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Abstract

The field of emotion recognition of conversa-
tion (ERC) has been focusing on separating sen-
tence feature encoding and context modeling,
lacking exploration in generative paradigms
based on unified designs. In this study, we
propose a novel approach, InstructERC, to re-
formulate the ERC task from a discriminative
framework to a generative framework based on
Large Language Models (LLMs). InstructERC
makes three significant contributions: (1) it
introduces a simple yet effective retrieval tem-
plate module, which helps the model explic-
itly integrate multi-granularity dialogue super-
vision information. (2) We introduce two addi-
tional emotion alignment tasks, namely speaker
identification and emotion prediction tasks, to
implicitly model the dialogue role relationships
and future emotional tendencies in conversa-
tions. (3) Pioneeringly, we unify emotion labels
across benchmarks through the feeling wheel to
fit real application scenarios. InstructERC still
perform impressively on this unified dataset.
Our LLM-based plugin framework significantly
outperforms all previous models and achieves
comprehensive SOTA on three commonly used
ERC datasets. Extensive analysis of parameter-
efficient and data-scaling experiments provides
empirical guidance for applying it in practical
scenarios. Our code and aligned unified dataset
are in the supplementary.

1 Introduction

“The question is not whether intelligent machines
can have emotions, but whether machines without
emotions can achieve intelligence”, as mentioned
in “Society of Mind” (Minsky, 1988). Empowering
machines with the ability to understand emotions in
various scenarios has always been the unwavering
direction of researchers.

In contrast to conventional binary sentiment anal-
ysis tasks (Pontiki et al., 2016) , which only rely
on text with explicit attitude tendencies, the emo-
tion recognition in conversation (ERC) task aims

to identify more fine-grained emotional tendencies
in each sentence of a conversation. Specifically, for
a given complete dialogue sequence input and a set
of emotional labels, the model is required to accu-
rately assign an emotional label to each sentence.
Intuitively, the recognition of emotional tenden-
cies in the target sentence is heavily influenced
by its historical utterances (Yingjian et al., 2023),
and there is significant variation in how different
speakers perceive and express emotions (Shen et al.,
2021). Therefore, it is imperative to meticulously
model the speakers and dialogue context.

Figure 1 illustrates that previous work based on
Roberta (Liu et al., 2019) in ERC can be roughly
divided into three categories: (1) Transformer-
based methods (Li et al., 2020; Song et al., 2022;
Liu et al., 2023; Chudasama et al., 2022) attempt
to establish long-range emotional correlations in
conversational scenarios by directly adopting or
modifying the original transformer block. (2)
Recurrent-based methods (Hu et al., 2023; Lei
et al., 2023; Majumder et al., 2019; Hazarika et al.,
2018; Poria et al., 2017) utilize various forms of
RNN:s, like LSTM and GRU, to model individual
emotional states and global emotional impacts sep-
arately. (3) GNN-based methods (Ghosal et al.,
2019; Ishiwatari et al., 2020; Shen et al., 2021;
Li et al., 2023a) typically use nodes and edges to
model characters and dialogue relationships in con-
versations. Above approaches have their strengths
in modeling dialogue at the sentence level, but they
still generally adhere to the paradigm of fine-tuning
sentence features and separately modeling dialogue
context. However, in realistic scenarios, end-to-end
model designs are often more practical. !.

Fortunately, the recent successful application
(OpenAl, 2023) and emergence capabilities (Zhao
et al., 2023) of pre-trained large language mod-

!The discussion between discriminant model and Instruc-
tERC can refer to D.2
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Figure 1: The illustration of different paradigms for ERC

els (LLMs) have demonstrated remarkable perfor-
mance in natural language reasoning tasks. By
using a generative architecture, LLMs unify the
output and input of different tasks and have shown
significant performance improvements in all NLP
tasks. Despite their powerful capabilities, enabling
these abilities for specific sub-tasks requires high-
quality prompts (Wei et al., 2021; Chung et al.,
2022) and designs to fill the reasoning gap. There-
fore, how to use LLMs framework to reconstruct
ERC while considering context modeling, speaker
modeling, and capturing conversation relationships
poses a significant challenge in pushing this frame-
work towards a realistic ERC application.

In this work, we reformulate the ERC task using
LLMs. Specifically, we design a simple but effi-
cient retrieval template module, which consists of
instruction, historical utterance, label statements,
and demonstration retrieval to explicitly integrate
multi-granularity dialogue supervision information
during reasoning. In addition, we separately design
two auxiliary tasks for the ERC task: speaker iden-
tification task and emotion prediction task. The
speaker identification task assists LLMs in mod-
eling dialogue role relationships by predicting the
speaker of each sentence, while the emotion pre-
diction task models future emotional tendencies in
conversations. Furthermore, due to biases in data
distribution and labeling across different ERC do-
mains, it’s still challenging for discriminative ERC
models to achieve multi-domain ERC capabilities,
both in terms of engineering and performance. To
dive deeper into this topic, we pioneeringly align
labels for three benchmarks and conduct a series

of unified dataset experiments. Looking ahead, we
contend that IERC, as the first framework transi-
tioning from single-domain to multi-domain ERC,
offers us a glimpse into the prospective landscape
of open-domain emotional artificial intelligence
(Emotional AGI).

In conclusion, our work can be outlined as fol-
lows:

* To the best of our knowledge, we are the
first to reformulate the ERC task as a re-
trieval based Seq2Seq paradigm with LLMs
and present an effective instruction template
which can adapt to different dialog scenarios.

* We propose two novel emotional auxiliary
tasks to implicitly model the dialogue role
relationships and future emotional tendencies
in conversations.

* Our InstructERC significantly outperforms all
previous models and achieves comprehensive
SOTA on three commonly used ERC datasets.

* To advance towards multi-domain ERC sce-
nario, we pioneeringly align labels for three
benchmark to form the UIME ERC dataset, a
series of unified dataset experimental results
provides empirical guidance for application in
practical scenarios.

2 Methodology

In this section, we present a comprehensive
overview of the proposed InstructERC framework
shown as Figure 3. Firstly, we provide a brief intro-
duction to the task definition of ERC. Next, we dis-



cuss the framework of InstructERC, which consists
of two major parts: retrieval template module and
emotional alignment tasks. Finally, we introduce
training and inference process of our framework. 2

2.1 Problem Definition?

Assuming a dialogue text U = [ug, ug, ...u,] of
length n is given, which includes M speakers/par-
ties p1,p2,...,pas (M > 2) in the dialogue, and
each utterance u; spoken by the corresponding
speaker pr(y;). Function K is employed to es-
tablish a mapping between each utterance and its
corresponding speaker. o is the number of emo-
toinal categories, which varies with the number of
emotional types in different evaluation datasets.

