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ABSTRACT

Recent evolving data privacy policies and regulations have led to increasing inter-
est in the problem of removing information from a machine learning model. In
this paper, we consider Graph Neural Networks (GNNs) as the target model, and
study the problem of edge unlearning in GNNs, i.e., learning a new GNN model
as if a specified set of edges never existed in the training graph. Despite its prac-
tical importance, the problem remains elusive due to the non-convexity nature of
GNNs and the large scale of the input graph. Our main technical contribution is
three-fold: 1) we cast the problem of fast edge unlearning as estimating the influ-
ence of the edges to be removed and eliminating the estimated influence from the
original model in one-shot; 2) we design a computationally and memory efficient
algorithm named EraEdge for edge influence estimation and unlearning; 3) under
standard regularity conditions, we prove that EraEdge converges to the desired
model. A comprehensive set of experiments on four prominent GNN models and
three benchmark graph datasets demonstrate that EraEdge achieves significant
speedup gains over retraining from scratch without sacrificing the model accuracy
too much. The speedup is even more outstanding on large graphs. Furthermore,
EraEdge witnesses significantly higher model accuracy than the existing GNN
unlearning approaches.

1 INTRODUCTION

Recent legislation such as the General Data Protection Regulation (GDPR) (Regulation, 2018), the
California Consumer Privacy Act (CCPA) (Pardau, 2018), and the Personal Information Protection
and Electronic Documents Act (PIPEDA) (Parliament, 2000) requires companies to remove private
user data upon request. This has prompted the discussion of “right to be forgotten” (Kwak et al.,
2017), which entitles users to get more control over their data by deleting it from learned models. In
case a company has already used the data collected from users to train their machine learning (ML)
models, these models need to be manipulated accordingly to reflect data deletion requests.

In this paper, we consider Graph Neural Networks (GNNs) that receive frequent edge removal re-
quests as our target ML model. For example, consider a social network graph collected from an
online social network platform that witnesses frequent insertion/deletion of users (nodes) and/or
change of social relations between users (edges). Some of these structural changes can be accom-
panied with users’ withdrawal requests of their data. In this paper, we only consider the requests of
removing social relations (edges). Then the owner of the platform is obligated by the laws to remove
the effect of the requested edges, so that the GNN models trained on the graph do not “remember”
their corresponding social interactions.

In general, a naive solution to deleting user data from a trained ML model is to retrain the model
on the training data which excludes the samples to be removed. However, retraining a model from
scratch can be prohibitively expensive, especially for complex ML models and large training data.
To address this issue, numerous efforts (Mahadevan & Mathioudakis, 2021; Brophy & Lowd, 2021;
Cauwenberghs & Poggio, 2000; Cao & Yang, 2015) have been spent on designing efficient unlearn-
ing methods that can remove the effect of some particular data samples without model retraining.
One of the main challenges is how to estimate the effects of a given training sample on model
parameters (Golatkar et al., 2021), which has led to research focusing on simpler convex learning
problem such a linear/logistic regression (Mahadevan & Mathioudakis, 2021), random forests (Bro-
phy & Lowd, 2021), support vector machines (Cauwenberghs & Poggio, 2000) and k-means clus-
tering (Ginart et al., 2019), for which a theoretical analysis was established. Although there have
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been some works on unlearning in deep neural networks (Golatkar et al., 2020a;b; 2021; Guo et al.,
2020), very few works (Chen et al., 2022; Chien et al., 2022) have investigated efficient unlearning
in GNNs. These works can be distinguished into two categories: exact and approximate GNN un-
learning. GraphEraser (Chen et al., 2022) is an exact unlearning method that retrains the GNN
model on the graph that excludes the to-be-removed edges in an efficient way. It follows the basic
idea of Sharded, Isolated, Sliced, and Aggregated (SISA) method (Bourtoule et al., 2021) and splits
the training graph into several disjoint shards and train each shard model separately. Upon receiv-
ing an unlearning request, the model provider retrains only the affected shard model. Despite its
efficiency, partitioning training data into disjoint shards severely damages the graph structure and
thus incurs significant loss of target model accuracy (will be shown in our empirical evaluation). On
the other hand, approximate GNN unlearning returns a sanitized GNN model which is statistically
indistinguishable from the retrained model. Certified graph unlearning (Chien et al., 2022) can pro-
vide a theoretical privacy guarantee of the approximate GNN unlearning. However, it only considers
some simplified GNN architectures such as simple graph convolutions (SGC) and their generalized
PageRank (GPR) extensions. We aim to design the efficient approximate unlearning solutions that
are model-agnostic, i.e., without making any assumption of the nature and complexity of the model.

In this paper, we design an efficient edge unlearning algorithm named EraEdge which directly
modifies the parameters of the pre-trained model in one shot to remove the influence of the requested
edges from the model. By adapting the idea of treating removal of data points as upweighting
these data points (Koh & Liang, 2017), we compute the influence of the requested edges on the
model as the change in model parameters due to upweighting these edges. However, due to the
aggregation function of GNN models, it is non-trivial to estimate the change on GNN parameters as
removing an edge e(vi, vj) could affect not only the neighbors of vi and vj but also on multi-hops.
Thus we design a new influence derivation method that takes the aggregation effect of GNN models
into consideration when estimating the change in parameters. We address several theoretical and
practical challenges of influence derivation due to the non-convexity nature of GNNs.

