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Abstract
Molecular discovery has attracted significant at-
tention in scientific fields for its ability to generate
novel molecules with desirable properties. Al-
though numerous methods have been developed
to tackle this problem, most rely on an online set-
ting that requires repeated online evaluation of
candidate molecules using the oracle. However,
in real-world molecular discovery, the oracle is
often represented by wet lab experiments, making
this online setting impractical due to the signifi-
cant time and resource demands. To fill this gap,
we propose the Molecular Stitching (MolStitch)
framework, which utilizes a fixed offline dataset to
explore and optimize molecules without the need
for repeated oracle evaluations. Specifically, Mol-
Stitch leverages existing molecules from the of-
fline dataset to generate novel ‘stitched molecules’
that combine their desirable properties. These
stitched molecules are then used as training sam-
ples to fine-tune the generative model using pref-
erence optimization techniques. Experimental re-
sults on various offline multi-objective molecular
optimization problems validate the effectiveness
of MolStitch. The source code is available online.

1. Introduction
In recent years, a diverse array of in silico generative models
has been developed to tackle molecular discovery (Bilodeau
et al., 2022). These computational approaches have demon-
strated impressive success across various benchmarks, lead-
ing to a growing interest in integrating them into real-world
applications such as drug discovery. Despite this success,
most existing in silico generative models often operate under
an online optimization setting, where numerous candidate
molecules are generated iteratively and those molecules are
evaluated immediately using the oracle function. However,
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Figure 1. Proposed offline MBO process for molecular discovery.

in real-world molecular discovery, the oracle function is
typically represented by wet lab experiments, which are
resource-intensive and can take weeks or even months for
evaluation (Payton et al., 2023). This creates a significant
bottleneck, as in silico models cannot receive real-time eval-
uation feedback from wet lab. Instead, these models must
wait for the wet lab experiments to complete before further
optimization can occur, leading to substantial delays.

To address these challenges, a promising research direction
is to enable the optimization and refinement of the in silico
generative model without relying on online evaluation feed-
back. To this end, we propose to explore an offline optimiza-
tion setting for real-world molecular discovery. Specifically,
offline optimization seeks to fully leverage the information
contained within an offline dataset, using it to refine the gen-
erative model in the absence of online evaluation feedback.
Detailed explanations of an offline setting is in Appendix A.

One of the most promising approaches for solving the offline
optimization problem is offline model-based optimization
(MBO) (Trabucco et al., 2022). In this approach, a proxy,
typically parameterized as a deep neural network f̂θ(·), is
trained to approximate the oracle function by fitting it to an
offline dataset. Once trained, the proxy acts as a surrogate
to guide the optimization of the generative model. For in-
stance, gradient ascent (Zinkevich, 2003) can be applied to
the generative model’s parameters based on the proxy’s pre-
dictions, refining the generative model to produce candidate
molecules with increasingly desirable properties.

The offline MBO approach exhibits strong performance by
generating synthetic data guided by the proxy. However, sev-
eral challenges remain: the vanilla proxy is trained using a
supervised regression loss, which may struggle to accurately
approximate the true values from the oracle function as the
problem becomes more complex (Fu & Levine, 2021). This
challenge is compounded when the proxy encounters out-of-
distribution (OOD) data, leading to significant discrepancies
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Figure 2. An illustration of trajectory stitching in reinforcement learning (left) and molecular stitching in molecular discovery (right).

between the true values and the proxy’s predictions (Qi et al.,
2022). To tackle these issues, recent studies have proposed
various strategies to enhance the robustness and accuracy of
the proxy such as introducing conservative estimates (Tra-
bucco et al., 2021), employing a local smoothness (Yu et al.,
2021), and adopting ensemble methods (Chen et al., 2023a).

While these advanced offline MBO methods significantly
enhance the proxy, they may not fully exploit the valuable
information inherent in the offline dataset, as this data is
typically used solely for training the proxy. In the field of
offline reinforcement learning (RL), researchers have intro-
duced trajectory stitching techniques (Li et al., 2024; Kim
et al., 2024b) to directly leverage the existing offline data by
creating synthetic trajectories through segment combination.
As depicted in Figure 2, consider two distinct trajectories in
the offline dataset: trajectory A has a strong start but ends at
the wrong destination, whereas trajectory B starts poorly yet
successfully reaches the goal. By applying trajectory stitch-
ing, these trajectories can be merged to form a new stitched
trajectory that combines the strong start of trajectory A with
the successful goal achievement of trajectory B.

In this paper, we propose the Molecular Stitching (Mol-
Stitch) framework that tackles the offline molecular op-
timization problem. Drawing inspiration from trajectory
stitching, our framework involves stitching molecules from
the offline dataset. For instance, if molecule A possesses
desirable property 1 but lacks property 2, while molecule
B has the opposite characteristics, we aim to ‘stitch’ these
molecules together to produce a new stitched molecule that
exhibits both desirable properties. In other words, our frame-
work utilizes the existing molecules in the offline dataset to
generate novel stitched molecules, allowing the generative
model to learn from these newly synthesized data samples.

To leverage stitched molecules as augmented synthetic data,
they must be effectively evaluated to provide constructive
feedback to the generative model. However, this evaluation
process poses a challenge, as these molecules are unfamiliar
to the proxy. To address this, we reformulate the proxy’s task
from property score regression to pairwise classification.

In particular, we develop a rank-based proxy that learns
the ranking relationship between two molecules based on
desired properties and classifies which molecule is more
favorable. This transformation simplifies the task for the
proxy, thereby enabling it to provide more reliable feedback.

Beyond the offline setting, real-world molecular discovery
also requires the optimization of multiple molecular ob-
jectives (properties). For example, a successful drug must
satisfy several criteria—it must be bioactive, safe, synthe-
sizable, and more—rather than excelling in just one aspect
(Fromer & Coley, 2023). This challenge is referred to as a
multi-objective molecular optimization (MOMO) problem.
A prevalent approach to tackling MOMO is scalarization,
where multiple objectives are combined into a single objec-
tive by assigning weights that reflect their relative impor-
tance (Gunantara, 2018). However, in the offline setting, the
exact importance of each objective is often unknown, and
adjusting weights based on immediate feedback is limited
(Xue et al., 2024). To tackle this, we incorporate priority
sampling using a Dirichlet distribution (Minka, 2000) into
our framework. Specifically, instead of manually selecting
weights, we employ priority sampling to generate a vari-
ety of weight configurations during the molecular stitching
process, resulting in a diverse set of stitched molecules.

The main contributions of our framework are outlined as:

• We investigate two critical aspects for real-world molec-
ular discovery: offline molecular optimization and multi-
objective molecular optimization (MOMO). To this end,
we propose MolStitch, the novel framework specifically
designed to solve the offline MOMO problem.

• MolStitch includes novel components: StitchNet for uti-
lizing the offline dataset to generate ‘stitched molecules’,
Rank-based proxy for evaluating molecules, and prefer-
ence optimization to fine-tune the generative model.

• We introduce priority sampling using a Dirichlet distribu-
tion to efficiently generate diverse weight configurations.
This allows for effective exploration of trade-offs among
multiple objectives in the offline MOMO problem.

2



Offline Model-based Optimization for Real-World Molecular Discovery

2. Preliminaries
Multi-objective optimization. LetM denote the space of
all possible molecules m, and let f1, f2, . . . , fk :M→ R
be k real-valued molecular objective functions, each repre-
senting a molecular property to be optimized. The multi-
objective molecular optimization problem can be stated as:

Maximize
m∈M

F(m) = {f1(m), f2(m), . . . , fk(m)}. (1)

In this problem, it is challenging to identify and generate a
single molecule that simultaneously maximizes all objective
functions. This challenge arises because improving one
molecular property may lead to the deterioration of other
properties due to inherent trade-offs between them (Fromer
& Coley, 2023). Thus, the goal of this problem is to generate
a diverse set of molecules that reside on the Pareto front.

Definition 2.1 (Pareto front). The Pareto front, denoted
as PF, is the set of all Pareto optimal molecules m∗ in the
objective space. Mathematically, it can be expressed as:

PF = {F(m∗) | m∗ ∈ PS}, (2)

where PS is the Pareto set that contains all m∗, defined as:

PS =
{
m∗ ∈M | ∄m ∈M : F(m) ⪰ F(m∗)

∧ F(m) ̸= F(m∗)
}
.

(3)

Generative model. Let Gϕ denote a generative model that
produces molecules in an auto-regressive manner. The gen-
eration process for a moleculem of total length T is defined:

Gϕ(m) =

T∏
t=1

Gϕ(m
t|mt−1,mt−2, . . . ,m1), (4)

where mt represents the t-th component (or token) in the
sequence that constitutes the molecule m.

Offline optimization. Let D = {(mn,F(mn))}Nn=1 be the
offline dataset, where mn ∈M represents a pre-collected
molecule and F(mn) represents the corresponding true
molecular objective scores. The goal of this offline molecu-
lar optimization is to generate new molecules that potentially
outperform the best-known Pareto optimal molecules in D.
To explore molecular space beyond the datasetD, a common
strategy involves constructing a proxy, f̂θ(·) :M→ R, to
evaluate molecules. The most direct approach is the vanilla
proxy, which approximates the scores of true objective func-
tions F(·). The vanilla proxy is trained to minimize the
discrepancy between the predicted and true objective scores:

θ∗ = argmin
θ

1

N

N∑
n=1

∥∥∥f̂θ(mn)− F(mn)
∥∥∥2 . (5)

To optimize the generative model Gϕ such that it produces
molecules with improved objective scores, the vanilla proxy

can be implemented. Specifically, the Gϕ can be updated
by maximizing the expected performance of the generated
molecules based on the vanilla proxy’s predictions such as:

ϕ∗ = argmaxϕ Em∼G(ϕ)

[
f̂θ(m)

]
. (6)

However, this approach may face challenges as the complex-
ity of the problem increases. The vanilla proxy might pro-
duce unreliable predictions when encountering molecules
outside its training data distribution, leading to potentially
misguided optimization. Moreover, this approach may not
fully leverage the valuable insights within the offline dataset.

3. Method
In this section, we present our MolStitch framework for tack-
ling the offline MOMO problem. There are three distinct
neural networks in our framework: the generative model,
StitchNet, and the proxy model. The generative model is
designed to generate molecules in textual formats, such as
SMILES (Weininger, 1988). StitchNet takes two parent
molecules as input and outputs a novel stitched molecule
that combines desirable properties from both inputs. The
proxy serves as a surrogate for evaluating molecules by
classifying which molecule has more desirable properties.

3.1. Stage 1: Unsupervised Pre-training for StitchNet

Figure 3. In the first pre-training stage, StitchNet gradually learns
chemical grammar by imitating rule-based crossover operator.

In the first stage of our framework, we perform unsupervised
pre-training for StitchNet using the publicly available ZINC
dataset (Sterling & Irwin, 2015). Specifically, we randomly
sample two parent molecules from the ZINC dataset and
apply a rule-based crossover operator (Jensen, 2019) to gen-
erate an offspring molecule, as illustrated in Figure 3. Note
that this crossover operator adheres to chemical rules and
constraints, ensuring that the resulting offspring molecules
are chemically valid and potentially exhibit desirable prop-
erties (Kamphausen et al., 2002). We then train StitchNet
using a maximum likelihood objective to generate a stitched
molecule that closely resembles the offspring molecules
derived from the crossover operator. This pre-training en-
courages StitchNet to internalize chemical grammar, thereby
enabling it to generate chemically valid stitched molecules.
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Figure 4. Main pipeline of the MolStitch framework. (a) Stage 2: The rank-based proxy is trained to classify which molecule in a given
pair has desirable properties, while StitchNet undergoes self-supervised training with chemical feedback. (b) Stage 3: StitchNet generates
stitched molecules, which are stored in a buffer. Once the buffer is full, the proxy evaluates the pairs and selects the superior molecule.
Finally, the generative model is fine-tuned using preference optimization techniques to favor winning molecules and disfavor losing ones.

3.2. Stage 2: Training the Proxy model and StitchNet

Rank-based proxy. In the second stage, we obtain the
offline dataset that consists of pre-collected molecules along
with their true molecular objective scores. To facilitate the
process of offline MBO, we require a proxy model capable
of evaluating each molecule effectively. In this work, rather
than training the proxy to approximate the exact objective
scores, we train it to classify which molecule in a given
pair has better objective scores. Specifically, as shown in
Figure 4, we sample pairs of molecules from the offline
dataset. Since we have access to the ground truth objective
scores for each molecule in this dataset, we can establish a
ranking between the molecules in each pair. We then train
our rank-based proxy f̂θ using a pairwise ranking loss:

Lproxy(θ) =
∑

(mw,ml)∈P

[
− log σ

(
f̂θ(mw)− f̂θ(ml)

)]
, (7)

where σ(x) = 1
1+e−x is the sigmoid function, and P is the

set of all valid molecule pairs (mw,ml) within the offline
dataset D, defined as:

P = {(mw,ml) | mw,ml ∈ D, F(mw) > F(ml)} . (8)

StitchNet. While the pre-training stage focused on training
StitchNet to learn chemical grammar and crossover opera-
tion, the focus in this stage is to integrate chemical feedback
into StitchNet. To achieve this, we first sample the original
molecule morig from the offline dataset D. Subsequently,
we use the fragmentation function within the rule-based
crossover operator to decompose this original molecule into
two smaller fragment molecules. StitchNet is then employed
to recombine these fragment molecules into a new stitched

molecule m̄stit. If the molecular similarity (Bender & Glen,
2004) between the original molecule and stitched molecules
is above a certain threshold δ, sim (morig, m̄stit) ≥ δ, we
then train StitchNet Sψ using the following loss function:

Lstitch(ψ) =
∑

morig∈D
Em̄stit∼Sψ

[(
− logSψ(m̄stit)

+ logSref(m̄stit) +R(morig)
)2]

,

(9)

where Sref refers to the pre-trained StitchNet that acts as
a reference model for maintaining chemical validity. The
R(morig) represents the reward score, serving as chemical
feedback derived from the given objective scores of morig.
This loss Lstitch(ψ) guides Sψ to generate m̄stit with desir-
able objective scores, while not deviating too far from Sref.

Since we are addressing the offline MOMO problem, we
cannot query the oracle to directly measure the objective
scores of m̄stit for computing R(m̄stit). Instead, we utilize
the given objective scores of morig as a form of chemical
feedback to approximate the objective scores of m̄stit. This
approximation is reasonable because StitchNet generates
m̄stit by recombining fragment molecules that are derived
directly from morig. Moreover, we ensure that m̄stit is suf-
ficiently similar to morig through the similarity threshold δ.
This allows us to assume that the objective scores of m̄stit are
also similar to the objective scores of morig, as it is widely
acknowledged that structurally similar molecules often ex-
hibit similar properties and biological activities (Barbosa &
Horvath, 2004; Alvesalo et al., 2006). Detailed visualization
of this self-supervised training is presented in Appendix I.
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3.3. Stage 3: Offline Model-based Optimization

In the third stage of our framework, we address the of-
fline MOMO problem by utilizing the trained proxy model
and StitchNet. The main goal of this stage is to train the
generative model to generate novel molecules that poten-
tially surpass the best-known molecule in D. In the con-
text of the MOMO problem, the scalarization approach is
widely adopted, where a weighted sum of multiple objec-
tives is combined into a single scalar objective, expressed
as F (m) =

∑k
i=1 λifi(m). Here, k denotes the number of

objectives, and λi represents the weight assigned to each
objective, reflecting its relative importance or priority. How-
ever, in an offline setting, the exact importance is often
unknown, making it challenging to select proper weights. In
addition, the goal of StitchNet is to combine molecules with
different characteristics to generate novel stitched molecules
that integrate desirable properties from both inputs. Hence,
it is vital to provide StitchNet with diverse molecule pairs.

Priority sampling. To address these challenges, we intro-
duce priority sampling using the Dirichlet distribution. This
sampling approach generates a diverse set of weight config-
urations, allowing StitchNet to work with a wide variety of
molecule pairs, each focusing on a different balance among
multiple objectives. Our choice of the Dirichlet distribution
is due to its capability to sample directly from the simplex,
naturally providing valid weight combinations that are non-
negative and sum to 1. The probability density function of
the Dirichlet distribution can be expressed by:

p(λ1, λ2, . . . , λk | λ ∼ Dir(α1, α2, . . . , αk)), (10)

where Dir(·) refers to the Dirichlet distribution, and α de-
notes the concentration parameters. As illustrated in Figure
4, we use priority sampling λ ∼ Dir(α1, α2, . . . , αk) to
sample molecule pairs from the offline dataset. These sam-
pled molecules are then fed into StitchNet, which outputs a
novel stitched molecule m̄. This newly generated stitched
molecule is subsequently stored in a buffer B and utilized as
a training sample for the fine-tuning training process of the
generative model. Please refer to Appendix J for a detailed
visualization and the rationale behind priority sampling.

Preference optimization (fine-tuning). Once the buffer
B is populated with a pre-defined number of stitched
molecules, we can proceed to fine-tune the generative model.
Specifically, we sample pairs of stitched molecules (m̄i, m̄j)
from B and use our trained rank-based proxy to determine
which molecule in each pair is more favorable such as:

(m̄w, m̄l) =

{
(m̄i, m̄j), if f̂θ(m̄i) > f̂θ(m̄j)

(m̄j , m̄i), otherwise
, (11)

where the winning and losing molecules are denoted as m̄w

and m̄l, respectively. Then, we can update the generative

model Gϕ by increasing the log-likelihood of generating the
winning molecule and decreasing the log-likelihood of the
losing molecule. The loss for the generative model is:

Lgen(ϕ) = −E
[
logGϕ(m̄w)− logGϕ(m̄l)

]
+ β · DKL(Gϕ∥Gref),

(12)

where Gref represents the pre-trained generative model serv-
ing as a reference model. The KL divergence DKL encour-
ages Gϕ not to deviate significantly from Gref, ensuring that
it maintains adherence to chemical validity. After formulat-
ing the initial loss function for the generative model, we can
draw an intriguing parallel to preference optimization for
language models (Rafailov et al., 2023; Tang et al., 2024).
In this analogy, our generative model Gϕ can be thought of
as the language model and the favorable molecule m̄w as
the preferred response. This conceptual alignment allows us
to incorporate various preference optimization techniques
into our optimization process. Inspired by Direct Preference
Optimization (DPO) (Rafailov et al., 2023), we can refor-
mulate the Equation 12 into a DPO-like loss by employing
the Bradley-Terry model (Bradley & Terry, 1952) such as:

Lgen(ϕ)=−E
[
log σ

(
β log

Gϕ(m̄w)

Gref(m̄w)
− β log Gϕ(m̄l)

Gref(m̄l)

)]
.

(13)
This DPO-like loss integrates the separate KL divergence
into a single term by utilizing the sigmoid of log odds ra-
tios, simplifying the optimization process. However, despite
its effectiveness, DPO is known to be prone to overfitting
the preference dataset (Hu et al., 2024a). To address this,
Identity Preference Optimization (IPO) (Azar et al., 2024)
introduces a regularization term that penalizes the model
when its confidence in the preference margin becomes ex-
cessively high. Building upon the concepts of IPO, we can
modify the Equation 13 to adopt an IPO-like loss such as:

Lgen(ϕ) = −E

[(
log

(
Gϕ(m̄w)

Gϕ(m̄l)
· Gref(m̄l)

Gref(m̄w)

)
− 1

2β

)2
]
.

