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ABSTRACT

We propose a neural network-based watermarking approach for defending against
speaker identity manipulation attacks. Our method extracts a source speaker em-
bedding from a carrier waveform and embeds it back into the waveform before
transmission. After undergoing various channel transmissions and potential iden-
tity manipulation attacks, the receiver reconstructs the source speaker embedding
from the extracted watermark and compares it with the embedding obtained from
the received waveform to assess the likelihood of identity manipulation. Experi-
mental results demonstrate the robustness of the proposed framework against mul-
tiple digital signal processing based transmissions and attacks. However, we ob-
serve that while neural codec algorithms have minimal impact on manipulating
speaker identity, they significantly degrade watermark detection accuracy, leading
to failures in detecting identity manipulation.

1 INTRODUCTION

Physiological and psychological characteristics of a person’s speech can be represented as high-
dimensional, deep representations using machine learning models (Bai & Zhang} 2021; Wang et al.,
2024b). These representations, known as speaker embeddings, play a key role in many speech
processing tasks such as voice authentication (Snyder et al, 2018)), generation (Ju et al.,[2024), and
conversion (Lu et al., 2019; |Park et al.l |2023). The widespread use of such embeddings also raises
security and privacy concerns regarding their potential misuse (Wang et al., |2024b}; |Panariello et al.,
2024).

Today, deep-learning-based zero-shot voice generation and conversion systems can seamlessly re-
place the voice in any given speech with another speaker’s voice, using recordings as short as a
few seconds (Ju et al.l 2024} |Chen et al.| 2025). These regenerated speech samples are so natu-
ral and realistic that they can even outperform genuine ones in tasks such as speech recognition
measured by word error rate (Eskimez et al.,|2024). Simply relying on human auditory perception
for determining whether a speech sample is genuine or synthetic is no longer sufficient, or more
critically, reliable. Instead, we now have to rely on specifically trained, also deep-learning-based
techniques (Li et al., 2024} 2025} Zhou et al., |2024b) for secure and robust detection of generated
and partially-manipulated speech.

Protection against such deepfake speech falls into two categories: passive and proactive. Passive
models, often binary classifiers (Li et al., 2025} Zhang et al.,|2022)), are trained using paired genuine
and fake speech data. Proactive models, typically neural network-based watermarking (Chen et al.,
2023; Roman et al.,2024b), embed imperceptible, multi-bit messages into speech. Naturally, water-
marking models can carry more information than binary classifiers. Their multi-bit capacity can also
be leveraged in other applications, such as steganography, data-hiding, and self-embedding (Fridrich
& Goljan, [1999), where the goal is to conceal a watermark message for both content protection and
recovery (Li et al.| 2023} |Chang et al., [2023).

In this work, we aim to embed speaker embedding into speech to defend against speaker identity
manipulation. We propose a framework in which any receiver of potentially manipulated speech can
verify, using only the received speech itself, whether the presented speaker matches the original one.
In summary, the main contributions of this paper are:
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* We propose a novel framework for detecting speaker identity manipulation, consisting of a
speaker encoder for extracting speaker embeddings and a watermarking model for injecting
and detecting these embedding.

* To ensure the speaker encoder remains compatible with the capacity constraints of the wa-
termarking model, we apply Matryoshka Representation Learning (MRL) (Wang et al.|
2024c]) to hierarchically structure the speaker embeddings, allowing for dimensionality re-
duction while preserving key speaker identity information.

* We evaluate the proposed framework under various digital signal processing (DSP) and
neural network (NN)-based transmission distortions, as well as identity manipulation at-
tacks.

2 RELATED WORKS

Speech watermarking generally shares the same objective as in other modalities like text (Liu et al.,
2024a)) and images (Wan et al.,|2022)), where an embedder is designed to inject imperceptible, multi-
bit messages (watermarks) into the target carrier, and a detector is designed to accurately recover
the message, even after various forgery or removal attacks (Roman et al., |2024bj [Ji et al.l 2025;
Liu et al., 2024c)). To achieve robust detection performance against such attacks, watermarks are
typically embedded in the speech frequency domain (Chen et al., 2023} [Liu et al.,2024b), and more
recently, in deep latent representations (Roman et al., [2024a; J1 et al.| 2025 [Zhou et al., [2024a).