To demonstrate the efficiency and effectiveness of EraEdge, we systematically represent the empir-
ical trade-off space between unlearning efficiency (i.e., the time performance of unlearning, model
accuracy (i.e., the quality of the unlearned model), and unlearning efficacy (i.e., the extent to which
the unlearned model has forgotten the removed edges). Our results show that, first, while achieving
similar model accuracy and unlearning efficacy as the retrained model, EraEdge is significantly
faster than retraining. For example, it speeds up the training time by 5.03× for GCN model on
Cora dataset. The speedup is even more outstanding on larger graphs; it can be two orders of
magnitude on CS graph which contains around 160K edges. Second, EraEdge outperforms Gra-
phEraser (Chen et al., 2022) considerably in model accuracy. For example, EraEdge witnesses
an increase of 50% in model accuracy on Cora dataset compared to GraphEraser. Furthermore,
EraEdge is much faster than GraphEraser especially on large graphs. For instance, EraEdge is
5.8× faster than GraphEraser on CS dataset. Additionally, EraEdge outperforms certified graph
unlearning (CGU) (Chien et al., 2022) significantly in terms of target model accuracy and unlearning
efficacy, while it demonstrates comparable edge forgetting ability as CGU.

In summary, we made the following four main contributions: 1) We cast the problem of edge un-
learning as estimating the influence of a set of edges on GNNs while taking the aggregation effects
of GNN models into consideration; 2) We design EraEdge, a computationally and memory efficient
algorithm that applies a one-shot update to the original model by removing the estimated influence
of the removed edges from the model; 3) We address several theoretical and practical challenges of
deriving edge influence, and prove that EraEdge converges to the desired model under standard reg-
ularity conditions; 4) We perform an extensive set of experiments on four prominent GNN models
and three benchmark graph datasets, and demonstrate the efficiency and effectiveness of EraEdge.

2 GRAPH NEURAL NETWORK

Given a graph G(V,E) that consists of a set of nodes V and their edges E, the goal of a Graph
Neural Network (GNN) model is to learn a representation vector ~h (embedding) for each node v in
G that can be used in downstream tasks (e.g., node classification, link prediction).

A GNN model updates the node embeddings through aggregating its neighbors’ representations.
The embedding corresponding to each node vi ∈ V at layer l is updated according to vi’s graph
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Symbol Meaning

G(V,E) Original graph.
EUL The set of edges to be removed.
E\EUL Edges remained after removal of EUL.
AL A GNN learning algorithm.
AUL An unlearning algorithm.
θOR Parameters of AL trained over G(V,E).
θRE Parameters of AL (re)trained over G(V, E\EUL).
θUL Parameters of AL obtained by AUL.

Table 1: Notations

neighborhood (typically 1-hop neighborhood). This update operation can be expressed as follows:

H(l+1) = σ(AGGREGATE(A,H(l), θ(l))), (1)

where σ is an activation function, A is the ajacency matrix of the given graph G, and θ(l) denotes
the trainable parameters as layer l. The initial embeddings at ` = 0 are set to the input features for
all the nodes, i.e., H(0) = X .

Different GNN models use different AGGREGATE functions. In this paper, we consider four rep-
resentative GNN models, namely Graph Convolutional Networks (GCN) (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2018), graph attention networks (GAT) (Veličković et al., 2018), and
Graph Isomorphism Network (GIN) (Xu et al., 2019). These models differ on their AGGREGATE
functions. We ignore the details of their AGGREGATE functions as our unlearning methods are
model agnostic, and thus are independent from these functions.

After K iterations of message passing, a Readout function pools the node embeddings at the last
layer and produce the final prediction results. The Readout function varies by the learning tasks.
In this paper, we consider node classification as the learning task and the Readout function is a
softmax function.

Ŷ = softmax(H(K)θ(K)). (2)

The final output of the target model for node v is a vector of probabilities, each corresponding to
the predicted probability (or posterior) that v is assigned to a class. We consider cross entropy loss
(Cox, 1958) which is the de-facto choice for classification tasks. In the following sections, we use
L(θ; v,E) to denote the loss on node v for simplicity because only edges are directly manipulated.

3 FORMULATION OF EDGE UNLEARNING PROBLEM

Despite that GNNs are widely applicable to many fields, there are very few studies (Chen et al.,
2022; Chien et al., 2022) on graph unlearning so far. In this section, we will formulate the definition
of the edge unlearning problem. Table 1 lists the notations we use in the paper. In this paper, we only
consider edge unlearning. We will discuss how to extend edge unlearning to handle node unlearning
in Section 7.

Let G be the set of all graphs. In this paper, we only consider undirected graphs. Let Θ be the
parameter space of the GNN models. A learning algorithm AL is a function that maps an instance
G(V,E) ∈ G to a parameter θ ∈ Θ. Let θOR be the parameters of AL trained on G. Any user
can submit an edge unlearning request to remove specific edges from G. In practice, unlearning
requests are often submitted sequentially. For efficiency, we assume these requests are processed in
a batch. As the response to these requests,AL has to erase the impacts of these edges and produce an
unlearned model. A straightforward approach is to retrain the model on G(V,E\EUL) from scratch
and obtain the model parameters θRE. However, due to the high computational cost of retraining, an
alternative solution is to apply a unlearning process AUL that takes EUL and θOR as the input, and
outputs the unlearned model.

The retrained and unlearned models should be sufficiently close and ideally identical. There are
two types of notations in the literature that quantify the closeness of the retrained and unlearning
models: (1) both retraining and unlearning models are indistinguishable in the parameter space,
i.e., distributions of model parameters of both retraining and unlearning models are sufficiently

3



Under review as a conference paper at ICLR 2023

close, where the distance in two distributions can be measured by `2 distance (Wu et al., 2020) and
KL divergence (Golatkar et al., 2020b); (2) both models are indistinguishable in the output space,
i.e., distributions of the learning outputs by both models are sufficiently close, where the distance
between two output distributions can be measured by either test accuracy (Thudi et al., 2021) or the
privacy leakage of membership inference attack launched on model outputs (Graves et al., 2021;
Baumhauer et al., 2020). We argue that indistinguishably of the parameter space is not suitable
for GNNs, due to their non-convex loss functions (Tarun et al., 2021), as small changes of the
training data can cause large changes in GNN parameters. Therefore, in this paper, we consider the
indistinguishability of the output space between retrained and unlearned models as our unlearning
notion. Formally, we define the edge unlearning problem as follows:
Definition 1 (Edge Unlearning Problem). Given a graph G(V,E), a set of edges EUL ⊂ E that
are requested to be removed fromG, a graph learning algorithmAL and its readout function f , then
an edge unlearning algorithm AUL should satisfy the following:

P (f(θRE)|GUL) ≈ P (f(θUL)|GUL), (3)

where GUL = G(V,E\EUL), and P (f(θ)|G) denotes the distribution of possible outputs of the
model (with parameters θ) on G.