(14)
Using the Equation 14, we fine-tune the generative model,
REINVENT (Olivecrona et al., 2017), which is an RL-based
model widely used for its robust performance across various
molecular optimization tasks. More details of the generative
model’s loss function are in Appendix H, and the pseudo-
code for our MolStitch framework is in Appendix K.

4. Experiments
4.1. Experimental Design and Results

Setup. We conducted two main offline MOMO experiments
to evaluate the effectiveness of our MolStitch framework.
The first experiment focused on the Molecular Property Op-
timization (MPO) task (Gao et al., 2022), while the second
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Table 1. Experimental results on the molecular property optimization task under the full-offline setting, with the best values in bold.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
AugMem 0.489±0.077 0.845±0.148 0.272±0.083 2.118±0.280 0.185±0.043 4.101±0.346
GraphGA 0.367±0.090 1.116±0.189 0.212±0.063 2.482±0.240 0.200±0.070 3.973±0.504
Saturn 0.531±0.087 0.785±0.159 0.293±0.058 1.977±0.280 0.281±0.058 3.339±0.280
GeneticGFN 0.482±0.073 0.869±0.117 0.309±0.087 1.990±0.365 0.237±0.066 3.630±0.453
Grad 0.494±0.058 0.857±0.126 0.205±0.045 2.502±0.231 0.171±0.026 4.176±0.319
COMs 0.479±0.063 0.877±0.109 0.205±0.072 2.496±0.288 0.171±0.062 4.219±0.628
IOM 0.506±0.070 0.807±0.138 0.215±0.060 2.380±0.336 0.195±0.065 4.042±0.529
RoMA 0.492±0.091 0.843±0.177 0.198±0.052 2.537±0.269 0.169±0.071 4.207±0.617
Ensemble Proxy 0.500±0.033 0.835±0.055 0.218±0.039 2.462±0.160 0.213±0.057 3.888±0.529
BIB 0.486±0.070 0.874±0.120 0.203±0.049 2.503±0.245 0.172±0.027 4.080±0.387
BootGen 0.540±0.113 0.741±0.167 0.225±0.067 2.452±0.319 0.201±0.074 4.092±0.560
ICT 0.514±0.049 0.827±0.104 0.213±0.080 2.429±0.385 0.180±0.060 4.197±0.593
Tri-Mentoring 0.510±0.042 0.824±0.079 0.216±0.071 2.458±0.363 0.195±0.057 4.067±0.467
RaM 0.492±0.062 0.851±0.117 0.282±0.057 2.268±0.281 0.249±0.049 3.541±0.412
MolStitch (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

addressed the docking score optimization task (Lee et al.,
2023). In the first experiment, we closely followed prior
studies (Xie et al., 2021b; Shin et al., 2024b) and adopted
four widely used molecular objectives. The objectives in-
clude JNK3 and GSK3β, which evaluate inhibition against
target proteins associated with Alzheimer’s disease, along
with QED and SA, which are drug-likeness and synthesiz-
ability. For the second experiment, we also closely followed
recent work (Guo & Schwaller, 2024b) and targeted the
docking score optimization of five proteins—parp1, fa7,
jak2, braf, and 5ht1b—alongside QED and SA. All exper-
iments were conducted under offline setting and repeated
with 10 different seeds. Further details are in Appendix L.

Competing methods. We compared our framework against
two main categories of methods: molecular optimization
and offline optimization. For molecular optimization, we
included REINVENT (Olivecrona et al., 2017), AugMem
(Guo & Schwaller, 2024a), GraphGA (Jensen, 2019), Saturn
(Guo & Schwaller, 2024b), and GeneticGFN (Kim et al.,
2024a). For offline optimization, we incorporated various
offline MBO methods, including Gradient ascent (Grad)
(Zinkevich, 2003), COMs (Trabucco et al., 2021), IOM
(Qi et al., 2022), RoMA (Yu et al., 2021), Ensemble Proxy
(Trabucco et al., 2022), ICT (Yuan et al., 2023), and Tri-
Mentoring (Chen et al., 2023a). We also included BIB (Chen
et al., 2023b), BootGen (Kim et al., 2023), and RaM (Tan
et al., 2025), which are state-of-the-art models for offline op-
timization in biological sequence design. Note that we used
REINVENT as the backbone generative model for all offline
optimization methods, not only because it is one of the most
robust models for diverse molecular optimization tasks, but
also to ensure fairness, as REINVENT also serves as the
main backbone model in our framework. For instance, the
Grad refers to REINVENT with a vanilla proxy, followed
by a fine-tuning via gradient ascent. Detailed descriptions
of each competing method are presented in Appendix N.

Table 2. Experimental results on the docking score optimization
task under the full-offline setting, with the best values in bold.

Target protein parp1 jak2 braf fa7 5ht1b

Method HV(↑) HV(↑) HV(↑) HV(↑) HV(↑)

REINVENT 0.515 0.477 0.500 0.414 0.509
Saturn 0.528 0.498 0.523 0.431 0.537
GeneticGFN 0.539 0.476 0.508 0.441 0.523
BootGen 0.544 0.496 0.524 0.436 0.545
RaM 0.542 0.488 0.528 0.424 0.525
MolStitch (Ours) 0.560 0.515 0.554 0.451 0.575

Evaluation metrics. The performance of each method was
evaluated using two evaluation metrics: the hypervolume
indicator (HV) (Zitzler et al., 2003) and the R2 indicator
(Brockhoff et al., 2012). The HV quantifies the volume
of the space dominated by a set of solutions on the Pareto
front, where higher values reflect better performance. In
contrast, the R2 assesses the quality of a solution set by mea-
suring the projection onto pre-defined reference points, with
lower values indicating better performance. More detailed
explanations of evaluation metrics are in Appendix O.
Main results. As shown in Table 1, we present the mean
HV and R2 performance along with their standard devia-
tions for the MPO task under the full-offline setting. We
observed that our MolStitch framework consistently demon-
strated superior performance across all scenarios with vary-
ing numbers of molecular objectives. This underscores the
efficacy of our StitchNet in addressing the offline MOMO
problem, as it leverages existing molecules to create novel
stitched molecules, which serve as valuable training sam-
ples for fine-tuning the generative model. Among the com-
peting methods, Saturn and GeneticGFN exhibited strong
performance, both of which are recent methods that employ
genetic algorithms. BootGen and RaM also demonstrated ef-
fectiveness as they are recognized as state-of-the-art offline
MBO methods for biological sequence design. Furthermore,
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Table 3. An ablation study for each component in MolStitch: Rank-
based Proxy (RP), StitchNet (SN), and Priority Sampling (PS).

Ablation study GSK3β+JNK3+QED+SA

RP SN PS HV(↑) R2(↓)

- - - 0.171±0.026 4.176±0.319
- ✔ - 0.193±0.053 4.134±0.502
- ✔ ✔ 0.220±0.054 3.835±0.483
✔ - - 0.251±0.084 3.504±0.634
✔ ✔ - 0.289±0.096 3.317±0.713
✔ ✔ ✔ 0.352±0.080 2.953±0.571

we evaluated the performance of our framework on an addi-
tional protein docking score optimization task. As presented
in Table 2, MolStitch consistently outperformed all com-
peting methods across all five proteins in terms of the HV
performance, highlighting the robustness and effectiveness
of our framework. Full HV and R2 results for docking score
optimization tasks are provided in Appendix C.1 and C.2.

Additional results. Recently, semi-offline optimization,
also known as batch hybrid learning, has gained significant
attention in the field of large language models (Xiong et al.,
2024). Specifically, this semi-offline setting allows for a
limited number of online human feedback cycles and en-
ables the model to be fine-tuned on new data through large
batches. Inspired by this approach, we conducted additional
experiments for the semi-offline setting, starting with an
offline dataset and periodically querying oracle functions to
evaluate molecules in large batches. Due to page limit, the
results are deferred to Appendix C.4, where our MolStitch
framework maintained its superior performance even under
the semi-offline setting. We further investigated the impact
of using different backbone generative models in MolStitch
beyond REINVENT and confirmed its robustness across
various backbone models, as detailed in Appendix C.5.

4.2. Ablation Study

To investigate the impact of each key component in our
framework—Rank-based Proxy (RP), StitchNet (SN), and
Priority Sampling (PS)—we conducted an ablation study.

Effects of rank-based proxy. When RP was ablated and
replaced with a score-based proxy, which is analogous to
the vanilla proxy that directly approximates objective scores,
we observed a noticeable drop in performance. This obser-
vation highlights the efficacy of reformulating the proxy’s
task from score regression to pairwise classification, mak-
ing the task easier and provide reliable feedback. Detailed
investigations of score- and rank-based proxies are provided
in Appendix D. In addition, we extended RP by employing
multiple proxies, with the results presented in Appendix E.

Benefits of StitchNet. The ablation study highlighted the
significant impact of SN in offline optimization process. By
generating novel stitched molecules, SN provides valuable

Table 4. Performance comparison of different data augmentation
techniques in offline multi-objective molecular optimization.

Molecular objectives GSK3β+JNK3+QED+SA

Data augmentation HV(↑) R2(↓)

Baseline (REINVENT) 0.168±0.046 3.969±0.664
+ Stochastic sampling 0.251±0.084 3.504±0.634
+ Crossover operator 0.302±0.072 3.110±0.479
+ StitchNet (Ours) 0.352±0.080 2.953±0.571

training samples for fine-tuning the generative model. Im-
portantly, SN incorporates a crossover mechanism similar
to that in genetic algorithms but with the added capability of
receiving chemical feedback. The efficacy of this crossover
operation was validated in our main results, where genetic
algorithm-based methods like GeneticGFN and Saturn also
demonstrated strong performance. These findings suggest
that incorporating the crossover operation, as SN does, is
beneficial because it naturally promotes diversity by explor-
ing novel combinations derived from existing molecules.
Further investigations of SN can be found in Appendix P.

Benefits of priority sampling. PS played a crucial role
in generating diverse weight configurations, which enabled
SN to operate with a wide variety of molecule pairs. In
the ablation study, PS significantly improved performance
by enabling our framework to effectively navigate com-
plex Pareto fronts and explore a broader range of trade-offs
through diverse weight configurations. Additional insights
into the impact of PS, especially in addressing the reward
hacking problem in offline MOMO, are in Appendix Q.

4.3. Experimental Analysis and Discussion

Data augmentation. In our main results, we observed that
employing StitchNet as a data augmentation approach signif-
icantly enhanced performance in offline MOMO. To inves-
tigate its effectiveness, we compared StitchNet with other
data augmentation techniques. One technique is stochastic
sampling, where new molecules are stochastically drawn
from the generative model’s learned distribution. To put it
simply, this process can be represented in code-level terms
as model.sample(). Another technique is the crossover
operator, used in GeneticGFN and Saturn, which generates
new offspring molecules by combining features from parent
molecules in a rule-based manner. As shown in Table 4,
all data augmentation techniques outperformed the base-
line, underscoring their effectiveness in offline MOMO. The
crossover operator demonstrated better performance than
stochastic sampling due to its ability to combine existing
high-quality molecules to create diverse offspring molecules.
Most importantly, StitchNet achieved the best performance,
demonstrating its effectiveness by leveraging the capability
of a neural network to integrate valuable chemical feedback.
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Figure 5. Visualizations of the 2D and 3D Pareto fronts (a-b), along with diversity analysis for StitchNet presented in (c-d).

Table 5. Performance comparison of various preference optimiza-
tion techniques in offline multi-objective molecular optimization.

Molecular objectives GSK3β+JNK3+QED+SA

Preference optimization HV(↑) R2(↓)

Baseline (REINVENT) 0.168±0.046 3.969±0.664
+ StitchNet & RLHF 0.232±0.071 3.715±0.611
+ StitchNet & DPO 0.327±0.081 3.015±0.493
+ StitchNet & IPO 0.344±0.082 2.955±0.533
+ StitchNet & IPO & RP (Ours) 0.352±0.080 2.953±0.571

Preference optimization. In our MolStitch framework, we
fine-tuned the generative model using a process analogous
to the preference optimization techniques employed in large
language models. To evaluate different preference optimiza-
tion techniques in offline MOMO, we explored alternatives
such as RLHF (Ouyang et al., 2022), where the proxy model
serves as a reward model to generate reward scores that are
directly optimized. Other approaches involved removing
the proxy by allowing the generative model to act as a judge
(model-as-a-judge) to directly classify winning and losing
molecules and update itself using DPO or IPO loss. As illus-
trated in Table 5, our MolStitch consistently outperformed
other techniques by constructing the separate rank-based
proxy (RP) for molecule evaluation and updating the gener-
ative model separately based on this proxy feedback. This
separation has shown to be effective, as supported by recent
studies (Singhal et al., 2024; Liu et al., 2024b), where main-
taining a separate reward-ranking model helps to mitigate
distributional shifts and enhance performance.

Pareto front visualization. To evaluate the impact of Mol-
Stitch on solution quality, we visualized the Pareto front in
both 2D and 3D objective spaces. As depicted in Figure 5 (a-
b), the Pareto front obtained from MolStitch dominated the
baseline without MolStitch, indicating superior performance
across all objectives. Notably, the solutions generated by
MolStitch were concentrated in the upper right region of
the Pareto front, signifying the effectiveness of molecular
stitching process derived from StitchNet in offline MOMO.

Diversity analysis. In offline MOMO, promoting molecular
diversity is crucial for identifying candidates with desirable
properties while avoiding over-exploration of similar struc-
tures. To assess the diversity of augmented molecules gen-
erated by StitchNet in comparison to stochastic sampling,
we visualized their objective score distributions using vi-
olin plots. As shown in Figure 5 (c), StitchNet exhibited
a broader and more varied score distribution, demonstrat-
ing its capacity to provide a diverse range of augmented
molecules for the generative model. We also evaluated the
final molecules produced by the generative model fine-tuned
with StitchNet against those from stochastic sampling, using
diversity metrics that measure the number of unique sub-
structures, specifically Bemis-Murcko (BM) scaffolds and
carbon skeletons (Bemis & Murcko, 1996). As depicted in
Figure 5 (d), the generative model fine-tuned with StitchNet
exhibited greater diversity compared to stochastic sampling
across both BM scaffolds and carbon skeletons. Additional
diversity analysis for StitchNet is available in Appendix F.

Scalarization analysis. In our MolStitch framework, we ini-
tially employed linear scalarization due to its simplicity and
foundational role in multi-objective optimization. However,
we further investigated advanced scalarization techniques
such as Chebyshev scalarization. Unlike linear scalarization,
which combines objectives into a weighted sum, Chebyshev
scalarization aims to minimize the maximum deviation from
an ideal objective values. This characteristic enables it to
better navigate non-convex Pareto fronts (Deb et al., 2016).
To assess its compatibility with MolStitch, we conducted ex-
periments integrating Chebyshev scalarization. As shown in
tables provided in Appendix R, MolStitch with Chebyshev
achieved comparable performance to the linear approach
in the two-objective setting. However, it outperformed the
linear approach in more complex three- and four-objective
settings. We attribute this improvement to the growing com-
plexity and non-convexity of the Pareto front as the number
of objectives increases, where Chebyshev’s emphasis on
balancing extreme trade-offs provides greater robustness.
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5. Related work
5.1. Generative Models for Molecular Discovery

In the past few years, a wide range of generative models has
been proposed for molecular discovery, showing significant
success in exploring chemical space and optimizing molec-
ular properties. These models are commonly grouped into
four main categories: genetic algorithms, sampling-based
methods, reinforcement learning, and probabilistic methods.

Genetic algorithms operate by evolving a population of
candidate molecules through mutation and crossover opera-
tions, guided by a fitness function. Then, high-performing
candidates are selected and propagated to subsequent gener-
ations, with the aim of progressively improving population
quality. A prominent example is GraphGA (Jensen, 2019),
which demonstrates strong performance in navigating chem-
ical space to generate molecules with desirable properties.

Sampling-based methods generate molecules by sampling
from distributions that are biased toward regions of chemi-
cal space likely to yield desirable molecular properties. A
representative example is MARS (Xie et al., 2021a), which
employs Markov Chain Monte Carlo (MCMC) sampling to
explore chemical space and identify high-quality molecules.

Reinforcement learning formulate molecular generation
as a sequential decision-making process, where an agent in-
teracts with a chemical environment to construct molecular
structures through a series of actions. A prominent example
is REINVENT (Olivecrona et al., 2017), which employs an
agent to generate molecules in SMILES format in an autore-
gressive manner. The agent learns to improve its policy over
time by receiving reward feedback based on the desirability
of generated molecules with respect to target properties.

Probabilistic methods also frame molecular generation as a
sequential process, similar to reinforcement learning. How-
ever, they differ in that actions are sampled from a learned
probability distribution rather than a deterministic policy.
A representative example is GFlowNets (Jain et al., 2022),
which aim to generate diverse and high-reward molecules
by sampling from a distribution proportional to their reward.

5.2. Multi-Objective Molecular Optimization (MOMO)

The MOMO problem involves simultaneously optimizing
multiple, often conflicting, molecular objectives. Since a
single solution cannot usually satisfy all objectives, the goal
is to identify a diverse set of Pareto-optimal molecules that
represent trade-offs among objectives. A common approach
is to use scalarization techniques—such as weighted sums
or Chebyshev—to effectively aggregate multiple objectives
into a single objective function. For example, GeneticGFN
(Kim et al., 2024a) employs linear scalarization to manage
multiple objectives and demonstrates strong performance.

5.3. Offline Model-based Optimization (MBO)

The most straightforward implementation of offline MBO
is to use a vanilla proxy to estimate objective scores and ap-
plies gradient ascent to update the generative model directly.
However, this approach often suffers from inaccurate proxy
predictions, which can misguide the optimization process.
To address this issue, various methods have been proposed.

Improving the proxy model. One line of research focuses
on improving the accuracy and robustness of the proxy itself.
For instance, COMs (Trabucco et al., 2021) employ adver-
sarial learning to encourage the proxy to produce conserva-
tive estimates. Similarly, IOM (Qi et al., 2022) introduces
invariant representation learning through domain adaptation
techniques to mitigate the impact of distributional shifts.
Additionally, methods such as ICT (Yuan et al., 2023) and
Tri-Mentoring (Chen et al., 2023a) leverage multiple proxy
models to take advantage of ensemble learning.

Improving optimization algorithms. Another line of re-
search focuses on enhancing the optimization strategies. For
instance, BIB (Chen et al., 2023b) incorporates bidirectional
learning by combining forward and backward mappings to
generate input samples that are likely to yield high-quality
outputs. BootGen (Kim et al., 2023) enhances optimization
through a bootstrapping strategy that iteratively augments
the offline dataset with top-performing synthetic samples.
RaM (Tan et al., 2025) employs learning-to-rank techniques
to guide optimization based on relative rankings, which is
conceptually similar to our rank-based proxy. However, the
novelty of our framework is characterized by its combina-
tion of molecular stitching, rank-based proxy, priority sam-
pling, and preference optimization to tackle offline MOMO.

