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Abstract
The field of emotion recognition of conversa-001
tion (ERC) has been focusing on separating sen-002
tence feature encoding and context modeling,003
lacking exploration in generative paradigms004
based on unified designs. In this study, we005
propose a novel approach, InstructERC, to re-006
formulate the ERC task from a discriminative007
framework to a generative framework based on008
Large Language Models (LLMs). InstructERC009
makes three significant contributions: (1) it010
introduces a simple yet effective retrieval tem-011
plate module, which helps the model explic-012
itly integrate multi-granularity dialogue super-013
vision information. (2) We introduce two addi-014
tional emotion alignment tasks, namely speaker015
identification and emotion prediction tasks, to016
implicitly model the dialogue role relationships017
and future emotional tendencies in conversa-018
tions. (3) Pioneeringly, we unify emotion labels019
across benchmarks through the feeling wheel to020
fit real application scenarios. InstructERC still021
perform impressively on this unified dataset.022
Our LLM-based plugin framework significantly023
outperforms all previous models and achieves024
comprehensive SOTA on three commonly used025
ERC datasets. Extensive analysis of parameter-026
efficient and data-scaling experiments provides027
empirical guidance for applying it in practical028
scenarios. Our code and aligned unified dataset029
are in the supplementary.030

1 Introduction031

“The question is not whether intelligent machines032

can have emotions, but whether machines without033

emotions can achieve intelligence”, as mentioned034

in “Society of Mind” (Minsky, 1988). Empowering035

machines with the ability to understand emotions in036

various scenarios has always been the unwavering037

direction of researchers.038

In contrast to conventional binary sentiment anal-039

ysis tasks (Pontiki et al., 2016) , which only rely040

on text with explicit attitude tendencies, the emo-041

tion recognition in conversation (ERC) task aims042

to identify more fine-grained emotional tendencies 043

in each sentence of a conversation. Specifically, for 044

a given complete dialogue sequence input and a set 045

of emotional labels, the model is required to accu- 046

rately assign an emotional label to each sentence. 047

Intuitively, the recognition of emotional tenden- 048

cies in the target sentence is heavily influenced 049

by its historical utterances (Yingjian et al., 2023), 050

and there is significant variation in how different 051

speakers perceive and express emotions (Shen et al., 052

2021). Therefore, it is imperative to meticulously 053

model the speakers and dialogue context. 054

Figure 1 illustrates that previous work based on 055

Roberta (Liu et al., 2019) in ERC can be roughly 056

divided into three categories: (1) Transformer- 057

based methods (Li et al., 2020; Song et al., 2022; 058

Liu et al., 2023; Chudasama et al., 2022) attempt 059

to establish long-range emotional correlations in 060

conversational scenarios by directly adopting or 061

modifying the original transformer block. (2) 062

Recurrent-based methods (Hu et al., 2023; Lei 063

et al., 2023; Majumder et al., 2019; Hazarika et al., 064

2018; Poria et al., 2017) utilize various forms of 065

RNNs, like LSTM and GRU, to model individual 066

emotional states and global emotional impacts sep- 067

arately. (3) GNN-based methods (Ghosal et al., 068

2019; Ishiwatari et al., 2020; Shen et al., 2021; 069

Li et al., 2023a) typically use nodes and edges to 070

model characters and dialogue relationships in con- 071

versations. Above approaches have their strengths 072

in modeling dialogue at the sentence level, but they 073

still generally adhere to the paradigm of fine-tuning 074

sentence features and separately modeling dialogue 075

context. However, in realistic scenarios, end-to-end 076

model designs are often more practical. 1. 077

Fortunately, the recent successful application 078

(OpenAI, 2023) and emergence capabilities (Zhao 079

et al., 2023) of pre-trained large language mod- 080

1The discussion between discriminant model and Instruc-
tERC can refer to D.2
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Figure 1: The illustration of different paradigms for ERC

els (LLMs) have demonstrated remarkable perfor-081

mance in natural language reasoning tasks. By082

using a generative architecture, LLMs unify the083

output and input of different tasks and have shown084

significant performance improvements in all NLP085

tasks. Despite their powerful capabilities, enabling086

these abilities for specific sub-tasks requires high-087

quality prompts (Wei et al., 2021; Chung et al.,088

2022) and designs to fill the reasoning gap. There-089

fore, how to use LLMs framework to reconstruct090

ERC while considering context modeling, speaker091

modeling, and capturing conversation relationships092

poses a significant challenge in pushing this frame-093

work towards a realistic ERC application.094

In this work, we reformulate the ERC task using095

LLMs. Specifically, we design a simple but effi-096

cient retrieval template module, which consists of097

instruction, historical utterance, label statements,098

and demonstration retrieval to explicitly integrate099

multi-granularity dialogue supervision information100

during reasoning. In addition, we separately design101

two auxiliary tasks for the ERC task: speaker iden-102

tification task and emotion prediction task. The103

speaker identification task assists LLMs in mod-104

eling dialogue role relationships by predicting the105

speaker of each sentence, while the emotion pre-106

diction task models future emotional tendencies in107

conversations. Furthermore, due to biases in data108

distribution and labeling across different ERC do-109

mains, it’s still challenging for discriminative ERC110

models to achieve multi-domain ERC capabilities,111

both in terms of engineering and performance. To112

dive deeper into this topic, we pioneeringly align113

labels for three benchmarks and conduct a series114

of unified dataset experiments. Looking ahead, we 115

contend that IERC, as the first framework transi- 116

tioning from single-domain to multi-domain ERC, 117

offers us a glimpse into the prospective landscape 118

of open-domain emotional artificial intelligence 119

(Emotional AGI). 120

In conclusion, our work can be outlined as fol- 121

lows: 122

• To the best of our knowledge, we are the 123

first to reformulate the ERC task as a re- 124

trieval based Seq2Seq paradigm with LLMs 125

and present an effective instruction template 126

which can adapt to different dialog scenarios. 127

• We propose two novel emotional auxiliary 128

tasks to implicitly model the dialogue role 129

relationships and future emotional tendencies 130

in conversations. 131

• Our InstructERC significantly outperforms all 132

previous models and achieves comprehensive 133

SOTA on three commonly used ERC datasets. 134

• To advance towards multi-domain ERC sce- 135

nario, we pioneeringly align labels for three 136

benchmark to form the UIME ERC dataset, a 137

series of unified dataset experimental results 138

provides empirical guidance for application in 139

practical scenarios. 140

2 Methodology 141

In this section, we present a comprehensive 142

overview of the proposed InstructERC framework 143

shown as Figure 3. Firstly, we provide a brief intro- 144

duction to the task definition of ERC. Next, we dis- 145
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cuss the framework of InstructERC, which consists146

of two major parts: retrieval template module and147

emotional alignment tasks. Finally, we introduce148

training and inference process of our framework. 2149

2.1 Problem Definition3150

Assuming a dialogue text U = [u1, u2, ...un] of151

length n is given, which includes M speakers/par-152

ties p1, p2, ..., pM (M ≥ 2) in the dialogue, and153

each utterance ui spoken by the corresponding154

speaker pK(ui). Function K is employed to es-155

tablish a mapping between each utterance and its156

corresponding speaker. o is the number of emo-157

toinal categories, which varies with the number of158

emotional types in different evaluation datasets.159

2.2 Retrieval Template Module160

To better transfer and utilize the inference ability161

of pre-trained large language models, we recon-162

struct the ERC task to the seq2seq form and solve163

it through fine-tuning LLMs. Therefore, we con-164

struct a efficient retrieval template module to bridge165

the gap when applying LLMs to specific NLP sub-166

tasks. As shown in Figure 2, for ERC task, each167

input consists of four parts: instructions, histor-168

ical content, label statement, and demonstration169

retrieval.170

Instruction. The instructions serve to provide171

the model with a well-defined role, precise details172

of the ERC task, and a standardized format for the173

input dialogue text. For the primary ERC task, our174

instruction ui,I is shown in Figure 2.175

Historical Content. To model the context in176

realistic ERC scenarios, We employ a hyperpa-177

rameter, the historical window (denoted as w), to178

indicate the specific rounds (including current ut-179

terance) of historical dialogue along with the cor-180

responding speaker information. For the emotion181

recognition of the target utterance un, its historical182

content ui,H is shown in Figure 2.183

Label Statement. To confine the model’s output184

within a finite range of labels and enable the model185

to focus on the current utterance being recognized,186

our label statement ui,L is shown in Figure 2.187

Demonstration Retrieval. In order to further188

integrate emotional information to assist reasoning,189

we have developed a domain demonstration recall190

module based on semantic similarity. In detail, we191

2Due to the space limitation, we have included the related
works in Appendix B.