The readout function f varies for different learning tasks. In this paper, we consider the softmax
function (Eqn. (2)) as the readout function. There are various choices to measure the similarity
between the output softmax vectors. We consider Jensen–Shannon divergence (JSD) in our experi-
ments.

4 MAIN ALGORITHM: EFFICIENT EDGE UNLEARNING

Given a graph G(V,E) as input, one often finds a proper model represented by θ that fits the data
by minimizing an empirical loss. In this paper, we consider cross-entropy loss (Cox, 1958) for node
classification as our loss function. The original model θOR is optimized by the following:

θOR = arg min
θ

1

|V |
∑
v∈V
L(θ; v,E). (4)

Assuming a set of edges EUL is deleted from G and the new graph after this deletion is represented
by GUL = G(V,E\EUL), retraining the model will give us a new model parameter θRE on GUL:

θRE = arg min
θ

1

|V |
∑
v∈V
L(θ; v,E\EUL). (5)

Original graph

After edge removal

𝚯OR

𝚯UL = 𝚯OR - IEULEraEdge

EUL: removed edges

GNN

IEUL

𝚯RE

Figure 1: Framework of EraEdge. Orange lines
indicate the process of retraining and green lines in-
dicate unlearning.

Figure 1 gives an overview of our unlearn-
ing solution named EraEdge. A major dif-
ficulty, as expected, is that obtaining θRE is
prohibitively slow for complex networks and
large datasets. To overcome this difficulty,
the aim of EraEdge is to identify an up-
date to θOR through an analogous one-shot
unlearning update:

θUL = θOR − IEUL , (6)

where IEUL is the influence ofEUL on the tar-
get model, i.e., the change on the model pa-
rameters by EUL. In general, IEUL

is aK×d
matrix, where K is the number of parame-
ters in θOR (and both θRE and θUL), and d is
the dimension of each parameter (i.e. embed-
ding). This update can be interpreted from
the optimization perspective that the model forgets EUL by “reversing” the influence of EUL from
the model. The challenge is how to quantify IEUL to achieve the unlearning objective (Eqn. (3)).
Next, we discuss the details of how to compute IEUL .
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Existing influence functions and their inapplicability. Influence functions (Koh & Liang, 2017)
enable efficient approximation of the effect of some particular training points on a model’s predic-
tion. The general idea of influence functions is the following: let θ and θ̂ be the model parameters
before and after removing a data point z, the new parameters θ̂ε,z after z is removed can be computed
as following:

θ̂ε,z = arg min
θ

1

m

∑
zi 6=z

L(θ; zi) + εL(θ; z), (7)

wherem is the number of data points in the original dataset, and ε is a small constant. Intuitively, the
influence function computes the parameters after removal of z by upweighting z on the parameters
with some small ε.

It seemly sounds that the influence function (Eqn. (7)) can be applied to the edge unlearning setting
directly by upweighting those nodes that are included in any edge inEUL. However, this is incorrect
as removing one edge e(vi, vj) from the graph can affect not only the prediction of vi and vj but
also those of neighboring nodes of vi and vj , due to the aggregation function of GNN models.

4.1 THEORETICAL CHARACTERIZATION OF EDGE INFLUENCE ON GNNS

In general, an `-layer GNN aggregates the information of the `-hop neighborhood of each node.
Thus removing an edge e(vi, vj) will affect not only vi and vj but also all nodes in the `-hop
neighborhood of vi and vj . To capture such aggregation effect in derivation of edge influence,
first, we define the set of nodes (denoted as Ve) that will be affected by removing an edge e(vi, vj)
as:

Ve = N (vi) ∪N (vj) ∪ {vi, vj},
where N (v) is the set of nodes connected to v in ` hops. Then given a set of edges EUL ⊂ E to be
removed, the set of nodes VEUL

that will be affected by removing EUL is defined as follows:

VEUL =
⋃

e∈EUL

Ve. (8)

Next, we follow the data perturbation idea of influence functions (Koh & Liang, 2017), and compute
the new parameters θε,EUL after the removal of EUL as follows:

θε,VEUL
= arg min

θ

1

|V |
∑
v∈V
L(θ; v,E) + ε

∑
v∈VEUL

L(θ; v,E\EUL)− ε
∑

v∈VEUL

L(θ; v,E). (9)

Intuitively, Eqn. (9) approximates the effects that moving ε mass of perturbation on VEUL
with

E\EUL in place of E. Then we obtain the following theorem.

Theorem 2. Given the parameters θOR obtained by AUL on a graph G, and the loss function L,
assume that L is twice-differentiable and convex in θ, then the influence of a set of edges EUL is:

IEUL
= −H−1θOR

(
∇θ

∑
v∈VEUL

L(θOR; v,E\EUL)−∇θ
∑

v∈VEUL

L(θOR; v,E)
)

(10)

where HOR := ∇2 1
|V |
∑
v∈V L(θOR, v, E) is the Hessian matrix of L with respect to θOR.

The proof of Theorem 2 can be found in Appendix A.1. According to Eqn (9), removing EUL is
equivalent to upweighting ε = 1

|V | mass of perturbation. Therefore, θUL = θε,VEUL
when ε = 1

|V | .
Finally, we have a linear approximation of θUL:

θUL ≈ θOR +
1

|V |
IEUL .