2.2 Retrieval Template Module

To better transfer and utilize the inference ability
of pre-trained large language models, we recon-
struct the ERC task to the seq2seq form and solve
it through fine-tuning LLMs. Therefore, we con-
struct a efficient retrieval template module to bridge
the gap when applying LLMs to specific NLP sub-
tasks. As shown in Figure 2, for ERC task, each
input consists of four parts: instructions, histor-
ical content, label statement, and demonstration
retrieval.

Instruction. The instructions serve to provide
the model with a well-defined role, precise details
of the ERC task, and a standardized format for the
input dialogue text. For the primary ERC task, our
instruction u; ; is shown in Figure 2.

Historical Content. To model the context in
realistic ERC scenarios, We employ a hyperpa-
rameter, the historical window (denoted as w), to
indicate the specific rounds (including current ut-
terance) of historical dialogue along with the cor-
responding speaker information. For the emotion
recognition of the target utterance w.,, its historical
content u; g is shown in Figure 2.

Label Statement. To confine the model’s output
within a finite range of labels and enable the model
to focus on the current utterance being recognized,
our label statement u; 7, is shown in Figure 2.

Demonstration Retrieval. In order to further
integrate emotional information to assist reasoning,
we have developed a domain demonstration recall
module based on semantic similarity. In detail, we

Due to the space limitation, we have included the related
works in Appendix B.

3The difference of problem definition between two
paradigms can be refer to Appendix D.2.

Retrieval Template Module

Input utterance v,

Speaker 0:“Oh my god, it was just last weekend "

historical wind.

T
Speaker_o:"Yes, 1 did it.”

Speaker_1:"When?” g

Speaker_o: ‘Oh my god, it was just last weekend". /'/

Here is a conversation :

Speaker_o:"Guess what?"
Speaker_1:"what?”
Speaker_o:"I did it, I asked her to marry me.”

Label Statement Ui,

Please select the emotional label of < Speaker_o:“Oh my god, it
was just last weekend "> from < happy, sad, neutral, angry,
excited, frustrated>.

N
‘Q‘Demanstmtion Retrieval U;p

Demonstration:
<Speaker_1: “Oh my God. Guess what, guess what?">: Excited

Figure 2: The Schematic of Retrieval Template Module.

construct a domain base D jy,qin from the training
dataset that removes speaker identity information
and balances the number of emotion labels, which
ensures that the demonstrations is not influenced
by the distribution of speakers or emotion labels in
the dataset. For a given utterance u; to be identi-
fied, we retrieve the most relevant ERC example
from D j4mqin as the demonstration. To perform the
retrieval, we use a bidirectional encoder SBERT
(Reimers and Gurevych, 2019) to find the most
semantically similar ERC example d,.,;. SBERT
generates independent CLS embeddings for the tar-
get utterance u; and each element d; in Dyomain-
After sorting all target-demonstration pairs by co-
sine similarity, we select the pair with the highest
score as the most relevant element d,,;. An ab-
stract mathematical description of this process is
as follows:

dryi, = argmax SBERT(u;,d;) (1

dj EDdomain
The textual input u; p for the demonstration re-
trieval part is shown in Figure 2. In summary, after

constructing the Retrieval template, the simplified
input x; for the main task is as follows:

x; = (U413 Wi, 3 Wi, Wi D] 2

where [;] means the textual concatenation, wu; p,
u;, H, Us 1, and u; p indicate Instructions, Histor-
ical content, Label statement, demonstration re-
trieval for a given utterance ;.



2.3 Emotional alignment tasks

To better capture the dialogue role relationships
and future emotional tendencies in conversations,
we have incorporated two auxiliary tasks, namely
speaker identification and emotion impact predic-
tion, which constitute the fine-grained subtasks of
the InstructERC framework. The model is jointly
trained with these auxiliary tasks to improve its
overall performance, illustrated in Figure 3.

Speaker Identification task. Emotions are ex-
pressed differently among different speakers. Pre-
vious models have used techniques such as speaker-
based masked attention modules or multiple GRUs
to capture the emotional expression features of dif-
ferent characters. This modeling of emotional ex-
pression in the task can also be transformed into a
generative task using our InstructERC. To enable
the LLM to capture the speaking styles of different
individuals, beyond (Li et al., 2020), the model is
trained to identify the relevant speaker for a given
utterance, without considering the historical con-
text. For a given dataset, a predefined set of speaker
labels is provided. Consistent with the main task,
the Instruction text input z¥ for this task is con-
structed as follows:

“Now you are an expert of sentiment
and emotional analysis.  Please se-
lect the Speaker label of the utterance
<Speaker:u;> from <pi,..pyp>"

The loss function for the Speaker Identification is
as follows:

N
Ly, = —log P(ui|a?,0,) 3)

i

Here, p; represents the token of the corresponding
speaker label for the given speaker identification
task input sample 2¥. Unless otherwise specified,
N stands for the total number of utterances in the
dataset, while 6, represents the parameters of the
LLM in different periods.

Emotion Impact Prediction task. In the daily
conversations, the intricate relationships between
individuals can have a significant impact on the
emotional states of subsequent dialog. Prior re-
search has attempted to address this issue by con-
structing a dialogue relationship graph and utiliz-
ing a complex graph neural network to model the
emotional impacts of these relationships. However,
these methods are often associated with a highly

intricate data preprocessing pipeline and are suscep-
tible to overfitting on certain datasets. To address
these issues, we propose a generative framework
for the emotion impact prediction task, which im-
plicitly captures the interplay between dialogues
and emotional impacts.

Specifically, the input for emotion impact predic-
tion consists of three parts: instruction, historical
content, and label statement. First, the instruction
part of this task is kept consistent with the instruc-
tion part of the main task. Then, since the task
requires predicting the impact of previous histori-
cal utterances on the current utterance, unlike the
main task, the historical content uf ;; with a win-
dow of “w” will not include the current utterance.
Correspondingly, to stay aligned with the original
design intention of the task, the label statement of
this task is modified as follows:

“Based on the above historical utter-
ances, the next utterance is spoken by
<Pk ;) >, please predict the emotion
states of <P (,;) >from <ei, ey, ..., €,
>:7

Hence, the overall input for emotion impact predic-
tion is:
x§ = [wir;ug g, ui g 4

The loss calculation for the emotion impact predic-
tion task is as follows:

N
L= Z —log P(e;|z5, 6e) 5)
i
Here, ¢; represents the emotional label token of the
text label e; corresponding to the formatted input
utterance x;.