3The difference of problem definition between two
paradigms can be refer to Appendix D.2.

Instruction	 !!,#
Now	you	are	expert	of	sentiment	and	emotional	analysis.
The	following	is	a	conversation	which	involves	several	speakers.

Historical	content	 !!,$

Label	Statement		 !!,%
Please	select	the	emotional	label	of	< Speaker_0:“Oh	my	god,	it	was	just	
last	weekend”	>	from	 < happy,	sad,	neutral,	angry,	excited,	frustrated>.

Here	is	a	conversation	:

Speaker_0:"Guess	what?"	
Speaker_1:"what?”
Speaker_0:"I	did	it,	I	asked	her	to	marry	me.”
…
Speaker_0:"Yes,	I	did	it.”
Speaker_1:"When?”
Speaker_0:“Oh	my	god,	it	was	just	last	weekend".

historical	window	=	w

Demonstration	Retrieval		!!,&
Demonstration:	<Speaker_1:	“Oh	my	God.	Guess	what,	guess	what?”	>:	Excited

Retrieval Template Module

Input	utterance	 !!
Input utterance 

Speaker_0:“Oh my god, it was just last weekend”

History content

Label Statement

Demonstration Retrieval

Speaker_0:"Guess	what?"	
Speaker_1:"what?”
Speaker_0:"I	did	it,	I	asked	her	to	marry	me.”
…
Speaker_0:"Yes,	I	did	it.”
Speaker_1:"When?”
Speaker_0:“Oh	my	god,	it	was	just	last	weekend".

historical	window	=	w

Demonstration:	
<Speaker_1:	“Oh	my	God.	Guess	what,	guess	what?”	>:	Excited

!!,#

Please	select	the	emotional	label	of	< Speaker_0:“Oh	my	god,	it	
was	just	last	weekend”	>	from	 < happy,	sad,	neutral,	angry,	
excited,	frustrated>.

Here is a conversation :

!!,$

!!,%

!!

Figure 2: The Schematic of Retrieval Template Module.

construct a domain base Ddomain from the training 192

dataset that removes speaker identity information 193

and balances the number of emotion labels, which 194

ensures that the demonstrations is not influenced 195

by the distribution of speakers or emotion labels in 196

the dataset. For a given utterance ui to be identi- 197

fied, we retrieve the most relevant ERC example 198

from Ddomain as the demonstration. To perform the 199

retrieval, we use a bidirectional encoder SBERT 200

(Reimers and Gurevych, 2019) to find the most 201

semantically similar ERC example drvl. SBERT 202

generates independent CLS embeddings for the tar- 203

get utterance ui and each element dj in Ddomain. 204

After sorting all target-demonstration pairs by co- 205

sine similarity, we select the pair with the highest 206

score as the most relevant element drvl. An ab- 207

stract mathematical description of this process is 208

as follows: 209

drvli = argmax
dj∈Ddomain

SBERT(ui, dj) (1) 210

The textual input ui,D for the demonstration re- 211

trieval part is shown in Figure 2. In summary, after 212

constructing the Retrieval template, the simplified 213

input xi for the main task is as follows: 214

xi = [ui,I ;ui,H ;ui,L;ui,D] (2) 215

where [;] means the textual concatenation, ui,I , 216

ui,H , ui,L, and ui,D indicate Instructions, Histor- 217

ical content, Label statement, demonstration re- 218

trieval for a given utterance ui. 219
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2.3 Emotional alignment tasks220

To better capture the dialogue role relationships221

and future emotional tendencies in conversations,222

we have incorporated two auxiliary tasks, namely223

speaker identification and emotion impact predic-224

tion, which constitute the fine-grained subtasks of225

the InstructERC framework. The model is jointly226

trained with these auxiliary tasks to improve its227

overall performance, illustrated in Figure 3.228

Speaker Identification task. Emotions are ex-229

pressed differently among different speakers. Pre-230

vious models have used techniques such as speaker-231

based masked attention modules or multiple GRUs232

to capture the emotional expression features of dif-233

ferent characters. This modeling of emotional ex-234

pression in the task can also be transformed into a235

generative task using our InstructERC. To enable236

the LLM to capture the speaking styles of different237

individuals, beyond (Li et al., 2020), the model is238

trained to identify the relevant speaker for a given239

utterance, without considering the historical con-240

text. For a given dataset, a predefined set of speaker241

labels is provided. Consistent with the main task,242

the Instruction text input xpi for this task is con-243

structed as follows:244

“Now you are an expert of sentiment245

and emotional analysis. Please se-246

lect the Speaker label of the utterance247

<Speaker:ui> from <p1,...,pM>”248

The loss function for the Speaker Identification is249

as follows:250

Lp =
N∑
i

− logP (µi|xpi , θp) (3)251

Here, µi represents the token of the corresponding252

speaker label for the given speaker identification253

task input sample xpi . Unless otherwise specified,254

N stands for the total number of utterances in the255

dataset, while θ∗ represents the parameters of the256

LLM in different periods.257

Emotion Impact Prediction task. In the daily258

conversations, the intricate relationships between259

individuals can have a significant impact on the260

emotional states of subsequent dialog. Prior re-261

search has attempted to address this issue by con-262

structing a dialogue relationship graph and utiliz-263

ing a complex graph neural network to model the264

emotional impacts of these relationships. However,265

these methods are often associated with a highly266

intricate data preprocessing pipeline and are suscep- 267

tible to overfitting on certain datasets. To address 268

these issues, we propose a generative framework 269

for the emotion impact prediction task, which im- 270

plicitly captures the interplay between dialogues 271

and emotional impacts. 272

Specifically, the input for emotion impact predic- 273

tion consists of three parts: instruction, historical 274

content, and label statement. First, the instruction 275

part of this task is kept consistent with the instruc- 276

tion part of the main task. Then, since the task 277

requires predicting the impact of previous histori- 278

cal utterances on the current utterance, unlike the 279

main task, the historical content uei,H with a win- 280

dow of “w” will not include the current utterance. 281

Correspondingly, to stay aligned with the original 282

design intention of the task, the label statement of 283

this task is modified as follows: 284

“Based on the above historical utter- 285

ances, the next utterance is spoken by 286

<PK(ui) >, please predict the emotion 287

states of <PK(ui) >from <e1, e2, ..., eo 288

>:” 289

Hence, the overall input for emotion impact predic- 290

tion is: 291

xei = [ui,I ;u
e
i,H , uei,L] (4) 292

The loss calculation for the emotion impact predic- 293

tion task is as follows: 294

Le =
N∑
i

− logP (ϵi|xei , θe) (5) 295

Here, ϵi represents the emotional label token of the 296

text label ei corresponding to the formatted input 297

utterance xi. 298

2.4 Overview of InstructERC 299

To sum up the instruction based generative frame- 300

work for ERC, given an input utterance xi after con- 301

catenating the retrieval template drvl and a LLM, 302

the model returns the logits gi and the generated 303

text yi for the entire sentence, including both in- 304

put and output tokens. This is represented by the 305

following equation: 306

yi,gi = LLM(xi, θall) (6) 307

Here, θ is the same as mentioned. The LLM 308

predicts the conditional probability p(γi|xi, θ) of 309

generating each token γi of the generated text yi 310

until the end symbol <eos>is outputted. As for 311
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Figure 3: The overview of InstructERC framework