Dealing with non-convexity of GNNs. Theorem 2 assumes the loss function is convex. Given the
non-convexity nature of GNN models, it is hard to reach the global minimum in practice. As a result,
the Hessian matrix HθOR

may have negative eigenvalues. To address this issue, we adapt the damp-
ing term based solution (Koh & Liang, 2017) to prevent HθOR

from having negative eigenvalues by
adding a damping term to the Hessian matrix, i.e., (HθOR + λI).
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4.2 TIME AND MEMORY EFFICIENT INFLUENCE ESTIMATOR

Although by Theorem 2 estimating the edge influence amounts to solving a linear system, there are
several practical and theoretical challenges. First, it can well be the case that the Hessian matrix
HθOR

is non-invertible. This is because our loss function is non-convex with respect to θ. As a con-
sequence, the linear system may even not have a solution. Second, even storing a Hessian matrix in
memory (either CPU or GPU) is expensive: in our experiments, we will show that Hessian matrices
are huge, e.g. the Hessian matrix on the Physics dataset has size around 106 × 106 which would
cost 60 GB memory. Lastly, even under the promise that the linear system is feasible, computing
the inverse of such a huge size matrix is prohibitive.

Our second technical contribution thus is an algorithm that resolves all the challenges mentioned
above.
Claim 3. There is a computationally and memory efficient algorithm to solve the linear system of
IEUL

in Theorem 2.

The starting point of our algorithm is a novel perspective that solving the linear system (Eqn. (10))
can be thought of as finding a stationary point of the following quadratic function:

f(x) = arg min
x

1

2
xTAx− bTx, (11)

withA = HθOR and b = ∇θ
∑
v∈VEUL

L(θOR; v,E\EUL)−∇θ
∑
v∈VEUL

L(θOR; v,E). Note that
even the function f(x) is non-convex, there is rich literature establishing convergence guarantee to
stationary points using gradient-descent-type algorithms; see e.g. (Bertsekas, 1999).

In this paper, we will employ the conjugate gradient (CG) method which exhibits promising compu-
tational efficiency for minimizing quadratic functions (Pytlak, 2008). In fact, it was well-known that
as long as the step size satisfies the Wolfe conditions (Wolfe, 1969; 1971) and the objective function
is Lipschitz and bounded from below, the sequence of iterates produced by CG asymptotically con-
verges to a stationary point of f(x), which corresponds to a solution IEUL

that satisfies Eqn. (10).
Note that these regularity conditions are satisfied as soon as the training data are bounded. Hence,
we have the following convergence guarantee.
Lemma 4 (Theorem 2.1 of (Pytlak, 2008)). The CG method generates a sequence of iterates
{xt}t≥1 such that limt→+∞ f(xt) = 0. In addition, the per-iteration time complexity is O(|x|)
where|x| denotes the dimension of x.

We note, however, that an appealing feature of Eqn. (10) is that we do not have to find a solution
with exact zero gradient. This enables us to terminate CG early by monitoring the magnitude of the
gradients. Our empirical study also shows that CG can get good approximation in a small number
of iterations.

In addition, we propose a memory-efficient implementation of CG, which significantly reduces the
memory cost.
Lemma 5. The CG method can be implemented using O(|θ|) memory.

Proof. To see why the above lemma holds, recall that a key step of CG update is calculating the
gradient of f(x) as

∇f(x) = HθORx−
(
∇θ

∑
v∈VEUL

L(θOR; v,E\EUL)−∇θ
∑

v∈VEUL

L(θOR; v,E)
)
.

As HθOR ∈ R|θ|×|θ|, we can not explicitly compute HθOR . Instead, we utilize Hessian-vector
product (Pearlmutter, 1994) to approximately calculate HθOR

x by

HθOR
x ≈ g(θOR + rx)− g(θOR)

r
, (12)

for some very small step size r > 0, where g(θ) := ∇θ
∑
v∈VEUL

L(θOR; v,E\EUL) −
∇θ
∑
v∈VEUL

L(θOR; v,E). Note that the memory cost of evaluating the function value of g(·)
is O(|θ|). Hence, Lemma 5 follows.
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Remark 6. Observe that a trivial implementation involves storing the Hessian matrix which con-
sumes O(|θ|2) memory. Returning to our previous example on the Physics dataset, a trivial imple-
mentation consumes 64 GB memory, while ours only needs 8 GB memory.

Proof of Claim 3. Claim 3 follows from Lemma 4 and Lemma 5.

5 EXPERIMENTS

In this section, we empirically verify the efficiency and effectiveness of our unlearning method.

5.1 EXPERIMENTAL SETUP

All the experiments are executed on a GPU server with NVIDIA A100 (40G). All the algorithms are
implemented in Python with PyTorch. We set the damping term λ = 0.01 for all experiments. The
link to the code and datasets will be available in the camera-ready version.

Datasets. We use three well-known datasets, namely Cora (Sen et al., 2008), Citeseer (Yang et al.,
2016), and CS (Shchur et al., 2018), that are popularly used for performance evaluation of GNNs
(Shchur et al., 2018; Zhang et al., 2019). The statistical information of these datasets can be found
in Appendix A.2.

GNN models. We consider four representative GNN models, namely GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2019). We
configure the GNNs with one hidden layer and a softmax output layer. All GNN models are trained
for 1,000 epochs with an early-stopping condition when the validation loss is not decreasing for 20
epochs. We randomly split each graph into a training set (60%), a validation set (20%), and a test
set (20%). As we mainly consider the impact of structure change on GNN models, we randomly
initialize the values of node features such that they follow the Gaussian distribution to eliminate the
possible dominant impact of node features on model performance. More details of the model setup
can be found in Appendix A.2. We also measure the model performance with original node features.
The results can be found in Appendix A.5.