Steganography (Li et all 2023} (Chang et al.l 2023), a special use case of watermarking, is the
practice of hiding a secret message within a carrier without raising suspicion. The hidden message
can either be an image, or text message, or file. In the context of speech, the message can be
a compressed version of the original signal injected into each speech frame and serves to restore
and recover signals after distortion (Wang et al.| 2024a; |Quinonez-Carbajal et al., [2024). Unlike
prior work focused on speech restoration of target segments, our approach utilizes watermarking to
preserve speaker identity, ensuring security and traceability under identity manipulation attacks.

Speaker embedding differs from temporal speech information like content, which may vary within
the same utterance. It is an utterance-level, speaker-specific representation (Desplanques et al.,
2020; [Snyder et al., 2018)). Utterances spoken by the same speaker typically produce embeddings
with high similarity, while embeddings from different speakers generally show lower similarity.

Speaker embedding can be captured in multiple ways. Traditional methods involve classification
training on large, multi-speaker, multi-utterance datasets (Chung et al., [2018; [Desplanques et al.,
2020). Other approaches focus on disentangling attributes from a single speech sample, treating the
global characteristics as a timbre representation (Ju et al., [2024)). Recent NN-based manipulations
of speaker identity often involve replacing speaker related representations with those of another
speaker while preserving other attributes like prosody and content for reconstruction (Park et al.,
2023; \Champion et al., 2022).

3 METHODOLOGY

In Sec. we introduce the proposed manipulation detection pipeline. We then provide a detailed
description of the speaker encoder in Sec. [3.2] followed by an explanation of the watermarking
process in Sec.[3.3] Lastly, we outline the transmission processing and attack scenarios used in our

experiments in Sec. [3.4]and Sec.

3.1 PROPOSED PIPELINE

Figure [I] illustrates the proposed detection pipeline, where we consider a scenario involving four
parties:

1. The publisher collects the speech content, embeds a watermark in the speech signal and
shares the watermarked speech on a public platform. This process is shown in the upper
section of Figure[T] The embedded watermark message is correlated with speaker identity,
ensuring that it carries speaker-specific information.
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Figure 1: Proposed framework. Speaker embedding of original carrier waveform is first extracted
using speaker encoder. From this embedding, only initial few dimensions () are selected and bi-
narized to form watermark message (). This message is then embedded into carrier waveform via
watermark embedder. After transmission through public channel, waveform may undergo identity
manipulation attacks. To verify authenticity, watermark detector decodes embedded message from
potentially perturbed waveform, recovering detected message (3)), which is then used to reconstruct
recovered speaker embedding (@). Simultaneously, same speaker encoder extracts speaker embed-
ding directly from distorted waveform ((3). Similarity between embeddings @ and (3 serves as
score to determine whether source speaker’s identity has been compromised. MRL indicates Ma-
tryoshka Representation Learning.

2. The public platform transmits the watermarked speech waveform through multiple chan-
nels to reach the receiver, as shown in the middle-right section of Figure [l While the
transmission process may degrade the speech quality or fidelity, it is assumed that the wa-
termark message remains unaffected.

3. The attacker intercepts the speech and attempts to alter the speaker identity, replacing it
with a different one. This manipulation is shown in the middle-left section of Figure [I]
The attacker is unaware of the presence of a watermark in the speech, as well as the al-
gorithm used for embedding it. Additionally, we assume that while the speaker identity is
altered, the watermark message remains either entirely unaffected or experiences minimal
distortion.

4. The receiver downloads the speech and verifies whether the speaker identity has been
changed, as shown in the bottom section of Figure By extracting and analyzing the
embedded watermark, the receiver determines whether the original speaker identity has
been compromised.