logits gi ∈ RL×V , where L and V denote the312

length of the entire sentence and the size of the313

vocabulary used by the LLM, respectively.314

In accordance with the original training method315

of LLMs, we adopt the next token prediction loss316

to measure the model’s output error. Therefore, the317

loss calculation of the main task, denoted as Lmain,318

is defined as follows:319

Lmain =

N∑
i

− logP (ϵi|xi, θall) (7)320

Training and Inference.321

During training and inference, our retrieval pro-322

cess, emotional alignment tasks and main tasks in323

InstructERC can be divided into two stages:324

In the first stage of joint training, the charac-325

teristics of the speaker intuitively form the basis326

of emotional expression. Therefore, we use the327

speaker identification task for LLM pre-training328

to fine-tune speaker characteristics, which aims to329

preheat parameters for subsequent ERC tasks.330

In the second stage, we fine-tune LLM using331

both the ERC main task and the emotion influence332

prediction task to improve overall performance.333

The training loss at this stage is Lmain + α ∗ Le,334

where α is a hyperparameter used to adjust the335

weight of the emotion influence prediction task336

loss in the second overall joint training loss.337

The difference of demonstration retrieval on338

training and inference stage is shown in figure 3, we339

limit the retrieved examples to those with the same340

emotion label as the current recognized speech, 341

namely same label pairing ,in order to provide more 342

diverse emotional understanding while avoiding ex- 343

cessive noise during training. During inference, 344

there are no restrictions on the retrieved demonstra- 345

tions due to the labels are unknown, namely All 346

labels pairing. The retrieval results, simply referred 347

as drvl, are specialized as dtrvl and dirvl in training 348

and inference stage, respectively. 349

3 Experiments and Results 350

3.1 Dataset 351

We evaluate the efficacy of InstructERC on three 352

standard benchmark datasets: IEMOCAP, MELD, 353

and EmoryNLP. The specifics of the datasets are 354

outlined in Table 6. The details of dataset can be 355

refer to Appendix C.1. 356

3.2 Baselines 357

Align with the related works, we select sev- 358

eral only textual modality baselines to compare 359

with our InstructERC. 1) Transformer-based: 360

SPCL+CL(Song et al., 2022) and MPLP (Zhang 361

et al., 2023b) , 2) Recurrent-based: Emo- 362

tionIC(Yingjian et al., 2023) and SACL-LSTM(Hu 363

et al., 2023), 3) GNN-based: DualGATs(Zhang 364

et al., 2023a) and Skier(Li et al., 2023b). 4) LLM 365

backbones: ChatGLM-6B & ChatGLM2-6B (Du 366

et al., 2022) and LLaMA-7B & LLaMA2-7B (Tou- 367

vron et al., 2023). More details of baselines and 368

implementations can be refered to Appendix C.2 369

and D.1. 370
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Table 1: The main results on three benchmarks.

Dataset IEMOCAP MELD EmoryNLP Average
Models W-F1 W-F1 W-F1 W-F1

Disciminant Models

SPCL+CL† 69.74 66.35 40.25 58.78
MPLP∗ 66.65 66.51 - -

EmotionIC† 69.61 66.40 40.01 58.63
SACL∗ 69.22 66.45 39.65 58.44

DualGATs∗ 67.68 66.90 40.29 58.29
Skier† - 67.39 40.07 -

Zero-shot + InstructERC

ChatGPT3.5† 53.38 65.07 37.00 51.81
ChatGLM† 38.6 38.8 19.6 32.33
ChatGLM2† 21.1 21.8 24.4 22.43

Llama† 0.753 9.12 5.31 5.06
Llama2† 2.774 16.28 8.36 9.46

LoRA + Backbone

ChatGLM† 17.98 40.54 25.71 28.07
ChatGLM2† 52.88 64.85 37.69 51.80

Llama† 55.81 66.15 37.98 53.21
Llama2† 55.96 65.84 38.21 53.33

LoRA + InstructERC

ChatGLM† 36.04 46.41 30.86 37.77
ChatGLM2† 67.54 65.58 39.09 57.40

Llama† 64.17 67.62 39.34 57.04
Llama2† 71.39 69.15 41.37 60.64
NOTE: The best results of other baselines are in gold font, while SOTA results across
all models are emphasized in red font. * indicate results sourced from the model’s
paper, and a (†) denotes results from reproductions conducted by the authors.

3.3 Main Results371

Table 1 illustrates the results of comparing our In-372

structERC model with other models and backbones373

from different perspectives. Based on this, We374

make the following observations:375

(1) Our methods achieves significant improve-376

ments over the SOTA of discriminative models377

on all benchmarks. Specifically, we outperform378

EmotionIC, Skier, and DuaGATs by 1.73%, 1.76%,379

and 1.08% on IEMOCAP, MELD and EmoryNLP380

respectively. Notably, we completely outper-381

formed commonsense knowledge models (Skier)382

on two benchmarks without any external knowl-383

edge, demonstrating the extreme utilization of our384

method for textual data.385

(2) To gain an insight into LLM models under386

different supervision scenarios for ERC task, we387

conduct experiments on Zero-shot + InstructERC388

and LoRA + InstructERC settings. It can be ob-389

served that even with carefully designed primary390

task instructions, LLMs still struggle in zero-shot391

scenarios, which further confirms the existence392

of a significant reasoning gap in their application393

to ERC sub-task. Furthermore, by utilizing the394

LoRA + InstructERC, the performance of the four395

LLMs has significantly improved, especially on 396

the IEMOCAP dataset. This fully demonstrates 397

the effectiveness and generalization ability of our 398

InstructERC framework, which greatly enhances 399

the emotion recognition capability of LLM in long 400

texts. 401

(3) InstructionERC is a plug-and-play method 402

that can be adapted to multiple generative frame- 403

works, such as prefix decoder or causal decoder. 404

Although ChatGPT has a relevant competitive good 405

performance on short length conversation scen- 406

rios(e.g. Meld,EmoryNLP), as can be seen, our 407

results are far superior to the level of ChatGPT. Our 408

unified alignment task and demonstration construc- 409

tion strategy are not tailored to any specific dataset 410

design, highlighting the strong transferability and 411

generalization capability of our approach. 412

3.4 Ablution study 413

We conduct an ablation study to investigate the 414

characteristics of the main components in Instruc- 415

tERC. Table 2 shows the ablation results, and “w/o" 416

denotes the model performance without a specific 417

module. We have following observations: 418

(1) The performance of InstructERC drops when 419

removing any one component, which suggests that 420

every part of the design is necessary. 421

(2) Removing any one Emotional alignment task 422

results in great performance degradation. This is 423

consistent with our conjecture since speaker iden- 424

tification and emotion impact prediction provide 425

relatively orthogonal semantic information from 426

two perspectives. 4 427

(3) Taking away the domain retrieval module 428

resulted in a steady decline on all three datasets, 429

demonstrating the important role of domain infor- 430

mation in dialogue modeling. 431

4) Removing joint alignment task tasks causes 432

obvious performance degradation compared with 433

removing one of them, which indicates that jointly 434

pre-training objectives have a mutually reinforcing 435

effect. 5 436

(5) Replacing LoRA with full-parameter fine- 437

tuning results in a significant drop in performance, 438

which indicates that the parameter-efficient ap- 439

proach is effective in preventing overfitting of 440

LLMs on the ERC task. For detailed analysis, 441

4We also explore the impact of α on the performance of
InstructERC, refer to Appendix E.2