Picking edges for removal. We randomly pick k ={100, 200, 400, 600, 800, 1,000}) edges from
Cora and CiteSeer datasets, and k={1,000, 2,000, 4,000, 6,000, 8,000, 10,000}) edges from CS
dataset for removal. For each setting, we randomly sample ten batches of edges, with each batch
containing k edges. We report the average of model performance (model accuracy, unlearning effi-
cacy, etc.) of the ten batches.

Metrics. We evaluate the performance of EraEdge in terms of efficiency, efficacy, and model
accuracy: (1) Unlearning efficiency: we measure the running time of EraEdge and retraining time
for a given set of edges; (2) Target model accuracy: we measure accuracy of node classification,
i.e., the percentage of nodes that are correctly classified by the model, as the accuracy of the target
model. Higher accuracy indicates better accuracy retained by the unlearned model; (3) Unlearning
efficacy: we measure the distance between the output space of both retrained and unlearned models
as the Jensen–Shannon divergence (JSD) between the posterior distributions output by these two
models. Smaller JSD indicates a higher similarity between the two models in terms of their outputs.

Baselines. We consider both baselines of exact and approximate GNN unlearning for comparison
with EraEdge. For exact GNN unlearning, we consider GraphEraser (Bourtoule et al., 2021) as the
baseline. GraphEraser has two partitioning strategies denoted as balanced LPA (BLPA) and bal-
anced embedding k-means (BEKM), We consider both BLPA and BEKM as the baseline methods.
We use the same setting of number of shards as in (Chen et al., 2022) for both BLPA and BEKM.
For approximate GNN unlearning, we consider (Chien et al., 2022) as the baseline.

5.2 PERFORMANCE OF ERAEDGE

We evaluate the performance of EraEdge on four representative GNN models and three graph
datasets, and compare the performance of the unlearned model with both the retrained model and
two baselines in terms of model accuracy, unlearning efficiency, and unlearning efficacy.
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Table 2: Performance of EraEdge, retrained models, and two baselines. Different metrics
are used to evaluate the performance, including the node classification accuracy of the retrain-
ing/unlearning model and running time. Each experiment is repeated 10 times. The results show
that: (1) EraEdge is significantly faster than retraining while maintaining similar model accuracy;
(2) EraEdge outperforms the baseline methods in model accuracy.

# of Removed edges Method Accuracy (%) Running time (s)

GCN
+
Cora

200

Retrain 79.06 ± 0.67 3.83 ± 0.44
BLPA 48.06 ± 2.14 0.55 ± 0.11
BEKM 47.86 ± 2.12 0.56 ± 0.11

EraEdge 78.54 ± 0.78 0.90 ± 0.18

1,000

Retrain 75.24 ± 1.22 4.48 ± 0.78
BLPA 54.74 ± 3.64 0.81 ± 0.15
BEKM 54.80 ± 3.60 0.54 ± 0.05

EraEdge 74.76 ± 1.73 0.89 ± 0.11

GraphSAGE
+
CS

2,000

Retrain 87.19 ± 0.22 61.15 ± 4.40
BLPA 80.03 ± 0.86 5.38 ± 1.30
BEKM 80.80 ± 4.90 3.53 ± 0.54

EraEdge 87.14 ± 0.21 0.79 ± 0.35

10,000

Retrain 85.52 ± 0.26 57.13 ± 3.51
BLPA 80.25 ± 0.76 6.20 ± 0.70
BEKM 79.88 ± 4.59 4.01 ± 0.36

EraEdge 85.57 ± 0.33 0.91 ± 0.43

Model accuracy. We report the results of GNN model accuracy in Table 2 (Accuracy column) for
GCN+Cora and GraphSAGE+CS settings. The results for other settings can be found in Appendix
A.3. We have the following observations. First, the model accuracy obtained by EraEdge stays
very close to that of the retrained model, regardless of the number of the removed edges. The dif-
ference in model accuracy between retrained and unlearned models remains negligible (in range
of [0.48%, 0.52%] and [0.01%, 0.2%] for the two settings respectively). Second, EraEdge wit-
nesses significantly higher model accuracy compared to the two baseline approaches, especially
for the GCN+Cora setting. For example, both BEKM and BLPA only can deliver the model ac-
curacy as around 48% when removing 200 edges under the GCN+Cora setting. This shows that
unlearning through graph partitioning can bring significant loss of target model accuracy. Mean-
while EraEdge demonstrates that the model accuracy can be as high as∼79% (65% improvement).

Unlearning efficiency. We report the time performance results of EraEdge and retraining in Table 2
(Running time. column) for GCN+Cora and GraphSAGE+CS settings. The results of other settings
can be found in Appendix A.3. We measure the running time of the two baselines as the average
training time per shard, as all shards are trained in parallel. The most important observation is
that EraEdge is significantly faster than retraining. For example, it speeds up the training time by
5× under GCN+Cora setting when removing 1,000 edges, and 77× under GraphSAGE+CS setting
when removing 2,000 edges. Furthermore, EraEdge is much faster than the two baselines especially
when training large graphs. For example, EraEdge is 5.8× faster than BLPA and 3.5× faster than
BEKM under the GraphSAGE+CS setting when 2,000 edges were removed.

Unlearning efficacy. Figure 2 plots the results of unlearning efficacy which is measured as the
JSD between the posterior probability output by both retraining and unlearning models. We observe
that JSD remains insignificant (at most 0.02) in all the settings. Furthermore, JSD stays relatively
stable when the number of removed edges increase. This demonstrates the efficacy of EraEdge - it
remains close to the retraining model even when a large number of edges is removed.

