
SisU(SU{p;}) —U(S). The Shapley value mea-
sures the expectation of marginal contribution of
player p; in all possible coalitions. That is

Sy, = 1 $ USU {ZZZ_}I) —Uus)
" sc\pi) (isi)

(1

According to Equation 1, it is evident that comput-
ing the exact Shapley value requires enumerating
the utilities for all possible subsets of players and
each marginal contribution can only be used to up-
date the Shapley value of a single player. Therefore,
the computational complexity of exactly calculat-
ing the Shapley value is exponential. Recently, the
Shapley value of player p; is proven to be equal to
the weighted complementary contributions (Zhang
et al., 2023a) as follows,

ol Yy UE U
" SCN\(pi} (isi)

U(S) —U(N \ S) is called complementary contri-
bution which has an advantage that can be reused
to update Shapley value estimation for all players
in S. In the context of KV caches, attention heads
are treated as players for evaluating their impor-
tance to each specific task. ¢/(S) is defined as the
model accuracy when the attention heads in N/ \ S
are masked, we retain only the KV pairs within the
local window for masked heads.

)

3 Method

Our method consists of two phases. First, we pre-
compute the importance scores for each attention
head. Second, these scores are utilized for KV
cache compression during inference. The overview
of our approach is illustrated in Figure 1.

3.1 Head Importance Evaluation

Although the complementary contribution helps
in increasing efficiency when approximating the
Shapley value, it is still computationally costly,
especially in the LLM setting. Given a set of play-
ers N = {pi1,...,pn}, a coalition of j players
(1 < j < n)is called a j-coalition. Moreover,
for a player p; (1 < ¢ < n), a j-coalition that
contains p; is called a (i, j)-coalition. Denote by
Sij = {SU{pi}IS SN\ {pi}, S| =j—1} the
set of (i, j)-coalitions, and by SV; ; the expected
complementary contributions of (i, j)-coalitions.
That is,

US)—UNN\S
HCRP =

It is clear that SV; = & > j=1SVi ;. Computing
the Shapley value needs to calculate SV; ; for j
ranging from 1 to n, which becomes costly when
n is large.

Se6; ;

D Masked Head

[:] Unmasked Head

Evicted KV

8@
O0O@
888
0000

[
[
[

Local Window

O]
[:] Cached KV
O

.
I@I I
8@
0@0
808
8@
808

Layers Layer 3

Figure 1: Overview of our proposed method: (1) Head Importance Evaluation (Upper Part): For a 4-layer x
4-head model, We measure head importance using the Sliced Shapley Value (SSV). To approximate SSV, we sample
M different sets of masked heads and compute their complementary contributions. The average complementary
contribution of each head is its estimated SSV. (2) KV Cache Compression (Lower Part): Using the 4 heads in
Layer 3 as an example, all heads store KV pairs for a small local window of recent tokens, while heads with higher

SSV (darker in the heatmap) are allocated more cache size to retain KV pairs before the local window.

We observe that the expected complementary
contributions of j-coalitions for heads in LLMs fol-
low a similar distribution across different j values,
as shown in Appendix Section B.3. This suggests
that the contributions of heads can be effectively
captured using a subset of j-coalitions. Based on
this insight, we propose assessing the importance of
heads using the expected complementary contribu-
tion of several j-coalitions, which can significantly
reduce the computation cost while maintaining ef-
fectiveness. Formally, we introduce a new defini-
tion called the Sliced Shapley value as follows.

Definition 1 (Sliced Shapley Value) Let H C
{1,--- ,n} denote the selected set of j-coalitions,
representing a specific slice of the coalition size
space. The Sliced Shapley value of head h; with
respect to ‘H is defined as:

H_ IH\
SSV! IH! st ATRS L

where H}{ is an indicator function, which is 1 if j is
the element in 7 and O otherwise.

Algorithm Description. The detailed steps of
approximating SSV! are shown in Algorithm 1.
In each iteration, sample a random permutation 7%
of the heads {hj, ..., h,}, which defines a random
ordering of the heads. Randomly select a split point
and create a set S of selected heads. Mask heads
in the set A/ \ S, and evaluate the model accuracy

after masking, which is denoted as /(S). Similarly,
calculate U (N \ S) by masking heads in S (Lines
3-6). For each head in S, update SV k(;; and
count matrix mgx ;) ; (Lines 7-10). After M iter-
ations are completed, calculate the approximated
Sliced Shapley value for each head by averaging
the complementary contributions.

Theorem 1 Algorithm 1 returns an (€,0)-

approximation of Sliced Shapley value with time
20|

complexity O(M) where T is the time cost

of evaluating a complementary contribution which
is the time to inference on the validation dataset
of each task in our setting. In contrast, Shapley

l
value requires the time complexity of O(Tn %)
to achieve an (€, 0)-approximation. The proof is
provided in Appendix Section C.

3.2 KV Cache Compression

Existing KV cache compression methods have par-
tially addressed the importance of layers, yet this
consideration remains insufficient during cache al-
location. While AdaKV attempts to preserve to-
kens with larger attention weights across all heads
when allocating cache size, it overlooks the varying
importance of different attention heads. Conversely,
HeadKV acknowledges the differential importance
of attention heads but suffers from several limita-
tions. First, its evaluation primarily relies on the
retrieval capability of individual heads, incorporat-

Algorithm 1: Evaluating Head Importance
in LLMs.
input :Heads V' = {hq,...,h,} and
sampling number M > 0
output : approximate Sliced Shapley value
SS VZH for each head h;
(1<i<n)
1 SV« 0(1<i<n); 8V ,mij <« 0
(1<i,j<n);
for k=1 to M do
3 let 7% be a random permutation of
{1,...,n};
4 let ¢ be a randomly selected element
from the set H;
5 S« {r*),.... 78}
s | N\S« {7*i+1),...,7%n)};

// U(S) is the model performance when heads in
N\ S are masked and vice versa for U(N '\ S).

7 uUS)—UNN\S);
8 for j=1/toido
9 L vak(j)7i+ = u;

~

Mok (j),iT = 13

u fori= 1t ndo
12 t SSVZ-{ = % Z?:l SViVj/mm‘;
13 return SSVIt, ... SSV

ing only basic reasoning abilities that prove inade-
quate for more complex scenarios, such as few-shot
learning. Second, it assesses each head in isolation,
ignoring the discrepancy between a head’s individ-
ual contribution and its collaborative importance
when working in conjunction with other heads. Our
proposed method addresses these limitations by in-
troducing a SSV-based scoring mechanism, which
evaluates each head’s importance based on its col-
laborative contribution to the task. This approach
offers a more comprehensive and accurate repre-
sentation of each head’s significance in the overall
model inference process.

Budget Allocation. An intuitive approach sug-
gests that the least important heads, which con-
tribute minimally or even negatively to the model
performance, may not require cache allocation.
Let « represent the number of such heads, which
serves as the sole hyperparameter in our alloca-
tion scheme. For the remaining n — « heads, we
employ a normalization method to normalize their
importance scores and allocate the cache size pro-
portionally based on their normalized scores.

Algorithm 2: Token Eviction Using CoKV.

:Shared budget size B, local
window size s, tokens in local
window X% ¢ Rs*4 KV in local
window {Klwm, Vzwm} KV
outside local window { K2, V.out}

output : Retained KV Cache { K i \A/Z}
1 Q;um — XwinWiQ;

// Compute attention weights of queries in local window
and prefix Keys.

2 A; = softmax(QV"KT);
3 A; = A;.maxpooling(dim =

1).mean(dim = 0);
// Calculate token scores outside the local window.

4 Get ¢; using Algorithm 1 and Equation 3;

input

s indices = A;.topk(c;).indices;
6 Select {K;, Vi} from { Ko, Vouty
according indices;
7 {[A{h ‘71} - Cat({-f{la ‘A/’L}7 {szznu ‘/szn})’
// Keep top c; KV pairs in the cache.

s return Retained KV Cache {K;, V;}.

Specifically, we normalize their contributions
using min-max normalization for the n — « heads:

SSYH — min®(SSYM)
max(SSYH) — min®(SSVH)’

NSV =

where min®(-) and max(-) extract the a-th small-
est and maximum value, respectively. For the «
heads with the smallest Sliced Shapley values, we
set the normalized score as 0. This ensures that all
normalized scores lie in the range [0, 1].