5We also explore the optimal conversational turns in model-
ing context in ERC, please refer to the“The historical window
exploration study” section in Appendix E.1.
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Unified	Label	Mapping

The	Feeling	Wheel

Emotional	Label	Mapping

One-hot	Speaker	Label	Mapping

Speakers	In
EmoryNLP

Speakers	In
IEMOCAP

Speakers	In
MELD

P_1…P_n1

P_1…P_n2

P_1…P_n3

P_1

…

P_{n1+n2+n3}

Figure 4: Unified Label Mapping Across three Open-source Benchmarks. The Feeling Wheel is proposed by
(Willcox, 1982)

Table 2: The ablation results of Llama2 on three bench-
marks.

Dataset IEMOCAP MELD EmoryNLP
Models W-F1 W-F1 W-F1

LoRA + InstructERC

Llama2 71.39±0.10 69.15±0.08 41.37±0.11

w/o Le 70.50∗∗±0.12 68.97∗±0.10 40.78∗±0.10

w/o Lp 70.70∗±0.15 68.76∗±0.14 40.59∗∗±0.13

w/o Le + Lp 69.71∗∗±0.17 68.39∗∗±0.11 39.56∗∗±0.15

w/o Ddomain
70.91∗±0.13 68.62∗±0.19 40.54∗±0.19

w/o LoRA 70.30∗∗±0.11 64.80∗∗±0.12 40.05∗∗±0.21

Results with standard deviation and significance testing between w/o* and LLama2
(*p<0.05, **p<0.01.)

please refer to the “All Parameters vs Parameter442

Efficiency” section in Appendix E.4 . The further443

data scaling analysis of single dataset can be refer444

to Appendix E.5.445

4 Unified dataset Experiments446

In real-world scenarios, the ideal ERC model447

should be able to address ERC challenges across448

multiple domains, and even carry out open-domain449

ERC tasks. However, biases in data distribution450

and labeling make it challenging for small ERC451

models to achieve multi-domain capabilities, To452

better simulate real-world scenarios, we first recon-453

struct three ERC datasets into a single ERC dataset454

(UIME) with unified labels based on the Emotion455

Wheel (Figure 4), to better suit more industrial456

scenarios.457

4.1 Unified Dataset Experiment Setup 458

Within the settings of this experiment, all emo- 459

tional labels across the datasets are standardized, 460

and all speaker labels are also consolidated. The 461

unification details of speaker labels and emotional 462

labels can be refered to Appendix A. Subsequently, 463

we conduct data scaling experiments on the UIME. 464

To explore the impact of different sampling meth- 465

ods on the final performance, two data scaling ap- 466

proaches are experimented with: Total Mixing and 467

Ratio Mixing. 468

In the “Total Mixing” approach, all subdatasets 469

in UIME are first merged together, and then {1, 470

1/2, 1/4, 1/8, 1/16, 1/32, 1/64} amounts of data are 471

randomly sampled separately from the merged data 472

to fine-tune instructERC. Conversely, in the “Ratio 473

Mixing” approach, {1, 1/2, 1/4, 1/8, 1/16, 1/32, 474

1/64} amounts of subdatasets are first randomly 475

sampled separately, and then they are merged in 476

accordance with their respective ratios to form the 477

training data. Both approaches maintain the same 478

quantity of the final training data. 479

The details of results are shown in Table 5 in 480

Appendix A, and a more intuitive presentation is 481

shown in Figure 5. 482

4.2 The Robustness of InstructERC 483

As depicted in the Figure 5, Compared to the sin- 484

gle dataset training setup, the performance of In- 485

structERC, when fine-tuned on the UIME, has ex- 486

perienced a minor drop across three benchmarks. 487

Specifically, there’s a decrease of 2.4% in IEMO- 488
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The Unified Dataset Experiments of Llama2 on three benchmarks

Figure 5: The data scaling analysis demonstrated on three benchmarks using different data mixing strategies

CAP, 1.08% in MELD, and 1.1% in EmoryNLP.489

However, a relatively high Weighted F1 score (W-490

F1) can still be maintained simultaneously on these491

three benchmarks, particularly the performance of492

MELD(68.07%), which continues to surpass the493

SOTA level of all small models. The results ex-494

hibits InstructERC ’s exceptional robustness, which495

is capable of concurrently acquiring emotional496

paradigms from a multitude of distinct distributions497
6.498

4.3 The Data Scaling Exploration499

The data scaling experiments are conducted on the500

unified dataset from 1 to 1/64. As the scale of501

trainig data exponentially decreases from 1 to 1/32502

within the range, the performance of the model on503

the three benchmarks exhibits a slight fluctuation504

in linear decline.505

We are also surprised to discover that during the506

final stage of training data reduction from 1/32 to507

1/64, the Total Mixing and Ratio Mixing strategies508

continue to exhibit a linear performance decline.509

However, the performance of the model trained un-510

der the single method experiences a drastic drop, as511

depicted in Figure 5. We posit that data from differ-512

ent scenarios endows the model with the capability513

to comprehend emotions from diverse perspectives.514

This, in turn, allows the model to achieve robust515

enhancements under various data conditions. Such516

mutual gain is particularly pronounced in low re-517

source scenarios (1/64). This is consistent with518

the findings of some existing explorations in large519

models (Dong et al., 2023).520

4.4 The Discussion of Mixing Strategies521

We have further investigated the impact of differ-522

ent mixing strategies on data scaling. The results523

6The statistics of scaling analysis can be found in Table 5

displayed by different datasets on various mixing 524

strategies can be interpreted from the following two 525

perspectives: 526

Data Representativeness: In Total Mixing sam- 527

pling, where each dataset’s samples are equally 528

likely to be selected, the unique traits of smaller 529

datasets like IEMOCAP may be obscured by larger 530

ones like MELD. In contrast, Ratio Mixinging sam- 531

pling, which represents each dataset proportionally 532

to its original sample size, may better highlight the 533

characteristics and influence of smaller datasets. 534

Effect of Class Imbalance: In smaller datasets 535

with internal class imbalances, Total Mixing sam- 536

pling could exacerbate these imbalances. For in- 537

stance, if IEMOCAP has a relatively smaller num- 538

ber of samples in a certain category, Total Mixing 539

sampling might further intensify this imbalance 540

during model training. Ratio Mixing sampling, 541

however, better preserves the original class propor- 542

tions of the datasets, potentially mitigating class 543

imbalance impacts to a degree. 544

5 Conclusion 545

We introduce InstructERC, a novel approach that 546

transforms the ERC task from a discriminative 547

framework to a generative framework using LLMs. 548

InstructERC presents a simple and effective re- 549

trieval template adapting to different conversation 550

lengths. Futhermore, we introduce two emotional 551

alignment tasks to model speaker and complex con- 552

versation relationships. InstructERC outperforms 553

all previous models and achieve comprehensive 554

SOTA results on three benchmarks. We also pio- 555

neer in unifying label mapping and modeling across 556

these datasets, demonstrating the InstructERC’s ro- 557

bust generalization capabilities. Our extensive anal- 558

ysis provides practical insights for implementing 559

InstructERC in real-world ERC scenarios. 560
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Limitation561