2.4 Overview of InstructERC

To sum up the instruction based generative frame-
work for ERC, given an input utterance x; after con-
catenating the retrieval template d,.,; and a LLM,
the model returns the logits g; and the generated
text y; for the entire sentence, including both in-
put and output tokens. This is represented by the
following equation:

Vi, 8i = LLM(z4, 0a11) (6)

Here, 6 is the same as mentioned. The LLM
predicts the conditional probability p(~v;|z;, ) of
generating each token -y; of the generated text y;
until the end symbol <eos>is outputted. As for
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Figure 3: The overview of InstructERC framework

logits g; € RE*V, where L and V denote the
length of the entire sentence and the size of the
vocabulary used by the LLM, respectively.

In accordance with the original training method
of LLMs, we adopt the next token prediction loss
to measure the model’s output error. Therefore, the
loss calculation of the main task, denoted as L,,4in.,
is defined as follows:

N
Lomain = Z —log P(6i|l‘@', eall)

%

(N

Training and Inference.

During training and inference, our retrieval pro-
cess, emotional alignment tasks and main tasks in
InstructERC can be divided into two stages:

In the first stage of joint training, the charac-
teristics of the speaker intuitively form the basis
of emotional expression. Therefore, we use the
speaker identification task for LLM pre-training
to fine-tune speaker characteristics, which aims to
preheat parameters for subsequent ERC tasks.

In the second stage, we fine-tune LLM using
both the ERC main task and the emotion influence
prediction task to improve overall performance.
The training loss at this stage is Lqin + o * Le,
where « is a hyperparameter used to adjust the
weight of the emotion influence prediction task
loss in the second overall joint training loss.

The difference of demonstration retrieval on
training and inference stage is shown in figure 3, we
limit the retrieved examples to those with the same

emotion label as the current recognized speech,
namely same label pairing ,in order to provide more
diverse emotional understanding while avoiding ex-
cessive noise during training. During inference,
there are no restrictions on the retrieved demonstra-
tions due to the labels are unknown, namely All
labels pairing. The retrieval results, simply referred
as d,,, are specialized as d’,, and d’ ; in training
and inference stage, respectively.

3 Experiments and Results

3.1 Dataset

We evaluate the efficacy of InstructERC on three
standard benchmark datasets: IEMOCAP, MELD,
and EmoryNLP. The specifics of the datasets are
outlined in Table 6. The details of dataset can be
refer to Appendix C.1.

3.2 Baselines

Align with the related works, we select sev-
eral only textual modality baselines to compare
with our InstructERC. 1) Transformer-based:
SPCL+CL(Song et al., 2022) and MPLP (Zhang
et al.,, 2023b) , 2) Recurrent-based: Emo-
tionIC(Yingjian et al., 2023) and SACL-LSTM(Hu
et al., 2023), 3) GNN-based: DualGATs(Zhang
et al., 2023a) and Skier(Li et al., 2023b). 4) LLM
backbones: ChatGLM-6B & ChatGLM2-6B (Du
et al., 2022) and LLaMA-7B & LLaMAZ2-7B (Tou-
vron et al., 2023). More details of baselines and
implementations can be refered to Appendix C.2
and D.1.



Table 1: The main results on three benchmarks.

Dataset IEMOCAP MELD EmoryNLP Average
Models W-F1 W-F1 W-F1 W-F1
Disciminant Models
SPCL+CLT 69.74 66.35 40.25
MPLP* 66.65 66.51 - -
EmotionICT 66.40 40.01 58.63
SACL* 69.22 66.45 39.65 58.44
DualGATs* 67.68 66.90 58.29
Skier® - 40.07 -
Zero-shot + InstructERC
ChatGPT3.5" 53.38 65.07 37.00 51.81
ChatGLM 38.6 38.8 19.6 32.33
ChatGLM21 21.1 21.8 244 22.43
Llamat 0.753 9.12 5.31 5.06
Llama2f 2.774 16.28 8.36 9.46
LoRA + Backbone
ChatGLM 17.98 40.54 25.71 28.07
ChatGLM21 52.88 64.85 37.69 51.80
Llama' 55.81 66.15 37.98 53.21
Llama2f 55.96 65.84 38.21 53.33
LoRA + InstructERC
ChatGLM 36.04 46.41 30.86 37.77
ChatGLM21 67.54 65.58 39.09 57.40
Llama' 64.17 67.62 39.34 57.04
Llama2f 71.39 69.15 41.37 60.64

NOTE: The best results of other baselines are in gold font, while SOTA results across
all models are emphasized in red font. * indicate results sourced from the model’s
paper, and a (1) denotes results from reproductions conducted by the authors.

3.3 Main Results

Table 1 illustrates the results of comparing our In-
structERC model with other models and backbones
from different perspectives. Based on this, We
make the following observations:

(1) Our methods achieves significant improve-
ments over the SOTA of discriminative models
on all benchmarks. Specifically, we outperform
EmotionlC, Skier, and DuaGATSs by 1.73%, 1.76%,
and 1.08% on IEMOCAP, MELD and EmoryNLP
respectively. Notably, we completely outper-
formed commonsense knowledge models (Skier)
on two benchmarks without any external knowl-
edge, demonstrating the extreme utilization of our
method for textual data.

(2) To gain an insight into LLM models under
different supervision scenarios for ERC task, we
conduct experiments on Zero-shot + InstructERC
and LoRA + InstructERC settings. It can be ob-
served that even with carefully designed primary
task instructions, LLMs still struggle in zero-shot
scenarios, which further confirms the existence
of a significant reasoning gap in their application
to ERC sub-task. Furthermore, by utilizing the
LoRA + InstructERC, the performance of the four

LLMs has significantly improved, especially on
the IEMOCAP dataset. This fully demonstrates
the effectiveness and generalization ability of our
InstructERC framework, which greatly enhances
the emotion recognition capability of LLM in long
texts.

(3) InstructionERC is a plug-and-play method
that can be adapted to multiple generative frame-
works, such as prefix decoder or causal decoder.
Although ChatGPT has a relevant competitive good
performance on short length conversation scen-
rios(e.g. Meld,EmoryNLP), as can be seen, our
results are far superior to the level of ChatGPT. Our
unified alignment task and demonstration construc-
tion strategy are not tailored to any specific dataset
design, highlighting the strong transferability and
generalization capability of our approach.

3.4 Ablution study

We conduct an ablation study to investigate the
characteristics of the main components in Instruc-
tERC. Table 2 shows the ablation results, and “w/o0"
denotes the model performance without a specific
module. We have following observations:

(1) The performance of InstructERC drops when
removing any one component, which suggests that
every part of the design is necessary.