Next, the cache size ¢; allocated to head h; is
determined by the local window size s and lin-
early distributing the remaining shared cache size
B based on the normalized scores:

NSVH

7 . 3
Z?leSV;'[—FS 3)

C; =

Algorithm Description. First, we allocate the
KV cache size for each head based on their nor-
malized Sliced Shapley values. Next, we rank the
importance of KV pairs within each head using
SnapKV. Specifically, the most recent tokens within
local windows guide the KV cache selection. At-
tention scores from these local windows to the re-
maining tokens are aggregated via pooling, with
higher-scoring tokens retained in the cache for each
head. The detailed eviction steps for a single head
are outlined in Algorithm 2.

4 [Experiments

4.1 Experiment Settings

Datasets. LongBench is a multitask benchmark
for long context understanding and exhibits a wide
range of average input lengths, spanning from
1,235 to 18,409 tokens.

Baselines and Settings. We compare CoKV with
four strong KV cache compression methods. All
methods keep the same total cache size for fair
comparison. Besides, we implement all methods
with GQA (Ainslie et al., 2023) and FlashAtten-
tion (Dao et al., 2022) for efficient computation.

* SnapKYV (Li et al., 2024b) uses the last several
tokens as local windows to guide KV cache se-
lection. Attention scores from these windows to
the remaining tokens are pooled to cluster and
guide the selection process.

* PyramidKYV (Cai et al., 2024) allocates more KV
cache to lower layers to retain key information
while reducing the budget for higher layers where
information is already aggregated.

* Ada-KV (Feng et al., 2025) dynamically allo-
cates budgets to heads within each layer based on
their concentration degrees, and can be combined
with SnapKV or PyramidKV. Ada-SnapKYV is
used as the baseline due to its superior perfor-
mance over Ada-PyramidKV.

* HeadKV-R2 (Fu et al., 2025) allocate budgets
to heads based on their retrieval-reasoning score,
and it uses SnapKV to rank the importance of
KV pairs in each head.

In CoKYV, we allocate the KV cache size for each
head based on the normalized Sliced Shapley value
of H = {32, 64,96, 128}. Following HeadKV-R2,
we set the local window size to 8, and randomly
split each dataset into a validation dataset and a test
dataset, with proportions of 15% and 85%, respec-
tively. The hyperparameter « is selected from the
set {1,5,10, 15,20, 30,40}. The validation dataset
is used to compute Sliced Shapley value and de-
termine the optimal « for each task. We evaluate
CoKYV on the Llama-3-8B-Instruct and Mistral-7B-
Instruct-v0.2 models. Due to the page limit, the
Mistral-7B-Instruct-v0.2 results are provided in Ap-
pendix. For test data that exceeds the maximum
input length of Llama-3-8B-Instruct, we adopt the
approach of HeadKYV by utilizing the first 4k tokens
and the last 4k tokens. Following standard practices
in prior studies (Feng et al., 2025; Fu et al., 2025),

we perform cache eviction after the prefilling phase
of each layer for consistent comparison. In GQA,
a group of 4 heads shares the same KV cache. We
treat each cache within a group as a player in a
cooperative game, evaluating their Sliced Shapley
value to determine their importance scores. For
HeadKV-R2, we calculate the importance score of
each group by averaging the retrieval-reasoning
scores of the 4 heads within the group. This adapta-
tion ensures compatibility with GQA, as HeadKV
is implemented with MHA in the original paper.
For the efficiency and computation cost analysis
of Sliced Shapley value, please refer to Appendix
Section B.1. For the test in Needle-in-a-Haystack,
please refer to Appendix Section B.5.

4.2 Main Results

Benchmark Results. The complete benchmark
results are presented in Tables 4 and 5 in the ap-
pendix. We include a simplified table (Table 1),
showing the performance of Llama-3-8B-Instruct
when keeping 64-128 KV pairs on average. The
results demonstrate that CoKV consistently outper-
forms all baseline methods. The average accuracy
of the two models on 16 datasets are presented in
Figure 2. Notably, in Llama-3-8B-Instruct, with

Llama-3-8B-Instruct

U
]
39
o
[, —e— SnapKV
g —=— Pyramid
<37 Ada-SnapKV
i HeadKV-R2
36 —— CoKV
35 o+ FullKV
64 128 256 512 1024
KV size
Mistral-7B-Instruct-v0.2
40
38
[
=
o
v}
9 36
L)
o
[—e— SnapKV
g“ —=— Pyramid
< Ada-SnapKV
HeadKV-R2
32 Y —+— CoKV

=+ FullKV

64 128 256 512 1024
KV size

Figure 2: Results for varying KV cache sizes (64, 128,
256, 512, 1024), showing the average accuracy across
16 datasets from the LongBench benchmark.

an average of 128 tokens cached per group KV
cache, CoKV retains 97.29% of the model perfor-
mance. Furthermore, CoKV significantly surpasses

Table 1: Benchmark Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
O T T T T Y T
0, b e, B, %, w4y G o 4y G e e T8,
7 3 /2 O/QY %QS, Y) % ‘//,) 0% Q7 %, U
Full Cache 24.12 31.24 39.85 4523 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64
KYV size=64
SnapKV 19.94 1321 2891 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 5435 50.42
Pyramid 20.11 16.54 32.67 40.25 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96
Ada-SnapKV 2040 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 3525 4.41 71.57 54.02 51.68
HeadKV-R2 2030 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49
CoKV 20.77 19.67 35.11 44.37 34.36 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82
KYV size=1024
SnapKV 2395 2695 37.81 44.03 30.88 20.93 24.26 23.09 25.79 72.35 90.87 41.43 431 71.76 59.29 5491
Pyramid 23.62 26.76 39.44 4579 33.41 19.87 23.57 2298 25.13 73.02 90.93 40.86 4.71 71.76 58.43 53.67
Ada-SnapKV 2352 28.33 40.39 45.20 3295 20.11 24.55 23.33 25.37 73.53 90.87 41.38 4.46 71.76 58.88 54.65
HeadKV-R2 23.35 29.60 40.09 45.82 35.81 21.39 25.57 2332 26.30 74.12 90.77 40.27 4.19 71.76 61.58 59.03
CoKV 24.01 31.70 40.64 48.13 37.89 20.64 23.02 23.89 25.71 74.12 91.01 42.02 4.71 7120 63.33 63.74

FullKV when it maintains an average of over 512
KV pairs per group cache. When retains an aver-
age of 1024 KV, the average results of both models
outperform FullKV. This demonstrates that CoKV
achieves near-lossless performance under resource-
constrained settings. The superior performance of
CoKYV arises from its ability to effectively evaluate
the importance of each cache within a group while
considering the cooperation among all groups. It
is not only capable of identifying which groups are
important but also able to recognize those groups
that do not contribute or even have a negative con-
tribution. By optimizing the cache size to enhance
overall cooperation, CoKV ensures efficient and
high-quality inference.

Hyperparameter Free Results. Since both
HeadKV-R2 and CoKV provide importance scores
for each group, we conduct an experiment to com-
pare their effectiveness without introducing any
additional hyperparameters. In this experiment,
we mask the caches of groups based on the impor-
tance scores assigned by each algorithm. Specif-
ically, we mask the caches of both the highest-
ranked (top) and lowest-ranked groups (low). The
complete results are shown in Tables 6 and 7 in
the appendix. We include a simplified table for
the results of masking 16,128 groups of Llama-3-
8B-Instruct model in Table 2. The results show
that when masking the top-ranked groups identi-
fied by each method, the performance of CoKV
degrades more significantly than that of HeadK'V-
R2. Conversely, when masking the unimportant
groups (low), the performance of CoKV declines

more gradually than HeadKV-R2. This suggests
that CoKV is more effective at ranking group im-
portance, as it better distinguishes between critical
and non-critical caches. The results of masking 16
groups in both models outperformed the FullKV
approach as shown in Figure 3. This further demon-

Llama-3-8B-Instruct

+ FullkvV
* — Random

Average Score
N
8

15 HeadKV-R2(top)
. <%+ CoKV(top)

© CT HeadKV-R2(low)
s T PP —~— CoKV(low)

16 32 96 128

64
Masked Groups
Mistral-7B-Instruct-v0.2

2 30

o

O

v s

g *

B2 «+++ FullkKV

g . —— Random

<5 HeadKV-R2(top)
*el, <%+ CoKV(top)

HeadKV-R2(low)
RRAALELELEY —~— CoKV(low)

16 32 96 128

64
Masked Groups

Figure 3: Results for varying masked groups
(16,32,64,96,128), showing the average accuracy across
16 datasets from the LongBench benchmark.

strates that CoK'V can identify groups that have a
negative impact on the model. By removing the
KV pairs from these groups, the model inference
not only optimizes storage and decoding speed but
also enhances overall performance.