In this work, we focus solely on the textual aspects562

of these datasets. The exploration of multimodal563

aspects is reserved for future research. We have564

conducted our explorations specifically on two rep-565

resentative large model frameworks, ChatGLM and566

LLaMA. Due to limitations in our graphics card567

capacity, the maximum parameter size of the large568

models we used does not exceed 7 billion.569

Ethics Statement570

All the data sets we used for the experiment were571

published publicly. These data sets passed the ethi-572

cal review at the time of publication. All the non-573

original methods and modules mentioned in this574

article have quoted other people’s literature. All575

our science artifacts observe MIT licese.576
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Table 3: Unified Label Mapping

Number IEMOCAP MELD EmoryNLP Final Emotion
1 happy joyful joyful joyful
2 sad sad sad sad
3 neutral neutral neutral neutral
4 angry angry mad mad
5 excited N\A N\A excited
6 N\A surprise powerful powerful
7 scared fear frustrated fear
8 N\A N\A peaceful peaceful
9 N\A disgust N\A disgust

Table 4: One-hot Speaker Label Mapping

Speaker label IEMOCAP MELD EmoryNLP
1 1 N\A N\A

. . . . . . N\A N\A
n1 n1 N\A N\A

n1 + 1 N\A 1 N\A
. . . N\A . . . N\A

n1 + n2 N\A n2 N\A
n1 + n2 + 1 N\A N\A 1

. . . N\A N\A . . .
n1 + n2 + n3 N\A N\A n3

A The Details of Unified Dataset802

Experiment Setup803

To further substantiate the efficacy and robustness804

of our framework, we conduct a compelling exper-805

iment involving a unified dataset. Within the set-806

tings of this experiment, all emotional labels across807

the datasets are standardized, and all speaker labels808

are also consolidated. Subsequently, we conduct809

data scaling experiments on the processed unified810

dataset. The evaluation method employed in the ex-811

perimental results, utilizing the weighted F1 score,812

aligned with the evalution method delineated in813

Section Experiments.814

We continue to use the previous datasets IEMO-815

CAP, MELD, and EmoryNLP. According to The816

Feeling Wheel (Willcox, 1982) proposed in 1982,817

as shown in subfigure of Figure 4, we align all emo-818

tional labels from three datasets with this standard,819

the details of which are shown in Tabel 3. After820

completion of label mapping, there are a total of821

9 types of emotional labels, which are joyful, sad,822

neutral, mad, excited, powerful, fear, peaceful and823

disgust. Furthermore, due to the uniqueness of824

character labels in each dataset, we have renum-825

bered them using a One-hot encoding approach, as826

demonstrated in the "One-hot Speaker Label Map-827

ping" Table 4, which also is shown in subfigure of828

Figure 4.829

We still utilize the LoRA method in PEFT to830

train InstructERC on the unified dataset, and the 831

training results are evaluated on the three datasets 832

respectively. As mentioned above, these datasets 833

have significant variations in sample size and class 834

imbalance within each dataset. To explore the im- 835

pact of different sampling methods on the final 836

performance, two data scaling approaches were ex- 837

perimented with: Total Mixing and Ratio Mixing. 838

In the Total Mixing approach, all datasets are 839

combined for uniform sampling. Conversely, in 840

the Ratio Mixing approach, datasets are sampled 841

separately and then combined. Both approaches 842

maintain the same quantity of training data, but due 843

to the larger absolute number of training samples in 844

MELD and EmoryNLP, the Total Mixing approach 845

results in a higher proportion of samples from these 846

two datasets when varying data scaling is applied. 847

Total Mixing and ratio Mixing modes are applied 848

proportionally across the entire training set, while 849

still segregating a validation set and a test set. The 850

reported results are obtained after training on a 851

unified training set and then testing on separate test 852

sets. The Single mode, on the other hand, involves 853

training on individual training sets and then testing 854

on their respective test sets. 855

Meanwhile, we design Total Mixing and Ratio 856

Mixing experiments to explore the impact of dif- 857

ferent data mixing strategies and data quantities 858

on the model. On the basis of the following, we 859

further explore the impact of data sampling ratio on 860

the model’s performance.The details of results are 861

shown in Table 5, and a more intuitive presentation 862

is shown in Figure 5. 863

B Related Works 864

B.1 Emotion Recoginition in Conversation 865

After more than a decade of development, the 866

field of Emotion Recognition in Conversation 867

(ERC) has seen many outstanding works. These 868

can be broadly classified into three categories: 869

Transformer-based, GNN-based, Recurrent-based. 870

Specifically, Transformer-based works (Li 871

et al., 2020; Song et al., 2022; Liu et al., 2023; 872

Yingjian et al., 2023; Chudasama et al., 2022) at- 873

tempt to establish long-range emotional correla- 874

tions in conversational scenarios by directly adopt- 875

ing or modifying the original transformer block. 876

These efforts have made significant contributions 877

in this direction. 878

GNN-based works (Ghosal et al., 2019; Ishi- 879

watari et al., 2020; Shen et al., 2021; Li et al., 880
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Table 5: The Unified Dataset Experiments of Llama2 on three benchmarks

Data Precent IEMOCAP W-F1 MELD W-F1 EmoryNLP W-F1
Total Mixing Ratio Mixing Single Total Mixing Ratio Mixing Single Total Mixing Ratio Mixing Single

1 68.99 68.99 71.39 68.07 68.07 69.15 40.27 40.27 41.37
1/2 67.95 68.96 69.13 66.50 66.42 67.54 39.18 39.33 39.65
1/4 63.02 64.46 67.54 66.41 65.85 66.42 38.26 37.29 38.33
1/8 58.48 60.06 64.13 64.57 62.94 65.14 38.27 39.24 38.24

1/16 57.77 53.40 60.42 61.15 58.42 62.89 37.19 37.60 36.83
1/32 45.89 48.50 54.76 57.38 57.76 57.72 37.09 36.09 34.03
1/64 38.42 43.07 30.34 54.26 53.29 45.48 35.19 34.65 26.10