(2) Removing any one Emotional alignment task
results in great performance degradation. This is
consistent with our conjecture since speaker iden-
tification and emotion impact prediction provide
relatively orthogonal semantic information from
two perspectives. *

(3) Taking away the domain retrieval module
resulted in a steady decline on all three datasets,
demonstrating the important role of domain infor-
mation in dialogue modeling.

4) Removing joint alignment task tasks causes
obvious performance degradation compared with
removing one of them, which indicates that jointly
pre-training objectives have a mutually reinforcing
effect. >

(5) Replacing LoRA with full-parameter fine-
tuning results in a significant drop in performance,
which indicates that the parameter-efficient ap-
proach is effective in preventing overfitting of
LLMs on the ERC task. For detailed analysis,

*We also explore the impact of o on the performance of
InstructERC, refer to Appendix E.2

SWe also explore the optimal conversational turns in model-
ing context in ERC, please refer to the“The historical window
exploration study” section in Appendix E.1.
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Table 2: The ablation results of Llama2 on three bench-
marks.

Dataset IEMOCAP MELD EmoryNLP
Models W-F1 W-F1 W-F1
LoRA + InstructERC
Llama2 71-39i0.10 69-15i0.08 41'37i0.11
w/o ,Ce 70~50**i0.12 68.97*i0.10 40.78*i(),1(]
w/o ,Cp 70.70*1015 68.76* 4+0.14 40.59**10'13
wlo L + Ep 69. 71" 1917 68.39" 1011 39.56" 1015
w/o Daiomain 70-91*j:()‘13 68.62* +0.19 40.54*:‘:()‘19
w/o Lora  70.30" 1011 64.80" 1012 40.05" 021

Results with standard deviation and significance testing between w/o* and LLama2
(*p<0.05, **p<0.01.)

please refer to the “All Parameters vs Parameter
Efficiency” section in Appendix E.4 . The further
data scaling analysis of single dataset can be refer
to Appendix E.5.

4 Unified dataset Experiments

In real-world scenarios, the ideal ERC model
should be able to address ERC challenges across
multiple domains, and even carry out open-domain
ERC tasks. However, biases in data distribution
and labeling make it challenging for small ERC
models to achieve multi-domain capabilities, To
better simulate real-world scenarios, we first recon-
struct three ERC datasets into a single ERC dataset
(UIME) with unified labels based on the Emotion
Wheel (Figure 4), to better suit more industrial
scenarios.

4.1 Unified Dataset Experiment Setup

Within the settings of this experiment, all emo-
tional labels across the datasets are standardized,
and all speaker labels are also consolidated. The
unification details of speaker labels and emotional
labels can be refered to Appendix A. Subsequently,
we conduct data scaling experiments on the UIME.
To explore the impact of different sampling meth-
ods on the final performance, two data scaling ap-
proaches are experimented with: Total Mixing and
Ratio Mixing.

In the “Total Mixing” approach, all subdatasets
in UIME are first merged together, and then {1,
1/2, 1/4, 1/8, 1/16, 1/32, 1/64} amounts of data are
randomly sampled separately from the merged data
to fine-tune instructERC. Conversely, in the “Ratio
Mixing” approach, {1, 1/2, 1/4, 1/8, 1/16, 1/32,
1/64} amounts of subdatasets are first randomly
sampled separately, and then they are merged in
accordance with their respective ratios to form the
training data. Both approaches maintain the same
quantity of the final training data.

The details of results are shown in Table 5 in
Appendix A, and a more intuitive presentation is
shown in Figure 5.

4.2 The Robustness of InstructERC

As depicted in the Figure 5, Compared to the sin-
gle dataset training setup, the performance of In-
structERC, when fine-tuned on the UIME, has ex-
perienced a minor drop across three benchmarks.
Specifically, there’s a decrease of 2.4% in IEMO-



The Unified Dataset Experiments of Llama2 on three benchmarks
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Figure 5: The data scaling analysis demonstrated on three benchmarks using different data mixing strategies

CAP, 1.08% in MELD, and 1.1% in EmoryNLP.
However, a relatively high Weighted F1 score (W-
F1) can still be maintained simultaneously on these
three benchmarks, particularly the performance of
MELD(68.07%), which continues to surpass the
SOTA level of all small models. The results ex-
hibits InstructERC ’s exceptional robustness, which
is capable of concurrently acquiring emotional

paradigms from a multitude of distinct distributions
6

4.3 The Data Scaling Exploration

The data scaling experiments are conducted on the
unified dataset from 1 to 1/64. As the scale of
trainig data exponentially decreases from 1 to 1/32
within the range, the performance of the model on
the three benchmarks exhibits a slight fluctuation
in linear decline.

We are also surprised to discover that during the
final stage of training data reduction from 1/32 to
1/64, the Total Mixing and Ratio Mixing strategies
continue to exhibit a linear performance decline.
However, the performance of the model trained un-
der the single method experiences a drastic drop, as
depicted in Figure 5. We posit that data from differ-
ent scenarios endows the model with the capability
to comprehend emotions from diverse perspectives.
This, in turn, allows the model to achieve robust
enhancements under various data conditions. Such
mutual gain is particularly pronounced in low re-
source scenarios (1/64). This is consistent with
the findings of some existing explorations in large
models (Dong et al., 2023).

4.4 The Discussion of Mixing Strategies

We have further investigated the impact of differ-
ent mixing strategies on data scaling. The results

SThe statistics of scaling analysis can be found in Table 5

displayed by different datasets on various mixing
strategies can be interpreted from the following two
perspectives:

Data Representativeness: In Total Mixing sam-
pling, where each dataset’s samples are equally
likely to be selected, the unique traits of smaller
datasets like [IEMOCAP may be obscured by larger
ones like MELD. In contrast, Ratio Mixinging sam-
pling, which represents each dataset proportionally
to its original sample size, may better highlight the
characteristics and influence of smaller datasets.

Effect of Class Imbalance: In smaller datasets
with internal class imbalances, Total Mixing sam-
pling could exacerbate these imbalances. For in-
stance, if IEMOCAP has a relatively smaller num-
ber of samples in a certain category, Total Mixing
sampling might further intensify this imbalance
during model training. Ratio Mixing sampling,
however, better preserves the original class propor-
tions of the datasets, potentially mitigating class
imbalance impacts to a degree.