Table 2: Results of masking groups with Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning ~ Synthetic Code
4, & 9 e 2 2 @ & & P
o, " Ty T e T,) e e Ty T, S
C A S
Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 4237 4.55 71.76 58.10 51.64
Masking 16 groups
Random 20.93 28.48 33.69 44.93 20.01 20.6 2843 23.7 26.67 74.12 91.07 41.12 4.26 71.76 49.83 40.55
HeadKV-R2(top) 19.45 12.97 27.75 342 17.33 14.32 19.74 22.76 22.05 67.06 87.91 3553 4.71 68.49 26.62 26.53
CoKV(top) 6.55 946 947 10.19 1227 5.67 573 1696 447 4353 71.21 23.77 391 3498 11.58 17.18
HeadKV-R2(low) 21.83 14.36 33.34 31.37 27.23 12.55 27.29 23.82 26.99 74.12 91.03 42.18 4.12 70.59 37.35 38.55
CoKV(low) 2374 33776 41.71 49.27 40.48 19.99 29.13 23.25 27.79 74.12 9145 4237 471 70.55 63.38 61.26
Masking 128 groups
Random 334 250 533 1059 512 273 215 9.19 0.16 44.12 3133 9.05 4.18 66.74 1227 9.23
HeadKV-R2(top) 2.34 217 538 721 7.19 185 1.80 1034 031 34.71 26.08 7.87 471 66.92 1394 11.76
CoKV(top) 059 0.80 138 296 342 1.11 1.16 405 0.13 3412 289 7.17 109 752 291 355
HeadKV-R2(low) 12.02 7.97 892 14.87 12.83 526 241 9.12 142 5588 40.96 102 4.71 6842 10.14 6.03
CoKV(low) 1531 12.15 28.44 35.35 23.27 10.67 293 12.24 941 73.82 76.32 37.70 4.71 68.24 22.20 24.93

4.3 Decoding Latency and Memory Usage

We conduct experiments using the Mistral-7B-
Instruct-v0.2 model, which supports a maximum
context window of 32k tokens, with FlashAttention
enabled as the default setting, on an A100 GPU
with 40GB of memory. We design two key exper-
iments with the average KV cache size set to 128
tokens(comparative experiments showed less than
2% variation across 64/256/512/1024 tokens).

Decoding Latency
- SnapKV
~#%- Pyramid
Ada-SnapKV
HeadKV-R2
ok CoKV
Fullkv

Times (s)
"
&
g

2048
Generation Length

4096

Peak Memory Usage

~e- SnapkV

~#- Pyramid
Ada-SnapKV
HeadKV-R2

ks CoKV

-+ Fullkv

24

= N N
@ S N

Peak GPU Memory (GB)

H

5
X

[

14

ak 8k
Context Length

Figure 4: Results of Decoding Latency and Peak Mem-
ory Usage, demonstrating that CoK'V maintains compa-
rable performance with other baseline methods while
achieving significant improvements over FullK'V.

Decoding Latency With a fixed input context
length of 28k tokens, we measure decoding la-
tency (including both the pre-filling time and the
decoding time) across different generation lengths
(1/512/1024/2048/4096 tokens). As shown in the
Decoding Latency of Figure 4, CoKV achieves less
than 50% of the total latency compared to the Ful-
IKV baseline, with negligible differences observed
between the other baselines.

Peak Memory Usage Under fixed generation
length (1 token), we measure the peak GPU
memory usage (including model parameters and
runtime states) across varying input contexts
(1k/2k/4k/8k/16k/32k tokens). As shown in the
Peak Memory Usage of Figure 4, CoKV reduces
memory usage by 64% compared to FullKV base-
line at 32k input length.

5 Conclusion

Large language models (LLMs) face significant
challenges in handling long texts due to the exces-
sive memory and latency overhead caused by the
growing size of the KV cache. To this end, we intro-
duce the Sliced Shapley value (SSV) to evaluate the
collaborative importance of attention heads and a
novel method called CoKV to dynamically allocate
cache sizes based on SSV. Our experimental results
demonstrate that CoKV achieves state-of-the-art
performance across 16 LongBench datasets, outper-
forming the full KV cache in 9 datasets while reduc-
ing memory and latency overhead. CoKV provides
a scalable and practical solution for enhancing the
efficiency of LLMs in real-world applications.

Limitations

Our work has two main limitations that suggest
future research directions:

Task-specific constraint: CoKV requires cal-
culating head importance scores for different
tasks. While experiments in Appendix Section B.4
demonstrate strong generalizability across datasets
within the same task category. Despite this
constraint, CoKV is highly practical for LLM
providers serving diverse users. Users can sim-
ply select their task type, and the model will apply
the corresponding head importance scores for KV
cache compression. Importantly, the underlying in-
ference process remains consistent across all tasks;
only the cache budget allocation varies based on
the task-specific importance scores. This ensures
both flexibility and efficiency, enabling the model
to adapt to various user needs without requiring
significant changes to its core architecture.

Precomputation cost: The computation of im-
portance based on cooperative game theory for
attention heads is computationally intensive. Al-
though we propose the Sliced Shapley Value (SSV),
which significantly reduces the computational cost,
our precomputation overhead remains higher than
that of baseline methods. However, our experi-
ments in Appendix Section B.1 demonstrate that
this precomputation is still entirely acceptable. We
plan to address optimizing computational complex-
ity as one of our future research directions by de-
veloping efficient approximation algorithms and
parallel computing strategies.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. GQA: Training generalized multi-query trans-
former models from multi-head checkpoints. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. https://www-cdn.anthropic.com/
de8badb01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf. Accessed: 2025-02-
04.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In

Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119-3137, Bangkok, Thailand.
Association for Computational Linguistics.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,
Fuli Feng, and Xiangnan He. 2023. Tallrec: An ef-
fective and efficient tuning framework to align large
language model with recommendation. In Proceed-
ings of the 17th ACM Conference on Recommender
Systems, RecSys 2023, Singapore, Singapore, Septem-
ber 18-22, 2023, pages 1007-1014. ACM.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv:
Dynamic kv cache compression based on pyramidal
information funneling. Preprint, arXiv:2406.02069.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu,
Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong
Chen, Xingmei Wang, Kai Zheng, Defu Lian, and
Enhong Chen. 2024a. When large language models
meet personalization: perspectives of challenges and
opportunities. World Wide Web (WWW), 27(4):42.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu,
Size Zheng, Xiuhong Li, Xuechao Wei, Shengen Yan,
Meng Li, and Yun Liang. 2024b. Arkvale: Efficient
generative LLM inference with recallable key-value
eviction. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra,
and Christopher Re. 2022. Flashattention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Xiaotie Deng and Christos H. Papadimitriou. 1994.
On the complexity of cooperative solution concepts.
Math. Oper. Res., 19(2):257-266.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,

https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
https://doi.org/10.1007/S11280-024-01276-1
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://doi.org/10.1287/MOOR.19.2.257

Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, and et al. 2024. The llama 3
herd of models. CoRR, abs/2407.21783.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and
S. Kevin Zhou. 2025. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient
IIm inference. Preprint, arXiv:2407.11550.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue
Dong, and Wen Xiao. 2025. Not all heads matter:
A head-level KV cache compression method with
integrated retrieval and reasoning. In The Thirteenth
International Conference on Learning Representa-
tions.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells you
what to discard: Adaptive KV cache compression for
LLMs. In The Twelfth International Conference on
Learning Representations.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nick Hynes, Nezihe Merve Giirel, Bo Li, Ce Zhang,
Dawn Song, and Costas J. Spanos. 2019. Towards
efficient data valuation based on the shapley value.
In Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics,
volume 89 of Proceedings of Machine Learning Re-
search, pages 1167-1176. PMLR.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2024a. Pre-trained language mod-
els for text generation: A survey. ACM Comput.
Surv., 56(9):230:1-230:39.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024b. SnapKV:
LLM knows what you are looking for before gener-
ation. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test
time. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024. KIVI: A tuning-free asymmetric 2bit
quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

10

Rory Mitchell, Joshua Cooper, Eibe Frank, and Geof-
frey Holmes. 2022. Sampling permutations for shap-
ley value estimation. J. Mach. Learn. Res., 23:43:1—
43:46.