Main takeaway. While demonstrating similar accuracy as retraining, EraEdge is significantly
faster than retraining, where the speedup gain becomes more outstanding when more edges are
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Figure 2: Unlearning efficacy. We measure unlearning efficacy as the average JSD between the
posterior distributions output by the retrained and unlearned models. Each experiment is repeated
10 times, where a different set of edges was sampled randomly for removal each time. The results
show that the unlearned model is very close to the retrained model in the output space.

|EUL|
GCN GAT

Original Retrain EraEdge Original Retrain EraEdge

100 0.5913 0.5446 0.5297 0.6179 0.5615 0.5523
200 0.6014 0.5486 0.5471 0.5946 0.5659 0.5498
400 0.5978 0.5383 0.5378 0.5934 0.5400 0.5368
600 0.5993 0.5360 0.5383 0.6055 0.5471 0.5475

1000 0.5964 0.5399 0.5388 0.5983 0.5426 0.5441

Table 3: Edge forgetting ability of EraEdgemeasured as AUC of the membership inference attack
that infers the existence of EUL in training graph (Cora dataset)

removed. Furthermore, EraEdge outperforms the baseline approaches considerably in both model
accuracy and time performance.

5.3 TESTING OF EDGE FORGETTING THROUGH MEMBERSHIP INFERENCE ATTACKS

To empirically evaluate the extent to which the unlearned model has forgotten the removed edges,
we launch a black-box edge membership inference attack (MIA) (Wu et al., 2022)1 that predicts
whether particular edges exist in the training graph. We measure the attack performance as AUC of
MIA. Intuitively, an AUC that is close to 50% indicates that MIA’s belief of edge existence is close
to random guess.

Table 3 reports the attack performance of MIA’s inference of the removed edges EUL against both
the original model and the retrained/unlearned models on Cora dataset. First, MIA is effective to
predict the existence of EUL in the original graph, as the AUC of MIA against the original model
is much higher than 0.5. Second, the ability of MIA inferring EUL from either the retrained or the
unlearned model degrades, as the AUC of MIA on both retrained and unlearned models is noticeably
reduced. Indeed, the AUC of MIA for both retrained and unlearned models remain close to each
other. This demonstrates that the extent to which EraEdge forgets EUL is similar to that of the
retrained model.

5.4 COMPARISON WITH CERTIFIED GRAPH UNLEARNING

In this part of the experiments, we compare the performance of EraEdge with certified graph un-
learning (CGU) (Chien et al., 2022). The key idea of the certified unlearning method is to add noise
drawn from the Gaussian distribution to the loss function. We use µ = 0 and σ = 1 as the mean and
standard deviation of the Gaussian distribution. We compare CGU and EraEdge in terms of: (1)
target model accuracy, (2) unlearning efficacy (measured as the JSD between the probability output

1We use the implementation of LinkTeller available at: https://github.com/AI-secure/LinkTeller.
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Figure 3: Comparison between Certified Graph Unlearning (Chien et al., 2022) and Er-
aEdge (GCN+Cora). We measure unlearning efficacy as the JSD between the distributions outputs
by the retrained model and the unlearned model (either certified unlearning or EraEdge).

|EUL| Original Retrain CGU EraEdge

100 0.5913 0.5446 0.5329 0.5297
200 0.6014 0.5486 0.5485 0.5471
400 0.5978 0.5383 0.5343 0.5378
600 0.5993 0.5360 0.5434 0.5383
1000 0.5964 0.5399 0.5379 0.5388

Table 4: Edge forgetting ability of both EraEdge and certified edge unlearning (CGU), where the
ability is measured as AUC of the membership inference attack that infers existence of EUL in
training graph (GCN+Cora).

of retraining and unlearning models), and (3) privacy vulnerability of the removed edges against the
membership inference attack.

Figure 3 (a) reports the target model accuracy by CGU and EraEdge. As we can see, while Er-
aEdge enjoys similar target model accuracy as the retrained model, CGU suffers from significant
loss of model accuracy due to added noise, where the model accuracy is 50% worse than that of both
EraEdge and retraining.

Figure 3 (b) reports unlearning efficacy by CGU and EraEdge. The results demonstrate that the
model output by CGU is much farther away from that of the retrained model than EraEdge. This is
consistent with the low accuracy results in Figure 3 (b).

Table 4 shows the ability of forgetting the removed edges EUL by both CGU and EraEdge, where
the edge forgetting ability is measured as the accuracy (AUC) of the membership inference attack
that predicts EUL in the training graph. We use the same membership inference attack (Wu et al.,
2022) as in Section 5.3. The reported results are calculated as the average AUC of ten MIA trials.
We observe that CGU and EraEdge has comparable edge forgetting ability, where MIA perfor-
mance against both models is close. This demonstrate empirically that EraEdge provides similar
privacy risks as CGU. As it has been shown above that the target model accuracy by EraEdge out-
performs that of CGU significantly, we believe that EraEdge better addresses the trade-off between
unlearning efficacy, privacy, and model accuracy.

6 RELATED WORK

Machine unlearning. Machine unlearning aims to remove some specific information from a pre-
trained ML model. Several attempts have been made to make unlearning more efficient than retrain-
ing from scratch. An earlier study converts ML algorithms to statistical query (SQ) learning, so that
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unlearning processes only need to retrain the summation of SQ learning (Cao & Yang, 2015). The
concept of SISA (sharded, isolated, sliced, and aggregated) approach is proposed recently (Bour-
toule et al., 2021) where a set of constituent models, trained on disjoint data shards, are aggregated
to form an ensemble model. Given an unlearning request, only the affected constituent model is re-
trained. Alternative machine unlearning solutions directly modify the model’s parameters to unlearn
in a small number of updates (Guo et al., 2020; Neel et al., 2021; Sekhari et al., 2021). Recent stud-
ies have focused on various convex ML models including random forest (Brophy & Lowd, 2021;
Schelter et al., 2021), k-means clustering (Ginart et al., 2019), and Bayesian inference models (Fu
et al., 2021).