5 Conclusion

We introduce InstructERC, a novel approach that
transforms the ERC task from a discriminative
framework to a generative framework using LLMs.
InstructERC presents a simple and effective re-
trieval template adapting to different conversation
lengths. Futhermore, we introduce two emotional
alignment tasks to model speaker and complex con-
versation relationships. InstructERC outperforms
all previous models and achieve comprehensive
SOTA results on three benchmarks. We also pio-
neer in unifying label mapping and modeling across
these datasets, demonstrating the InstructERC’s ro-
bust generalization capabilities. Our extensive anal-
ysis provides practical insights for implementing
InstructERC in real-world ERC scenarios.



Limitation

In this work, we focus solely on the textual aspects
of these datasets. The exploration of multimodal
aspects is reserved for future research. We have
conducted our explorations specifically on two rep-
resentative large model frameworks, ChatGLM and
LLaMA. Due to limitations in our graphics card
capacity, the maximum parameter size of the large
models we used does not exceed 7 billion.

Ethics Statement

All the data sets we used for the experiment were
published publicly. These data sets passed the ethi-
cal review at the time of publication. All the non-
original methods and modules mentioned in this
article have quoted other people’s literature. All
our science artifacts observe MIT licese.
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Table 3: Unified Label Mapping

Number IEMOCAP MELD EmoryNLP Final Emotion

1 happy joyful  joyful joyful

2 sad sad sad sad

3 neutral neutral  neutral neutral

4 angry angry mad mad

5 excited N\A N\A excited

6 N\A surprise  powerful powerful

7 scared fear frustrated fear

8 N\A N\A peaceful peaceful

9 N\A disgust N\A disgust

Table 4: One-hot Speaker Label Mapping

Speaker label IEMOCAP MELD EmoryNLP
1 1 N\A N\A
N\A N\A
ni1 n1 N\A N\A
n1+1 N\A 1 N\A
e N\A N\A
n1 + ng N\A no N\A
ny+ng+1 N\A N\A 1
... N\A N\A
n1 +ng +n3 N\A N\A ns

A The Details of Unified Dataset
Experiment Setup

To further substantiate the efficacy and robustness
of our framework, we conduct a compelling exper-
iment involving a unified dataset. Within the set-
tings of this experiment, all emotional labels across
the datasets are standardized, and all speaker labels
are also consolidated. Subsequently, we conduct
data scaling experiments on the processed unified
dataset. The evaluation method employed in the ex-
perimental results, utilizing the weighted F1 score,
aligned with the evalution method delineated in
Section Experiments.

We continue to use the previous datasets IEMO-
CAP, MELD, and EmoryNLP. According to The
Feeling Wheel (Willcox, 1982) proposed in 1982,
as shown in subfigure of Figure 4, we align all emo-
tional labels from three datasets with this standard,
the details of which are shown in Tabel 3. After
completion of label mapping, there are a total of
9 types of emotional labels, which are joyful, sad,
neutral, mad, excited, powerful, fear, peaceful and
disgust. Furthermore, due to the uniqueness of
character labels in each dataset, we have renum-
bered them using a One-hot encoding approach, as
demonstrated in the "One-hot Speaker Label Map-
ping" Table 4, which also is shown in subfigure of
Figure 4.

We still utilize the LoORA method in PEFT to
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train InstructERC on the unified dataset, and the
training results are evaluated on the three datasets
respectively. As mentioned above, these datasets
have significant variations in sample size and class
imbalance within each dataset. To explore the im-
pact of different sampling methods on the final
performance, two data scaling approaches were ex-
perimented with: Total Mixing and Ratio Mixing.

In the Total Mixing approach, all datasets are
combined for uniform sampling. Conversely, in
the Ratio Mixing approach, datasets are sampled
separately and then combined. Both approaches
maintain the same quantity of training data, but due
to the larger absolute number of training samples in
MELD and EmoryNLP, the Total Mixing approach
results in a higher proportion of samples from these
two datasets when varying data scaling is applied.

Total Mixing and ratio Mixing modes are applied
proportionally across the entire training set, while
still segregating a validation set and a test set. The
reported results are obtained after training on a
unified training set and then testing on separate test
sets. The Single mode, on the other hand, involves
training on individual training sets and then testing
on their respective test sets.

Meanwhile, we design Total Mixing and Ratio
Mixing experiments to explore the impact of dif-
ferent data mixing strategies and data quantities
on the model. On the basis of the following, we
further explore the impact of data sampling ratio on
the model’s performance.The details of results are
shown in Table 5, and a more intuitive presentation
is shown in Figure 5.

B Related Works

B.1 Emotion Recoginition in Conversation

After more than a decade of development, the
field of Emotion Recognition in Conversation
(ERC) has seen many outstanding works. These
can be broadly classified into three categories:
Transformer-based, GNN-based, Recurrent-based.

Specifically, Transformer-based works (Li
et al., 2020; Song et al., 2022; Liu et al., 2023;
Yingjian et al., 2023; Chudasama et al., 2022) at-
tempt to establish long-range emotional correla-
tions in conversational scenarios by directly adopt-
ing or modifying the original transformer block.
These efforts have made significant contributions
in this direction.

GNN-based works (Ghosal et al., 2019; Ishi-
watari et al., 2020; Shen et al., 2021; Li et al.,



Table 5: The Unified Dataset Experiments of Llama?2 on three benchmarks

Data Precent IEMOCAP W-F1 MELD W-F1 EmoryNLP W-F1

Total Mixing Ratio Mixing Single | Total Mixing Ratio Mixing Single | Total Mixing Ratio Mixing Single

1 68.99 68.99 71.39 68.07 68.07 69.15 40.27 40.27 41.37

172 67.95 68.96 69.13 66.50 66.42 67.54 39.18 39.33 39.65

1/4 63.02 64.46 67.54 66.41 65.85 66.42 38.26 37.29 38.33

1/8 58.48 60.06 64.13 64.57 62.94 65.14 38.27 39.24 38.24

1/16 57.77 53.40 60.42 61.15 58.42 62.89 37.19 37.60 36.83

1/32 45.89 48.50 54.76 57.38 57.76 57.72 37.09 36.09 34.03

1/64 38.42 43.07 30.34 54.26 53.29 45.48 35.19 34.65 26.10

2023a) extensively use graphs and edges to model ~ 2021).

interactions between people in conversational sce-
narios and the influences between different modal-
ities. They employ various forms of multi-layer
graph neural networks to fit potential conversa-
tional relations, effectively exploring this direction.

Recurrent-based works (Hu et al., 2023; Lei
et al., 2023; Majumder et al., 2019; Hazarika et al.,
2018; Poria et al., 2017) utilize various forms of
RNNs, like LSTM and GRU, to model individual
emotional states and global emotional impacts sep-
arately. They incorporate attention mechanisms or
direct vector concatenation to represent personal
and global emotional states collectively, marking
effective exploration in this area.