OpenAl. 2024. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Lloyd S Shapley. 1953. A value for n-person games.
Contribution to the Theory of Games, 2.

Noam Shazeer. 2019. Fast transformer decod-
ing: One write-head is all you need. Preprint,
arXiv:1911.02150.

Qiheng Sun, Jiayao Zhang, Jinfei Liu, Li Xiong, Jian
Pei, and Kui Ren. 2024. Shapley value approxima-
tion based on complementary contribution. IEEE
Transactions on Knowledge and Data Engineering,
36(12):9263-9281.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan
Hong, Danning Ke, Yiwu Yao, and Gongyi Wang.
2025. Razorattention: Efficient KV cache compres-
sion through retrieval heads. In The Thirteenth Inter-
national Conference on Learning Representations.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao
Peng, and Yao Fu. 2025. Retrieval head mechanis-
tically explains long-context factuality. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian
guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2025. Duoattention: Efficient long-context
LLM inference with retrieval and streaming heads. In
The Thirteenth International Conference on Learning
Representations.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

June Yong Yang, Byeongwook Kim, Jeongin Bae,
Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. 2024. No to-
ken left behind: Reliable KV cache compression
via importance-aware mixed precision quantization.
CoRR, abs/2402.18096.

Jiayao Zhang, Qiheng Sun, Jinfei Liu, Li Xiong, Jian
Pei, and Kui Ren. 2023a. Efficient sampling ap-
proaches to shapley value approximation. Proc. ACM
Manag. Data, 1(1).

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Re, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023b. H2o0: Heavy-hitter
oracle for efficient generative inference of large lan-
guage models. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://proceedings.mlr.press/v89/jia19a.html
https://proceedings.mlr.press/v89/jia19a.html
https://proceedings.mlr.press/v89/jia19a.html
https://arxiv.org/abs/2310.06825
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://jmlr.org/papers/v23/21-0439.html
https://jmlr.org/papers/v23/21-0439.html
https://jmlr.org/papers/v23/21-0439.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://doi.org/10.1109/TKDE.2024.3438213
https://doi.org/10.1109/TKDE.2024.3438213
https://doi.org/10.1109/TKDE.2024.3438213
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.1145/3588728
https://doi.org/10.1145/3588728
https://doi.org/10.1145/3588728
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

Appendix
A Related Works

KV Cache Compression The memory overhead
of storing key-value (KV) pairs for LLM has moti-
vated extensive research on KV cache compression.
Streamingl ..M (Xiao et al., 2024) preserves the
initial and recent tokens, which empirically exhibit
higher informativeness during generation. Simi-
larly, Scissorhands (Liu et al., 2023) proposes the
persistence of importance to identify and retain piv-
otal tokens. H20 (Zhang et al., 2023b) employs
a heavy-hitter oracle to drop tokens with low at-
tention scores. SnapKV (Li et al., 2024b) uses
the attention scores of the recent tokens to retain
critical tokens. While these methods reduce mem-
ory usage and accelerate inference, they implicitly
assume uniform importance across attention heads,
limiting their applicability. Recent works address
head diversity through layer-wise and head-wise
optimizations. PyramidKV (Cai et al., 2024) im-
plements a hierarchical allocation strategy, assign-
ing larger cache budgets to lower layers based on
the observed attention patterns across layers. Fast-
Gen (Ge et al., 2024) is an adaptive KV cache
compression method that reduces LLMs’ mem-
ory usage by profiling attention modules and con-
structing caches adaptively. RazorAttention (Tang
et al., 2025) and Duoattention (Xiao et al., 2025) di-
vide attention heads into retrieval heads(critical for
long-context processing (Wu et al., 2025)) and non-
retrieval heads, apply full KV cache to retrieval
heads and compressed KV cache to non-retrieval
heads. ArkVale (Chen et al., 2024b) proposes a
page-based KV cache manager that asynchronously
copies filled pages into external memory (e.g.,
CPU memory) as a backup and supports the recall
of important tokens that were previously evicted.
AdaKV (Feng et al., 2025) dynamically adjusts
cache budgets across heads based on their concen-
tration degrees and HeadKV (Fu et al., 2025) cal-
culates head importance scores to allocate cache
budget before inference. However, these methods
assess heads in isolation, neglecting their collabora-
tive interactions. For example, the standalone score
of a head may not reflect its true contribution when
working synergistically with others. Additionally,
these approaches overlook the task-dependent vari-
ations in head importance. Our approach tackles
these limitations by modeling head interactions as
a cooperative game, dynamically allocating cache
resources based on the varying complementary con-

11

tributions of heads across different tasks.

In addition to KV cache eviction methods, KV
cache quantization is also one of the mainstream
approaches for KV cache compression (Yang et al.,
2024; Liu et al., 2024). However, while eviction
methods can be used to retain less than 1% of the
cache, KV cache compression cannot be applied
to such an extent because it must preserve at least
1 bit. Nevertheless, the combination of these two
methods is an interesting direction for future re-
search.

Model Architecture and Computation Optimiza-
tion Modern LLMs employ architectural opti-
mizations to balance efficiency and performance.
Multi Query Attention (MQA) (Shazeer, 2019)
shares a single key-value pair across all attention
heads, drastically reducing memory usage but po-
tentially sacrificing performance. Group Query
Attention (GQA) (Ainslie et al., 2023) strikes a
balance by grouping heads to share key-value pairs,
preserving performance while maintaining memory
efficiency, which is widely adopted in recent LLMs
like Llama (Dubey et al., 2024) and Mistral (Jiang
et al., 2023). Concurrently, Flash Attention (Dao
et al., 2022) optimizes hardware utilization by min-
imizing memory reads/writes during attention com-
putation, significantly accelerating inference. No-
tably, our approach is fully compatible with GQA
and Flash Attention, ensuring seamless integration
with current LLMs.

Cooperative Game Theory Cooperative game
theory offers a principled framework for under-
standing how multiple players can jointly con-
tribute to overall system performance. Shapley
value (Shapley, 1953), a classic solution in coop-
erative game theory, provides a method for fairly
allocating joint benefits based on the marginal con-
tribution of each player. However, traditional Shap-
ley value computation methods allow each sample
to be used to calculate the marginal contribution
of only a single player. Recent works (Zhang
et al., 2023a; Sun et al., 2024) address this limi-
tation through complementary contributions that
enable simultaneous estimation of multiple players’
contributions. In the context of LLMs, these meth-
ods still encounter scalability issues, as the cost of
computing complementary contributions across all
coalition sizes remains prohibitively high. We pro-
pose the Sliced Shapley value, which samples only
a subset of coalition sizes. This approach not only
accelerates the computation but also accurately re-

flects the contributions of different heads.

B Supplementary experiments

We introduce the detailed information of Long-
Bench in Table 3, including the task types, evalu-
ation metrics, average length, languages, and the
number of samples for each task. .

B.1 Computation Efficiency

We conduct experiments to demonstrate the effi-
ciency of approximating the Sliced Shapley value
using the gasper dataset with the Llama-3-8B-
Instruct model. We randomly select 15% of the
gasper dataset as the validation set to compute the
Sliced Shapley value. The experiments are per-
formed on a server equipped with 8 RTX 3090
GPUs. We compute the Sliced Shapley value for
coalition sizes of {32, 64,96, 128}. GPUs 0-3 are
assigned to compute the complementary contribu-
tions for coalitions of sizes {32,64, 96, 128}, re-
spectively, while GPUs 4-7 compute another in-
dependent Sliced Shapley value. Table 8 shows
the computation time for each GPU from 50 to
500 samples of complementary contributions, as
well as the mean absolute error (MAE) between
the two independently computed Sliced Shapley
values. The MAE is calculated as:
MAE — S 88V - S8V
n

where WZ{ and Wf represent the Sliced
Shapley values from the two independent computa-
tions. The experimental results show that when the
number of samples reaches 250 for each coalition
size, the MAE is 3.8 — 3 < 1/256 with 20.93
hours. In GQA inference, the Llama-3-8B-Instruct
model has a total of 32 x 8 = 256 groups. Since
the model accuracy lies in the range [0, 1], when
the MAE between two sampling runs is less than
1/256, the sum of absolute errors across all groups
is less than 1. At this point, the Sliced Shapley
value can reliably reflect the contributions of the
groups.