Machine unlearning in deep neural networks. Early work on deep machine unlearning focuses
on removing the information from the network weights by imposing a condition of SGD based
optimization during training (Golatkar et al., 2020a). The subsequent work (Golatkar et al., 2020b)
estimates the network weights for the unlearned mode. However, all these methods suffer from
high computational costs and constraints on the training process (Tarun et al., 2021). The amnesiac
unlearning approach (Graves et al., 2021) focuses on Convolutional Neural Networks. It cancels
parameter updates from only the batches containing the removed data. However, it assumes that the
data to be removed is known before the training of the original model, which does not hold in our
setting where edge removal requests are unknown and unpredictable. There also has been recent
empirical and theoretical work in developing deep network unlearning in the application domain of
computer vision (Du et al., 2019; Nguyen et al., 2020). GraphEraser (Chen et al., 2022) is one of
the few works that consider unlearning in GNNs. It follows the SISA approach (Bourtoule et al.,
2021) and splits graph into disjoint partitions (shards). Upon receiving an unlearning request, only
the model on the affected shards is retrained. However, as splitting the training graph into disjoint
partitions will damage the original graph structure, GraphEraser could downgrade the accuracy of
the unlearned model significantly, especially when a large number of edges is to be removed. This
has been demonstrated in our experiments.

Certified machine unlearning. Certified removal (Guo et al., 2020) defines approximate unlearn-
ing with a privacy guarantee (indistinguishability of unlearned models with retrained models), where
indistinguishability is defined in a similar manner as differential privacy (Dwork et al., 2006). Cer-
tified removal can be realized by adding noise sampled from either Gaussian distribution or Laplace
distribution on the weights (Golatkar et al., 2020a; Wu et al., 2020; Neel et al., 2021; Golatkar et al.,
2021; Sekhari et al., 2021), or adding perturbation on the loss function (Guo et al., 2020). (Chien
et al., 2022) provides the first certified GNN unlearning solution. It only considers simple graph
convolutions (SGC) and their generalized PageRank (GPR) extensions. To achieve a theoretical
guarantee for certified removal, it adds noise to the loss function. However, as shown in our empiri-
cal evaluation (Section 5), the certified unlearning leads to significant loss of target model due to the
added noise.

Explanations of deep ML models by influence functions. One of the challenges of deep ML mod-
els is its non-transparency that hinders understanding of the prediction results. Recent works (Koh
& Liang, 2017) adapt the concept of influence function - a classic technique from robust statistics —
to formalize the impact of a training point on a prediction. Broadly speaking, the influence function
attempts to estimate the change in the model’s predictions if a particular training point is removed.
Very recently, the concept of influence function has been extended to GNNs. For instance, influence
functions are designed for GNNs to measure feature-label influence and label influence (Wang et al.,
2019). Node-pair influence, i.e., the change in the prediction for node u if the features of the other
node v are reweighted, is also studied (Wu et al., 2022). Unlike these works, we estimate the edge
influence, i.e., the effect of removing particular edges on GNN models.

7 CONCLUSION

In this work, we study the problem of edge unlearning that aims to remove a set of target edges from
GNNs. We design an approximate unlearning algorithm named EraEdge which enables fast yet
effective edge unlearning in GNNs. An extensive set of experiments on four representative GNN
models and three benchmark graph datasets demonstrates that EraEdge can achieve significant
speedup gains over retraining without sacrificing the model accuracy too much.

There are several research directions for the future work. First, while EraEdge only considers edge
unlearning, it can be easily extended to handle node unlearning, as removing a node v from a graph

11



Under review as a conference paper at ICLR 2023

is equivalent to removing all the edges that connect with v in the graph. We will investigate the
feasibility and performance of node unlearning through EraEdge, and compare the performance
with the existing node unlearning methods (Chien et al., 2022). Second, an important metric of
unlearning performance is unlearning capacity, i.e., the maximum number of edges that can be
deleted while still ensuring good model accuracy. We will investigate how EraEdge can be tuned to
meet the capacity requirement. Third, we will extend the study to a relevant topic, continual learning
(CL), which studies how to learn from an infinite stream of data, so that the acquired knowledge can
be used for future learning (Chen & Liu, 2018). An interesting question is how to support both
continual learning (Chen & Liu, 2018) and private unlearning (CLPU) (Liu et al., 2022), i.e., the
model learns and remembers permanently the data samples at large, and forgets specific samples
completely and privately. We will explore how to extend EraEdge to support CLPU.
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Dataset #. Features #. Nodes #. Edges #. Classes Min Degree Max Degree Avg. Degree

Cora 1,433 2,708 5,429 7 2 198 21.82
CiteSeer 3,703 3,327 4,552 6 2 126 13.83

CS 6,805 18,333 163,788 15 3 262 36.43

Table 5: Description of datasets

A APPENDIX

A.1 PROOF OF THEOREM 2

Proof. For simplicity, we first define

R(θ, V,E) =
∑
v∈V

L(θ, v, E). (13)

Then, we formulate a GNN learning process as

θOR = arg min
θ

1

|V |
R(θ, V,E). (14)

Since removing edges can be considered as perturbing the input, we introduce Eqn 9,

θε = arg min
θ

1

|V |
∑
v∈V

L(θ; v,E) + ε
∑

v∈VEUL

L(θ; v,E\EUL)− ε
∑

v∈VEUL

L(θ; v,E)

= arg min
θ

1

|V |
R(θ, V,E) + εR(θ, VEUL

, E\EUL)− εR(θ, VEUL
, E). (15)

We note a necessary condition is that the gradient of Eqn 15 at θε is zero. Then, we have

0 =
1

|V |
∇θR(θε, V, E) + ε∇θR(θε, VEUL

, E\EUL)− ε∇θR(θε, VEUL
, E). (16)

Next, we apply Taylor series at θOR and we get

0 ≈ 1

|V |
∇θR(θOR, V, E) + ε∇θR(θOR, VEUL , E\EUL)− ε∇θR(θOR, VEUL , E)