B.2 Large Language Models

The emergence of large-scale language models
(LLMs) have brought revolutionary transforma-
tion to the field of natural language processing
(NLP) (Shen et al., 2023). LLMs, such as GPT-3
(Brown et al., 2020), LLaMA (Touvron et al., 2023)
and GPT-4 (OpenAl, 2023), have demonstrated im-
pressive abilities on various tasks, as well as the
use of external techniques such as reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022). LLMs based on generative frame-
work even reformulate the multi modal perspective
(Lin et al., 2021; Zhang et al., 2023c). More re-
cently, the NLP community has been exploring
various application directions for LLLMs. For in-
stance, chain-of-thought prompting and RFT (Wei
et al., 2023; Yuan et al., 2023) enables LLMs to
generate problem-solving processes step-by-step,
significantly enhancing the model’s reasoning abil-
ity. Researchers have utilized the interactive ca-
pabilities of LLMs to generate commands that in-
voke external tools for handling of downstream
tasks(Shen et al., 2023). Other researchers have
proposed parameter-efficient fine-tuining (PEFT)
to address the issue of excessive computational re-
source without sacrificing performance (Hu et al.,
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C Datasets & Baselines

C.1 Datasets

IEMOCAP (Busso et al., 2008) is a dataset
recorded as dyadic conversational video clips with
eight speaker participating in the training set while
two speaker in testing set.

MELD dataset (Poria et al., 2018) is a multi-
modal dataset that has been expanded from the
EmotionLines dataset. MELD is obtained from the
popular TV show Friends and comprises over 1400
dialogues and 13000 utterances, each of which is
labeled with emotion and sentiment classes.

EmoryNLP (Zahiri and Choi, 2017) is a dataset
also collected from the TV series Friends. The
dataset comprises utterances that are categorized
into seven distinct emotional classes.

This study exclusively focuses on the emotional
classes and the text modality in these datasets.
Moreover, we ensure consistency with COSMIC
regarding the train/val/test splits.

C.2 Baselines

For discriminative ERC models, we selected sev-
eral SOTA baseline for each method. For our recon-
structed generative model, we chose four popular
LLM:s as backbones.

Recurrent-based: 1) EmotionIC (Yingjian
et al., 2023) uses IM-MHA and DialogGRU to
capture contextual information in the dialogue, and
SkipCREF to capture high-order dependencies be-
tween speakers for emotional flow simulation. 2)
SACL-LSTM (Hu et al., 2023) extracts structured
representations using contrast-aware adversarial
training and joint class-spread contrastive learn-
ing, an additional contextual adversarial training
strategy to enhance context robustness.

Transformer-based: 1) MPLP (Lu et al., 2022)
is a framework that unifies multimodal sentiment
analysis and emotion recognition in conversation



Table 6: The statistics of datasets. avg_utt denotes the average number of utterances in a conversation.

Conversations

Utterances

Datasets ‘ Train | Val | Test | Train | Val | Test classes type avg_utt ‘ Evaluation
IEMOCAP | 108 12 31 | 5163 | 647 | 1623 6 two-person 47 W-F1

MELD 1038 | 114 | 280 | 9989 | 1109 | 2610 7 multi-party 9 W-F1
EmoryNLP | 713 99 85 | 9934 | 1344 | 1328 7 multi-party 11 W-F1

tasks. This framework achieves this by performing
modality fusion at both the syntactic and seman-
tic levels, and by introducing contrastive learning
between modalities and samples. 2) SPCL (Song
et al., 2022) is a method that addresses imbalanced
classification issues using Prototypical Network
and contrastive learning, without the need for large
batch sizes, and incorporates a difficulty measure
function and curriculum learning to mitigate the
effects of extreme samples.

GNN-based: 1) DualGATs (Li et al., 2021) uses
a connected graph to enhance the targeted utterance
with information from the past and future context,
and utilizes CommonSense Knowledge (CSK) to
enrich edges with knowledge representations. 2)
Skier (Li et al., 2023a) is a module that efficiently
models contextual and interactive information for
ERC task. It uses multiple extractors and PairCC
strategy to address the heterogeneity gap in multi-
modal fusion.

LLM backbones: 1) ChatGLM-6B &
ChatGLM2-6B: ChatGLM-6B is an open-source
conversational language model (Du et al., 2022)
for Chinese and English. It has 6.2 billion parame-
ters and is optimized for Chinese QA. It has been
trained on 1 trillion Chinese and English identi-
fiers and further improved through various tech-
niques. ChatGLM2-6B is the second generation of
the model, pre-trained on 1.4 trillion Chinese and
English identifiers with human preference align-
ment training. It extends the context window to
32K and speeds up inference with Multi-Query
Attention. 2) Llama-7B & Llama2-7B: Llama-
7B is the 7B parameters’ version of the a collec-
tion of foundation language models (Touvron et al.,
2023) ranging from 7B to 65B parameters, which
is trained on trillions of tokens. Llama2-7B pre-
trained models are trained on 2 trillion tokens, and
have double the context length than Llama 1. Its
fine-tuned models have been trained on over 1 mil-
lion human annotations.
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D Implementation & Discussion

D.1 Implementation Details

We use ChatGLM and Llama as our backbone
model. Considering the efficiency and effective-
ness of Parameter-Efficient-Fine-Tuning (PEFT),
we adopt LoRA (Hu et al., 2021) and insert low-
rank adapters after self-attention layers. We set the
dimension of adapters to 16 a nd the learning rate
to 2e-4. The learning rate is set to 2e-5 for all pa-
rameters’ finetune. The histoical window is set to 1,
5, 12, 20 for iemocap, meld and EmoryNLP respec-
tively for all experiments. The retrieval parameter
“TopK” is set to Top1 emprically. The hypermeter
« is set to 0.1 during training. Greedy search is
used during inference if not specified. Moreover,
our experiments are conducted by taking the aver-
age of three runs with no hyperparameter searching.
We train with FP16 precision on 4 x 80G Nvidia
A100 GPUs.

D.2 Discussion with Discriminative ERC
Models

Problem definition.

In the discriminative framework, researchers
first fine-tune an ROBERTA-style model with the
context-free utterance, extract the feature vector at
the CLS position as the input for the downstream
ERC model. The aim is to map the feature vector
of the given utterance to a scalar between 1 and o.