We recommend performing two independent
sampling runs when computing the Sliced Shapley
value for a task. The sampling results are consid-
ered stable when the mean absolute error between
the two runs is less than 1/n, where n represents
the number of players in the cooperative game. At
this point, the results from the two sampling runs
can be averaged and used as the importance scores
of the heads in the model.

12

B.2 Distribution of Sliced Shapley Value

Figures 5 and 6 illustrate the distribution of the
Sliced Shapley values computed for selected coali-
tion sizes H = {32, 64,96, 128} in our experiment.
We observe that the distributions of Sliced Shap-
ley values exhibit significant differences across
datasets of different task categories, while showing
relatively smaller variations within datasets of the
same domain type.

B.3 Distribution of j-coalition
Complementary Contribution

In Figures 7 and 8, we present the distributions
of the expected complementary contributions of
heads in Llama-3-8B-Instruct model on the hot-
potqa dataset (multi-document question answer-
ing) and the Icc dataset (code generation), with
coalition sizes of {32, 64, 96,128, 160, 192, 224}.
We observe strong correlations in the distributions
across all coalition sizes. Additionally, the distribu-
tions of the expected complementary contributions
for coalition sizes .S and n—|S| are nearly identical,
exhibiting symmetry around the size of 128. To op-
timize computational efficiency, we restrict the cal-
culation of complementary contributions to coali-
tions with sizes below 128. These observations pro-
vide a justification for our approach of computing
complementary contributions using only a small
subset of coalition sizes, as it effectively captures
the contributions of the heads.

B.4 Generalization

To validate the generalization capability of our
method, we conduct cross-dataset evaluations on
two task categories: 1. Multi-Document QA includ-
ing 2WikiMQA and Musique datasets. 2. Code
Processing including Lcc and RB-P datasets.

Following Section 4.2, we mask top and low-
ranked attention heads but cross-apply head impor-
tance scores between datasets within the same task
(e.g., mask 2WikiMQA using Musique-derived
scores). As shown in Table 9 and Table 10, our
method maintains superior accuracy over baselines
across both models, confirming that learned impor-
tance scores can generalize across datasets within
shared task domains.

B.5 Needle-in-a-Haystack Test

To evaluate the performance of different KV cache
compression methods in long-context retrieval
tasks, we conduct a Needle-in-a-Haystack bench-
mark test using the Mistral-7B-v0.2 model. With

Table 3: Details of 16 Datasets in LongBench

Label Task Type Eval metric Avg Language Sample
len Num
NrtvQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MF-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMQA Multi-Doc. QA F1 4,887 EN 200
Musique Multi-Doc. QA F1 11,214 EN 200
GovReport ~ Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PCount Synthetic Accuracy 11,141 EN 200
PRe Synthetic Accuracy 9,280 EN 200
e Python/
Lcc Code Edit Sim 1,235 CH/Java 500
RB-P Code Edit Sim 4,206 Pﬁthon/ 500
ava

the average KV cache size 128, we systematically
insert target texts (needles) at ten equidistant po-
sitions (11%, 22%, ..., 100%) across varying con-
text lengths ranging from 1,000 to 31,000 tokens
(in 1,000-token increments). Experimental results
demonstrate that CoK'V outperforms other baseline
methods, achieving an average score of 95.89% -
the closest performance to the uncompressed Ful-
IKV benchmark.

C Proof

In this section, we give the proof of Theorem 1.
Denote H the selected coalition sizes. The ap-
proximation of SV; j(1 < 4,j < n) is unbiased,
which can be proven following Corollary 1 in (Sun
et al., 2024). So it is evident that SSV;, being the
weighted average of SV; ;, serves as an unbiased
estimator of SSV;. Hence, we have

P(|SSVI — SSVI| > ¢)
<P [8Vi; — SVijl =€)
JEH
<Y P8V — Vil =
JEH

€

)

13

Then,we have

€

D P8V, — SVijl > |’H\)
JEH
2)2
[#H]
<2|H] exp(— —)
0 (b — ay)2
2(57)?
< o[exp(~ L)),
[#H]

according to Hoeffding’s inequality where (a;, b;)
denotes the range of complementary contribution
of j-coalitions, and r is max(by —aq,--- ,bj; — a;).
. Since we want the right hand side to be at most

27, 2H
4, we have M > Hr;g S~ Thus, Alogorithm 1

returns an (€, §)-approximation of Sliced Shapley
value with time complexity O (%) where
T is the time cost of evaluating each complemen-
tary contribution. The analysis of the time com-
plexity of approximating Shapley value starts from
P(|SV1—=8V;| > ¢) < P(Z?:l ‘SVZ‘J—SV%‘,]" >
¢) Following similar steps, we can proof that the

time complexity of approximating Shapley value is
Tnln%

O(2

). Thus, we complete the proof.

Table 4: Benchmark Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning ~ Synthetic Code
Yoot w0 . b 4 e %
e, % % D, Hy, e T %y % w9, © e =
e <. % [QY '4@7 9(,0 %o,[(% /16% 0'7 % %
Full Cache 24.12 31.24 39.85 4523 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64
KYV size=64
SnapKV 19.94 13.21 2891 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 54.35 50.42
Pyramid 20.11 16.54 32.67 4025 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96
Ada-SnapKV 20.40 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 3525 4.41 71.57 54.02 51.68
HeadKV-R2 20.30 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49
CoKV 20.77 19.67 35.11 4437 3436 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82
KYV size=128
SnapKV 20.37 14.73 34.24 43.32 2894 19.74 19.68 22.15 20.68 64.71 90.69 39.03 4.41 71.76 58.48 51.70
Pyramid 20.32 19.28 33.81 41.13 28.21 1994 19.70 2297 21.11 67.65 89.89 37.77 430 71.76 55.93 51.30
Ada-SnapKV 20.86 18.14 35.17 45.12 30.39 20.43 19.93 21.84 21.25 69.41 90.29 38.08 4.75 71.76 57.99 53.16
HeadKV-R2 21.30 21.28 39.85 42.07 2991 19.92 20.18 22.54 22.87 71.18 90.63 38.58 4.46 71.76 60.75 57.17
CoKV 20.40 23.25 3893 45.11 37.60 20.40 19.78 23.16 21.14 73.59 91.21 40.96 4.71 71.76 58.34 59.37
KYV size=256
SnapKV 2298 21.02 36.27 44.24 31.02 19.72 2090 22.63 22.45 69.41 90.77 39.64 4.26 71.76 59.44 54.35
Pyramid 22.18 22.83 35.95 41.85 31.74 21.14 21.27 22.65 22.83 71.18 90.83 40.50 4.35 71.37 57.69 51.49
Ada-SnapKV 2358 23.76 35.65 43.83 32.24 20.50 21.26 22.77 22.69 71.76 90.87 40.36 4.21 71.76 58.79 54.70
HeadKV-R2 23.13 25.55 39.97 43.60 31.12 21.26 22.02 22.68 24.47 71.76 90.63 38.32 5.13 71.08 61.81 59.25
CoKV 22.69 28.23 42.34 46.32 36.38 21.17 21.17 23.64 23.08 72.94 90.93 42.07 4.71 71.76 62.40 61.92
KYV size=512
SnapKV 2292 22.86 39.33 43.89 32.70 20.87 22.24 22.39 2397 71.18 90.87 41.14 4.54 71.76 59.98 55.00
Pyramid 23.59 25.70 38.21 44.34 32.48 20.59 22.94 2249 24.07 72.35 90.87 40.92 4.75 71.76 58.22 52.54
Ada-SnapKV 23.47 28.41 39.02 44.87 32.77 20.52 23.14 2296 24.47 72.12 90.93 39.85 4.71 71.76 58.59 54.65
HeadKV-R2 22,52 2932 40.34 45.64 34.52 20.53 23.92 22.61 25.73 72.35 90.93 39.28 441 71.76 61.59 59.22
CoKV 2456 29.18 40.60 46.11 37.53 21.33 23.02 23.51 24.77 72.94 91.09 41.29 4.76 71.50 63.06 63.55
KYV size=1024
SnapKV 2395 2695 37.81 44.03 30.88 20.93 24.26 23.09 25.79 72.35 90.87 41.43 431 71.76 59.29 54.91
Pyramid 23.62 26.76 39.44 4579 33.41 19.87 23.57 2298 25.13 73.02 90.93 40.86 4.71 71.76 58.43 53.67
Ada-SnapKV 23.52 28.33 40.39 4520 32.95 20.11 24.55 23.33 25.37 73.53 90.87 41.38 4.46 71.76 58.88 54.65
HeadKV-R2 23.35 29.60 40.09 45.82 35.81 21.39 25.57 23.32 26.30 74.12 90.77 40.27 4.19 71.76 61.58 59.03
CoKV 24.01 31.70 40.64 48.13 37.89 20.64 23.02 23.89 25.71 74.12 91.01 42.02 4.71 71.20 63.33 63.74