2023a) extensively use graphs and edges to model881

interactions between people in conversational sce-882

narios and the influences between different modal-883

ities. They employ various forms of multi-layer884

graph neural networks to fit potential conversa-885

tional relations, effectively exploring this direction.886

Recurrent-based works (Hu et al., 2023; Lei887

et al., 2023; Majumder et al., 2019; Hazarika et al.,888

2018; Poria et al., 2017) utilize various forms of889

RNNs, like LSTM and GRU, to model individual890

emotional states and global emotional impacts sep-891

arately. They incorporate attention mechanisms or892

direct vector concatenation to represent personal893

and global emotional states collectively, marking894

effective exploration in this area.895

B.2 Large Language Models896

The emergence of large-scale language models897

(LLMs) have brought revolutionary transforma-898

tion to the field of natural language processing899

(NLP) (Shen et al., 2023). LLMs, such as GPT-3900

(Brown et al., 2020), LLaMA (Touvron et al., 2023)901

and GPT-4 (OpenAI, 2023), have demonstrated im-902

pressive abilities on various tasks, as well as the903

use of external techniques such as reinforcement904

learning from human feedback (RLHF) (Ouyang905

et al., 2022). LLMs based on generative frame-906

work even reformulate the multi modal perspective907

(Lin et al., 2021; Zhang et al., 2023c). More re-908

cently, the NLP community has been exploring909

various application directions for LLMs. For in-910

stance, chain-of-thought prompting and RFT (Wei911

et al., 2023; Yuan et al., 2023) enables LLMs to912

generate problem-solving processes step-by-step,913

significantly enhancing the model’s reasoning abil-914

ity. Researchers have utilized the interactive ca-915

pabilities of LLMs to generate commands that in-916

voke external tools for handling of downstream917

tasks(Shen et al., 2023). Other researchers have918

proposed parameter-efficient fine-tuining (PEFT)919

to address the issue of excessive computational re-920

source without sacrificing performance (Hu et al.,921

2021). 922

C Datasets & Baselines 923

C.1 Datasets 924

IEMOCAP (Busso et al., 2008) is a dataset 925

recorded as dyadic conversational video clips with 926

eight speaker participating in the training set while 927

two speaker in testing set. 928

MELD dataset (Poria et al., 2018) is a multi- 929

modal dataset that has been expanded from the 930

EmotionLines dataset. MELD is obtained from the 931

popular TV show Friends and comprises over 1400 932

dialogues and 13000 utterances, each of which is 933

labeled with emotion and sentiment classes. 934

EmoryNLP (Zahiri and Choi, 2017) is a dataset 935

also collected from the TV series Friends. The 936

dataset comprises utterances that are categorized 937

into seven distinct emotional classes. 938

This study exclusively focuses on the emotional 939

classes and the text modality in these datasets. 940

Moreover, we ensure consistency with COSMIC 941

regarding the train/val/test splits. 942

C.2 Baselines 943

For discriminative ERC models, we selected sev- 944

eral SOTA baseline for each method. For our recon- 945

structed generative model, we chose four popular 946

LLMs as backbones. 947

Recurrent-based: 1) EmotionIC (Yingjian 948

et al., 2023) uses IM-MHA and DialogGRU to 949

capture contextual information in the dialogue, and 950

SkipCRF to capture high-order dependencies be- 951

tween speakers for emotional flow simulation. 2) 952

SACL-LSTM (Hu et al., 2023) extracts structured 953

representations using contrast-aware adversarial 954

training and joint class-spread contrastive learn- 955

ing, an additional contextual adversarial training 956

strategy to enhance context robustness. 957

Transformer-based: 1) MPLP (Lu et al., 2022) 958

is a framework that unifies multimodal sentiment 959

analysis and emotion recognition in conversation 960
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Table 6: The statistics of datasets. avg_utt denotes the average number of utterances in a conversation.

Datasets Conversations Utterances classes type avg_utt EvaluationTrain Val Test Train Val Test

IEMOCAP 108 12 31 5163 647 1623 6 two-person 47 W-F1
MELD 1038 114 280 9989 1109 2610 7 multi-party 9 W-F1

EmoryNLP 713 99 85 9934 1344 1328 7 multi-party 11 W-F1

tasks. This framework achieves this by performing961

modality fusion at both the syntactic and seman-962

tic levels, and by introducing contrastive learning963

between modalities and samples. 2) SPCL (Song964

et al., 2022) is a method that addresses imbalanced965

classification issues using Prototypical Network966

and contrastive learning, without the need for large967

batch sizes, and incorporates a difficulty measure968

function and curriculum learning to mitigate the969

effects of extreme samples.970

GNN-based: 1) DualGATs (Li et al., 2021) uses971

a connected graph to enhance the targeted utterance972

with information from the past and future context,973

and utilizes CommonSense Knowledge (CSK) to974

enrich edges with knowledge representations. 2)975

Skier (Li et al., 2023a) is a module that efficiently976

models contextual and interactive information for977

ERC task. It uses multiple extractors and PairCC978

strategy to address the heterogeneity gap in multi-979

modal fusion.980

LLM backbones: 1) ChatGLM-6B &981

ChatGLM2-6B: ChatGLM-6B is an open-source982

conversational language model (Du et al., 2022)983

for Chinese and English. It has 6.2 billion parame-984

ters and is optimized for Chinese QA. It has been985

trained on 1 trillion Chinese and English identi-986

fiers and further improved through various tech-987

niques. ChatGLM2-6B is the second generation of988

the model, pre-trained on 1.4 trillion Chinese and989

English identifiers with human preference align-990

ment training. It extends the context window to991

32K and speeds up inference with Multi-Query992

Attention. 2) Llama-7B & Llama2-7B: Llama-993

7B is the 7B parameters’ version of the a collec-994

tion of foundation language models (Touvron et al.,995

2023) ranging from 7B to 65B parameters, which996

is trained on trillions of tokens. Llama2-7B pre-997

trained models are trained on 2 trillion tokens, and998

have double the context length than Llama 1. Its999

fine-tuned models have been trained on over 1 mil-1000

lion human annotations.1001

D Implementation & Discussion 1002

D.1 Implementation Details 1003

We use ChatGLM and Llama as our backbone 1004

model. Considering the efficiency and effective- 1005

ness of Parameter-Efficient-Fine-Tuning (PEFT), 1006

we adopt LoRA (Hu et al., 2021) and insert low- 1007

rank adapters after self-attention layers. We set the 1008

dimension of adapters to 16 a nd the learning rate 1009

to 2e-4. The learning rate is set to 2e-5 for all pa- 1010

rameters’ finetune. The histoical window is set to 1, 1011

5, 12, 20 for iemocap, meld and EmoryNLP respec- 1012

tively for all experiments. The retrieval parameter 1013

“TopK” is set to Top1 emprically. The hypermeter 1014

α is set to 0.1 during training. Greedy search is 1015

used during inference if not specified. Moreover, 1016

our experiments are conducted by taking the aver- 1017

age of three runs with no hyperparameter searching. 1018

We train with FP16 precision on 4 × 80G Nvidia 1019

A100 GPUs. 1020

D.2 Discussion with Discriminative ERC 1021

Models 1022

Problem definition. 1023

In the discriminative framework, researchers 1024

first fine-tune an RoBERTA-style model with the 1025

context-free utterance, extract the feature vector at 1026

the CLS position as the input for the downstream 1027

ERC model. The aim is to map the feature vector 1028

of the given utterance to a scalar between 1 and o. 1029

In the generative framework based on LLMs, for 1030

a given utterance, we process it into formatted text 1031

according to the pre-designed template and input 1032

it into LLMs. The aim is to enable LLMs generate 1033

the most reasonable text emotional label, which 1034

must belong to the predefined text emotional label 1035

set E = {e1, e2, ..., eo}. 1036

Parameter Scales. As shown in Table 7, we 1037

present the publicly available statistics for all train- 1038

able parameters across the models. Although the 1039

base architecture of our model is in the 6-7B pa- 1040

rameter range, only 12.5M LoRA parameters are 1041

actively trained, which is feasible on a single GPU. 1042

For example, on the IEMOCAP dataset, our model 1043
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Table 7: The more detailed results and Statistics on three benchmarks.