Extended related work section is provided in Appendix M.

6. Conclusion
In this study, we address two key challenges in real-world
molecular discovery: offline molecular optimization and
multi-objective molecular optimization (MOMO). To tackle
these challenges, we propose the MolStitch framework. For
offline molecular optimization, MolStitch uses StitchNet
to generate novel stitched molecules by combining the de-
sirable properties from two parent molecules in an offline
dataset. These stitched molecules are then evaluated using
a rank-based proxy, which determines the more favorable
molecule in a given pair. Using feedback from this proxy,
the generative model is fine-tuned through preference opti-
mization to enhance its capability to produce high-quality
molecules. For MOMO, we further introduce priority sam-
pling to explore trade-offs among multiple objectives more
effectively. Through extensive experiments, we validate the
efficacy of MolStitch in addressing offline MOMO problem.
Future work and limitations can be found in Appendix T.
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Appendix

A. Online and Offline settings for Molecular Discovery

Figure 6. An illustration of online and offline settings for molecular discovery.

In this section, we delve into the detailed pipeline for online and offline settings in molecular discovery, using the specific
case of in silico drug discovery combined with real-world wet lab experiments as an illustrative example.

Online setting. Traditionally, many in silico drug discovery methods have been based on the assumptions of the online
setting (Jiménez-Luna et al., 2021). As depicted in Figure 6 (a), the online setting begins in the computational or ‘dry’ lab,
where a generative model produces potential drug candidates that are predicted to be potent. Researchers then select the top
K drug candidates or apply specific filters to choose which drug candidates to advance. These selected drugs are sent to the
wet lab, where they undergo physical biological experiments to validate their efficacy. Note that these wet lab experiments
serve as a true oracle function, which provides accurate assessments of drug potency and properties based on real-world
testing. Once the wet lab experiments are complete, the results—true score assessments—are sent back to the dry lab as
chemical feedback. This feedback is then used to update the generative model, enabling it to produce more desirable and
potential drug candidates in the next iteration. This iterative process continues until successful drug candidates are identified
or predefined criteria, such as reaching a certain optimization score, are met.

Why offline setting? The main advantage of the online setting is its ability to continuously refine the generative model
using feedback from the true oracle function. However, this feedback relies on real-world wet lab experiments, which
are typically time-consuming and costly. Therefore, querying the true oracle function for every drug candidate is often
impractical, and safety concerns can further limit its use (Loiodice et al., 2019; Yusuf, 2023). Even if we assume these
challenges are mitigated and resources are available to query the true oracle function as needed, there still remains the
challenge of a significant time mismatch between the dry lab and the wet lab. The dry lab can generate new drug candidates
within hours, but the wet lab evaluation—including chemical synthesis, purification, and biological testing—can take weeks
or even months (Payton et al., 2023). This significant lag means that while the wet lab is engaged in lengthy experiments, in
silico generative models in dry lab remain idle, leading to inefficiencies and underutilization of computational resources.
To address these limitations, the offline setting has gained considerable attention in recent years (Xue et al., 2024). In the
offline setting, the generative model can be trained using existing offline datasets without relying on continuous feedback
from wet lab experiments. This would allow generative models to be continually improved while awaiting wet lab results,
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enabling the generation of higher-quality candidate molecules for subsequent experimental rounds.

Offline setting. One of the most prevalent and widely adopted approaches for handling the offline setting is offline
model-based optimization (MBO). As illustrated in Figure 6 (b), the process begins by training a proxy model on the given
offline dataset. This proxy model serves as a surrogate for evaluating drug candidates, as access to the true oracle function
is not available in the offline setting. Once the proxy model is trained, the offline MBO process is initiated to enable the
training of the generative model without relying on real-world wet lab feedback. Specifically, the generative model produces
new drug candidates, which are evaluated by the proxy model instead of being sent to the wet lab. The proxy model provides
estimated proxy scores for these candidates, and these pairs of drug candidates and their proxy scores are stored in a buffer
to create an augmented dataset. This augmented dataset is then utilized to update the generative model via gradient ascent,
leveraging the proxy model’s predictions. This iterative cycle continues until predefined criteria are met.

Our Framework: MolStitch. After introducing the online and offline settings in molecular discovery, we now highlight
how our proposed framework, MolStitch, differentiates itself from conventional offline MBO methods for tackling the offline
multi-objective molecular optimization (MOMO) problem. First, instead of using a generative model to produce augmented
molecules, MolStitch employs StitchNet to generate novel stitched molecules. In molecular discovery, promoting molecular
diversity is crucial because structurally diverse molecules capable of producing similar biological effects help mitigate
the development of resistance and improve the overall efficacy of treatments. As discussed in the main manuscript and
Appendix F, we validated that StitchNet exhibits better molecular diversity compared to conventional augmentation derived
from generative models. This is because StitchNet naturally promotes diversity by exploring novel combinations derived
from existing parent molecules. Second, conventional offline MBO methods utilize a score-based proxy to approximate
the true oracle function by regressing objective scores of molecules. However, accurately approximating these scores is
challenging due to scarce data and the inherent difficulty of molecular property prediction tasks—a challenge that is even
more pronounced in the MOMO problem. In MolStitch, we develop a rank-based proxy that learns the ranking relationship
between pairs of molecules based on desired properties, classifying which molecule is more favorable. This transformation
simplifies the task for the proxy, enabling it to provide more reliable feedback by focusing on comparative assessments
rather than exact score predictions. Lastly, because we use a rank-based proxy, we cannot fine-tune the generative model,
REINVENT, using conventional ways that require reward scores for updates (e.g., a score-based proxy could directly regress
the objective score and use it as a pseudo-reward). To address this, we introduce preference optimization techniques to
fine-tune and update the generative model. Specifically, instead of using pseudo-reward scores, the preference optimization
technique enables the model to increase the log-likelihood of generating the preferred (winning) molecule while decreasing
the log-likelihood of generating the less preferred (losing) molecule. As shown in Table 5 of our manuscript, experimental
results demonstrate that this preference optimization is effective and significantly improves performance. In summary,
MolStitch differentiates itself from conventional offline MBO methods by promoting molecular diversity through the use of
StitchNet, simplifying proxy modeling via a rank-based approach, and incorporating preference optimization techniques to
fine-tune the generative model without relying on approximating objective scores. These novel components collectively
contribute to a more efficient and effective approach for tackling the offline MOMO problem.

B. Experimental Workflow for Offline Multi-Objective Molecular Optimization (MOMO)
Overall workflow. In this subsection, we aim to conduct an in-depth exploration and comparison of key components in
offline MOMO. Specifically, our goal is to outline the critical components that should be considered for solving the offline
MOMO problem, discuss the available options for each component, and explain the rationale behind our choices. Figure 7
provides a visual representation of the overall workflow for addressing the offline MOMO problem. The primary objective of
offline MOMO is to enhance the generative model’s capability to generate molecules that surpass the best-known molecules
in the offline dataset. To achieve this, the predominant approach is offline MBO, which involves training a proxy model,
performing data augmentation, generating synthetic data, and subsequently training the generative model with this synthetic
data under the guidance of the proxy model. Consequently, data augmentation is a pivotal aspect of the offline MOMO
problem, and we begin our discussion with this component.

Data augmentation. As highlighted in the main manuscript, we propose StitchNet as a neural network model designed for
data augmentation, and demonstrate its effectiveness. However, we acknowledge that StitchNet is not the only viable option.
Alternative approaches include stochastic sampling, where new molecules are randomly drawn from the generative model’s
learned distribution. Additionally, rule-based crossover operators from genetic algorithms can be employed to generate new
offspring molecules by combining features from parent molecules.
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Figure 7. An illustration of the overall workflow for the offline molecular optimization process.

Proxy training and evaluation. After augmenting the synthetic data, the next step involves training a proxy model to
evaluate this augmented dataset. The most straightforward approach is the score-based proxy (vanilla proxy), which directly
approximates the scores of the true objective function. However, we anticipate that as the problem complexity increases,
the vanilla proxy may encounter challenges and yield unreliable predictions. To mitigate this, we propose a rank-based
proxy that learns the ranking relationships between pairs of molecules based on desired properties, thereby classifying
which molecule is more favorable. This transformation from a regression task to a classification task simplifies the proxy’s
role, enhancing its reliability in providing feedback to the generative model. It is worth noting that a proxy model is not
always necessary; in some cases, the generative model itself can evaluate new synthetic data, a mechanism referred to as the
"model-as-a-judge".

Generative model selection. Several generative models are available for molecular optimization. In this work, we employ
REINVENT as our main generative model due to its widespread use and recognition in various molecular optimization
tasks. Nonetheless, recent advancements have introduced new generative models such as Mamba and GFlowNets. To ensure
the robustness and versatility of our MolStitch, we also evaluate various backbone generative models within this framework.

Fine-tuning the generative model. With synthetic data, a trained proxy model, and a trained generative model in place, the
final step involves fine-tuning the generative model using the synthetic data guided by the proxy model. This fine-tuning
process can be considered analogous to the preference optimization process used in large language models. Therefore, we
explore various preference optimization techniques within the context of offline MOMO. The first option is RLHF, where
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the proxy model serves as a reward model to generate rewards that are directly optimized. Another option is DPO, which
bypasses reward modeling and focuses on optimizing preferences directly. Lastly, IPO can be applied as an extension of
DPO, providing a more theoretically sound and principled approach to preference optimization.

Overview of MolStitch components. Table 6 presents a detailed summary of the components constituting the MolStitch
framework, including its variants and the methods examined in our ablation studies. We hope that this table helps to
understand the function of each component in our framework and facilitates a clearer understanding of the structure of
MolStitch and its variants.

Table 6. Summary of our MolStitch framework components, its variants, and the methods utilized in our ablation studies.

Experiment
Data

Augmentation
Proxy

Training
Generative

Model
Proxy

Evaluation
Fine-tuning

MolStitch
(Table 1)

StitchNet Rank-based
proxy REINVENT

Rank-based
classification

IPO

Score-based proxy
(Table 3)

Stochastic
sampling

Score-based
proxy REINVENT

Score-based
regression

RLHF

Stochastic sampling
(Table 4)

Stochastic
sampling

Rank-based
proxy REINVENT

Rank-based
classification

IPO

Crossover operator
(Table 4)

Crossover
operator

Rank-based
proxy REINVENT

Rank-based
classification

IPO

StitchNet & RLHF
(Table 5)

StitchNet Rank-based
proxy REINVENT

Score-based
regression

RLHF

StitchNet & DPO
(Table 5)

StitchNet No proxy REINVENT
Generative

model-as-a-judge
DPO

StitchNet & IPO
(Table 5)

StitchNet No proxy REINVENT
Generative

model-as-a-judge
IPO

Mamba + MolStitch
(Table 12)

StitchNet Rank-based
proxy Mamba

Rank-based
classification

IPO

GFlowNets + MolStitch
(Table 12)

StitchNet Rank-based
proxy GFlowNets

Rank-based
classification

IPO
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C. Additional Results
C.1. Full HV Performance Results for the Docking Score Optimization Task

Results for HV performance. In our main results, we only presented performance evaluations using the Hypervolume
(HV) indicator for a select group of strong competing methods. Specifically, we highlighted Saturn and GeneticGFN, both
of which demonstrated strong performance and represent recent advancements employing genetic algorithms, as well as
BootGen and RaM, recognized as state-of-the-art offline MBO methods for biological sequence design. Due to space
constraints, our primary results focused on these prominent methods. However, in this subsection, we provide the full results
for the docking score optimization task, offering a comprehensive comparison across various competing methods.

Table 7. Experimental results on docking score optimization tasks under the full-offline setting using the HV indicator.
Target protein parp1 jak2 braf fa7 5ht1b

Method HV(↑) HV(↑) HV(↑) HV(↑) HV(↑)

REINVENT 0.515±0.016 0.477±0.009 0.500±0.008 0.414±0.006 0.509±0.011
AugMem 0.532±0.039 0.499±0.053 0.511±0.008 0.430±0.038 0.521±0.014
Saturn 0.528±0.009 0.498±0.030 0.523±0.046 0.431±0.034 0.537±0.033
GeneticGFN 0.539±0.033 0.476±0.008 0.508±0.005 0.441±0.054 0.523±0.011
Grad 0.513±0.007 0.481±0.014 0.510±0.007 0.445±0.053 0.525±0.033
COMs 0.510±0.010 0.478±0.014 0.505±0.022 0.411±0.007 0.509±0.008
IOM 0.520±0.009 0.474±0.008 0.500±0.013 0.411±0.005 0.519±0.042
RoMA 0.512±0.010 0.470±0.009 0.512±0.032 0.429±0.053 0.512±0.013
Ensemble Proxy 0.517±0.008 0.479±0.010 0.501±0.010 0.414±0.006 0.507±0.008
BIB 0.514±0.010 0.476±0.007 0.497±0.006 0.414±0.006 0.505±0.009
BootGen 0.544±0.032 0.496±0.007 0.524±0.007 0.436±0.030 0.545±0.063
ICT 0.516±0.005 0.476±0.006 0.504±0.021 0.410±0.005 0.506±0.010
Tri-Mentoring 0.529±0.038 0.482±0.017 0.511±0.019 0.416±0.008 0.513±0.009
RaM 0.542±0.028 0.488±0.007 0.528±0.034 0.424±0.008 0.525±0.013
MolStitch (Ours) 0.560±0.037 0.515±0.041 0.554±0.042 0.451±0.061 0.575±0.051

C.2. R2 Performance Results for the Docking Score Optimization Task

Results for R2 performance. We present additional R2 performance results for the docking score optimization task in
Table 8. Consistent with the findings in Table 7, our MolStitch framework demonstrated superior performance by achieving
the lowest R2 indicator score compared to all competing methods.

Table 8. Experimental results on docking score optimization tasks under the full-offline setting using the R2 indicator.
Target protein parp1 jak2 braf fa7 5ht1b

Method R2(↓) R2(↓) R2(↓) R2(↓) R2(↓)

REINVENT 1.426±0.090 1.589±0.042 1.497±0.044 1.791±0.033 1.454±0.054
AugMem 1.374±0.163 1.523±0.159 1.471±0.044 1.729±0.220 1.421±0.064
Saturn 1.376±0.053 1.501±0.155 1.420±0.176 1.726±0.201 1.350±0.139
GeneticGFN 1.326±0.148 1.589±0.039 1.484±0.025 1.701±0.228 1.410±0.057
Grad 1.422±0.032 1.555±0.079 1.461±0.036 1.750±0.184 1.401±0.134
COMs 1.448±0.041 1.568±0.089 1.467±0.109 1.816±0.031 1.459±0.045
IOM 1.402±0.041 1.597±0.045 1.488±0.070 1.806±0.034 1.421±0.160
RoMA 1.431±0.053 1.604±0.044 1.434±0.153 1.738±0.241 1.449±0.058
Ensemble Proxy 1.415±0.035 1.568±0.062 1.491±0.036 1.800±0.028 1.470±0.038
BIB 1.425±0.045 1.573±0.029 1.500±0.034 1.801±0.028 1.478±0.043
BootGen 1.320±0.136 1.521±0.037 1.420±0.030 1.712±0.142 1.336±0.184
ICT 1.428±0.024 1.591±0.029 1.473±0.100 1.810±0.028 1.472±0.045
Tri-Mentoring 1.373±0.155 1.553±0.083 1.428±0.098 1.793±0.033 1.443±0.045
RaM 1.323±0.112 1.546±0.036 1.397±0.158 1.778±0.037 1.401±0.047
MolStitch (Ours) 1.276±0.153 1.445±0.177 1.312±0.174 1.674±0.261 1.231±0.165
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C.3. Evaluating Molecular Optimization Methods Using Average Property Score of Top 10 and Top 100 Molecules

Results for APS performance. In our main results, we presented performance using the Hypervolume (HV) and R2
indicator metrics, which are widely regarded as the most appropriate evaluation metrics for multi-objective optimization
tasks. However, within the molecular discovery community, the average property score (APS) is another commonly used
metric, specifically tailored for assessing molecular optimization methods. To provide a more comprehensive assessment,
we conducted additional experiments to report APS for various molecular optimization methods. The methods we evaluated
include GraphGA (Jensen, 2019), which generates molecules by using rule-based crossover operations to combine features
from parent molecules; MolGPT (Bagal et al., 2021), which is suitable for offline settings as it does not require oracle
calls during molecule generation; DST (Fu et al., 2022), which leverages a proxy model to facilitate precise functional
group editing; and REINVENT (Olivecrona et al., 2017), our backbone generative model, known for its robust performance
in molecular optimization tasks. Additionally, we also considered AugMem (Guo & Schwaller, 2024a), a leading model
in the PMO benchmark, Saturn (Guo & Schwaller, 2024b), which enhances sample efficiency in molecular design, and
GeneticGFN (Kim et al., 2024a), which integrates GFlowNets with genetic algorithms to achieve state-of-the-art performance
across various molecular optimization tasks. In this experiment, we calculated the APS of the top 10 and top 100 molecules
generated by each method and reported the mean APS. As shown in Table 9, our MolStitch framework consistently
outperformed all competing methods, even when evaluated with the molecule-specific metric. This result demonstrates the
robustness and superiority of MolStitch across diverse evaluation criteria.

Table 9. Experimental results on molecular property optimization tasks under the full-offline setting using the average property score.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method top10 (↑) top100 (↑) top10 (↑) top100 (↑) top10 (↑) top100 (↑)

REINVENT 0.515±0.076 0.312±0.036 0.464±0.018 0.383±0.005 0.564±0.018 0.491±0.003
AugMem 0.558±0.066 0.374±0.036 0.515±0.041 0.407±0.010 0.579±0.015 0.505±0.005
MolGPT 0.335±0.027 0.199±0.005 0.461±0.027 0.380±0.005 0.548±0.014 0.485±0.002
GraphGA 0.466±0.079 0.313±0.058 0.512±0.048 0.415±0.012 0.593±0.038 0.507±0.010
DST 0.456±0.058 0.315±0.037 0.531±0.059 0.451±0.039 0.601±0.027 0.539±0.029
Saturn 0.559±0.074 0.358±0.037 0.546±0.032 0.443±0.041 0.608±0.043 0.513±0.041
GeneticGFN 0.540±0.077 0.379±0.078 0.548±0.058 0.451±0.051 0.599±0.027 0.524±0.029
MolStitch (Ours) 0.627±0.056 0.432±0.039 0.591±0.040 0.468±0.016 0.671±0.041 0.564±0.024

C.4. Semi-Offline Optimization

Definition of semi-offline optimization. Semi-offline optimization, also referred to as batch hybrid learning (Xiong et al.,
2024), is an optimization approach that bridges the gap between offline and online optimization. In this semi-offline setting,
models are trained on a combination of pre-existing offline datasets and periodically collected new data, enabling periodic
updates without the need for continuous or real-time oracle queries. Unlike the full-offline setting, where the model is
trained exclusively on a static offline dataset, the semi-offline setting allows for the periodic incorporation of new data
in large batches, facilitating a more dynamic learning process. This semi-offline optimization is particularly useful in
scenarios where obtaining new data in real-time is either too costly or logistically challenging, yet some level of interaction
or adaptation to new data is beneficial.