14

Table 5: Results of Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning ~ Synthetic Code
YoG o %, u, Y G, 0O o %, R e %
0, R, T, %, By a4y G Ty T G, e e T8,

v A 0 /Q;l % Qy % 90% %2 /l@% O’Y % %
Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45
KYV size=64

SnapKV 16.99 18.26 38.29 29.51 2324 13.46 18.24 20.48 18.05 48.82 81.45 36.18 2.54 43.79 46.13 39.30

Pyramid 17.51 18.60 40.49 31.92 22.08 13.81 18.68 20.94 18.80 57.06 81.71 37.42 1.68 46.23 46.05 40.03

Ada-SnapKV 17.93 18.68 40.03 29.99 22.67 14.92 18.84 20.87 18.53 54.12 81.43 37.25 230 4520 46.84 39.37

HeadKV-R2 2275 25.37 4536 36.52 25.39 13.82 20.45 22.06 21.48 6529 83.56 37.95 243 50.78 47.76 42.86

CoKV 21.07 21.41 42.87 37.74 28.93 15.60 18.03 21.08 19.70 67.65 86.52 39.54 3.68 54.22 49.20 42.13

KV size=128

SnapKV 23.02 20.73 4191 31.39 22.88 14.55 20.92 21.83 21.25 6235 83.21 38.99 3.14 51.16 49.94 43.61

Pyramid 22.06 21.82 43.73 32.33 24.12 13.80 20.27 21.65 21.34 65.29 83.78 38.37 2.63 53.59 49.21 42.69

Ada-SnapKV 2232 2271 4440 32.63 23.29 13.79 21.15 22.50 21.77 66.47 8428 39.68 3.04 51.87 49.57 44.84

HeadKV-R2 24.81 27.66 48.29 36.87 26.66 14.75 23.30 22.88 23.26 67.65 84.93 39.75 2.50 49.31 50.79 45.57

CoKV 24.42 24.12 4695 38.28 28.85 17.18 21.11 21.91 22.02 68.82 86.14 40.48 4.21 54.12 51.08 46.25

KYV size=256

SnapKV 23.01 23.47 4538 33.15 24.12 13.93 22.80 22.89 22.85 67.65 84.62 40.39 2.36 59.18 51.34 46.74

Pyramid 2298 25.66 46.12 34.47 25.81 13.98 22.86 22.54 22.88 68.90 85.07 40.92 2.39 58.74 53.13 46.59

Ada-SnapKV 23.54 26.02 4592 3445 26.09 14.12 22.79 22.64 23.32 68.82 85.32 4193 2.04 58.62 52.10 47.70

HeadKV-R2 2540 27.42 47.05 37.98 25.57 17.08 2531 22.72 25.03 69.41 84.93 40.24 2.58 5294 53.48 49.21

CoKV 2570 26.10 48.43 38.96 30.06 17.33 23.42 2255 23.73 70.00 86.19 42.35 3.65 56.37 53.97 48.79

KV size=512

SnapKV 25.24 26.30 47.85 37.16 25.07 14.57 24.43 2298 24.61 68.82 85.72 43.04 2.00 58.63 54.06 49.03

Pyramid 24.43 27.09 48.49 37.57 2535 1620 2440 22.85 24.16 68.82 85.81 42.07 1.87 56.93 53.05 48.22

Ada-SnapKV 25.01 26.76 49.10 37.12 26.68 15.63 24.42 2294 24.61 69.41 8556 41.88 1.87 57.93 54.09 48.94

HeadKV-R2 25.80 28.73 48.34 37.43 27.03 17.28 28.22 23.22 26.65 70.59 85.72 40.15 2.69 56.15 53.24 49.22

CoKV 25.25 28.13 4991 38.87 32.33 18.27 25.00 23.08 25.50 70.59 86.37 43.46 3.06 59.20 55.54 49.38

KYV size=1024

SnapKV 26.38 29.70 48.13 37.36 25.52 16.88 27.31 22.63 26.10 69.41 85.72 4243 1.54 56.87 55.05 49.33

Pyramid 25.09 28.59 47.78 37.74 25.83 17.53 25.88 23.05 2591 68.24 8595 42.77 1.59 57.82 54.47 48.85

Ada-SnapKV 25.70 29.95 47.50 37.68 26.18 17.10 26.63 22.93 26.10 70.00 85.72 43.16 1.68 56.28 54.52 49.10

HeadKV-R2 27.48 29.94 49.49 37.49 2645 18.69 30.73 23.31 26.74 70.59 85.92 42.05 3.15 56.37 54.73 49.30

CoKV 26.15 29.82 49.47 38.54 3439 17.98 27.76 23.33 26.49 70.59 86.23 43.54 248 59.32 55.47 49.92

15

Table 6: Results of masking groups with Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
R T T S S SR A T S R
/pq qépoe % %, %, %, N 47«]}) 0/,/ . 'P@o %, % 9, o d 9
SN % /Q7 470,7 9(,6 %% % o% Q7 % U
Full Cache 24.12 31.24 39.85 4523 3456 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64
Masking 16 groups
Random 20.93 28.48 33.69 4493 20.01 20.6 2843 23.7 26.67 74.12 91.07 41.12 426 71.76 49.83 40.55
HeadKV-R2(top) 19.45 1297 27.75 342 17.33 1432 19.74 22.76 22.05 67.06 87.91 35.53 4.71 68.49 26.62 26.53
CoKV(top) 6.55 946 947 10.19 1227 5.67 573 1696 447 4353 71.21 2377 391 3498 11.58 17.18
HeadKV-R2(low) 21.83 14.36 33.34 31.37 27.23 12.55 27.29 23.82 26.99 74.12 91.03 42.18 4.12 70.59 37.35 38.55
CoKV(low) 23.74 33776 41.71 49.27 40.48 19.99 29.13 23.25 27.79 74.12 91.45 4237 4.71 70.55 63.38 61.26
Masking 32 groups
Random 20.69 18.60 29.63 39.12 18.50 6.94 2240 2233 26.45 74.12 89.82 33.80 4.71 61.12 30.78 40.71
HeadKV-R2(top) 17.33 698 937 13.50 9.37 5.11 13.18 20.86 15.24 45.88 75.30 27.21 4.76 66.21 11.24 13.64
CoKV(top) 140 349 378 794 932 232 264 11.74 058 3471 2137 696 4.14 1693 354 5.17
HeadKV-R2(low) 21.51 11.16 25.33 19.52 1448 7.42 16.73 2391 14.58 74.12 89.09 40.69 4.66 70.09 33.13 32.39
CoKV(low) 2245 33.06 38.34 45.82 39.62 20.18 28.39 24.04 26.67 74.12 91.14 41.70 471 71.76 5224 64.94
Masking 64 groups
Random 1322 7.34 20.57 2058 9.11 6.76 7.50 21.22 19.18 7235 71.92 36.09 4.71 52.80 21.27 18.07
HeadKV-R2(top) 7.49 295 5.05 11.06 12.01 246 3.63 1443 5.06 3471 4892 8.05 3.97 70.67 21.03 16.14
CoKV (top) 076 176 245 485 558 193 248 565 020 34.12 333 7.34 3.16 12.18 245 3.83
HeadKV-R2(low) 19.23 12.19 21.33 19.61 14.21 6.63 6.45 20.17 6.16 71.76 77.40 31.52 4.41 53.48 16.00 14.58
CoKV(low) 21.98 29.85 38.95 4421 36.65 17.71 28.04 2449 2592 7471 91.66 40.80 4.54 71.76 47.04 52.77
Masking 96 groups
Random 519 404 685 815 1033 508 221 10.77 2.82 40.00 61.54 13.38 4.64 5429 1537 9.81
HeadKV-R2(top) 2.89 434 790 11.83 9.14 293 437 1321 3.80 34.12 30.32 846 4.78 71.76 13.55 14.76
CoKV(top) 136 1.14 1.82 3.66 379 148 120 4.63 0.13 3412 240 752 054 671 241 354
HeadKV-R2(low) 19.28 8.23 15.65 20.89 16.80 8.00 3.32 11.81 0.99 58.82 58.70 15.72 4.71 61.88 10.56 11.05
CoKV(low) 20.24 18.97 3528 41.37 30.02 13.87 19.95 17.33 20.76 74.71 84.08 41.23 4.71 68.24 38.11 38.08
Masking 128 groups
Random 334 250 533 1059 512 273 215 9.19 0.16 44.12 3133 9.05 4.18 66.74 12.27 9.23
HeadKV-R2(top) 234 2.17 538 721 7.19 185 180 10.34 031 34.71 26.08 7.87 4.71 66.92 13.94 11.76
CoKV(top) 059 0.80 1.38 296 342 1.11 1.16 4.05 0.13 3412 289 7.17 1.09 7.52 291 3.5
HeadKV-R2(low) 12.02 7.97 892 14.87 12.83 526 241 9.12 142 5588 40.96 102 4.71 6842 10.14 6.03
CoKV(low) 1531 12.15 28.44 3535 2327 10.67 293 1224 941 73.82 76.32 37.70 4.71 68.24 2220 24.93