Dataset Parameters IEMOCAP MELD EmoryNLP Average Extra Model type
Models W-avg F1 W-avg F1 W-avg F1 W-avg F1 Knowledge

Small-scale Discriminant ERC-specific Model

KET∗ 2.6M 59.56 58.18 34.39 50.17 ConceptNet transformer
TODKAT† 330M 61.33 65.47 38.69 55.16 COMET transformer

MTL∗ 1.2M —– 61.90 35.92 —– transformer
CoG-BART∗ 415.1M 64.87 63.82 37.33 55.34 transformer

M2FNet∗ —– 69.86 66.71 —– —– transformer
SPCL† 356.7M 68.42 66.13 40.25 58.26 transformer

Hidialog∗ —– —– 66.96 —– —– transformer
SACL-LSTM∗ 2.6M 69.22 66.45 39.65 58.44 recurrent

HCAN† 3.5M 69.21 66.24 39.67 58.37 recurrent
ICON∗ 0.5M 63.50 —– —– —– recurrent

DialogueRNN† 9.9M 64.65 65.30 37.54 55.83 recurrent
DialogueCRN† 3.3M 67.53 65.77 38.79 57.36 recurrent

EmotionIC∗ —– 69.50 66.40 40.01 58.63 recurrent
CauAIN∗ 6.1M 65.01 64.89 37.87 55.92 ATOMIC recurrent
COIN∗ 0.5M 65.37 —– —– —– recurrent

COSMIC† 11.9M 65.03 63.43 38.49 55.65 COMET recurrent
DialogueGCN† 2.1M 62.11 62.68 36.43 53.14 GNN

RGAT∗ 13M 65.22 60.91 34.42 53.52 GNN
SKAIG∗ —– 66.96 65.18 38.88 57.01 COMET GNN

DAG-ERC† 9.5M 66.54 63.36 38.29 56.06 GNN
GraphCFC∗ —– 68.91 58.86 —– —– GNN

Small-scale Pretrained Language Model

KI-NET∗ 500M 67.00 63.24 —– —– ConceptNet transformer
DialogueXL∗ 510M 65.94 62.41 34.73 54.36 transformer
EmoBERTa∗ 355M 68.57 65.61 —– —– transformer

UniMSE∗ 220M 70.66 65.51 —– —– transformer

Zero-shot + InstructERC

ChatGLM † 12.5M(6B) 38.6 38.8 19.6 32.33 LLM-based
ChatGLM2 † 12.5M(6B) 21.1 21.8 24.4 22.43 LLM-based

Llama † 12.5M(7B) 0.753 9.12 5.31 5.06 LLM-based
Llama2 † 12.5M(7B) 2.774 16.28 8.36 9.46 LLM-based

LoRA + Backbone

ChatGLM † 12.5M(6B) 18.94 40.54 25.71 28.07 LLM-based
ChatGLM2† 12.5M(6B) 52.88 64.85 37.69 51.80 LLM-based

Llama† 12.5M(7B) 55.81 66.15 37.98 53.21 LLM-based
Llama2† 12.5M(7B) 55.96 65.84 38.21 53.33 LLM-based

LoRA + InstructERC

ChatGLM† 12.5M(6B) 36.04 46.41 30.86 37.77 LLM-based
ChatGLM2† 12.5M(6B) 67.54 65.58 39.09 57.40 LLM-based

Llama† 12.5M(7B) 64.17 67.62 39.34 57.04 LLM-based
Llama2† 12.5M(7B) 71.39 69.15 41.37 60.64 LLM-based

NOTE: The best-performing results of other models are highlighted in gold font, while SOTA results across all models are
emphasized in red font. Models annotated with an * indicate results sourced from the model’s paper, and a (†) denotes results
from reproductions conducted by the authors.

15



typically converges by the 6th epoch, taking ap-1044

proximately 2 hours. The inference process re-1045

quires about 10 minutes to handle 1000 samples.1046

While our method is marginally slower than other1047

approaches, such as the SPCL baseline which uti-1048

lizes 356.7M training parameters, this speed re-1049

duction is not a significant drawback and remains1050

manageable for most research contexts.1051

Structural Complexity. As shown in Table1052

7 and Figure 1, taking the influential work such1053

as COSMIC as an example, COSMIC fine-tuned1054

RoBERTA on single-sentence dialogues, extracted1055

its features, and encapsulated them into a dataset.1056

Many works in the baseline are based on the fea-1057

ture dataset extracted from this work rather than1058

the original text data for downstream model design.1059

This means that these models (including but not1060

limited to all the compared baselines which adopt1061

this practice) need to use the single-sentence speech1062

features fine-tuned with emotional labels during in-1063

ference, which clearly does not conform to reality1064

(the sentences that need to perform emotion recog-1065

nition cannot access the gold emotional labels in ad-1066

vance). Furthermore, even if these single-sentence1067

features do not need fine-tuning, it is still necessary1068

to use Roberta to infer and obtain features.1069

In contrast, our InstructERC can directly input1070

text and output emotional labels. Additionally, the1071

InstructERC framework can be migrated to multi-1072

ple datasets and combine datasets across multiple1073

domains without modification, whereas discrimi-1074

native models require manual changes to the ar-1075

chitecture of the model, specifically the number of1076

softmax classification neurons in the last layer, to1077

perform multi-domain operations. In terms of scal-1078

ability, the generative model InstructERC is clearly1079

more practical than discriminative models.1080

E The Supplementary Experiments1081

E.1 The historical window exploration study1082

Table 8: The historical window exploration of Llama2
on three benchmarks.

histoical IEMOCAP MELD EmoryNLP
window W-F1 W-F1 W-F1

LoRA + LLaMA2 + InstructERC

1 56.12±1.40 65.91±0.46 38.32±0.38

5 68.65±0.32 66.97±0.21 40.48±0.23

12 71.39±0.10 69.15±0.09 41.37±0.11

20 71.01±0.12 68.75±0.12 40.56±0.15

In the historical window exploration shown as 1083

Table 8, we examine how different sizes of his- 1084

torical windows affect emotion recognition tasks. 1085

Due to token limitations, we set the upper limit 1086

for conversational turns to 20. This is an upgrade 1087

from earlier, smaller Pretrained Language Models 1088

(PLMs, e.g. Roberta(Liu et al., 2019)), which only 1089

support up to 5 turns. We find that a window of 1090

12 turns is optimal for capturing the necessary his- 1091

torical context. In general, expanding the count of 1092

historical turns aids in enhancing the accuracy of 1093

emotion detection, a trend that is readily observable 1094

in the IEMOCAP dataset featured long-term turns. 1095

However, there’s a point where adding more histor- 1096

ical turns doesn’t lead to better results and might 1097

even harm performance, especially for datasets like 1098

MELD and EmoryNLP, which have an average 1099

length of 6 to 7 turns. However, these insights are 1100

beyond the reach of smaller PLMs that top out at 5 1101

turns. 1102

E.2 The Exploration Experiments on α 1103

Table 9: The exploration experiments on α.

α IEMOCAP MELD EmoryNLP
W-F1 W-F1 W-F1

LoRA + LLaMA2 + InstructERC

0 70.50 68.97 40.78
0.05 70.67 69.03 40.91
0.1 71.39 69.15 41.37
0.2 71.14 68.54 40.63