The watermark encoding and detection process involves the publisher and receiver. On the pub-
lisher side, the message to be embedded is obtained by feeding the carrier waveform into a speaker
encoder to extract its speaker embedding. However, raw speaker embeddings are not suitable as
watermarks since they contain floating-point numbers, while most watermarking methods require
multi-bit binary messages. To address this and avoid the loss of speaker information when binariz-
ing the entire embedding, we use only the initial part of the speaker embedding and binarize it to
match the capacity of the watermark encoder model, which then injects the binarized message into
the carrier waveform. Details are provided in Sec.[3.2]and Sec.[3.3]

On the receiver side, upon receiving the watermarked waveform, we first use a watermark detector
to extract the watermark message and convert it back to floating-point numbers following the same
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rules used during binarization. The same speaker encoder is then applied to extract the speaker
embedding from the received waveform. Finally, we calculate the cosine similarity between the
two embeddings as a detection score. A higher similarity indicates that the speaker in the received
waveform matches the original speaker, while a lower similarity suggests a mismatch, indicating
possible identity manipulation during transmission.

3.2 SPEAKER ENCODING AND BINARIZATION

We use ECAPA—TDNNE] (Desplanques et al.|, 2020), a widely used model in the automatic speaker
verification (ASV) community (Wang et al.l [2024b)), for the speaker encoder. The ECAPA-TDNN
model mainly consists three SE-Res2Block (Hu et al., [ 2018;|Gao et al.|2019) modules and is trained
to associate input waveforms with their corresponding speakers. Since ASV training databases
typically contain multiple speakers and multiple utterances per speaker, the ECAPA-TDNN model
is optimized using a loss function that maximizes intra-speaker similarity while minimizing inter-
speaker similarity (Wang et al., 2018)). Our speaker encoder contains ECAPA-TDNN without its
final classification head, and the output feature maps from all three SE-Res2Block modules are
aggregated and mapped to a 192-dimensional vector, referred to as the speaker embedding.

However, storing a single floating-point number typically requires 32 bits (i.e., FP32 format), which
already exceeds the capacity of most speech watermark models (10 or 16 bits, as in [Roman et al.
(2024b) and|Chen et al.| (2023))). While increasing the capacity is possible with a performance trade-
off, storing the entire speaker embedding would require over 6,000 bits, making dimensionality
reduction necessary.

To reduce the size of the message while maintaining its informativeness and allowing flexibility in
choosing a message length (Wang et al., 2023} |Fan et al.l |2019), we apply Matryoshka Represen-
tation Learning (MRL) loss (Kusupati et al.,[2022; [Wang et al., 2024c) during training. Unlike the
original ECAPA-TDNN training, where final classification head maps a 192-dimensional embedding
to a vector corresponding to the total number of speakers in the dataset, MRL structures the embed-
ding hierarchically. Instead of using a single classification head, MRL partitions the embedding into
nested subsets of dimensions — in our case, [8, 16,32, 64,128, 192] — with each subset mapped to
its own classification head. The identification losses from all these classification heads are summed
with equal weights to optimize the network parameters. This approach enforces a hierarchical struc-
ture within the speaker embedding, where later dimensions are built upon and complement earlier
ones.

After training, we use only the leading portion of the speaker embedding to construct the watermark
message. Specifically, we select the first 8 dimensions of the ECAPA-TDNN embedding, with each
of these 8 values binarized using the FP16 format, where each floating-point number is converted
into 16 bits. As a result, the final watermark message has a total length of 8 x 16 = 128 bits.

Our work does not focus on the selection of the speaker encoder model or the MRL loss. Instead,
our goal is to present a structured embedding approach that balances dimensionality reduction with
identity preservation, enabling effective watermarking. Our framework can also accommodate al-
ternative speaker models and dimensionality reduction techniques, such as PCA, autoencoders, and
quantization.

3.3 WATERMARK ENCODING AND DECODING

We use the Timbre watermarking mode (Liu et al., 2024b) for encoding and decoding binarized
speaker embeddings due to its proven high capacity for message injection. Timbre consists of two
main modules: a watermark embedder and a watermark detector.

The embedder embeds a watermark message in the frequency domain by applying the Short-Time
Fourier Transform (STFT) to the carrier waveform, obtaining the carrier spectrogram S € RF*Tx1,
where F' is the number of frequency bins, and 7" is the number of frames. The embedder encodes
an N-bit message w € RN>*1X1 into a watermark feature f,, € RF>*1*1 which is then broadcasted

"nttps://github.com/TaoRuijie/ECAPA-TDNN
https://github.com/TimbreWatermarking/TimbreWatermarking
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along the time axis to form the watermark embedding fyr € RF*T>1, This repetition ensures the
time-independence of the watermark message, making it robust to distortions in the time domain.