16

Table 7: Results of masking groups with Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
Yo o %, w b G G Y % % Y% % e %
0, u, Ry, %, By e W, 4y & o T G, e e T8
v < % O/QY ’/170(7 9(,@ %0(7 [/,}] elt:p Q’Y % U
Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45
Masking 16 groups
Random 25.92 31.73 50.29 37.84 27.19 17.83 2491 2192 27.04 70.59 8593 43.8 3.22 53.82 52.38 48.24
HeadKV-R2(top) 23.38 16.66 37.13 37.41 2276 1429 18.8 21.74 23.23 54.12 82.96 3522 4.12 21.76 39.49 35.66
CoKV(top) 16.1 2335 1849 14.34 1339 7.89 205 19.98 17.25 38.24 52.51 2632 4.17 40.85 24.6 14.35
HeadKV-R2(low) 24.78 29.37 48.78 38.07 24.88 16.93 31.25 23.08 27.64 71.18 84.55 4252 2.1 58.82 5422 494
CoKV(low) 26.57 323 4994 40.38 34.0 19.11 31.25 22.97 26.85 70.59 87.3 4439 3.29 58.03 56.6 50.74
Masking 32 groups
Random 22,62 31.72 47.20 38.13 22.55 11.92 25.64 2327 26.75 68.82 84.55 41.34 193 49.71 50.14 47.18
HeadKV-R2(top) 20.82 15.40 28.72 34.31 20.31 12.86 13.56 19.83 17.80 46.47 79.25 30.10 4.71 24.31 33.41 30.47
CoKV(top) 9.05 1538 7.61 9.88 8.07 638 059 11.72 470 35.88 26.87 11.85 4.65 10.88 1523 11.14
HeadKV-R2(low) 23.76 27.40 44.80 32.85 23.55 13.28 24.37 22.71 28.09 71.18 79.24 4224 426 49.90 52.89 48.85
CoKV(low) 26.70 30.44 49.57 40.41 32.28 18.33 30.26 23.27 26.85 70.59 87.48 44.04 293 56.27 56.34 50.38
Masking 64 groups
Random 13.43 24.46 3097 22.62 1693 15.65 14.07 22.16 19.86 5529 82.16 35.85 4.12 3894 38.07 28.39
HeadKV-R2(top) 11.04 9.09 1745 18.57 13.79 8.07 9.83 17.30 12.60 35.29 55.36 18.65 4.54 19.85 26.25 21.23
CoKV(top) 328 350 4.65 430 342 255 079 466 1.08 3471 841 6.00 3.53 353 11.22 11.57
HeadKV-R2(low) 18.81 21.42 35.18 18.03 14.26 7.41 2256 22.41 20.24 57.65 75.72 37.03 4.11 4546 38.78 39.22
CoKV(low) 26.87 2574 48.19 39.61 30.86 16.88 24.45 22.84 2729 71.18 87.16 43.43 3.34 50.18 53.76 47.52
Masking 96 groups
Random 484 633 13.77 12.00 1041 843 0.88 17.55 21.83 51.76 63.48 2232 4.47 34.19 21.30 17.65
HeadKV-R2(top) 9.21 7.05 11.34 1330 14.22 399 7.67 1543 884 3471 29.87 997 444 30.16 17.73 16.24
CoKV(top) 2.13 4.13 458 4.09 652 064 0.00 244 0.15 3471 2.16 440 4.12 294 7.16 839
HeadKV-R2(low) 8.17 10.62 18.76 13.07 10.10 544 3.75 1942 6.51 4647 50.84 23.98 4.57 29.89 34.95 32.57
CoKV(low) 24.62 2471 48.04 38.72 30.29 16.37 19.35 22.84 27.18 70.59 79.48 42.01 3.75 48.29 50.78 43.53
Masking 128 groups
Random 4.15 845 9.73 838 7.80 2.07 051 13.19 3.40 4294 3404 882 3.85 3.53 2374 18.34
HeadKV-R2(top) 522 4.78 8.63 7.04 6.15 3.89 564 1459 564 3588 2598 836 3.82 18.53 18.68 18.52
CoKV(top) 133 943 1.03 424 554 141 009 0.78 0.01 3353 1.06 450 294 294 694 6.22
HeadKV-R2(low) 4.41 453 11.12 12.8 720 6.64 046 1048 0.61 47.65 31.61 1045 291 9.92 24.09 24.48
CoKV(low) 2043 19.12 44.82 34.23 2331 13.97 14.22 21.28 24.65 70.59 73.98 39.73 4.10 45.21 42.14 38.14
Table 8: Time and MAE of the Sliced Shapley values estimation.
| SampleNum | 50 | 100 [150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
Time 419 | 837 | 12.56 | 16.75 | 20.93 | 25.12 | 29.3 | 33.49 | 37.68 | 41.86
MAE 8.2e-3 | 5.3e-3 | 4.8¢e-3 | 4.8¢-3 | 3.8e-3 | 3.4e-3 | 3.2e-3 | 2.9e-3 | 2.8e-3 | 2.8¢e-3

17

Heatmap of narrativeaa

(1) NtrQA

Heatmap of 2wikimaa.

00850

00675

—o0ms

00150

00775

00000

0050
~o0ss
0050
oon0
o0
0080

(5) 2WikiMQA

Heatmap of multi_news

0030
—ooms
00
—00a7s

(9) MultiNews

Heatmap of passage_count

(13) PCount

Heatmap of qasper

(2) Qasper

(6) Musique

o0
-00%0
003
Heatmap of trec
oz
030
-on
o
o 1 oz 3 4 5 6 7

Grauos

(10) TREC

Heatmap of passage.retrieval_en

L)
Grauos

(14) PRe

Figure 5: Heatmap of Llama-3-8B-Instruct.

18

Heatmap of multfieldqa_en

(7) GovReport

Heatmap of triviaga

Heatmap of Icc

(15) Lce

0055

0065

—oom

L o0z
oo
006
o0
0030
o0

-z
-0z
o2t

g oz

026
oz
oz
© 1 2 3 s 5 6 1
roups

(11) TriviaQA

Heatmap of hotpotaa.