In the generative framework based on LLMs, for
a given utterance, we process it into formatted text
according to the pre-designed template and input
it into LLMs. The aim is to enable LLMs generate
the most reasonable text emotional label, which
must belong to the predefined text emotional label
set & = {e1,eq,..., e}

Parameter Scales. As shown in Table 7, we
present the publicly available statistics for all train-
able parameters across the models. Although the
base architecture of our model is in the 6-7B pa-
rameter range, only 12.5M LoRA parameters are
actively trained, which is feasible on a single GPU.
For example, on the [IEMOCAP dataset, our model



Table 7: The more detailed results and Statistics on three benchmarks.

Dataset Parameters | IEMOCAP MELD EmoryNLP | Average Extra Model type
Models W-avg F1 | W-avg F1 W-avg F1 W-avg F1 | Knowledge
Small-scale Discriminant ERC-specific Model
KET* 2.6M 59.56 58.18 34.39 50.17 ConceptNet | transformer
TODKATT 330M 61.33 65.47 38.69 55.16 COMET transformer
MTL* 1.2M — 61.90 35.92 — X transformer
CoG-BART" 415.1M 64.87 63.82 37.33 55.34 X transformer
M2FNet* — 69.86 66.71 — — X transformer
SPCL 356.7M 68.42 66.13 58.26 X transformer
Hidialog™ — — — — X transformer
SACL-LSTM* 2.6M 69.22 66.45 39.65 58.44 X recurrent
HCAN' 3.5M 69.21 66.24 39.67 58.37 X recurrent
ICON* 0.5M 63.50 —_— —_— —_— X recurrent
DialogueRNNJr 9.9M 64.65 65.30 37.54 55.83 X recurrent
DialogueCRNJr 3.3M 67.53 65.77 38.79 57.36 X recurrent
EmotionIC* — 69.50 66.40 40.01 X recurrent
CauAIN* 6.1M 65.01 64.89 37.87 55.92 ATOMIC recurrent
COIN* 0.5M 65.37 — — — X recurrent
CosMIC! 11.9M 65.03 63.43 38.49 55.65 COMET recurrent
DialogueGCN' 2.1M 62.11 62.68 36.43 53.14 X GNN
RGAT* 13M 65.22 60.91 34.42 53.52 X GNN
SKAIG* — 66.96 65.18 38.88 57.01 COMET GNN
DAG-ERC' 9.5M 66.54 63.36 38.29 56.06 X GNN
GraphCFC* — 68.91 58.86 — —_— X GNN
Small-scale Pretrained Language Model
KI-NET* 500M 67.00 63.24 — — ConceptNet | transformer
DialogueXL* 510M 65.94 62.41 34.73 54.36 X transformer
EmoBERTa" 355M 68.57 65.61 — —_— X transformer
UniMSE* 220M 65.51 — — X transformer
Zero-shot + InstructERC
ChatGLM f 12.5M(6B) 38.6 38.8 19.6 32.33 X LLM-based
ChatGLM2 12.5M(6B) 21.1 21.8 24.4 22.43 X LLM-based
Llama ' 12.5M(7B) 0.753 9.12 5.31 5.06 X LLM-based
Llama2 | 12.5M(7B) 2.774 16.28 8.36 9.46 X LLM-based
LoRA + Backbone
ChatGLM * 12.5M(6B) 18.94 40.54 25.71 28.07 X LLM-based
ChatGLM2' 12.5M(6B) 52.88 64.85 37.69 51.80 X LLM-based
Llama' 12.5M(7B) 55.81 66.15 37.98 53.21 X LLM-based
Llama2' 12.5M(7B) 55.96 65.84 38.21 53.33 X LLM-based
LoRA + InstructERC
ChatGLM' 12.5M(6B) 36.04 46.41 30.86 37.77 X LLM-based
ChatGLM2} 12.5M(6B) 67.54 65.58 39.09 57.40 X LLM-based
Llama’ 12.5M(7B) 64.17 67.62 39.34 57.04 X LLM-based
Llama2' 12.5M(7B) 71.39 69.15 41.37 60.64 X LLM-based

NOTE: The best-performing results of other models are highlighted in gold font, while SOTA results across all models are
emphasized in red font. Models annotated with an * indicate results sourced from the model’s paper, and a (T) denotes results

from reproductions conducted by the authors.
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typically converges by the 6th epoch, taking ap-
proximately 2 hours. The inference process re-
quires about 10 minutes to handle 1000 samples.
While our method is marginally slower than other
approaches, such as the SPCL baseline which uti-
lizes 356.7M training parameters, this speed re-
duction is not a significant drawback and remains
manageable for most research contexts.

Structural Complexity. As shown in Table
7 and Figure 1, taking the influential work such
as COSMIC as an example, COSMIC fine-tuned
RoBERTA on single-sentence dialogues, extracted
its features, and encapsulated them into a dataset.
Many works in the baseline are based on the fea-
ture dataset extracted from this work rather than
the original text data for downstream model design.
This means that these models (including but not
limited to all the compared baselines which adopt
this practice) need to use the single-sentence speech
features fine-tuned with emotional labels during in-
ference, which clearly does not conform to reality
(the sentences that need to perform emotion recog-
nition cannot access the gold emotional labels in ad-
vance). Furthermore, even if these single-sentence
features do not need fine-tuning, it is still necessary
to use Roberta to infer and obtain features.

In contrast, our InstructERC can directly input
text and output emotional labels. Additionally, the
InstructERC framework can be migrated to multi-
ple datasets and combine datasets across multiple
domains without modification, whereas discrimi-
native models require manual changes to the ar-
chitecture of the model, specifically the number of
softmax classification neurons in the last layer, to
perform multi-domain operations. In terms of scal-
ability, the generative model InstructERC is clearly
more practical than discriminative models.

E The Supplementary Experiments

E.1 The historical window exploration study

Table 8: The historical window exploration of Llama2
on three benchmarks.

histoical IEMOCAP MELD EmoryNLP
window W-F1 W-F1 W-F1
LoRA + LLaMA?2 + InstructERC
1 56.1241.40 659141046 38.3240.38
5 68.651032 66971921 40.4810.23
12 7139919 69151009 41.371011
20 71014912 68.7540.12 40.564¢ 15
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In the historical window exploration shown as
Table 8, we examine how different sizes of his-
torical windows affect emotion recognition tasks.
Due to token limitations, we set the upper limit
for conversational turns to 20. This is an upgrade
from earlier, smaller Pretrained Language Models
(PLMs, e.g. Roberta(Liu et al., 2019)), which only
support up to 5 turns. We find that a window of
12 turns is optimal for capturing the necessary his-
torical context. In general, expanding the count of
historical turns aids in enhancing the accuracy of
emotion detection, a trend that is readily observable
in the IEMOCAP dataset featured long-term turns.
However, there’s a point where adding more histor-
ical turns doesn’t lead to better results and might
even harm performance, especially for datasets like
MELD and EmoryNLP, which have an average
length of 6 to 7 turns. However, these insights are
beyond the reach of smaller PLMs that top out at 5
turns.