Semi-offline optimization in LLMs. Semi-offline optimization has gained considerable attention in the field of large
language models (LLMs). Several studies (Bai et al., 2022; Touvron et al., 2023) have implemented a strategy of iteratively
applying the RLHF process on a weekly cadence. This involves periodically deploying updated RLHF models to interact
with users or crowdworkers to collect new preference data. The models are then fine-tuned with this feedback on a regular
schedule. Recently, (Xiong et al., 2024) further extended this approach by formulating it as a batch hybrid framework,
establishing a more general setting for the hybrid learning process.

Experimental setup for semi-offline optimization. Motivated by these practical applications, we conducted additional
experiments on MPO tasks under the semi-offline setting. We began by constructing an initial offline dataset using 5,000
oracle calls. In contrast to the full-offline setting, where all remaining 5,000 oracle calls were used for evaluation, the
semi-offline setting employed a different allocation strategy. Specifically, we allocated 2,500 oracle calls for the periodic
integration of new molecular data in large batches. This allocation enabled the generative model to iteratively update and
adapt based on the newly acquired data. The remaining 2,500 oracle calls were reserved for the final evaluation.
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Table 10. Experimental results on molecular property optimization tasks for the semi-offline setting, with the best values in bold.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.581±0.057 0.694±0.109 0.208±0.065 2.372±0.300 0.175±0.064 4.053±0.747
AugMem 0.636±0.063 0.602±0.113 0.348±0.075 1.888±0.237 0.292±0.087 3.225±0.650
GraphGA 0.521±0.084 0.819±0.136 0.392±0.102 1.623±0.277 0.265±0.080 3.493±0.537
Saturn 0.623±0.049 0.621±0.086 0.428±0.040 1.581±0.160 0.382±0.088 2.686±0.510
GeneticGFN 0.642±0.065 0.592±0.107 0.414±0.123 1.660±0.425 0.361±0.086 2.879±0.569
Grad 0.584±0.075 0.708±0.136 0.216±0.086 2.458±0.371 0.180±0.037 4.109±0.455
COMs 0.571±0.058 0.717±0.105 0.219±0.073 2.505±0.351 0.186±0.046 3.956±0.505
IOM 0.603±0.061 0.647±0.081 0.221±0.077 2.349±0.395 0.205±0.065 3.899±0.621
RoMA 0.588±0.067 0.680±0.109 0.215±0.070 2.414±0.258 0.180±0.036 4.105±0.414
Ensemble Proxy 0.602±0.084 0.648±0.146 0.227±0.071 2.435±0.332 0.216±0.069 3.730±0.573
BIB 0.563±0.066 0.713±0.122 0.215±0.078 2.440±0.388 0.189±0.070 4.062±0.735
BootGen 0.608±0.057 0.646±0.098 0.233±0.093 2.399±0.462 0.219±0.090 3.924±0.651
ICT 0.601±0.078 0.662±0.143 0.216±0.089 2.455±0.389 0.185±0.048 4.094±0.454
Tri-Mentoring 0.592±0.078 0.678±0.144 0.219±0.054 2.467±0.241 0.206±0.073 3.966±0.603
MolStitch (Ours) 0.689±0.041 0.514±0.073 0.539±0.045 1.238±0.157 0.493±0.050 2.014±0.202

Table 11. Performance of various preference optimization techniques for the semi-offline setting.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Baseline (REINVENT) 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ StitchNet & RLHF 0.675±0.059 0.526±0.091 0.448±0.066 1.540±0.221 0.383±0.082 2.647±0.463
+ StitchNet & DPO 0.685±0.047 0.520±0.083 0.507±0.078 1.342±0.221 0.447±0.060 2.320±0.331
+ StitchNet & IPO 0.681±0.042 0.521±0.069 0.527±0.055 1.256±0.133 0.462±0.055 2.187±0.299
+ StitchNet & IPO & RP (Ours) 0.689±0.041 0.514±0.073 0.539±0.045 1.238±0.157 0.493±0.050 2.014±0.202

Results for semi-offline optimization. As illustrated in Table 10, our MolStitch framework consistently outperformed all
competing methods under the semi-offline setting. Notably, we observed a general improvement in performance compared
to the full-offline setting, as shown in Table 1 of the main manuscript. This finding highlights the benefits of incorporating
periodic new data, as it enables the generative model to be fine-tuned and trained on newly acquired samples, thereby
further enhancing its optimization capabilities. Consistent with the trends observed in the full-offline setting, Saturn and
GeneticGFN maintained strong performance among competing methods, highlighting the effectiveness of genetic algorithms
in offline MOMO. Their success could be attributed to the inherent strengths of genetic algorithms in maintaining population
diversity and effectively exploring the Pareto front through crossover operations. This finding aligns with our framework,
which employs a mechanism analogous to crossover, but with the added advantage of incorporating chemical feedback.
Additionally, we conducted experiments for preference optimization techniques under the semi-offline setting, as depicted in
Table 11. The trends observed were similar to those in the full-offline setting, our MolStitch consistently achieved the highest
performance among all competing methods. While RLHF performed well on the two-objective scenario, its performance
declined significantly as the number of objectives increased. Both DPO and IPO demonstrated strong performance, with
IPO showing a slight edge over DPO.
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C.5. Evaluating Mamba and GFlowNets as Additional Backbone Models

Various backbone models. In this work, we chose REINVENT as our backbone generative model due to its widespread
use and reputation as one of the top-performing models for various molecular optimization tasks. However, as previously
mentioned, Saturn and GeneticGFN demonstrated strong performance in numerous offline MOMO experiments. Since these
methods utilized Mamba and GFlowNets as their respective backbone models, we conducted additional experiments using
Mamba and GFlowNets as the backbone generative model for our MolStitch framework.

Results for backbone models. As illustrated in Table 12, we report the performance of each backbone generative
model—REINVENT, Mamba, and GFlowNets—on MPO tasks under the full-offline setting, alongside the performance of
integrating either our rank-based proxy or MolStitch framework with each backbone model (e.g., REINVENT + MolStitch).
Similarly, Table 13 presents the performance of the backbone generative models and their respective integrations with
MolStitch under the semi-offline setting. As shown in Table 12, both the rank-based proxy and the MolStitch framework
provide performance improvements across various generative models. However, the integration with the rank-based proxy
still falls short compared to the full MolStitch framework, emphasizing the additional benefits brought by StitchNet and
priority sampling. Notably, Mamba + MolStitch and GFlowNets + MolStitch outperformed REINVENT + MolStitch in
both three-objective and four-objective scenarios. This superior performance could be attributed to the greater capacity of
Mamba and GFlowNets to manage the increased complexity associated with optimizing multiple objectives beyond two.
Overall, the consistent performance improvements across different backbone generative models under both full-offline
and semi-offline settings demonstrate the robustness and versatility of our MolStitch. Moreover, these additional results
highlight the MolStitch’s ability to seamlessly integrate with a range of backbone models, demonstrating its adaptability and
robustness beyond a single model architecture.

Table 12. Performance comparison of different generative models on molecular property optimization tasks under the full-offline setting.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ Rank-based Proxy 0.545±0.063 0.773±0.120 0.319±0.059 1.928±0.314 0.251±0.084 3.504±0.634
+ MolStitch (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

Mamba 0.531±0.087 0.785±0.159 0.293±0.058 1.977±0.280 0.281±0.058 3.339±0.280
+ Rank-based Proxy 0.538±0.068 0.758±0.105 0.327±0.100 1.946±0.404 0.281±0.072 3.317±0.486
+ MolStitch (Ours) 0.544±0.071 0.761±0.128 0.407±0.077 1.617±0.199 0.361±0.063 2.893±0.424

GFlowNets 0.482±0.073 0.869±0.117 0.309±0.087 1.990±0.365 0.237±0.066 3.630±0.453
+ Rank-based Proxy 0.522±0.040 0.805±0.085 0.364±0.070 1.809±0.305 0.323±0.054 2.953±0.304
+ MolStitch (Ours) 0.525±0.063 0.770±0.111 0.415±0.087 1.685±0.343 0.366±0.088 2.708±0.652

Table 13. Performance comparison of different generative models on molecular property optimization tasks under the semi-offline setting.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.581±0.057 0.694±0.109 0.208±0.065 2.372±0.300 0.175±0.064 4.053±0.747
+ MolStitch (Ours) 0.689±0.041 0.514±0.073 0.539±0.045 1.238±0.157 0.493±0.050 2.014±0.202

Mamba 0.623±0.049 0.621±0.086 0.428±0.040 1.581±0.160 0.382±0.088 2.686±0.510
+ MolStitch (Ours) 0.653±0.046 0.580±0.090 0.485±0.054 1.430±0.196 0.434±0.044 2.385±0.176

GFlowNets 0.642±0.065 0.592±0.107 0.414±0.123 1.660±0.425 0.361±0.086 2.879±0.569
+ MolStitch (Ours) 0.658±0.068 0.563±0.108 0.579±0.041 1.137±0.130 0.482±0.076 2.181±0.438
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C.6. Comprehensive Ablation Study for the Molecular Property Optimization (MPO) Task

Comprehensive Ablation Study Results. In the main manuscript, we presented ablation study results focusing only on the
four-objective (GSK3β+JNK3+QED+SA) scenario due to space constraints. Here, we provide a complete ablation study,
including two- and three-objective scenarios, for a thorough evaluation. As shown in Table 14, the results clearly illustrate
the effectiveness of our framework’s key components: rank-based proxy (RP), StitchNet (SN), and priority sampling (PS).
The comprehensive results consistently show improvements across all objective scenarios, underscoring the critical role of
each component in driving superior performance for the offline MOMO problem.

Table 14. An ablation study for key components in our framework: Rank-based Proxy (RP), StitchNet (SN), and Priority Sampling (PS).
Ablation GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

RP SN PS HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

- - - 0.494±0.058 0.857±0.126 0.205±0.045 2.502±0.231 0.171±0.026 4.176±0.319
- ✔ - 0.513±0.073 0.780±0.106 0.269±0.081 2.183±0.318 0.193±0.053 4.134±0.502
- ✔ ✔ 0.505±0.049 0.824±0.084 0.277±0.083 2.195±0.357 0.220±0.054 3.835±0.483
✔ - - 0.545±0.063 0.773±0.120 0.319±0.059 1.928±0.314 0.251±0.084 3.504±0.634
✔ ✔ - 0.573±0.078 0.688±0.138 0.337±0.068 1.967±0.311 0.289±0.096 3.317±0.713
✔ ✔ ✔ 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

C.7. Comprehensive Results for Performance Comparison of Data Augmentation Techniques in Offline MOMO

Comprehensive Evaluation of Data Augmentation Techniques. In the main manuscript, we focused exclusively on the
four-objective scenario (GSK3β+JNK3+QED+SA) due to space limitations. Here, we extend the analysis to include two-
and three-objective scenarios, offering a broader perspective on the performance of various data augmentation techniques. As
summarized in Table 15, the findings clearly establish StitchNet as the most effective technique, consistently outperforming
alternative approaches and demonstrating its ability to enhance performance across all objective scenarios in the offline
MOMO problem.

Table 15. Performance comparison of different data augmentation techniques in offline MOMO.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Augmentation HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Baseline (REINVENT) 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ Stochastic sampling 0.545±0.063 0.773±0.120 0.319±0.059 1.928±0.314 0.251±0.084 3.504±0.634
+ Crossover operator 0.540±0.088 0.790±0.181 0.367±0.062 1.793±0.245 0.302±0.072 3.110±0.479
+ StitchNet (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

C.8. Comprehensive Results for Various Preference Optimization Techniques in Offline MOMO

Expanded Evaluation of Preference Optimization Techniques. The main manuscript presented results for the four-
objective scenario (GSK3β+JNK3+QED+SA) to maintain a concise focus. In this section, we broaden the scope to include
evaluations for two- and three-objective scenarios, offering a more comprehensive assessment of preference optimization
methods. As depicted in Table 16, our proposed approach (constructing the separate rank-based proxy (RP) and updating the
model separately based on the proxy feedback) demonstrates a clear advantage, consistently outperforming other preference
optimization techniques. These results underline its effectiveness and reliability across varying objective scenarios within
the offline MOMO problem.

Table 16. Performance comparison of various preference optimization techniques in offline MOMO.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Baseline (REINVENT) 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ StitchNet & RLHF 0.561±0.055 0.742±0.098 0.303±0.087 2.012±0.318 0.232±0.071 3.715±0.611
+ StitchNet & DPO 0.557±0.094 0.747±0.174 0.363±0.069 1.843±0.271 0.327±0.081 3.015±0.493
+ StitchNet & IPO 0.552±0.056 0.746±0.106 0.385±0.062 1.755±0.232 0.344±0.082 2.955±0.533
+ StitchNet & IPO & RP (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571
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D. Detailed Analysis of Rank-based Proxy
In this section, we provide an in-depth analysis of both rank-based and score-based proxies. Our study suggests that the
formulation of rank-based proxy simplifies the proxy’s task, thereby enabling it to deliver more reliable feedback to the
generative model. To further explore this, we delve deeper into the performance of each proxy type, examining whether the
rank-based proxy truly surpasses the score-based proxy in handling complex multi-objective molecular optimization tasks.

Proxy models. In the context of utilizing proxy models, they offer distinct advantages, but they also present notable
challenges. Specifically, Grad is built upon REINVENT and incorporates a vanilla score-based proxy that directly
approximates objective scores. As shown in Table 1 of our main manuscript, while Grad outperforms the baseline
REINVENT, its performance gains gradually diminish as the number of objectives increases from two to four. This suggests
that with the rise in the number of objectives, the problem complexity increases, causing the vanilla proxy to struggle to
accurately approximate the objective scores. In contrast, our framework demonstrates particularly strong performance in the
three and four objective scenarios, which highlights the effectiveness of reformulating the proxy model’s task from direct
property score regression to pairwise classification.

(a) GSK3β+JNK3
(2 objectives)

(b) GSK3β+JNK3+QED
(3 objectives)

(c) GSK3β+JNK3+QED+SA
(4 objectives)

Figure 8. Distribution comparison of true objective scores (red) and score-based proxy model predictions (blue) for stitched molecules
across varying numbers of objectives. As the number of objectives increases, the score-based proxy model’s predictions show less
variability and exhibit a sharper central peak, failing to accurately represent the true score distribution.

Score-based proxy. As shown in Figure 8, we visualize the distribution of the true scores for the stitched molecules
alongside the predicted scores from the score-based proxy model. Compared to the distribution of true objective scores, the
predictions made by the score-based proxy model are significantly more confined to a narrow range. This issue becomes
more pronounced as the number of objectives increases, with the score-based proxy model’s predictions showing even
less variability and a stronger central peak, failing to represent the true score distribution accurately. Therefore, this result
indicates that the score-based proxy model fails to provide meaningful feedback to the generative model, potentially leading
to suboptimal optimization. To address these limitations, we propose a rank-based proxy model that learns the relative
ranking between pairs of molecules based on desired properties, determining which molecule is more favorable. This
approach bypasses the direct approximation of true objective scores and instead focuses on ranking relationships, providing
more reliable feedback signals for the generative model.

(a) GSK3β+JNK3
(2 objectives)

(b) GSK3β+JNK3+QED
(3 objectives)

(c) GSK3β+JNK3+QED+SA
(4 objectives)

Figure 9. Accuracy comparison of score-based and rank-based proxy models in predicting the ranking of randomly selected molecule
pairs across varying numbers of objectives: (a) 2 objectives, (b) 3 objectives, and (c) 4 objectives.

Rank-based proxy. To demonstrate the effectiveness of the rank-based proxy, we compare the performance of score-based
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and rank-based proxy models in predicting the rank of randomly selected pairs of molecules. As illustrated in Figure 9,
the rank-based model consistently outperforms the score-based model across all scenarios with varying objectives. This
performance gap widens as the number of objectives increases, with the rank-based model maintaining relatively high
accuracy even with four objectives, while the score-based model’s accuracy drops significantly. These findings validate the
superiority of the rank-based proxy over the score-based proxy in effectively addressing the complexities of offline MOMO.

E. Additional Experiments on Multiple Proxies

Figure 10. An illustration of the impact of employing multiple proxies with priority sampling in our framework. The evaluation metric is
the mean hypervolume across all numbers of objectives for the MPO task under the full-offline setting. The results demonstrate that the
optimal configuration for our framework is four proxies, achieving the best performance before a decline due to redundancy.

Motivation for multiple proxies. In this section, we provide a detailed process and analysis of employing multiple proxy
models within our framework. The motivation for experimenting with multiple proxies arises from observations in both
offline MBO and LLM research. In offline MBO, methods employing multiple proxies—such as Ensemble Proxy, ICT,
and Tri-Mentoring—generally outperform single proxy methods like Grad. This finding aligns with a recent study in large
language models (LLMs) (Chakraborty et al., 2024), which highlights the drawbacks of using a single reward model to
represent human preferences. Researchers note that human preferences are inherently diverse, and a single model often
fails to reflect this variability, leading to biased or suboptimal outcomes. To address this, they propose using multiple
reward models to capture a broader spectrum of preference distributions, thereby enhancing alignment with diverse human
judgments.

Setup for multiple proxies. Inspired by these insights, we enhance our proxy model by incorporating ensemble learning
through the use of multiple proxies. In the context of LLMs, preferences reflect human sentiments, opinions, or judgments
about desirable outputs. In molecular optimization, however, preference represents the relative importance or priority of each
objective within the optimization process. To effectively capture this diversity of priorities, we employ priority sampling for
each proxy model, allowing them to prioritize objectives differently according to their assigned importance. Specifically,
each proxy receives weight configurations sampled from a Dirichlet distribution, enabling it to focus more on certain
objectives than others. As a result, each proxy can determine which molecule in a given pair is superior from its unique
perspective. These individual assessments are then combined using a majority voting strategy, providing a comprehensive
evaluation of molecules from multiple viewpoints to determine the overall superior molecule.

Results for multiple proxies. As demonstrated in Figure 10, the performance of our framework increases with the number
of proxies, peaking at four before gradually declining thereafter. The observed decline in performance beyond four proxies
can be attributed to the balance between ensemble diversity and redundancy. For an ensemble to be effective, the individual
proxy models should be diverse, each providing unique insights into molecule evaluation. While adding proxy models up
to a certain point enhances performance by capturing a wider range of priorities, adding too many proxies can introduce
redundancy. Beyond the optimal number, additional proxies may become similar to existing ones, offering little new
information and potentially amplifying common errors. In addition, with a large number of proxies, majority voting can

26



Offline Model-based Optimization for Real-World Molecular Discovery

overlook minority opinions, reducing ensemble diversity and neglecting smaller yet significant priorities. Lastly, note that
all configuration settings—whether employing a single proxy or multiple proxies—outperform all competing methods,
underscoring the effectiveness of our framework.