Additionally, the embedder encodes the carrier spectrogram S into a carrier feature fg € RF*TxD,
where D is the channel dimension. It then concatenates the encoded features fyy and fg along with
the original carrier spectrogram S to form a deep representation fr € RF*T*(P+2)  Finally, the
embedder maps f to produce the watermarked spectrogram S,, € RF*T*1_ This new watermarked
spectrogram, along with the original carrier phase, is used to synthesize the watermarked waveform
using inverse STFT.

The Timbre detector receives the (potentially distorted) watermarked waveform and converts it into
a spectrogram S,. It then extracts the watermark embedding f{;, and averages it along the time
axis to form the estimated watermark feature f/ . Finally, the detector decodes f/ to reconstruct
the watermark message w’. To enhance robustness against distortions such as speech editing (Ro-
man et al.| [2024b)), voice cloning (Liu et al. [2024b), and real-world attacks (Zhou et al.| 2024b),
various attacks are added as data augmentation (referred to as a distortion layer) to the watermarked
waveform before it reaches the detector.

The Timbre model is trained with multiple losses that regulate different aspects of its behavior (Liu
et al.l[2024b):

» a watermark reconstruction loss ensures accurate watermark recovery at the detector;

¢ a waveform reconstruction loss at the embedder ensures that the watermarked waveform
maintains a high audio quality and that the watermark remains imperceptible;

* an adversarial loss at the embedder helps ensure the realism of the watermarked waveform.

We use the Timbre model as is, where the publisher operates the watermark embedder module, and
the receiver operates the watermark detector module.

3.4 TRANSMISSIONS

In our proposed scenario, we simulate distortions in the watermarked waveform during its transmis-
sion. They include four DSP-based distortions: Gaussian noise, echo, waveform quantization and
low-pass filtering, along with two NN-based codec methods: EnCodec (Défossez et al., 2023) and
DAC (Kumar et al.| 2023). Gaussian noise and echo simulate noisy channel conditions, while the
remaining are selected for their ability to reduce transmission bandwidth.

Various settings are applied to each transmission:

* Echois added with {0.1,0.3,0.5,0.7} seconds delay through a simulated impulse response.
* Gaussian noise is introduced at signal-to-noise ratios (SNRs) of {5, 10, 20, 40} dB.
 Low-pass filtering uses cutoff frequencies of {1.6, 3.2,4.8, 6.4} kHz.

* Waveform quantization is performed at {8, 16, 32, 64} bits.

. DACf]is applied with an 8-kbps bitrate.

EnCode is applied with bitrates of {3, 6, 12,24} kbps.

3.5 IDENTITY MANIPULATION ATTACKS

We assume that the receiver has no prior knowledge of whether the received waveform has been
perturbed by an attacker and always processes it in a default manner, i.e., a black-box scenario. We
select distortions that significantly alter speaker embeddings as identity manipulation attacks. The
effects of these distortions on speaker embedding similarity, before and after application, are listed
in Table[T]

However, not all distortions have the same level of impact on speaker identity. For instance, an
utterance before and after waveform clipping at 90% of its maximum amplitude retains a higher

*https://github.com/descriptinc/descript—audio-codec
‘nttps://github.com/facebookresearch/encodec
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Attack Params Similarity \ Attack Params  Similarity
Intra-Spk - 0.62 | Inter-Spk - 0.05
Clipping 90% 0.76 Resample 22,050 Hz 0.14
Clipping 80% 0.60 Resample 8,000 Hz 0.11
Clipping 70% 0.50 Resample 4,000 Hz 0.04
Time stretch 0.7 0.70 Pitch shift 2 0.53
Time stretch 1.3 0.72 Pitch shift 4 0.28
Time stretch 0.9 0.76 Pitch shift 6 0.18
Time stretch 1.3 0.72 Pitch shift 8 0.15
kNN - 0.38 \