(4) HotpotQA

Heatmap of amsum

(8) QMSum

Heatmap of samsum

oroups

“o0n2
-0
“ooss
“00n0
00
~ooms
~o0r50
i ~0.0775
~o0m0
~ooms
:
~oom0
—ooms
~000
I RN

- o0m

003
0010
o0
—o0ss
-0060
0065

005t

(12) SAMSum

Heatmap of repabench-p

(16) RB-P

005
0080
005
o0ns
~o0s0
008

Heatmap of narrativeaa

Heatmap of multfieldqa_en

Heatmap of qasper

oo
—ooes
0025 oo
00675 h
gt f o oo g
i —o0i0
—ooms
—o0ss
00750 oo
~00775 oo
~0.0800 oo
i IR
or or
s of uikimas teotmap of musive tieatmop ofgov report
- 0055, -0
oo

(5) 2WikiMQA

Heatmap of multi_news

(9) MultiNews

Heatmap of passage_count

.
o 1 2 3 4 5 6 7

orouss

(13) PCount

]
oo &
o0
00%0
005

s

(6) Musique (7) GovReport

ooz
oo L1
LR

0020

o0

Heatmap of trec

008
008
-0
o
016

o 1 o2 3 a4 5 6 1

Grauos

Heatmap of triviaga

e

009
w0,
0105

p
“ox0
o120

(10) TREC (11) TriviaQA

Heatmap of passage.retrieval_en Heatmap of lcc

o006 oo

oomme
—aom

ooz 3
oors

i

o § 1
i —aoss
—aooon oo
~0.0006 o0

Figure 6: Heatmap of Mistral-7B-Instruct-v0.2.

3 4
Grauos

(15) Lce

(14) PRe

19

L oo
003 3
2
- ¢
o0t
pi
00
—o0ss
°

: 008
3 -0.00 N
-010 :

Heatmap of hotpotaa.

(4) HotpotQA

Heatmap of amsum

(8) QMSum

Heatmap of samsum

© 1 2 3 4 5 6 7

Grauos

0030
“0100
0105
010
—o08s
0090
0095
0100

“o1as
“0160

(12) SAMSum

Heatmap of repabench-p

3
Grauos

(16) RB-P

008
010
“on

Heatmap of Icc Heatmap of Icc Heatmap of lcc Heatmap of lcc

(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

atmap oflcc eatmap oflcc teatmap of icc teatmap of Icc
Heatmap o Heatmap o oo Heatmap of Heatmap of |

oz
ams
00575 oo
oz
oo 00550 3 ™
o264
e aoszs i oo
2 oo 0262 L
LH] ox0 F1
o0
a0
0258 oos
aoss0
oo
0005 oo
oo
ozs4 ™
o010 00400
L T S B S A o 3 2 3 o4 o5 o6 7
oupe e

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

tayers
Layers

Figure 7: The expected complementary contributions for the /cc dataset across different coalition sizes.

Heatmap of hotpotaa. Heatmap of hotpotaa. Heatmap of hotpotaa Heatmap of hotpotaa

- 000
| o1 oo
—oms
~a0n
H on7 om0 oo
; i
2 2 2 o0 2
2 o1 ™ : ous
g1 3 g1 g1
i i i S
o1 .
-o10 —ons
3 om0
o010 e
3 -011
on o0
o010
~ous0
3

(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

Heatmap of hotpotaa Heatmap of hotpotqa Heatmap of hotpotaa Heatmap of hotpotaa

ooso o o1e oo
01000
o 006
ooss
ooms
005
om0 g
tnd oo § H
o004
oons o
ooxs
003
00300 3
oxe
o030
oomrs 002
© 1 o2 3 4 5 6 71 © 1 2 3 4 5 6 71 © 1 2 3 4 5 6 71 o 1 o2 3 4 5 6 1
Grous roups Gows. Gows.

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

Layers
Layers

tayers

Figure 8: The expected complementary contributions for the hotpotqa dataset across different coalition sizes.

20

FullKV Average score: 99.65

SELESESESEIEII SISO

Context Length

Pyramid Average score: 92.38

Context Len;

FLELEEES SIS
gth

HeadKV-R2 Average score: 95.78

PEPEPESIEFILI IR IFEIEE IR ISEPIE
th

Context Lengt!

Figure 9: Needle-in-a-Haystack test results on Mistral-7B-v0.2 with average KV cache = 128

21

Depth Percent

Depth Percent

SnapKV Average score: 92.38

FELELES SIS
gth

Context Len;

Ada-SnapKV Average score: 92.38

FLELESES LSS
Context Length

CoKV Average score: 95.89

RN

2 &

100

FEEELEEE SIS
Context Length

Table 9: Generalization results of masking groups with

Llama3-8B-Instruct

Table 10: Generalization results of masking groups with
Mistral-7B-v0.2

Method Multi-Doc. QA Code Method Multi-Doc. QA Code
9% 73 /ny{,} . <Oo 43)\ % Ql%é 47(/(,} . <Oo (&9 %
< 94’@ 47 9"0
& &
Full Cache 34.56 21.09 58.10 51.64 Full Cache 26.07 17.81 55.10 49.45
Masking 16 groups Masking 16 groups
Random 20.01 20.6 49.83 40.55 Random 27.19 17.83 52.38 48.24
HeadKV-R2(top) 17.33 14.32 26.62 26.53 HeadKV-R2(top) 22.76 14.29 39.49 35.66
CoKV(top) 10.78 5.43 14.41 1533 CoKV(top) 13.02 6.99 17.97 23.38
HeadKV-R2(low) 27.23 12.55 37.35 38.55 HeadKV-R2(low) 24.88 16.93 5422 494
CoKV(low) 39.92 209 64.04 61.22 CoKV(low) 26.25 18.18 54.58 50.03
Masking 32 groups Masking 32 groups
Random 18.50 6.94 30.78 40.71 Random 22.55 11.92 50.14 47.18
HeadKV-R2(top) 9.37 5.11 11.24 13.64 HeadKV-R2(top) 20.31 12.86 33.41 3047
CoKV(top) 6.71 3.45 439 5.78 CoKV(top) 10.23 5.16 11.8 13.64
HeadKV-R2(low) 14.48 7.42 33.13 3239 HeadKV-R2(low) 23.55 13.28 52.89 48.85
CoKV(low) 38.1 18.22 64.75 5828 CoKV(low) 26.61 17.62 55.35 49.92
Masking 64 groups Masking 64 groups
Random 9.11 6.76 21.27 18.07 Random 16.93 15.65 38.07 28.39
HeadKV-R2(top) 12.01 2.46 21.03 16.14 HeadKV-R2(top) 13.79 8.07 26.25 21.23
CoKV(top) 5.68 1.82 2.5 3.66 CoKV(top) 452 2.11 13.14 13.31
HeadKV-R2(low) 14.21 6.63 16.00 14.58 HeadKV-R2(low) 14.26 7.41 38.78 39.22
CoKV(low) 34.17 16.29 49.97 4893 CoKV(low) 33.11 16.97 52.68 49.54
Masking 96 groups Masking 96 groups
Random 10.33 5.08 15.37 9.81 Random 10.41 8.43 21.30 17.65
HeadKV-R2(top) 9.14 2.93 13.55 14.76 HeadKV-R2(top) 14.22 3.99 17.73 16.24
CoKV(top) 438 1.28 2.74 3.07 CoKV(top) 2.09 3.04 10.96 8.32
HeadKV-R2(low) 16.80 8.00 10.56 11.05 HeadKV-R2(low) 10.10 5.44 3495 32.57
CoKV(low) 28.08 12.92 38.62 40.55 CoKV(low) 31.51 17.39 4771 45.37
Masking 128 groups Masking 128 groups
Random 5.12 273 12.27 9.23 Random 7.80 2.07 23.74 18.34
HeadKV-R2(top) 7.19 1.85 13.94 11.76 HeadKV-R2(top) 6.15 3.89 18.68 18.52
CoKV(top) 293 094 248 3.84 CoKV(top) 1.19 342 9.81 6.0
HeadKV-R2(low) 12.83 5.26 10.14 6.03 HeadKV-R2(low) 7.20 6.64 24.09 24.48
CoKV(low) 24.34 9.37 23.38 24.11 CoKV(low) 23.76 12.12 42.01 36.7

22

	Introduction
	Preliminaries
	Key-Value Caching and Compression
	Shapley Value

	Method
	Head Importance Evaluation
	KV Cache Compression

	Experiments
	Experiment Settings
	Main Results
	Decoding Latency and Memory Usage

	Conclusion
	Related Works
	Supplementary experiments
	Computation Efficiency
	Distribution of Sliced Shapley Value
	Distribution of j-coalition Complementary Contribution
	Generalization
	Needle-in-a-Haystack Test

	Proof