Analysis for multiple proxies. One might question how majority voting works with an even number of proxies, as it could
lead to a tie. In such cases where the proxies are evenly split in their assessments (e.g., two proxies favor a molecule while
two do not), we interpret this as an indication of uncertainty or difficulty in evaluating the molecule. Rather than making a
hasty decision that could misguide the optimization process, we choose to pass and skip these uncertain molecules. This
approach ensures that only molecules with a higher degree of consensus among the proxies influence the optimization,
enhancing the reliability of the feedback signals. The results also validate that employing four proxies surpasses the
performance of using three proxies. In the four-proxy setup, a molecule must receive at least three favorable votes to be
considered superior, raising the confidence threshold compared to the two-out-of-three votes required in the three-proxy
setup. The stricter criterion in the four-proxy setup leads to more reliable and accurate feedback, contributing to improved
optimization performance.

F. Additional Analysis on Molecular Diversity of StitchNet
Additional diversity metrics. In the manuscript, we compared the diversity achieved by StitchNet with that of its data
augmentation counterpart, stochastic sampling. We found that StitchNet exhibits greater diversity, which we attribute to its
crossover-like mechanism that enables the generation of considerably more diverse molecules than stochastic sampling. To
further investigate the diversity achieved by StitchNet, we propose the use of additional diversity metrics to provide a more
comprehensive analysis from multiple perspectives. To quantify the diversity of the augmented molecules, we employed the
inverse of the Tanimoto similarity (Bender & Glen, 2004). Specifically, we calculated the maximum Tanimoto similarity
for each augmented molecule with respect to all other augmented molecules, then averaged these values and subtracted
the result from 1, which we term the ‘Within augmented’ diversity metric. In addition, we computed the maximum
Tanimoto similarity between each augmented molecule and the molecules in the offline dataset, similarly subtracting this
value from 1 to derive the ‘Against offline dataset’ diversity metric.

(a) Score distribution (b) Score distribution (c) Diversity comparison

Figure 11. Diversity analysis of augmented molecules generated by StitchNet and its data augmentation counterpart, stochastic sampling.
The results demonstrate the superior capability of StitchNet in generating a diverse and novel set of augmented molecules.

Additional diversity results. The results in Figure 11 (a-b) demonstrate that StitchNet produces a much broader and more
varied score distribution compared to stochastic sampling. This broader distribution highlights the StitchNet’s capability to
generate augmented molecules with higher diversity, thereby enriching the fine-tuning process for the generative model.
Moreover, the additional diversity metrics further emphasize the advantages of StitchNet over stochastic sampling. As
shown in Figure 11 (c), StitchNet consistently achieves higher values in both the Within augmented and Against
offline dataset diversity metrics. This indicates that augmented molecules generated by StitchNet not only show
greater diversity among themselves but also display more novelty in comparison to the molecules present in the offline dataset.
Additionally, we evaluated the final molecules produced by the generative model fine-tuned with StitchNet against those
fine-tuned with stochastic sampling, as shown in Figure 12. The generative model fine-tuned with StitchNet outperforms its
counterpart in every aspect: (a) score distribution of final molecules, (b) diversity metrics for both Within augmented
and Against offline dataset, and (c) diversity based on Bemis-Murcko (BM) scaffolds and Carbon Skeletons
(CS) (Bemis & Murcko, 1996).

BM scaffolds & Carbon Skeletons. BM scaffolds are an essential tool for breaking down organic molecules to identify
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(a) Score distribution (b) Diversity comparison (c) Substructure comparison

Figure 12. Diversity analysis of final molecules produced by the generative model fine-tuned with StitchNet and with stochastic sampling.
The results demonstrate that the generative model fine-tuned with StitchNet consistently achieves higher diversity and performance across
all diversity metrics.

their core chemical substructures. As shown in Figure 13 (a), BM scaffolds simplify molecules by removing side chains
while preserving the core substructures—such as ring systems and connecting linkers—representing the molecular backbone.
This approach allows for a more effective quantitative assessment of structural diversity by comparing the backbones of
different molecules. Another method for assessing structural diversity is through CS, which describe various configurations
of carbon atoms, including straightline, branching, and ring, as depicted in 13 (b). In particular, straightline skeletons consist
of carbon atoms connected in a linear arrangement, while branching skeletons contain side chains that extend from the
main carbon chain that potentially affects the molecule’s reactivity and interactions with biological targets. Ring skeletons
are closed loops of carbon atoms, commonly found in biologically active compounds. Both BM scaffolds and CS serve
as complementary methods for simplifying and categorizing molecular structures to better understand their properties
and interactions. While BM scaffolds focus on the core substructures by removing side chains and functional groups, CS
emphasizes the basic carbon framework of a given molecule. By incorporating both approaches in our analysis, we believe
we can conduct a more comprehensive evaluation of structural diversity across the generated molecules.

(a) Bemis-Murcko (BM) scaffolds (b) Carbon Skeletons (CS)

Figure 13. Visual representations of (a) the Bemis-Murcko scaffolds and (b) the Carbon Skeletons.
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G. Pre-Training Process for the Generative Model (REINVENT)

Figure 14. (a) The generative model produces molecules in SMILES format using an auto-regressive approach. (b) During the pre-training
stage, molecules from the ZINC dataset are used as ground truth labels. The generative model is then updated through maximum likelihood
approach to maximize the probability of the correct next molecular token (component) given the preceding sequence.

In this section, we present an illustration of the molecule generation process and describe the pre-training process for the
generative model. As depicted in Figure 14 (a), which exemplifies the generation of a benzene molecule, the generative
model produces molecules in an auto-regressive manner, similar to how language models generate sentences sequentially.
Specifically, the generative model produces molecules in SMILES format, where each token corresponds to an atom or bond.
The generation process begins with an initial token, and the model predicts the subsequent token based on the previously
generated sequence, continuing this process until the complete molecule is formed.

Moving on to the pre-training process for the generative model, we employ an approach analogous to the next-token
prediction loss used in language model training, as shown in Figure 14 (b). Specifically, the model is trained using the
maximum likelihood approach, where molecules sampled from the ZINC dataset serve as ground truth labels. The objective
of this pre-training process is to maximize the likelihood of accurately predicting the next molecular token (component)
based on the preceding sequence. The cross-entropy loss is employed to measure the difference between the predicted
probability distribution and the true distribution of the next token, guiding the model to learn the correct sequence of
molecular components and generate chemically valid molecules.

Building upon the pre-training of our generative model using the ZINC dataset, we now detail the specific generative model
employed in our framework. As mentioned in the main manuscript, REINVENT was selected as our main generative
model due to its widespread adoption and proven effectiveness in various molecular optimization tasks. In REINVENT, the
molecule optimization process is formulated as a Markov decision process, utilizing the RL algorithm to generate molecules
based on a given scoring (reward) function. The training architecture of REINVENT comprises two distinct policy models:
the prior model and the agent model. The prior model, denoted as Gref, is a pre-trained reference model that encodes
chemical grammar to ensure the chemical validity of the generated molecules, as depicted in Figure 14 (b). The agent model
Gϕ is initialized from the prior model and serves as the main policy that aims to maximize the reward score associated with
the desired molecular properties, while not deviating too far from the prior model. The training objective for the agent model
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can be defined as:

Lagent(ϕ) = Em∼D

[
(− logGϕ(m) + logGref(m) +R(m))

2
]
,

where R(m) represents the reward score for molecule m within the offline dataset D. Note that this work addresses the
offline MOMO problem, where the offline dataset comprises pairs of molecules and their corresponding property (objective)
scores. Therefore, these property scores can be used as reward scores for training the agent model. To sum up, this loss
function Lagent(ϕ) guides Gϕ(m) to maximize the reward R(m) while aligning with Gref(m). For a detailed derivation
and background of this REINVENT loss function, please refer to prior studies (Olivecrona et al., 2017; Guo & Schwaller,
2024a). After completing the initial training phase on the offline dataset, the agent model is fine-tuned to further enhance its
performance beyond the constraints of the offline dataset. This fine-tuning process involves optimizing the agent model with
stitched molecules using preference optimization techniques, as described in Equation 14 of the main manuscript.

H. Preference Optimization Techniques for the Generative Model
H.1. From Initial Loss Formulation to DPO-like Loss Formulation

As mentioned in Subsection 3.3, the initial loss formulation for the generative model is as follows:

Lgen(ϕ) = −E(m̄w,m̄l)∼B [logGϕ(m̄w)− logGϕ(m̄l)] + β · DKL(Gϕ∥Gref).

This loss equation consists of two key components: the first term represents the difference in log-likelihoods between
generating the winning molecule Gϕ(m̄w) and the losing molecule Gϕ(m̄l), while the second part introduces a KL
divergence between the current generative model Gϕ and the reference model Gref. Following (Tang et al., 2024), the KL
divergence term can be defined as:

DKL(Gϕ∥Gref) := E(m̄)∼B

[
log

Gϕ(m̄)

Gref(m̄)

]
.

Since we are focusing on a pairwise comparison between winning and losing molecules, (m̄w, m̄l), it is possible to apply
the KL divergence to each component and simply the loss function as follows:

Lgen(ϕ) := −E(m̄w,m̄l)∼B

[
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

)]
.

At this point, we can leverage the notion of the Bradley-Terry model that the log odds of one item winning over another (in
our case, mw over ml) can also be written as:

log
Gϕ(m̄w)

Gϕ(m̄l)
,

and this log-odds can be converted into a probability using the sigmoid function σ(·), defined as:

σ(x) =
1

1 + e−x
.

To incorporate the probabilistic nature of the comparison, we can now apply the sigmoid function to a combination of the
two log-odds from Gϕ and Gref as follows:

σ

[
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

)]
.

Finally, the initial formulation can be re-organized into the following compact DPO-like form:

Lgen-dpo(ϕ) = −E(m̄w,m̄l)∼B

[
log σ

(
β log

Gϕ(m̄w)

Gref(m̄w)
− β log Gϕ(m̄l)

Gref(m̄l)

)]
.
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H.2. IPO-like Loss Formulation

Building on the methodology presented in (Tang et al., 2024), we can represent the DPO-like loss formulation in a more
generalized form as follows:

Lgen-dpo(ϕ) = −E(m̄w,m̄l)∼B

[
F
(
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

))]
,

where F is a scalar function F : R→ R that map input values to scalar outputs. In the case of DPO, F is typically chosen
to be the log-sigmoid function. However, DPO can encounter difficulties when preferences are deterministic. For example,
if the probability of mw defeating ml is exactly 1, indicating deterministic preference, the difference between them becomes
unbounded and approaches toward infinity such as follows:(

Gϕ(m̄w)

Gref(m̄w)
≫ Gϕ(m̄l)

Gref(m̄l)

)
=⇒

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

)
→ +∞.

Assuming that β is a positive real number, the term inside the log-sigmoid function becomes infinite, leading to:

log σ

(
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

))
→ log σ(+∞).

Since σ(+∞) = 1, it follows that:
log σ(+∞) = log(1) = 0.

Therefore, when preferences are deterministic, the loss function converges to 0 for any value of β. In other words, the
regularization term β becomes irrelevant and does not play any role in such cases.

To address these challenges, IPO introduces a stronger regularization term that penalizes models for exhibiting excessive
confidence in preference margins. Specifically, IPO replaces the log-sigmoid function used in DPO with a squared loss
function (Tang et al., 2024). The quadratic nature of the squared loss penalizes large deviations more heavily, discouraging
the model from generating extreme outputs (Rosasco et al., 2004). In deterministic preference cases, the squared loss
establishes the boundary to prevent the loss function from converging to 0 for any value of β (Azar et al., 2024).

Recall that we can express the IPO-like loss formulation as follows:

Lgen-ipo(ϕ) = −E(m̄w,m̄l)∼B

[(
log

(
Gϕ(m̄w)

Gϕ(m̄l)
· Gref(m̄l)

Gref(m̄w)

)
− 1

2β

)2
]
.

As shown, the squared loss function is implemented and β is explicitly positioned outside the logarithm term. Let us examine
the behavior of this IPO-like loss for different values of β. In the case of β →∞, the term 1

2β → 0, simplifying the loss
function to:

Lgen-ipo(ϕ) = −E

[(
log

(
Gϕ(m̄w)

Gϕ(m̄l)
· Gref(m̄l)

Gref(m̄w)

))2
]
.

To minimize this loss, the following conditions should ideally be met:

Gϕ(m̄w)

Gϕ(m̄l)
≈ Gref(m̄w)

Gref(m̄l)
.

Thus, as β →∞, our current model Gϕ converges to the reference model Gref. In contrast, as β → 0, the term 1
2β →∞

begins to dominate the loss function, causing the IPO-like loss to converge toward the DPO-like formulation. This suggests
that the IPO-like loss exhibits distinct behavior depending on the value of β, even in deterministic preference scenarios. In
contrast, the DPO-like loss renders β irrelevant in such scenarios, meaning the loss remains unaffected by changes in β.
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I. Self-Supervised Training Process for StitchNet

Figure 15. An illustration of the self-supervised training process for StitchNet. An original molecule is sampled from the offline dataset
and decomposed into two fragment molecules using a fragmentation function. These pairs of fragment molecules are then fed into
StitchNet to generate new stitched molecules. The molecular similarity between the stitched molecule and the original molecule is
measured, and if it exceeds a pre-defined threshold, the true objective score of the original molecule is leveraged as a chemical feedback.

In this section, we provide a detailed explanation of the self-supervised training process for StitchNet, which is a key
differentiating factor from traditional rule-based crossover operators. The importance of this process lies in its ability to
leverage chemical feedback, allowing StitchNet to better understand how stitched molecules are likely to exhibit objective
scores when two molecules are combined. Unlike rule-based crossover operators, StitchNet is built using a neural network
architecture that enables it to learn from such chemical feedback.

As shown in Figure 15, we begin by sampling an original molecule from the offline dataset, each with corresponding known
objective scores. We then apply a fragmentation function within the crossover operator (Jensen, 2019) to decompose the
original molecule into two smaller fragment molecules. There are multiple possible pairings of these fragment molecules,
and we consider all viable pairs as inputs to StitchNet. Subsequently, StitchNet takes these pairs of fragment molecules and
generates corresponding offspring stitched molecules. We then measure the molecular similarity between each stitched
molecule and the original molecule. If the similarity exceeds a certain threshold (e.g., 0.9), we consider the stitched molecule
sufficiently similar to the original molecule. This high similarity allows us to leverage the known objective scores of
the original molecule as an approximation for the stitched molecule’s objective scores, effectively providing chemical
feedback to StitchNet. We use this feedback to train StitchNet with the loss function specified in Equation 9. We think
that this approach is reasonable based on two key assumptions. First, since the fragment molecules are derived from the
original molecule, the stitched molecule is expected to share similar characteristics. Second, because structurally similar
molecules often exhibit similar properties (Barbosa & Horvath, 2004; Alvesalo et al., 2006; Maggiora et al., 2014), we
assume that the stitched molecule will likely exhibit objective scores comparable to the original molecule. By ensuring that
the stitched molecule is sufficiently similar to the original, we can reasonably use the original molecule’s objective scores as
an approximation for the stitched molecule’s scores.

The rationale for this self-supervised training process arises from the inherent nature of the offline MOMO problem. In an
online setting, it would be possible to sample two molecules from the offline dataset, input them into StitchNet, generate a
stitched molecule, and then query an oracle to obtain its true objective scores for chemical feedback. However, in an offline
setting, additional oracle queries are not possible. Therefore, rather than simply using two random molecules from the
offline dataset, we decompose a single molecule into two fragment molecules, which are then input into StitchNet. Since the
true objective scores of the stitched molecules cannot be obtained due to the unavailability of additional oracle queries, we
instead leverage the objective scores of the original molecule as a form of chemical feedback. This allows us to approximate
the likely performance of the stitched molecule, which in turn can guide StitchNet in learning how to generate stitched
molecules with desirable objective scores during the molecular stitching process.
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J. Priority Sampling Process for StitchNet

Figure 16. An illustration of the priority sampling process for StitchNet. The figure demonstrates how different weight configurations
λ are sampled from the Dirichlet distribution Dir(α), guiding the selection of molecular pairs from the offline dataset. For instance,
λ1 focuses more on property 1, while λ2 emphasizes property 2, resulting in the selection of molecules A and B, respectively. These
molecules are then fed into StitchNet, which generates a novel stitched molecule with the aim of combining the desirable properties
of both parent molecules. This priority sampling promotes diversity and balance in the stitched molecules, enhancing the convergence
towards the Pareto front.

In this section, we visualize the priority sampling process and explain why it is beneficial for the molecular stitching
process in StitchNet. Consider a scenario where we are optimizing two molecular properties: property 1 and property
2, as shown in Figure 16. Our goal is to sample a diverse set of molecular pairs from the offline dataset; for instance,
one molecule (Molecule A) exhibits characteristics more aligned with property 1, and the other molecule (Molecule B)
emphasizes property 2. This diversity is crucial because StitchNet seeks to combine these molecules to create a novel
stitched molecule that inherits the desirable properties of each parent molecule. If we sample pairs of molecules that have
similar characteristics or properties, the benefit of the molecular stitching process diminishes due to the lack of diversity.
To address this, we propose using priority sampling with a Dirichlet distribution to automatically generate diverse weight
configurations, denoted as λ. Different weight configurations indicate varying levels of importance or priority for each
property, allowing us to sample molecules from the offline dataset using different perspectives or priorities.

As depicted in Figure 16, λ1 represents a weight configuration that focuses more on property 1, while λ2 emphasizes
property 2. It is important to note that these weight configurations are sampled from the Dirichlet distribution Dir(α). Based
on these configurations, corresponding molecules are sampled from the offline dataset and fed into StitchNet as molecule
A and molecule B. StitchNet then generates a novel stitched molecule with the aim of possessing both favorable property
1 and property 2. In terms of the Pareto front, sampling molecules based on λ1 corresponds to selecting molecules near
the y-axis (emphasizing property 1), whereas λ2 corresponds to molecules near the x-axis (emphasizing property 2). By
performing molecular stitching via StitchNet, we aim to generate molecules that balance both properties, thereby improving
convergence towards the Pareto front. Please note that weight configurations for focusing on property 1 and property 2 is
merely an example for better understanding. In practice, we can sample diverse molecular pairs using priority sampling, as
the Dirichlet distribution allows us to automatically generate diverse combinations of weight configurations.