Table 1: Averaged speaker similarity scores under various distortions. Intra-Spk refers to similarity
between two utterances spoken by same speaker. Inter-Spk refers to similarity between utterances
spoken by different speakers. Similarity scores for other attacks are computed by comparing same
utterance before and after applying distortion. Bold values indicate attack results where similarity is
lower than Intra-Spk (0.62), meaning they significantly alter speaker identity.

similarity (0.76) than two different, unprocessed utterances from the same speaker (0.62). To ensure
that the selected attacks cause a substantial degradation in speaker similarity, we define a threshold:
the similarity after applying a distortion must be clearly lower than that of different utterances from
the same speaker (i.e., Intra-Spk similarity).

On the basis of the results in Table|l| we select the following identity manipulation attacks:

e DSP-based attacks:

— Clipping: Applied at an amplitude threshold of 70%.
— Resampling: From 16 kHz to {4, 8,22.05} kHz.
— Pitch Shift: Pitch increased by {2, 4, 6,8} semitones.

¢ NN-based Attack:
— k-Nearest Neighbors Voice Conversion (kNN-VC) (Baas et al.| [2023).

Resampling is performed only once on attacker’s side, and receiver processes the resampled wave-
form directly without converting it back to 16 kHz. This process is similar to speed scaling used
in [Hua et al.[(2016). kKNN-VC performs voice conversion by replacing the frame-level deep repre-
sentations of the source speech with their nearest neighbor in a reference speech pool. The converted
waveform is then synthesized using a HiFi-GAN vocoder (Kong et al.l [2020). We use the default
settings for KNN -Vcﬂ

4 EXPERIMENTAL SETUP

This section outlines the datasets and metric used in this study.

4.1 DATASETS

We utilized the VoxCeleb databases (Nagrani et al., 2017} |Chung et al., [2018) for training and per-
formance evaluation. These datasets contain publicly available, in-the-wild 16 kHz sampled voice
recordings from more than 6,000 speakers. Such uncontrolled conditions are more reflective of
real-world scenarios compared with clean, noise-free datasets. All reported results are based on the
VoxCelebl test partition.

The ECAPA-TDNN model was trained with its default settings with MRL loss using the VoxCeleb2
development partition. Noise files from the MUSAN corpus (Snyder et al., 2015)) and room impulse
response (RIR) filters (Ko et al., 2017) were added during training for data augmentation. The
best model was selected on the basis of the speaker verification performance on the VoxCelebl test
partition.

Shttps://github.com/bshall/kNN-VC
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The Timbre model was trained with its defaults settings using a random subset of 70,000 utter-
ances from the VoxCeleb1 development partition for model learning. The transmissions described in
Sec.[3.4] except for EnCodec, were used in the distortion layer to improve the detector performance.
The best model was selected on the basis of the watermark recover accuracy on the VoxCelebl test
partition.

For the voice conversion process involved in the kKNN-VC attack, source utterances were converted
to their nearest neighbors in the reference pool including a random selection of one utterance from
all the speakers in the VoxCeleb2 test partition.

4.2 METRIC

We computed the cosine similarity between the speaker embeddings recovered from the watermark
message and extracted from the perturbed waveform (marked as @ and ® in Figure [I)) as the
detection score. To evaluate performance, we used the equal error rate (EER) metric, which is
widely used in the speaker verification community. It estimates the maximum probability of making
an incorrect classification in the case of an optimal Bayes decision (Brummer, 2010):

» The positive class refers to cases where no attack has been applied to manipulate the
speaker identity. That is, the recovered speaker embedding (@) and the extracted speaker
embedding () are considered to originate from the same speaker.

» The negative class includes cases where both transmission distortions and identity manip-
ulation attacks are present, causing @ and () to be treated as embeddings from different
speakers.

[ No Manipulation
3000 4 == Strong Manipulation
[ Weak Manipulation
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T
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Figure 2: Distributions of scores used for EER estimations.

Figure [2] illustrates how the detection score distributions vary under different attack conditions. In
the case of a mild identity manipulation attack (yellow), the speaker identity remains relatively
similar to the original (blue). This leads to a higher EER, as distinguishing manipulated speech from
the original becomes more difficult. In contrast, under an aggressive identity manipulation attack
(red), the detection scores become more widely distributed, making it easier to separate manipulated
speech from unaltered speech. As a result, the EER decreases.