+
[ 1

|V |
∇2
θR(θOR, V, E) + ε∇2

θR(θOR, VEUL
, E\EUL)− ε∇2

θR(θOR, VEUL
, E)

]
(θε − θOR),

(17)

where we have dropped o(θOR − θε) for approximation. Then Eqn (17) is a linear system of EUL,
the influence of EUL. Since θOR is the minimum of Eqn (14), we have 1

|V |∇R(θOR, V, E) = 0. As
ε is a small value, we drop the two o(ε) terms and have the following:

1

|V |
∇2
θR(θOR, V, E)(θε−θOR)+ε

(
∇θR(θOR, VEUL

, E\EUL)−∇θR(θOR, VEUL
, E)

)
≈ 0. (18)

Suppose Eqn (14) is convex, then

θε−θOR ≈ −
1

|V |
∇2
θR(θOR, V, E)−1

(
∇θR(θOR, VEUL , E\EUL)−∇θR(θOR, VEUL , E)

)
ε (19)

Denote

IEUL
:=

d(θε − θOR)

dε

∣∣∣
ε=0

= −H−1θOR

(
∇θR(θOR, VEUL

, E\EUL)−∇θR(θOR, VEUL
, E)

)
(20)

where HOR := ∇2 1
|V |
∑
v∈V L(θOR, v, E).
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Sequential unlearning Single-batch unlearning
B1 B2 B3 B4

Retrain 0.7795 0.7758 0.7811 0.7797 0.7793
EraEdge 0.7791 0.7786 0.7790 0.7793 0.7792

Table 6: Target model accuracy under single-batch and sequential unlearning (GCN+Cora).

A.2 ADDITIONAL DETAILS OF EXPERIMENTAL SETUP

Description of datasets. Table 5 summarizes the statistical information of the three graph datasets
(Cora, Citeseer, and CS) we used in the experiments. Cora and Citeseer datasets are citation graphs,
while CS dataset is a co-author graph.

Additional details of model setup. To ensure fair comparison between the retrained and unlearned
models, we use the same model size (i.e., same number of layers and number of neurons) for both
retraining and unlearned models. All GNN models are trained with a learning rate of 0.001. We
train the models by 1,000 epochs, with the early-stopping condition as that the validation loss does
not decrease for 20 epochs.

A.3 ADDITIONAL PERFORMANCE RESULTS

Model efficiency. Figure 4 presents the model efficiency results on the three datasets. We observe
that EraEdge is significantly faster than retraining. For example, EraEdge outperforms by 9.95×,
5.41×, 69.36×, and 3.12× on CS dataset respectively over retraining (Figure 4 (c), (f), (i), and (l)).

Model accuracy. Figure 5 presents the results of model accuracy for all settings. First, the accuracy
of the target model by EraEdge is very close to that by the retrained model. In particular, the average
difference in model accuracy between retrained and unlearned models are in the range of [0.11%,
0.68%], [0.02%, 0.74%], [0.06%, 0.65%] and [0.07%, 1.00%] for GCN, GAT, GraphSAGE, and
GIN on Cora, [0.01%, 0.71%], [0.05%, 0.44%, [0.05%, 0.65%], and [0.02%, 1.25%] on CiteSeer,
and [0.02%, 0.22%], [0.01%, 0.20%, [0.05%, 0.23%], and [0.01%, 0.22%] on CS, respectively.
Furthermore, the model accuracy of the unlearned model stays close to that of the retrained model,
regardless of the number of removed edges. This demonstrates that EraEdge can handle the removal
of a large number of edges.

A.4 SEQUENTIAL UNLEARNING (NEW)

So far we only considered deleting of one batch of edges. In practice, there can be multiple batch
deletion requests to forget the edges in a sequential fashion. Next, we focus on the scenario where
multiple edge batches are removed sequentially. Specifically, we divide the to-be-removed EUL

into k > 1 disjoint batches {Bi}ki=1, with each batch consisting of the same number of edges. For
each batch Bi (1 ≤ i ≤ k − 1), we consider the target model obtained from retraining/unlearning
of the previous batch Bi−1 as the original model θOR, and update θOR by removing Bi (either by
retraining or unlearning). We evaluate the target model accuracy under sequential unlearning and
compare it with that under one-batch unlearning.

We consider k = 4, and reports the target model accuracy for deletingEUL in one batch and deleting
EUL in k = 4 batches in Table 6. We also report the target model accuracy of the retrained and
unlearned models at each batch. We observe that, first, the accuracy of the unlearned model remains
close to the retrained model at each batch during sequential removals. Second, the performance of
the unlearned model after removing k batches stays close to that of the model after single-batch
unlearning. These results demonstrate that EraEdge can handle sequential deletion of multiple
batches of edges.

A.5 UNLEARNING WITH NODE FEATURES (NEW)

In Section 5 we mainly considered the node features that are randomly initialized to eliminate the
possible dominant impact of node features on model performance. Next, we evaluate the perfor-
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Figure 4: Unlearning efficiency. The results show that EraEdge speeds up the training time sig-
nificantly compared with retraining.
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Figure 5: Accuracy of the target GNN model after retraining/unlearning. The results show that
EraEdge still maintains a competitive model accuracy which is close to that of the retraining model.
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Figure 6: Comparison of target model accuracy for unlearning with and without the original node
features (Cora). “XX+NF” indicates the model that considers the original node features.

mance of EraEdge that uses the original node features. Figure 6 reports the target model accuracy
of the unlearned model that is trained with or without the node features. We have the following
main observations. First, the target model accuracy improves significantly by considering the origi-
nal node features. This shows that the node features have dominant importance on the target model
performance in this setting. However, the target model accuracy of the unlearned model still stays
close to that of the retrained model. In other words, EraEdge still can make GNNs forget the edges
effectively even when node features have dominant importance over the graph structure on model
performance.
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