K. Pseudo-Code
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Algorithm 1 StitchNet
Input: StitchNet Sψ, Unlabelled dataset Du, Offline dataset D, Crossover operation Crossover, Dirichlet distribution Dir,

Concentration constant α, Fragmentation function Cut, Similarity threshold δ, Similarity function sim
Output: Generated stitched molecules m̄

▷ Pre-training for StitchNet
Sample parent molecules from unlabelled chemical dataset; mi ∼ Du and mj ∼ Du
Generate offspring molecule with crossover operation; mo ← Crossover(mi,mj)
Train StitchNet Sψ to resemble crossover operation; ψ ← argmaxψ P(mo | Sψ(mi,mj))
Set pretrained StitchNet as a reference model; Sref ← Sψ

▷ Self-supervised training for StitchNet
Sample objective preference; λ ∼ Dir(α)

Sample molecule and its score from offline dataset with preference; (ms, rs)
λ∼ D

Cut ms into all possible Z fragment molecule sets; {(mai,mbi)}Zi=1 ← Cut(ms)
Find the most similar offspring and its fragment set with original molecule ms;
(ma,mb)← argmax

(mai,mbi)

sim(ms,Crossover(mai,mbi)) subject to sim(·) ≥ δ

Provide chemical feedback to StitchNet while maintaining the chemical validity;
Lstitch(ψ)← (− logSψ(m̄stit) + logSref(m̄stit) +R(morig))

2 · · · eq.9;

▷ Molecular Stitching
Sample two objective priorities; λ1 ∼ Dir(α) and λ2 ∼ Dir(α)

Sample parent molecules of different objective priorities; m1
λ1∼ D and m2

λ2∼ D
Generate a novel stitched molecule using fine-tuned StitchNet; m̄ ∼ Sψ(m1,m2)
Return m̄

Algorithm 2 MolStitch

Input: Pretrained Generator Gref Pretrained StitchNet Sref, Offline dataset D, Proxy model f̂θ, Dirichlet distribution Dir,
Concentration constant α,

Output: Final molecules for evaluations mfinal

Initialize Generative model; Gϕ ← Gref
Initialize StitchNet; Sψ ← Sref
Update Generative model Gϕ with offline dataset D;
Train proxy model f̂θ with pairwise ranking loss in eq.7;
Sample objective preference; λ ∼ Dir(α)
Finetuning StitchNet Sψ with preference λ ;
Sample objective preferences; λ1, λ2 ∼ Dir(α)
Sample stitched molecule m̄ by molecular stitching; m̄ ∼ Sψ(m1,m2)

Determine winning and losing molecules using proxy model f̂θ by eq.11; (mw,ml)← f̂θ(m̄)
Fine-tuning Generative model with IPO-like loss in eq.14;
Sample final molecules for evaluations; mfinal ∼ Gϕ
Return mfinal
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L. Experimental Details
In this section, we provide a comprehensive overview of our experimental setup, covering (1) experimental settings and
configurations, (2) a detailed description of the molecular objectives used in our study, and (3) an in-depth discussion of
hyperparameters and implementation details.

L.1. Experimental Settings and Configurations

Oracle calls. In this work, we conducted two main experiments: 1) Molecular Property Optimization (MPO) task (Gao et al.,
2022) and 2) docking score optimization task (Lee et al., 2023). Recall that both experiments were designed to simulate real-
world constraints by restricting the number of oracle calls, which represent expensive evaluations of molecular properties.
For the MPO task, the total number of oracle calls was limited to 10,000 (Gao et al., 2022). Following this guideline, we
allocated 5,000 calls to construct the offline dataset and reserved the remaining 5,000 for evaluation. Specifically, we used
the initial 5,000 oracle calls to build the offline dataset, which served as the training data for developing and fine-tuning
the generative model during the offline optimization process. After completing offline optimization, the performance of
the fine-tuned generative model was evaluated using the remaining 5,000 oracle calls on the molecules it newly generated.
For the docking score optimization task, the total number of oracle calls was restricted to 3,000 (Lee et al., 2023). This
lower allocation might be due to the longer time required for evaluating docking scores. Similar to the MPO task in concept,
we allocated 1,500 oracle calls to construct the offline dataset and the remaining 1,500 to evaluate the performance of the
fine-tuned generative model.

Offline dataset collection. To construct the offline datasets for both experiments, we utilized the ZINC dataset (Sterling
& Irwin, 2015), which is a publicly available chemical database that provides a collection of commercially available
compounds. The ZINC dataset offers a wide variety of molecular structures, providing a large chemical space to explore for
potential drug candidates. Its compounds are also available in formats suitable for molecular docking, making it a good
resource for identifying potential compounds that may bind to biological targets. Therefore, we considered the ZINC dataset
to be well-suited for both the MPO task and the docking score optimization task. It is worth noting that we also used the
ZINC dataset during the pre-training stage; however, at that stage, we only utilized the molecular structures without any
associated objective scores or additional information. When aiming to optimize specific molecular objectives, we needed
to query the oracle to obtain the objective scores of molecules within the ZINC dataset. For the MPO task, we randomly
sampled 5,000 molecules from the ZINC dataset and executed 5,000 oracle calls to evaluate their corresponding molecular
objective scores, such as JNK3, GSK3β, QED, and SA. We collected this data in the form of (molecule, objective

scores) pairs. Similarly, for the docking score optimization task, we randomly sampled 1,500 molecules from the ZINC
dataset and performed 1,500 oracle calls to evaluate their corresponding docking scores for five proteins alongside QED and
SA. These constructed offline datasets were subsequently used for offline optimization in our proposed framework as well as
across all competing methods to ensure a fair comparison.

L.2. Descriptions of the Molecular Objectives

In this work, we adopted four commonly used molecular objectives—JNK3, GSK3β, QED, and SA—for the MPO task.
For the docking score optimization task, we targeted the docking scores of five proteins—parp1, fa7, jak2, braf, and
5ht1b—alongside QED and SA. The docking scores were calculated following the experimental protocol of prior work (Guo
& Schwaller, 2024b), using the normalized QuickVina2 docking score (Alhossary et al., 2015). Specifically, the normalized
docking score (DS) is calculated using the given equation:

Normalized DS = −DS
20
,

where DS represents the original docking score. Detailed descriptions of each molecular objective and protein are provided
below.

JNK3. JNK3 is a member of the c-Jun N-terminal kinases (JNKs) family, which belongs to the mitogen-activated protein
kinase (MAPK) pathway and is primarily expressed in the central nervous system (Bogoyevitch & Kobe, 2006). It plays a
crucial role in mediating cellular responses to stress, including apoptosis, inflammation, and neuronal damage (Bogoyevitch
& Kobe, 2006). Targeting JNK3 inhibition is one of the key molecular objectives in drug discovery because it may prevent
or reduce neuronal cell death and inflammation, making it a promising therapeutic target for neurodegenerative diseases
such as Alzheimer’s disease (Resnick & Fennell, 2004).
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GSK3β. Glycogen synthase kinase 3 beta (GSK3β) is a serine/threonine protein kinase involved in various cellular
processes, including glycogen metabolism, cell proliferation, differentiation, and apoptosis (Beurel et al., 2015). It has
gained significant attention in neurodegenerative disease research due to its role in regulating tau protein phosphorylation,
amyloid precursor protein processing, and neuronal survival (Jope et al., 2007). Inhibiting GSK3β is considered a vital
molecular objective in drug discovery, as it could modulate these pathological processes and potentially slow or prevent the
progression of neurodegenerative diseases (Jope et al., 2007).

QED. Quantitative Estimate of Drug-likeness (QED) is a metric widely used in molecular optimization to evaluate the
drug-likeness of a molecule (Bickerton et al., 2012). It consists of several physicochemical properties, including molecular
weight, lipophilicity (logP), topological polar surface area (TPSA), the number of hydrogen bond donors and acceptors, and
the count of aromatic rings and rotatable bonds (Guan et al., 2019). It provides a score ranging from 0 to 1, with higher
scores indicating molecules that are more likely to have favorable drug-like properties.

SA. Synthetic Accessibility (SA) is a metric used in molecular optimization to assess the ease with which a molecule can
be synthesized in a laboratory setting (Ertl & Schuffenhauer, 2009). It considers various structural features that influence
synthesis complexity, such as the presence of complex ring systems, functional groups, stereocenters, and the overall size
and branching of the molecule (Ertl & Schuffenhauer, 2009). The SA score ranges from 1 to 10, with lower scores indicating
higher synthetic feasibility. In this work, we transform the SA score into the normalized SA score, following prior studies
(Lee et al., 2023; Guo & Schwaller, 2024b), to formulate it as a maximization objective. Specifically, the normalized SA
score is given by the following equation:

Normalized SA =
10− SA

9
.

This adjustment ensures that higher normalized SA scores correspond to molecules that are easier to synthesize, within the
score range of 0 to 1.

parp1. Poly (ADP-ribose) polymerase 1 (parp1) is a protein enzyme that plays a crucial role in DNA damage detection and
repair (Rouleau et al., 2010). It is involved in various cellular processes, including chromatin remodeling, transcriptional
regulation, and cell death signaling (Ray Chaudhuri & Nussenzweig, 2017). In recent years, dysregulation of parp1 activity
has been linked to several neurodegenerative diseases, such as Parkinson’s disease, where excessive activation of parp1 can
lead to neuronal death through a process known as parthanatos (Liu et al., 2022). Consequently, targeting parp1 has become
a key molecular objective in drug discovery, not only for cancer treatment but also for developing neurotherapeutics aimed
at preventing neuronal loss (Zhang et al., 2023).

fa7. Coagulation factor VII (fa7), also known as proconvertin, is a vital protein in the blood coagulation pathway (Hall et al.,
1964). It plays a crucial role in initiating the clotting process by activating factor X in the presence of tissue factor (TF),
leading to the conversion of prothrombin to thrombin and ultimately forming a blood clot (Eigenbrot, 2002). Targeting
fa7 represents another key molecular objective in drug discovery, particularly for managing thrombotic and cardiovascular
diseases. Specifically, inhibitors of fa7 are being explored as potential anticoagulants to prevent and treat conditions such as
deep vein thrombosis, embolism, and stroke (Robinson et al., 2010).

jak2. Janus kinase 2 (jak2) is a non-receptor tyrosine kinase that plays a critical role in the signaling pathways of various
cytokines (Yamaoka et al., 2004). It is involved in various cellular processes, including cell growth, differentiation, and
immune function (Seavey & Dobrzanski, 2012). In drug discovery, jak2 has gained attention due to its association with
myeloproliferative neoplasms and other hematological malignancies (Senkevitch & Durum, 2017). Inhibiting jak2 is
considered a key molecular objective, as it can potentially provide therapeutic benefits in inflammatory and autoimmune
disorders (Seavey & Dobrzanski, 2012).

braf. B-Raf proto-oncogene (braf) encodes a serine/threonine kinase that is part of the MAPK/ERK signaling pathway,
which plays a crucial role in regulating cell growth and migration during various cellular processes (González-González
et al., 2020). Mutations in the braf gene are commonly found in various cancers, including melanoma, colorectal cancer, and
thyroid cancer (Atiqur Rahman et al., 2014). Therefore, targeting the braf can be a critical therapeutic objective in oncology
to target these cancer-specific mutations and halt the progression of the disease (Sanz-Garcia et al., 2017).

5ht1b. 5-Hydroxytryptamine receptor 1B (5ht1b) is a G protein-coupled receptor that binds serotonin (Launay et al., 2002).
It is widely expressed in the central nervous system and plays important roles in regulating neurotransmitter release, neuronal
firing, mood, and appetite (Fink & Göthert, 2007). 5ht1b has emerged as an important molecular target in drug discovery for
neurological and psychiatric disorders, particularly in the treatment of migraine and depression (Giniatullin, 2022).
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L.3. Hyperparameters and Implementation Details

Implementation of the generative model. We closely followed the architecture settings for REINVENT as described in the
PMO benchmark (Gao et al., 2022), while the settings for GFlowNets were based on GeneticGFN (Kim et al., 2024a), and
those for Mamba were taken from Saturn (Guo & Schwaller, 2024b). Since all of these generative models were originally
designed for an online setting, we made necessary adjustments to the number of molecule updates and the experience replay
to adapt them for our offline settings. The final hyperparameters for the generative models were primarily determined based
on the performance of REINVENT, which served as our backbone generative model, and are detailed in Table 17.

Stabilizing GFlowNets. During the training of GFlowNets, we encountered instability with the original setting of the
logZ parameter, which plays a crucial role in trajectory balancing and needs to be adjusted according to specific settings
(Malkin et al., 2022). To be more specific, it was initially set to a high value (logZ = 5.0) with a learning rate of 0.1, as
specified in GeneticGFN. To stabilize the training process, we reduced the logZ value to 0.001 and aligned the learning
rate with that of the generative model (from 0.1 to 0.0005). This adjustment resulted in more stable training and significantly
improved performance. Additionally, during preference optimization, while both REINVENT and Mamba require only the
generative model’s likelihood as input, we recommend using the sum of likelihood and logZ for GFlowNets in order to
further improve performance.

Hyperparameters for StitchNet. Recall that StitchNet combines two parent molecules as input and generates stitched
molecules in an auto-regressive manner. Therefore, it operates by computing the hidden dimensions h1 and h2 of two parent
molecules m1 and m2, respectively, and then averaging these hidden dimensions as h1+h2

2 . StitchNet is built upon the
REINVENT architecture. During the self-supervised training process for StitchNet, we applied a similarity threshold δ = 0.8
between the original molecules and the stitched molecules. During the molecular stitching process, StitchNet combines
two parent molecules, each sampled with different weight configurations through priority sampling. The resulting stitched
molecules are stored in a buffer. Once the buffer is full, two molecules are randomly sampled to create non-overlapping pairs.
These pairs are then evaluated by the proxy model to identify the winning and losing molecules. Subsequently, the IPO-like
loss is applied to increase the likelihood of generating winning molecules while reducing the likelihood of generating losing
molecules. The hyperparameter settings for StitchNet are summarized in Table 18.

Table 17. The hyperparameter settings for generative models in MolStitch framework.
REINVENT GFlowNets Mamba

Batch size 200 Batch size 200 Batch size 200
Embedding dimension 128 Embedding dimension 128 Embedding dimension 256
Hidden dimension 512 Hidden dimension 512 Hidden dimension 256
Number of layers 3 Number of layers 3 Number of layers 12
Sigma 500 Sigma 500 Sigma 500
Experience replay size 300 Experience replay size 300 Experience replay size 300
Augmentation round 8 Augmentation round 8 Augmentation round 8
Batch update 2 Batch update 2 Batch update 2
Learning rate 5e-04 Learning rate 5e-04 Learning rate 5e-04

logZ 0.001

Table 18. The hyperparameter settings for StitchNet.
Molecular stitching

α for priority sampling 1.0
Number of stitch rounds 16
Stitched molecules per stitch round 250
Population pool 1000
Temperature β for IPO 0.2
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M. Extended Related Work
M.1. Generative Models for Molecular Discovery

The rapid advancement of generative models has profoundly impacted various fields, including computer vision (Croitoru
et al., 2023), natural language processing (Chang et al., 2024), and audio signal processing (Deshmukh et al., 2023). This
progress has extended to molecular discovery (Anstine & Isayev, 2023; Son et al., 2024) and drug discovery (Jiménez-Luna
et al., 2021; Shin et al., 2025b), where generative models have proven effective in designing and optimizing molecules
towards promising regions of the chemical space. Various types of generative models have been proposed, such as follows:

Genetic algorithms. Inspired by the principles of natural evolution, genetic algorithms (GAs)—also known as evolutionary
search methods (Shin et al., 2025a)—maintain a population of candidate solutions that are iteratively refined based on
a predefined fitness function. These algorithms enhance population quality over successive generations by applying key
operations such as selection, crossover, mutation, and replacement. In the domain of molecular discovery, GraphGA (Jensen,
2019) has shown significant promise in generating high-quality molecular structures using GA-based techniques.

Sampling-based methods. These methods leverage advanced sampling techniques to draw samples from distributions that
are likely to yield desirable molecular properties. MARS (Xie et al., 2021a) is a notable example that employs Markov Chain
Monte Carlo (MCMC) sampling to efficiently search for high-quality molecules. By focusing on probabilistic sampling,
these methods can explore the chemical space more efficiently than deterministic approaches.

Reinforcement learning (RL). RL-based methods formulate the molecule generation process as a Markov decision process,
allowing an RL agent to interact with a chemical environment to construct molecular structures in an autoregressive manner.
A prominent example is REINVENT (Olivecrona et al., 2017), which utilizes a GRU model (Chung et al., 2014) as its RL
agent to generate molecules in SMILES format. REINVENT has been acknowledged as one of the best models for various
molecular property optimization tasks, showcasing the effectiveness of RL-based methods. More specifically, the strength of
RL-based methods lies in its effective use of trial-and-error to navigate the environment (Angermueller et al., 2019; Shin
et al., 2022; 2024a), allowing it to discover promising solutions and achieve robust performance across diverse scenarios.
Following its success, several variants have been proposed to enhance its capabilities. One line of research focuses on
improving the underlying neural architecture by replacing the GRU with either a transformer (He et al., 2022) or Mamba
(Gu & Dao, 2023; Lee et al., 2025). Another approach incorporates data augmentation techniques to boost sample efficiency,
leading to methods like Augmented Memory (Guo & Schwaller, 2024a), which achieved new state-of-the-art performance.

GFlowNets. While RL-based methods have shown effectiveness, they often struggle with maintaining diversity in the
generated molecules due to a tendency to exploit a single promising direction. GFlowNets (Jain et al., 2022; M Ghari et al.,
2024; Son et al., 2025) aims to address this limitation by emphasizing probabilistic sampling over reward maximization,
inherently promoting diversity in the generated molecules. As a result, GFlowNets have gained popularity in multi-objective
molecular optimization tasks, where generating a diverse set of high-quality molecules across multiple objectives is crucial.

M.2. Multi-Objective Molecular Optimization

The multi-objective molecular optimization (MOMO) problem differs from single-objective optimization by requiring the
simultaneous optimization of multiple molecular properties, which often conflict with one another. In the context of the
MOMO problem, identifying a single solution that optimally satisfies all objectives is generally infeasible. Instead, the goal
shifts to discovering a diverse set of Pareto optimal molecules, where improving one objective may lead to trade-offs in
others. To tackle multiple objectives, several studies have integrated Bayesian optimization (BO) within their molecular
optimization frameworks. For instance, GPBO (Tripp et al., 2021) incorporate BO into GraphGA , resulting in enhanced
sample efficiency. In a similar approach, LamBO (Stanton et al., 2022) applies BO alongside denoising autoencoders to
address the multi-objective biological sequence design problem. Other studies have employed scalarization, which simplifies
the multi-objective problem by converting multiple objectives into a single scalar objective function (Gunantara, 2018).
This scalarization is typically achieved by combining the objectives using a weighted sum or other aggregation techniques
(Marler & Arora, 2010; Deb et al., 2016). Scalarization offers simplicity and ease of implementation, making it a popular
choice for its scalability and computational efficiency (Cho et al., 2017). In the context of the MOMO problem, MIMOSA
(Fu et al., 2021) utilizes linear scalarization to efficiently manage the complexity of multiple objectives, while demonstrating
strong performance and scalability. Similarly, MARS (Xie et al., 2021a) applies scalarization to effectively handle up to
four molecular objectives, further showcasing the potential of scalarization in the MOMO problem. However, scalarization
presents challenges in selecting appropriate weights. Users must assign weights to each objective to reflect its relative
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importance, a process that is often sensitive and subjective (Royer et al., 2023). Incorrect or biased weight selection may fail
to accurately represent true preferences, potentially resulting in suboptimal solutions (Zhang & Golovin, 2020). In our study,
we also employ the scalarization approach due to its widespread adoption and practical advantages (Fromer & Coley, 2023).
However, to mitigate the limitations associated with subjective weight selection, we introduce priority sampling using the
Dirichlet distribution to generate a diverse set of weight configurations. This enables our StitchNet to operate on a wide
variety of molecular pairs, each representing a different balance of multiple objectives.