5 RESULT AND ANALYSIS

Table 2] presents the EERs calculated on the basis of cosine similarity scores between the recovered
embeddings from watermark messages and the speaker embeddings extracted from the watermarked
and perturbed waveforms, denoted as @ and  in FigurdI] respectively. The table displays results
across various transmission methods (rows) and attacks (columns). Transmissions are grouped as
DSP-based and NN-based, while attacks are sorted by their effectiveness in manipulating speaker
similarity. Additionally, cells are color-coded in gray-scale to reflect EER values: darker shades
indicate higher EERs, while lighter shades represent lower EERs.

We first analyze the results presented in Table [2] attack-wisely in Sec. 5.1} followed by a
transmission-wise analysis in Sec. We discuss our findings in Sec.
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Column ID 1 2 3 4 5 6 7 8 9

Mild Identity Manipulation — Aggressive Identity Manipulation

N Clipping kNN Pitch Shift Resampling
Transmission Params  70% - 2 4 6 8 4kHz 8kHz 22.05kHz

None - 1.11 0.02 0.02 0.06 0.06 0.04 0.00 0.04 0.04
0.1 3.14 0.27 0.23 0.37 0.29 0.37 0.00 0.14 0.29

Ech 0.3 2.65 0.21 0.16 0.27 0.27 0.25 0.18 0.18 0.23
cho 0.5 2.48 0.10 0.06 0.18 0.23 0.14 0.00 0.12 0.14
0.7 2.59 0.18 0.10 0.31 0.29 0.31 0.04 0.14 0.27

5dB 35.51 22779 2737 27.60 2895 2733 2848 28.66 26.12
10dB 22.26 1461 1557 1684 16.78 16.00 1641 16.66 15.43

#  Gaussian 20dB 706 396 375 427 445 401 396 402 404
» 40dB 127 006 006 012 008 014 000 000 014
o 16kHz | 4592 3451 4101 40.13 4253 3363 4136 4206 4376
Lownass 30KkHz = 3549 2507 2483 2751 3020 3238 2815 2786 3153
pass 48KHz 841 538 494 622 597 579 5107 546 558

6.4 kHz 0.82 0.14 0.08 0.27 0.16 0.14 0.02 0.10 0.12

8-bit 34.41 26.53 2971 30.76 3137 3258 31.08 31.58 30.14
16-bit 20.48 1551 1555 1625 16.02 1598 16.04 16.70 16.04

Quantization 3-bit 827 579 558 652 636 579 568 601 6.05
64-bit 404 261 224 248 267 234 207 248 228

DAC ; 4409 3822 4101 3820 4171 3939 4155 3984 4151

- 3kbps | 5437 5735 5166 5517 5864 16531 5977 6428  49.20
2 EnCodec 6kbps 5090 5373 5002 5228 5455 5927 5570 57.00  50.10

12 kbps 49.96 5334 4955 5310 5492 5825 5429 5521 54.66
24 kbps 48.95 51.78 4881 51.87 5375 5581 53.16 54.16 53.61

Table 2: EER results of identity manipulation detection using cosine similarity between @) recovered
embedding from watermark message and (3) speaker embedding from watermarked and perturbed
waveform as illustrated in Figure [I} Darker cell color indicates higher EER result, hence worse
detection performance. Cells with lighter background color are transmission-attack combinations
that are easier for identity manipulation detection.

5.1 ATTACK ANALYSIS

When no transmission was applied, the detection EERs for almost all selected attacks were near
zero, meaning that the proposed system can effectively detect identity manipulation in this case.
Among the attacks, kNN (column 2), pitch shift with two steps (column 3), and resampling with 4
kHz (column 7) yield the lowest EER results in the table.

When transmissions were applied, EERs were noticeably higher than those without transmission.
However, the attack-level EER results generally followed the trend of their impact on speaker em-
bedding similarity, as shown in Table[T|- mild manipulation attacks resulted in higher EERs (darker
cells) than aggressive manipulation attacks because they lead to a higher embedding similarity, mak-
ing them more difficult to distinguish from the original. For attacks with multiple parameter settings
(pitch shift in columns 3-6 and resampling in columns 7-9), more aggressive settings consistently
yielded lower EERs.