Shown as Table 9, the influence of alpha on In- 1104

structERC’s performance varies across different 1105

datasets due to their unique characteristics. In gen- 1106

eral, as alpha increases, its contribution to model 1107

performance also increases, peaking at alpha=0.1. 1108

Specifically, in the IEMOCAP dataset, character- 1109

ized by longer dialogues averaging 47 turns, even 1110

when alpha exceeds 0.1 significantly, there is no 1111

significant decrease in performance. However, in 1112

datasets like MELD and EmoryNLP, which have 1113

shorter dialogues averaging 7 turns, an alpha value 1114

of 0.2 can lead to a negative impact, particularly ev- 1115

ident in MELD. Therefore, careful consideration is 1116

necessary when selecting alpha values for different 1117

datasets. 1118

This phenomenon can be explained as follows: 1119

In the IEMOCAP dataset, with its longer dialogues, 1120

emotional changes occur relatively slowly. In con- 1121

trast, datasets like MELD and EmoryNLP, sampled 1122
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from the sitcom “Friends”, feature many brief and1123

intense emotional shifts. Excessive reduction in the1124

weight of emotion impact prediction may cause the1125

model to overly emphasize the influence of past ut-1126

terances on current emotion judgment, which may1127

not be suitable for MELD and EmoryNLP.1128

E.3 Label Ablation Experiments1129

To further explore the impact of using the same1130

or unrestricted emotional labels at different stages1131

during the demonstration retrieval process on final1132

performance, we designed experiments as shown in1133

the table 10, where ×represents not using the same1134

labels, and ✓represents using the same labels. Our1135

conclusions are as follows:1136

Impact of Label Restrictions: The perfor-1137

mance consistently improves across all datasets1138

when moving from unrestricted to restricted labels1139

in both training and inference. This suggests that1140

restricting labels helps the model learn more ro-1141

bust features that are better at generalizing during1142

inference.1143

Comparison Across Datasets: IEMOCAP:1144

Shows a steady increase in W-F1 scores as re-1145

strictions are applied first in training and then in1146

both training and inference. The improvement1147

from fully unrestricted to fully restricted is 1.541148

points. MELD: Similar to IEMOCAP, restricted1149

training and inference show a noticeable improve-1150

ment. The gain from the least to the most restricted1151

setup is 2.54 points, indicating a potentially more1152

significant impact of label restriction in emotion-1153

ally complex interactions, possibly due to MELD’s1154

diverse emotional content and real-life scenarios.1155

EmoryNLP: This dataset shows the lowest overall1156

scores but follows the same trend. The increase is1157

2.14 points from no restrictions to full restrictions.1158

Given the smaller base score, this improvement is1159

quite significant, emphasizing how crucial precise1160

label handling is in models trained on this data.1161

Fairness and Performance Trade-offs: The1162

best results obtained by using restricted labels in1163

both phases might not be fair or realistic for real-1164

world applications, where the model shouldn’t have1165

prior knowledge of the emotional context. This1166

indicates a need for models that perform well un-1167

der unrestricted conditions. The performance drop1168

when moving to unrestricted labels in inference un-1169

derscores the challenge in generalizing the learned1170

emotional cues without specific hints, highlighting1171

a potential area for further research in enhancing1172

model robustness.1173

Table 10: Dataset performance with various restrictions
on labels during training and inference.

Dataset Training Inference W-F1

IEMOCAP × × 70.71
IEMOCAP ✓ × 71.39
IEMOCAP ✓ ✓ 72.25

MELD × × 68.52
MELD ✓ × 69.15
MELD ✓ ✓ 71.06

EmoryNLP × × 40.54
EmoryNLP ✓ × 41.37
EmoryNLP ✓ ✓ 42.68

Table 11: The comparison results of different parameter
fine-tuning settings on three benchmarks.

Dataset IEMOCAP MELD EmoryNLP Average
Models W-F1 W-F1 W-F1 W-F1

All parameters + InstructERC

ChatGLM† 33.94 37.96 13.25 28.38
ChatGLM2† 70.05 63.24 38.77 57.35

Llama† 69.38 66.01 40.21 58.53
Llama2† 70.30 64.80 40.05 58.38

LoRA + InstructERC

ChatGLM† 36.04 46.41 30.86 37.77
ChatGLM2† 67.54 65.58 39.09 57.40

Llama† 69.71 68.89 39.90 59.50
Llama2† 71.39 69.15 41.37 60.64

E.4 All Parameters vs Parameter Efficiency 1174

In order to investigate the effect of different pa- 1175

rameter fine-tuning methods on the ERC task, we 1176

conducted comparative experiments in Table 11. 1177

We have the following observations: 1178

(1) The all parameter fine-tuning performs 1179

weaker than LoRA’s fine-tuning on all backbones 1180

on average performance (especially ChatGLM with 1181

a 9.32 % improvement). It is worth noting that the 1182

best performance of the full parameter method is 1183

often achieved in the first 1-3 epochs in the experi- 1184

ment. These findings demonstrate that parameter- 1185

efficient methods are more suitable for LLMs in 1186

ERC tasks. 1187

(2) From the perspective of model structure, the 1188

average performance of full parameter ChatGLM 1189

even decreases compared to the zero-shot results 1190

in Table 1 (from 32.33% to 28.38%), while replac- 1191

ing it with LoRA brings a significant improvement 1192

(from 32.33% to 37.77%). Other decoder-only 1193

backbones do not show such drastic performance 1194

fluctuations, which further indicates that the prefix- 1195

decoder paradigm is unstable in ERC tasks com- 1196

pared to the casual decoder, and parameter-efficient 1197
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The Low-source Setting exploring of Llama2 on three benchmarks

Figure 6: The scaling of data and performance for different parameter fine-tuning settings (LoRA & All Parameters)

frameworks can effectively alleviate this problem.1198

(3) From the perspective of datasets, compared1199

to full parameter fine-tuning, the performance gain1200

of the LoRA method in MELD and EmoryNLP is1201

significantly greater than that in IEMOCAP. We1202

believe that this is related to the characteristics1203

of thees datasets: IEMOCAP has long dialogue1204

texts and multiple conversation rounds, these strong1205

supervision signals lead to good performance in1206

both settings. However, MELD and Emory have1207

fewer dialogue rounds, diverse speakers, and im-1208

balanced categories. Low-parameter methods can1209

effectively prevent LLMs from overfitting to certain1210

semantic patterns of dialogues format and speaker’s1211

habits, thereby enhancing the generalization ability1212

of emotion recognition in conversation.1213

E.5 Scaling Analysis in Low-source Scenario1214

In this section, we gain an insight into the scal-1215

ing analysis of data and performance for different1216

parameter fine-tuning settings (LoRA & All Param-1217

eter), as shown in Figure 6.1218

Parameter-efficient Scaling Analysis: On the1219

IEMOCAP dataset, our scaling curve initially in-1220

creases (from 1/16 to 1/4) and then stabilizes. This1221

may be because the dataset has long dialogue texts1222

and multiple dialogue rounds, leading to increased1223

diversity with the addition of early data. However,1224

as the supervision signal strengthens, the perfor-1225

mance gain gradually weakens. For datasets with1226

fewer dialogue rounds and imbalanced categories,1227

such as MELD and EmoryNLP, our method only1228

yields a small gain in extremely low-resource sce-1229

narios (from 1/16 to 1/4) and achieves a relatively1230

stable performance improvement with the increase1231

of data (from 1/2 to 1). This finding supports the1232

idea that when a unit-scaling of data only provides1233

weak supervision signals, the data size needs to1234

exceed a certain threshold (1/4 - 1/2) to achieve 1235

significant improvement. 1236

Full-Parameter Scaling Analysis: The scaling 1237

curves of full-parameter settings on the IEMOCAP 1238

and EmoryNLP datasets showed significant fluctua- 1239

tions and performance degradation in two intervals 1240

(from 1/16 to 1/8, 1/4 to 1/2) compared to LoRA. 1241

Fine-tuning large models with all parameters may 1242

cause redundant parameters to overfit the patterns 1243

in the current dialogue, which hinders the model’s 1244

ability to generalize new supervised signals as data 1245

volume increases. The MELD dataset also exhib- 1246

ited performance degradation with data augmenta- 1247

tion (from 1/4 to 1). These findings demonstrate 1248

the stability and robustness of parameter-efficient 1249

fine-tuning in the ERC task, providing empirical 1250

guidance for large models in industrial interfaces 1251

with ERC tasks of varying data characteristics. 1252
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