M.3. Offline Model-based Optimization

As mentioned earlier in the main manuscript, one of the most promising approaches for addressing the offline MOMO
problem is offline model-based optimization (MBO) (Trabucco et al., 2022). The goal of offline MBO is to optimize the
objective function using a pre-collected offline dataset, without the ability to acquire new data during the optimization
process. In this approach, the proxy (surrogate) model—such as Gaussian processes, random forests, or neural networks—is
trained on the offline dataset to approximate the objective function (Dao et al., 2024). This proxy model is then used to
predict objective scores for new inputs, guiding the optimization algorithm in finding inputs that maximize the predicted
objective scores. The most straightforward approach in offline MBO is to use a differentiable vanilla proxy model and apply
gradient ascent to find optimal inputs. However, this approach may face limitations such as increased inaccuracies and a
higher risk of overfitting. To address these limitations, various recent studies have been proposed.

Improving the proxy model. One line of research focuses on enhancing the accuracy and robustness of the proxy model
to better handle high-dimensional and complex objective functions. Some studies (Trabucco et al., 2021; Qi et al., 2022)
enforce constraints to mitigate overfitting and address distributional shifts caused by out-of-distribution (OOD) inputs, while
another study (Yu et al., 2021) enhances the generalization capabilities of the proxy model by employing a local smoothness
prior. Additionally, more sophisticated methods such as gradient matching (Hoang et al., 2024) and policy-guided gradient
search (Chemingui et al., 2024) have been proposed to improve the proxy model and overall performance.

Ensemble learning. To leverage the benefits of ensemble learning, several studies (Trabucco et al., 2022; Yuan et al., 2023;
Chen et al., 2023a) have proposed to utilize multiple proxy models to combine their predictions, thereby enhancing the
robustness and reliability of the optimization process. Building on the effectiveness of ensemble learning, we conducted
additional experiments utilizing multiple proxy models, as described in Appendix E. The results reveal that increasing the
number of proxies improves the performance of our framework, underscoring the robustness and reliability that ensemble
methods bring to the optimization process.

Improving optimization algorithms. Another line of research concentrates on improving the optimization algorithms
used within the offline MBO framework. For example, the bidirectional learning technique (Chen et al., 2022; 2023b) has
been introduced to utilize both forward and backward mappings to generate input configurations that are likely to produce
optimal outputs while adhering to the data distribution of the offline dataset. Furthermore, the synthetic pretraining technique
(Nguyen et al., 2023) has been proposed to enhance sample efficiency and overall performance by integrating unsupervised
learning with in-context pretraining. Additionally, the bootstrapping technique (Kim et al., 2023) has been developed to
enhance the optimization process by iteratively augmenting the offline dataset with self-generated data.

M.4. Preference Optimization in Generative Models

In recent years, preference optimization has gained significant attention, particularly with the rise of large language models
and generative models (Tang et al., 2024). As these models grow more powerful and are deployed into real-world applications,
the need to align their outputs with human expectations becomes increasingly important. Preference optimization enables
models to better align with human standards in subjective areas such as sentiment, creativity, and ethical considerations.

Reinforcement Learning from Human Feedback (RLHF). A leading and widely adopted method for incorporating
human preferences into model training is RLHF (Ouyang et al., 2022). By embedding human feedback within an RL
framework, RLHF allows models to generate higher-quality content that aligns more closely with human judgments. Notable
implementations like OpenAI’s ChatGPT (Achiam et al., 2023) have demonstrated significant performance improvements
through RLHF, highlighting its potential in fine-tuning models. This success has driven further research into more streamlined
approaches that aim to simplify the incorporation of human preferences.

Direct Preference Optimization (DPO). DPO (Rafailov et al., 2023) is a recent method that moves away from RL and
focuses directly on optimizing for human preferences without the need for reward modeling. It operates by directly
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training on human preference pairs, enabling the model to generate outputs that are consistently favored over less preferred
alternatives. This approach is considered more straightforward and potentially more stable than RLHF, as it bypasses the
complexities associated with RL training. However, DPO has exhibited limitations, particularly in scenarios involving
deterministic preferences, due to its relatively weak regularization mechanisms.

Identity Preference Optimization (IPO). IPO (Azar et al., 2024) is a more recent method that builds on DPO by introducing
enhancements to address its limitations and offering a more theoretically sound framework. Specifically, IPO incorporates
a stronger regularization term that penalizes models for excessive confidence in preference margins. This is achieved by
replacing the log-sigmoid function used in DPO with a squared loss function. The stronger regularization term in IPO aims
to balance adaptation to the preference dataset while maintaining generalization capabilities, which is crucial for model
performance on out-of-distribution (OOD) data. While IPO offers theoretical improvements over DPO, empirical results
have been mixed. Some studies report IPO performing on par with or slightly better than DPO (Pal et al., 2024; Calandriello
et al., 2024), while others observe diminished performance in certain settings (Hu et al., 2024b).

Preference optimization in molecular discovery. In large language models, preference typically reflects human sentiments,
opinions, or judgments about what constitutes a desirable output. On the other hand, in the field of molecular discovery,
preference represents the relative importance of each objective within the optimization process. When the generative model
is tasked with optimizing several conflicting objectives, preference guides the optimization process by specifying how much
weight or priority each objective should be given. For example, if a researcher wants to prioritize potency over safety, their
preferences would assign more importance to optimizing potency. Conversely, if safety is more critical, the preference
would shift toward that objective. Recently, preference optimization has been widely adopted in structure-based drug design
to align the pre-trained generative model with preferred functional properties (Liu et al., 2024a; Gu et al., 2024). Our
work also focuses on optimizing molecules with desired properties. However, unlike recent studies (Gu et al., 2024) that
primarily use DPO and rely on existing preference datasets, our approach differs in several key ways. We explore a variety
of preference optimization techniques—including RLHF, DPO, and IPO—and apply them to the offline multi-objective
molecular optimization problem. More importantly, we generate a new preference dataset using our StitchNet model, which
creates novel stitched molecules with desirable properties from pairs of existing molecules. In other words, rather than
depending solely on existing datasets for preferences, we construct a separate proxy model and use StitchNet to build a
tailored preference dataset, leveraging existing molecules to further enhance the optimization process. Additionally, we
extend our approach to a semi-offline setting—a direction that recent studies have not explored yet. In this setting, we utilize
a limited number of online evaluations by periodically querying an oracle function to assess molecules in large batches. This
extension allows us to explore ways of further enhancing the optimization process by integrating new evaluation data.

N. Competing Methods Details
In this section, we present a comprehensive review of the competing methods, highlighting their core principles, methodolo-
gies, and their comparative position relative to our proposed framework. Before delving into the details, we first aim to
explain how molecular optimization methods, such as REINVENT (Olivecrona et al., 2017), are adapted to offline settings.
While we use REINVENT as an example, this approach applies to all competing molecular optimization methods. In online
settings, REINVENT actively generates molecules, queries the oracle to obtain objective scores as rewards, and updates the
log-likelihood of generating those molecules based on the feedback. In contrast, in offline settings, it relies on a pre-existing
offline dataset containing pairs of molecules and their corresponding objective scores, rather than actively generating and
evaluating new molecules through oracle queries. This offline dataset becomes the sole source of information for training
and optimizing the generative model. In this context, REINVENT computes the log-likelihood of a molecule and utilizes the
corresponding objective scores from the offline dataset as rewards, updating itself in a supervised manner. This adaptation
enables REINVENT to operate in offline settings, leveraging the available offline data to refine its generative capabilities.

• REINVENT (Olivecrona et al., 2017) is a reinforcement learning (RL) approach designed for molecular generation,
where an agent interacts with its environment to create molecules. This approach autoregressively generates molecules
as SMILES strings, with each new element (token) in the sequence building upon the previously generated elements.
Note that this generation process is guided by a pre-trained model that enforces chemical grammar rules, ensuring the
validity of the generated molecules. REINVENT has demonstrated superior performance in molecular optimization
tasks, as highlighted by the PMO benchmark. This remarkable performance has led numerous follow-up studies to
adopt REINVENT as their backbone generative model. Following this established trend, we have also integrated
REINVENT as our backbone model to take advantage of its proven effectiveness in various molecular optimization

40



Offline Model-based Optimization for Real-World Molecular Discovery

tasks. As a competing method in our study, REINVENT serves as a baseline, as it is trained exclusively on the offline
dataset without applying further offline MBO techniques. This straightforward approach positions it as a reference point
for evaluating the effectiveness of various MBO techniques, which leverage proxy models to fine-tune the generative
model beyond the constraints of the offline dataset.

• Augmented Memory (AugMem) (Guo & Schwaller, 2024a) builds upon the REINVENT method by incorporating
molecular data augmentation techniques and experience replay to enhance performance. The authors report that
AugMem has achieved state-of-the-art results on the PMO benchmark, showcasing its effectiveness in molecular
optimization tasks. In the context of offline optimization, offline MBO techniques typically use proxy models to guide
the generation of synthetic data. This process involves the generative model producing new data points, which are
then evaluated by the proxy model. The resulting augmented dataset allows the generative model to explore beyond
the initial offline dataset. AugMem, in contrast, introduces a different approach to data augmentation specifically
designed for molecular generation. By implementing AugMem in our study, we establish a valuable reference point for
comparing specialized molecular data augmentation techniques against the proxy model-guided approaches used in
conventional offline MBO.

• GraphGA (Jensen, 2019) is a method based on genetic algorithms that generates molecules by evolving a population
through repeated cycles of selection, crossover, and mutation, all driven by a fitness function. GraphGA utilizes domain
knowledge from the chemical experts to develop effective mutation and crossover strategies that facilitate an efficient
exploration of molecular space. In our study, GraphGA serves as a key reference for implementing rule-based crossover
operations, which we have also incorporated into our framework.

• GeneticGFN (Kim et al., 2024a) integrates genetic algorithms into the GFlowNets model for molecular generation.
Specifically, this method leverages domain-specific genetic operators to efficiently explore the chemical space, en-
abling the generative model to implicitly acquire relevant domain knowledge. Consequently, the generative model’s
performance is enhanced through the strategic guidance provided by the genetic algorithm. The authors also highlight
a complementary relationship between the two components: the genetic algorithm enhances GFlowNets’ capacity for
effective exploitation, while GFlowNets, in turn, increases the population diversity for the genetic algorithm. In our
study, GeneticGFN serves as a crucial reference point for evaluating the effectiveness of genetic algorithms in the
offline MOMO problem. Specifically, it allows us to assess the advantages gained from incorporating domain-specific
knowledge through genetic operators in this context.

• Saturn (Guo & Schwaller, 2024b) builds upon the core mechanism of REINVENT while introducing significant
architectural improvements. While REINVENT employs a GRU architecture, Saturn replaces it with the more powerful
Mamba architecture. This substitution is motivated by Mamba’s potentially greater capacity for modeling complex
molecular structures more effectively. Furthermore, Saturn incorporates genetic algorithms into its Mamba-based
model, drawing parallels to GeneticGFN’s approach. This integration allows Saturn to leverage domain-specific genetic
operators, potentially enhancing its ability to navigate the chemical space effectively. In our study, Saturn serves as
a valuable reference point for two key aspects: first, it demonstrates the application of the Mamba architecture in
molecular optimization tasks, and second, it provides insights into the benefits of incorporating domain-specific genetic
operators in the context of offline MOMO.

• Grad (Zinkevich, 2003) represents the most straightforward offline MBO approach for tackling the offline MOMO
problem. In particular, it employs a vanilla proxy model that directly approximates the true objective scores, training
this proxy on the offline dataset. To address the generative aspect of the offline MOMO problem, Grad utilizes
REINVENT as its backbone generative model, the same approach used in our proposed framework. This choice is
consistently applied across all offline MBO-based competing methods to ensure a fair comparison. After training the
vanilla proxy model, Grad fine-tunes the generative model using gradient ascent with respect to the trained vanilla
proxy model’s predictions. In our study, Grad serves as a crucial reference point as it demonstrates the basic application
of offline MBO in the context of offline MOMO. Specifically, Grad enables us to investigate whether a vanilla proxy
model is sufficient for this task, or if more sophisticated approaches are necessary for meaningful improvements in the
offline MOMO problem.

• COMs (Trabucco et al., 2021) represents a more sophisticated offline MBO approach. Unlike Grad’s vanilla proxy
model, COMs employs adversarial learning to encourage the proxy model to provide conservative estimates of the true
objective functions. This method establishes lower bounds on the objective estimates, which are then used during the
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offline optimization process. By doing so, COMs aims to prevent erroneous overestimation caused by distributional
shift, a common challenge in various offline optimization scenarios. In our study, COMs enables us to investigate
whether these sophisticated methods offer significant improvements in the context of offline MOMO.

• IOM (Qi et al., 2022) considers offline MBO from a domain adaptation perspective. This method aims to train a
proxy model that can accurately predict true objective scores (‘target domain’) when trained solely on the given offline
dataset (‘source domain’). To achieve this, IOM introduces invariant representation learning, which enforces alignment
between the learned distribution of the offline dataset and the distribution of optimized decisions. In our study, IOM
serves as a reference point similar to COMs, enabling us to evaluate the effectiveness of invariant representation
learning in addressing distributional shifts and enhancing performance in the offline MOMO problem.

• RoMA (Yu et al., 2021) also addresses the challenge of overestimation issues when approximating true objective
scores. To mitigate this issue, RoMA proposes robust model adaptation by incorporating a local smoothness prior as a
regularizer. This regularizer aims to enforce a flat loss landscape, thereby enhancing the proxy model’s generalization
capabilities and ensuring stable training. In our study, RoMA serves as a reference point, similar to COMs and IOM,
allowing us to assess the effectiveness of using regularization techniques to improve robustness and performance in the
offline MOMO problem.

• Ensemble proxy (Trabucco et al., 2022) takes a different offline MBO approach by leveraging multiple proxy models
through ensemble learning. This approach addresses the limitations of a single proxy model, which can be prone to
overfitting issues. Ensemble proxy uses multiple proxies with different initializations and averages their predictions to
approximate true objective scores. In our study, Ensemble proxy serves as a reference point, enabling us to evaluate the
effectiveness of ensemble learning in the offline MOMO problem and assess whether the potential performance gains
justify the increased computational cost associated with using multiple proxy models.

• ICT (Yuan et al., 2023) utilizes multiple proxies, similar to Ensemble proxy, but enhances the approach through
a co-teaching process. This process facilitates information exchange between proxies and encourages knowledge
transfer. Additionally, ICT incorporates a meta-learning-based sample reweighting mechanism that iteratively updates
the importance weights of samples to mitigate potential inaccuracies in pseudo-labels. In our study, ICT serves as a
reference point, enabling us to evaluate the effectiveness of advanced ensemble techniques, such as co-teaching and
meta-learning, in the offline MOMO problem.

• Tri-Mentoring (Chen et al., 2023a) is closely related to ICT, utilizing multiple proxies and facilitating learning between
them through a mentoring process. However, Tri-Mentoring shifts its focus to generating pairwise comparison labels
rather than directly approximating objective scores. Instead of averaging predictions, it employs majority voting to
combine decisions from each proxy model. In our study, Tri-Mentoring serves as a crucial reference point, enabling
us to evaluate the effectiveness of using the rank-based proxy over the score-based proxy, aligning closely with the
approach of our proxy model.

• BIB (Chen et al., 2023b) employs a bidirectional learning approach that utilizes both forward and backward mappings
to generate input configurations likely to produce optimal outputs, while conforming to the data distribution of the
offline dataset. BIB constructs its proxy model using a pre-trained language model and applies a deep linearization
scheme to derive a closed-form loss function. It is recognized as one of the best models for tackling the offline biological
sequence design problem. In our study, BIB serves as a reference point to evaluate how well a high-performing method
designed for offline biological sequence design performs in the offline MOMO problem.

• BootGen (Kim et al., 2023) employs a bootstrapping technique to enhance the optimization process by iteratively
augmenting the offline dataset with self-generated data, using the proxy model as a pseudo-labeler. The goal is to align
and refine the generative model through iterative training, where high-quality samples are added to the augmented
dataset based on the proxy model’s guidance. BootGen is also recognized as one of the best models for offline biological
sequence design. In our study, BootGen serves as a reference point to evaluate the effectiveness of the bootstrapping
technique in offline optimization, and, similar to BIB, to assess how well a high-performing method designed for offline
biological sequence design can be adapted to tackle the offline MOMO problem.

• RaM (Tan et al., 2025) identifies the limitations of mean squared error loss for offline MBO and instead advocates for
a ranking-based model. By employing learning-to-rank (LTR) techniques, RaM prioritizes promising candidates based
on their relative ordering rather than absolute scores, achieving state-of-the-art performance across various offline
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MBO tasks. While RaM’s ranking-based model shares conceptual similarities with the rank-based proxy mechanism in
our framework, our work extends beyond RaM’s focus by integrating the rank-based proxy as one component within a
more comprehensive framework. Specifically, our MolStitch framework combines molecular stitching, rank-based
proxy, priority sampling, and preference optimization to tackle the offline MOMO problem in real-world molecular
discovery. The novelty of our work lies not in the rank-based proxy itself but in developing a unified framework that
leverages this component alongside others. Additionally, we enhance the rank-based proxy through experiments that
incorporate multiple proxies to capture diverse priorities. Using priority sampling, each proxy model emphasizes
different objectives based on their assigned importance. Our findings indicate that increasing the number of rank-based
proxies improves performance, but only up to a certain threshold, revealing a nuanced interplay between model diversity
and performance. As a result, our study offers a more comprehensive exploration of rank-based proxy. In our study,
RaM serves as a critical reference point for evaluating the effectiveness of ranking-based models, highlighting the
advantages of these methods in offline MBO, and offering valuable insights into their broader applicability.

O. Details on Evaluation Metrics
This section provides an overview of the evaluation metrics used in this study: the hypervolume (HV) indicator (Zitzler
et al., 2003) and the R2 indicator (Brockhoff et al., 2012). Both metrics are widely employed in multi-objective optimization
due to their effectiveness in evaluating solution quality across conflicting objectives. The HV indicator quantifies the volume
of the objective space dominated by the Pareto front relative to a reference point, reflecting convergence and diversity. In
contrast, the R2 indicator measures how well the Pareto front aligns with a set of reference directions, assessing solution
distribution. Using both metrics together provides complementary insights into the performance of optimization algorithms
and the exploration of trade-offs among objectives.

O.1. Hypervolume Indicator

Figure 17. Visualization of the hypervolume (HV) indicator in a 2D space, where the HV corresponds to the volume of the shaded region.