5.2 TRANSMISSION ANALYSIS

We observed different trends for DSP-based and NN-based transmissions. The EER results under
echo transmission were close to those without transmission, as echo has a very limited impact on
speaker similarity — speaker embedding is a speaker-specific feature and echo does not introduce a
new speaker. Among other DSP-based transmissions, those that obscure critical speaker informa-
tion, such as low SNR Gaussian noise (i.e., larger noise), low cutoff frequency filtering (which cuts
off speech formants), and low-bit quantization (i.e., large quantization noise), generally cause higher
EERs.

Although these distortions are seen transmissions during Timbre training, allowing for near-perfect
message detection and accurate reconstruction of the speaker embedding, the reconstructed embed-
ding (a near-perfect @) exhibits low similarity to the extracted speaker embedding (3)) when the
latter is perturbed by aggressive transmissions. While identity manipulation attacks further degrade
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this similarity, the additional degradation is relatively minor, making it harder to differentiate ma-
nipulation attacks.

For NN-based transmissions, although the EER results for DAC were slightly lower than those for
EnCodec, both approaches yielded EER values close to 50% across all attack types. This suggests
that under codec transmissions, the system is unable to detect the presence of attacks.

5.3 DISCUSSION

Although the clipping attack (column 1) also resulted in a near-50% EER under certain DSP-based
transmissions, the poor performance of DAC and EnCodec appears to be attack-irrelevant. This is
surprising, as both NN-based codecs are used solely for waveform reconstruction and have minimal
impact on manipulating speaker identity.

This leads us to hypothesize that these methods disrupt the non-speaker-encoder component of the
detection pipeline, specifically the watermark detecting part, which is assumed to be robust against
transmission distortions (Sec. @ Similar vulnerabilities have been reported in the literature, in-
dicating that watermark models are susceptible to neural codec applications (Roman et al., [2024b;
Juvela & Wang| 2025)). Without additional augmentation during training, the performance of water-
marking models can even degrade to random guessing under neural codec conditions (Roman et al.,
2024b).

Since our EER results are always calculated under transmissions for both same-speaker and
different-speaker cases (Sec.[4.2)), even with a perfect speaker encoder that always extracts an identi-
cal speaker embedding (&) in Figure[I)) for the same speaker, a near-randomly reconstructed speaker
embedding (@ in Figure [T)) will affect score distributions in both cases. This makes the distribu-
tions with and without an attack almost inseparable, as in either case, the extracted watermark and
its reconstructed speaker embedding are almost random, leading to a lower but closely distributed
embedding similarity score and, consequently, a higher EER. This also explains why EnCodec con-
sistently produces high EER results, while DAC’s results are slightly lower — EnCodec is the only
unseen transmission during training, and it affects the reconstruction of @ more than DAC.

6 CONCLUSION

We proposed a proactive defense approach against speaker identity manipulation. We use a water-
mark model for message hiding and extraction, where the message itself contains speaker informa-
tion extracted by a speaker model. By doing so, receivers can extract both the watermark message
and speaker embedding from the watermarked speech and verify whether the source speaker identity
has been manipulated.

Through our analysis, we identified that manipulation attacks are relatively easier to detect if impor-
tant speaker information is not distorted during transmission. We also observed that the proposed
detection framework fails under the two neural codec transmission cases. Although these trans-
missions do not affect speaker information, their negative impact on the watermark detection part
causes a near-random embedding reconstruction from a near-random watermark message, making
the detection scores inseparable when comparing cases with and without an attack.

Improving the watermarking model’s robustness against neural codecs is a clear future research di-
rection. Additionally, due to the limited capacity of existing watermarking models, in the current
work, we must specifically tune the speaker model to obtain a compact speaker embedding. There-
fore, high-capacity watermarking that can cover full speaker embedding information is desirable.
Finally, similar to injecting speaker information to defend against identity manipulation attacks, we
can also embed content information to defend against content editing attacks.
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