The HV indicator denoted as IH , measures the volume in the objective space that is dominated by the Pareto front derived
from the optimization algorithm. To be more specific, the HV indicator is defined as the volume in the objective space that
is dominated by a set of solutions X relative to a reference point zr. Of note, the reference point zr is chosen such that it is
dominated by all solutions in X , representing the worst acceptable value for each objective. Mathematically, the HV can be
expressed using the Lebesgue integral as follows:

IH(X , zr) =
∫
Rn

I{zr|zr≤x for some x∈X}(z
r) dzr,

where I is the indicator function that equals to 1 if the reference point zr ∈ Rn is dominated by at least one solution x ∈ X ,
i.e., zr ≤ x for some x ∈ X , and 0 otherwise. This formulation essentially measures the volume of the region in the
objective space that is dominated by the solutions in X and bounded above by the reference point zr. Alternatively, the HV
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can be calculated more practically as follows:

IH(X , zr) = Vol

(⋃
x∈X

[x, zr]

)
,

where [x, zr] denotes the hyperrectangle with lower corner x and upper corner zr. This representation provides a more
intuitive understanding of the HV indicator as it directly corresponds to the union of hyperrectangles formed by each solution
in X with respect to zr. In a nutshell, the HV indicator quantifies the size of the objective space that is simultaneously
dominated by all solutions in X and is within the bounds defined by zr. A larger HV value indicates a more preferable set
of solutions, as it implies that a greater portion of the objective space is covered by the set X .

To provide a clear understanding, we visualized HV as shown in Figure 17, where the blue points represent a Pareto front
composed of non-dominated solutions. Then the HV is defined as a measure of the region in the objective space that
is dominated by the Pareto front and bounded by a reference point. In this study, as we have normalized all objective
values between 0 and 1, we set the reference point as the origin (e.g., (0, 0) for two-dimensional space, (0, 0, 0) for
three-dimensional space, and so on) in each respective dimensional space.

O.2. R2 Indicator

The R2 indicator (Brockhoff et al., 2012) is a set-based performance metric used in multi-objective optimization to evaluate
the quality of a set of solutions X in approximating the true Pareto front. Unlike the HV indicator, which measures the
volume of the dominated region, the R2 indicator uses a set of predefined weight vectors to assess how well the solutions
in X represent various trade-offs among objectives. It is defined as the maximum of the worst-case weighted distances
between the solutions in X and an ideal or utopian point. A lower R2 value indicates better performance, as it signifies that
the solutions in X are closer to the ideal point for all considered weight vectors.

Mathematically, letW be a set of weight vectors w = (w1, w2, . . . , wm), where wi ≥ 0 and
∑m
i=1 wi = 1, representing

different priorities for the objectives. The R2 indicator, denoted as R2(X ,W), can be defined as:

R2(X ,W) = max
w∈W

min
x∈X

{
m∑
i=1

wi · [f∗i (x)− fi(x)]

}
,

where fi(x) is the value of the i-th objective for the solution x, and f∗i (x) is the value of the i-th objective for the ideal
or utopian point (typically the maximum achievable value for maximization problems). This formulation calculates the
deviation of the solution set X from the ideal point for each weight vector w and then takes the maximum of these deviations
across all weight vectors inW . The use of the maximum operator ensures that the R2 indicator focuses on the worst-case
scenario for any given weight vector, reflecting the least favorable trade-off among objectives that the solution set X
can achieve. A lower R2 value means that X is closer to the ideal point across all weight vectors, indicating a better
approximation of the Pareto front.

In summary, the R2 indicator quantifies the worst-case performance of a set of solutions X in terms of their proximity to an
ideal point for a given set of weight vectorsW . A lower R2 value is better as it indicates a closer approximation to the ideal
performance across all weight vectors.
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P. Further Investigations of StitchNet within Our MolStitch Framework
P.1. Quantitative Assessment of StitchNet’s Ability to Learn Crossover Operations

Table 19. Assigned Scores and overall similarity between StitchNet and Crossover operator

High Scoring Middle Scoring Low Scoring Similarity

Assigned Score 43% 31% 26% 0.644

In this section, we present the quantitative results evaluating how effectively StitchNet learns the crossover operation. To
assess this, we generated 300 offspring molecules using rule-based crossover operations, and 100 molecules using StitchNet
with the same parent molecule pairs. Then, the 300 molecules from rule-based crossover were categorized into three groups
based on their mean target objective scores (GSK3β+JNK3+QED+SA): high-scoring, middle-scoring, and low-scoring.
For each group, we calculated the mean Tanimoto similarity score with the 100 molecules generated by StitchNet. Each
StitchNet-generated molecule was then assigned to the group with which it exhibited the highest similarity score.

The results, presented in Table 19, demonstrate that the overall similarity scores are reasonable, suggesting that StitchNet
effectively learns crossover operations through its unsupervised pre-training process. Notably, molecules generated by
StitchNet were most frequently assigned to the top-scoring group, with the lowest assignment to the low-scoring group.
This outcome highlights the advantages of StitchNet’s self-supervised training, which integrates chemical feedback to guide
the generation of stitched molecules with desirable objective scores. As a result, StitchNet can perform crossover operations
in a way that preferentially generates offspring molecules with higher objective scores.

P.2. Effectiveness and Contribution of StitchNet in Comparison to Existing Offline Dataset

Table 20. Overall improvement in objective scores when comparing stitched molecules against existing molecules in the offline dataset.

QED SA JNK3 GSK3β

Improvement -5.79% -3.15% +16.10% +42.18%

To assess the quality of the newly generated molecules from StitchNet, we measured the improvement and non-improvement
in objective scores (GSK3β, JNK3, QED, SA) between the stitched molecules and the existing molecules in the offline
dataset. Table 20 presents the results, showing the percentage of improvement and non-improvement. Compared to the
existing molecules in the offline dataset, the newly generated molecules from StitchNet exhibited significant increases in
challenging objectives such as GSK3β and JNK3, while showing slight decreases in easier-to-optimize objectives like QED
and SA. This suggests that StitchNet effectively provides diversity beyond the offline dataset and enhances performance in
challenging objectives with only a minor reduction in easier objectives. Consequently, the generative model can learn from
this enriched set of high-quality molecules generated by StitchNet, leading to an overall improvement in performance.

Q. Reward Hacking Problem in Offline Multi-Objective Molecular Optimization
In this study, we tackle the offline multi-objective molecular optimization problem, which requires optimizing multiple
molecular objectives simultaneously. Throughout this optimization process, we observed conflicts between certain molecular
objectives. To investigate these conflicts further, we conducted a detailed analysis of each property score within a four-
objective scenario (GSK3β, JNK3, QED, and SA).

We found that models often prioritized easier objectives, such as QED and SA, over more challenging objectives like GSK3β
and JNK3. As reported in previous study (Gao et al., 2022), QED is often considered too trivial, allowing most models
to achieve high scores on this objective with minimal effort. This suggests that increasing and optimizing the QED score
is much simpler compared to tackling more challenging objectives. For instance, models like REINVENT, which receive
rewards based on the average property score, may focus on easily attainable objectives to maximize the overall reward.
Consequently, this creates the reward hacking problem , where the model overfit to easier objectives while neglecting the
more challenging ones. This behavior highlights the inherent difficulty in multi-objective optimization, particularly when
some objectives are easier to optimize than others.
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One possible approach to address this issue could be adjusting the weights assigned to each objective to balance their
influence—placing more emphasis on the challenging objectives and less on the easier ones. However, this approach relies
on having prior domain knowledge about the difficulty of each objective, which is not always available. Moreover, in offline
optimization settings, immediate feedback to refine weights is limited, making this approach impractical.

To overcome these challenges, we introduced priority sampling using a Dirichlet distribution within our MolStitch framework
for Pareto optimization. This approach efficiently generates diverse weight configurations, ensuring a balanced exploration
of all objectives. By using priority sampling within our framework, we promote the generation of a diverse set of stitched
molecules that do not disproportionately favor easier objectives, thereby mitigating the risk of reward hacking.

Table 21. Property scores for each objective in a four-objective scenario (GSK3β, JNK3, QED, SA).

QED SA JNK3 GSK3β

w/o MolStitch 0.843 0.889 0.128 0.397

MolStitch (Ours) 0.709 0.802 0.485 0.688

To validate the effectiveness of our MolStitch framework, we compared the property scores for each objective in a four-
objective scenario (GSK3β, JNK3, QED, and SA) before and after applying our MolStitch framework that incorporates
priority sampling. The results, presented in Table 21, clearly indicate that without MolStitch, the models suffer from the
reward hacking problem, achieving disproportionately high scores on easier objectives like QED and SA while exhibiting
extremely low scores on more challenging objectives such as JNK3 and GSK3β. In contrast, applying our MolStitch
framework results in a more balanced optimization, with relatively improved and well-distributed scores across all objectives.

R. Chebyshev Scalarization
While our initial implementation of MolStitch employed linear scalarization due to its simplicity and foundational role
in multi-objective optimization, we also explored Chebyshev scalarization to assess its potential advantages. Specifically,
Chebyshev scalarization minimizes the maximum weighted deviation from a reference point, which is typically defined as
the ideal vector in objective space. Unlike linear scalarization, which aggregates all objectives into a single weighted sum,
Chebyshev scalarization evaluates each objective independently and focuses on minimizing the worst-performing objective.
This mechanism encourages more balanced solutions and enables the algorithm to explore non-convex and concave regions
of the Pareto front, which are often inaccessible to linear scalarization techniques (Deb et al., 2016).

To empirically assess the influence of Chebyshev scalarization within our MolStitch, we conducted experiments across
two-objective (GSK3β+JNK3), three-objective (GSK3β+JNK3+QED), and four-objective (GSK3β+JNK3+QED+SA)
optimization tasks. As shown in Table 22, MolStitch with Chebyshev scalarization achieved comparable performance to the
linear approach in the two-objective setting. This is consistent with our expectation that the Pareto front remains relatively
simple and convex in low-dimensional spaces, limiting the potential benefits of more sophisticated scalarization techniques.
In contrast, Chebyshev scalarization consistently outperformed linear scalarization in both three- and four-objective settings.
This improvement is likely due to the increased complexity and non-convexity of the Pareto front in higher dimensions,
where Chebyshev’s emphasis on extreme deviations facilitates more effective balancing of trade-offs across objectives.

Table 22. Additional experimental results on the molecular property optimization task using the Chebyshev scalarization technique.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

MolStitch (w/ Linear) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571
MolStitch (w/ Chebyshev) 0.580±0.068 0.707±0.125 0.440±0.085 1.568±0.297 0.397±0.078 2.619±0.453

We further analyzed the impact of Chebyshev scalarization on molecular diversity in the four-objective setting. Specifically,
we measured the number of unique Bemis-Murcko (BM) scaffolds and carbon skeletons—two widely used evaluation
metrics of structural diversity—among the molecules located on the Pareto front. As demonstrated in Table 23, Chebyshev
scalarization resulted in a notably more diverse set of molecules, as evidenced by the higher counts across both diversity
metrics. This outcome further supports the assertion that Chebyshev scalarization promotes broader exploration of the
solution space and facilitates the discovery of molecular candidates that might be overlooked by the linear approach.
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Table 23. Comparative analysis of diversity outcomes using Molstitch with linear and Chebyshev scalarization .
Molecular objectives GSK3β+JNK3+QED+SA

Diversity metrics BM scaffold Carbon skeletons

MolStitch (w/ Linear) 3453 1664
MolStitch (w/ Chebyshev) 3836 1976

In summary, these findings collectively demonstrate that MolStitch is compatible with both linear and Chebyshev scalariza-
tion techniques. We think that linear scalarization remains a reasonable choice when the Pareto front is expected to be convex
or when one objective is known to be dominant. However, Chebyshev scalarization is better suited for high-dimensional
optimization tasks involving multiple, conflicting objectives. In such scenarios, Chebyshev can provide more robust trade-off
among competing objectives and leads to the generation of more diverse and well-balanced molecular candidates.

S. Extended Analysis on Molecular Property and Docking Score Optimization Tasks
S.1. Additional Experimental Results on the Molecular Property Optimization Task

Given the relevance of the offline MOO benchmark (Xue et al., 2024) to our study, we conducted additional experiments
incorporating baseline methods introduced in that work, specifically the use of multiple models in conjunction with COMs
and RoMA. The underlying idea of leveraging multiple models closely aligns with our ensemble proxy model setup in
MolStitch. As shown in Table 24, the Multiple Models + COMs/RoMA configurations outperformed their single-model
counterparts. This result is consistent with our findings throughout the paper, where ensemble-based proxy models generally
demonstrated superior performance relative to single-model approaches such as Grad.

Table 24. Additional experimental results on the molecular property optimization task, including baselines from the offline MOO paper.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Single Model + COMs 0.479±0.063 0.877±0.109 0.205±0.072 2.496±0.288 0.171±0.062 4.219±0.628
Single Model + RoMA 0.492±0.091 0.843±0.177 0.198±0.052 2.537±0.269 0.169±0.071 4.207±0.617
Multiple Models + COMs 0.489±0.089 0.814±0.117 0.211±0.095 2.449±0.407 0.190±0.061 4.157±0.592
Multiple Models + RoMA 0.499±0.081 0.812±0.141 0.214±0.050 2.472±0.247 0.188±0.073 3.988±0.533
REINVENT-BO 0.472±0.107 0.909±0.216 0.232±0.086 2.385±0.393 0.205±0.105 3.974±0.895
MolStitch (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

In addition, motivated by the strong performance of Bayesian optimization (BO) reported in the offline MOO benchmark, we
implemented a comparable BO approach using REINVENT as the generative model, which we refer to as REINVENT-BO.
As shown in the same table, REINVENT-BO achieved competitive results, indicating its viability as a baseline method for
offline molecular optimization tasks. Nevertheless, our MolStitch framework consistently outperformed all these baseline
methods, thereby reaffirming the robustness and efficacy of our approach.

S.2. Advancing MolStitch with State-of-the-Art Techniques for the Molecular Property Optimization Task

To further enhance the capabilities of MolStitch, we explored the integration of both well-established and state-of-the-art
techniques, including simulated annealing (Van Laarhoven et al., 1987) and the fragment-RAG(Lee et al., 2024) methods.
First, simulated annealing (SA) is a probabilistic optimization algorithm that improves exploration by allowing the acceptance
of suboptimal solutions with a certain probability in order to escape local optima. Inspired by this principle, we introduced
an SA mechanism into MolStitch by allowing the occasional acceptance of losing molecules during training. As shown in
Table 25, MolStitch with SA did not lead to significant performance gains. We attribute this marginal benefit of additional
exploration through SA to the effectiveness of our rank-based proxy model in reliably distinguishing between candidate
molecules, as well as the intrinsic diversity already promoted by the StitchNet architecture.

We also investigated incorporating ideas from fragment-RAG (f-RAG), which is a recent state-of-the-art framework that
introduces the use of hard fragments—explicit structural components used to construct new molecules—and soft fragments,
which are injected as embeddings to implicitly guide the generation process. Since StitchNet naturally supports the principles
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Table 25. Additional experimental results on the molecular property optimization task, integrating well-established and recent techniques.
Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

MolStitch 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571
MolStitch (w/ SA) 0.542±0.107 0.774±0.200 0.394±0.054 1.669±0.162 0.361±0.040 2.704±0.276
MolStitch (w/ f-RAG) 0.578±0.069 0.694±0.115 0.451±0.081 1.519±0.277 0.412±0.060 2.494±0.356

of hard fragments through explicit recombination of molecular substructures, it readily accommodates the first component
of f-RAG. To incorporate soft fragment guidance, we extended StitchNet to condition on fragment embeddings during the
stitching process, enabling implicit control over molecule generation. As demonstrated in Table 25, MolStitch with f-RAG
yielded improved performance, highlighting the benefits and effectiveness of soft fragment guidance.

S.3. Additional Experimental Results on the Docking Score Optimization Task using SMINA

In our main study, we employed QuickVina (QVina) (Alhossary et al., 2015) for the docking score optimization task, which
is a widely recognized molecular docking tool derived from AutoDock Vina. Our decision to use QVina was motivated by
its widespread adoption and following established practices from prior studies (Lee et al., 2023; Guo & Schwaller, 2024b).
While QVina is widely used, other molecular docking tools derived from AutoDock Vina have been developed, among
which SMINA (Cieplinski et al., 2023) is particularly notable. Specifically, SMINA offers extended capabilities, including
support for customized scoring functions and the ability to enforce specific ligand–receptor interaction constraints.

Table 26. Additional experimental results on docking score optimization tasks using SMINA as the docking evaluation tool.
Target protein parp1 jak2 braf fa7 5ht1b

Method HV(↑) HV(↑) HV(↑) HV(↑) HV(↑)

REINVENT 0.522±0.007 0.476±0.014 0.503±0.006 0.417±0.004 0.514±0.003
BootGen 0.534±0.006 0.498±0.009 0.518±0.020 0.425±0.007 0.530±0.016
MolStitch (Ours) 0.550±0.007 0.539±0.060 0.530±0.012 0.450±0.004 0.544±0.004

Table 27. Additional experimental results on docking score optimization tasks using SMINA as the docking evaluation tool.
Target protein parp1 jak2 braf fa7 5ht1b

Method R2(↓) R2(↓) R2(↓) R2(↓) R2(↓)

REINVENT 1.408±0.021 1.589±0.058 1.487±0.025 1.804±0.029 1.441±0.030
BootGen 1.362±0.044 1.502±0.044 1.444±0.066 1.772±0.032 1.376±0.080
MolStitch (Ours) 1.323±0.019 1.325±0.177 1.397±0.046 1.627±0.026 1.329±0.022

Given its relevance and growing adoption, we conducted additional docking score optimization experiments using SMINA
to further evaluate the robustness of our MolStitch framework. As shown in Tables 26 and 27, MolStitch consistently
maintained superior performance in terms of both HV and R2 evaluation metrics, even when assessed using SMINA. These
findings further validate the generalizability and robustness of our MolStitch across distinct molecular docking tools.
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T. Future Work and Limitations
In this study, we focused on optimizing the properties of small molecules and docking scores for five specific proteins. A
natural extension of this work would be to apply our framework to material discovery, particularly for optimizing inorganic
molecules, thereby broadening its applicability beyond small molecules. Additionally, while we investigated both full-offline
and semi-offline optimization settings, there remains considerable potential to enhance the semi-offline optimization. One
promising direction is the use of a behavior policy to improve exploration of chemical space when periodically incorporating
new molecule data. This strategy would enable the inclusion of molecules that were not present in the initial offline
dataset, leading to more effective integration of newly obtained data. Even in cases where the initial offline dataset contains
lower-quality molecules, a behavior policy could progressively improve the quality of the data over time. Moreover, our
results suggest that employing multiple proxies yields valuable insights and substantial performance gains in specific cases.
As such, future work will focus on further developing and optimizing multiple proxy methods to fully realize their potential
in molecular discovery.

U. Molecule Examples
In this section, we provide visual examples of molecules generated by the fine-tuned generative model, which aims to
produce novel molecules that surpass the best-known molecules in the offline dataset. Specifically, we present representative
molecules sampled from the Pareto front in the four-objective optimization scenario (QED+SA+JNK3+GSK3β). Each
molecule illustrates a distinct trade-off among these objectives, demonstrating the diverse range of solutions on the Pareto
front. These examples emphasize the ability of our framework to explore diverse molecules that effectively balance multiple
objectives.
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Figure 18. Representative molecules sampled from the Pareto front in the four-objective optimization scenario (QED+SA+JNK3+GSK3β).
The numerical scores for each objective are displayed below the respective molecular structures. Each molecule reflects a distinct trade-off
among these objectives, highlighting the diverse range of solutions on the Pareto front.
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