E.2 The Exploration Experiments on «

Table 9: The exploration experiments on a.

« IEMOCAP MELD EmoryNLP
W-F1 W-F1 W-F1
LoRA + LLaMA?2 + InstructERC
0 70.50 68.97 40.78
0.05 70.67 69.03 4091
0.1 71.39 69.15 41.37
0.2 71.14 68.54 40.63

Shown as Table 9, the influence of alpha on In-
structERC’s performance varies across different
datasets due to their unique characteristics. In gen-
eral, as alpha increases, its contribution to model
performance also increases, peaking at alpha=0.1.
Specifically, in the IEMOCAP dataset, character-
ized by longer dialogues averaging 47 turns, even
when alpha exceeds 0.1 significantly, there is no
significant decrease in performance. However, in
datasets like MELD and EmoryNLP, which have
shorter dialogues averaging 7 turns, an alpha value
of 0.2 can lead to a negative impact, particularly ev-
ident in MELD. Therefore, careful consideration is
necessary when selecting alpha values for different
datasets.

This phenomenon can be explained as follows:
In the IEMOCAP dataset, with its longer dialogues,
emotional changes occur relatively slowly. In con-
trast, datasets like MELD and EmoryNLP, sampled



from the sitcom “Friends”, feature many brief and
intense emotional shifts. Excessive reduction in the
weight of emotion impact prediction may cause the
model to overly emphasize the influence of past ut-
terances on current emotion judgment, which may
not be suitable for MELD and EmoryNLP.

E.3 Label Ablation Experiments

To further explore the impact of using the same
or unrestricted emotional labels at different stages
during the demonstration retrieval process on final
performance, we designed experiments as shown in
the table 10, where xrepresents not using the same
labels, and v'represents using the same labels. Our
conclusions are as follows:

Impact of Label Restrictions: The perfor-
mance consistently improves across all datasets
when moving from unrestricted to restricted labels
in both training and inference. This suggests that
restricting labels helps the model learn more ro-
bust features that are better at generalizing during
inference.

Comparison Across Datasets: IEMOCAP:
Shows a steady increase in W-F1 scores as re-
strictions are applied first in training and then in
both training and inference. The improvement
from fully unrestricted to fully restricted is 1.54
points. MELD: Similar to IEMOCAP, restricted
training and inference show a noticeable improve-
ment. The gain from the least to the most restricted
setup is 2.54 points, indicating a potentially more
significant impact of label restriction in emotion-
ally complex interactions, possibly due to MELD’s
diverse emotional content and real-life scenarios.
EmoryNLP: This dataset shows the lowest overall
scores but follows the same trend. The increase is
2.14 points from no restrictions to full restrictions.
Given the smaller base score, this improvement is
quite significant, emphasizing how crucial precise
label handling is in models trained on this data.

Fairness and Performance Trade-offs: The
best results obtained by using restricted labels in
both phases might not be fair or realistic for real-
world applications, where the model shouldn’t have
prior knowledge of the emotional context. This
indicates a need for models that perform well un-
der unrestricted conditions. The performance drop
when moving to unrestricted labels in inference un-
derscores the challenge in generalizing the learned
emotional cues without specific hints, highlighting
a potential area for further research in enhancing
model robustness.
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Table 10: Dataset performance with various restrictions
on labels during training and inference.

Dataset | Training | Inference | W-F1
IEMOCAP X X 70.71
IEMOCAP v X 71.39
IEMOCAP v v 72.25

MELD X X 68.52

MELD v X 69.15

MELD v v 71.06
EmoryNLP X X 40.54
EmoryNLP v x 41.37
EmoryNLP v v 42.68

Table 11: The comparison results of different parameter
fine-tuning settings on three benchmarks.

Dataset IEMOCAP MELD EmoryNLP Average
Models W-F1 W-F1 W-F1 W-F1
All parameters + InstructERC

ChatGLM' 33.94 37.96 13.25 28.38

ChatGLM21 70.05 63.24 38.77 57.35
Llama’ 69.38 66.01 40.21 58.53
Llama2? 70.30 64.80 40.05 58.38

LoRA + InstructERC

ChatGLM' 36.04 46.41 30.86 37.77

ChatGLM21 67.54 65.58 39.09 57.40
Llamat 69.71 68.89 39.90 59.50
Llama2? 71.39 69.15 41.37 60.64

E.4 All Parameters vs Parameter Efficiency

In order to investigate the effect of different pa-
rameter fine-tuning methods on the ERC task, we
conducted comparative experiments in Table 11.
We have the following observations:

(1) The all parameter fine-tuning performs
weaker than LoRA’s fine-tuning on all backbones
on average performance (especially ChatGLM with
a 9.32 % improvement). It is worth noting that the
best performance of the full parameter method is
often achieved in the first 1-3 epochs in the experi-
ment. These findings demonstrate that parameter-
efficient methods are more suitable for LLMs in
ERC tasks.

(2) From the perspective of model structure, the
average performance of full parameter ChatGLM
even decreases compared to the zero-shot results
in Table 1 (from 32.33% to 28.38%), while replac-
ing it with LoRA brings a significant improvement
(from 32.33% to 37.77%). Other decoder-only
backbones do not show such drastic performance
fluctuations, which further indicates that the prefix-
decoder paradigm is unstable in ERC tasks com-
pared to the casual decoder, and parameter-efficient



The Low-source Setting exploring of Llama2 on three benchmarks
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Figure 6: The scaling of data and performance for different parameter fine-tuning settings (LoRA & All Parameters)

frameworks can effectively alleviate this problem.

(3) From the perspective of datasets, compared
to full parameter fine-tuning, the performance gain
of the LoORA method in MELD and EmoryNLP is
significantly greater than that in IEMOCAP. We
believe that this is related to the characteristics
of thees datasets: IEMOCAP has long dialogue
texts and multiple conversation rounds, these strong
supervision signals lead to good performance in
both settings. However, MELD and Emory have
fewer dialogue rounds, diverse speakers, and im-
balanced categories. Low-parameter methods can
effectively prevent LLMs from overfitting to certain
semantic patterns of dialogues format and speaker’s
habits, thereby enhancing the generalization ability
of emotion recognition in conversation.

E.5 Scaling Analysis in Low-source Scenario

In this section, we gain an insight into the scal-
ing analysis of data and performance for different
parameter fine-tuning settings (LoRA & All Param-
eter), as shown in Figure 6.

Parameter-efficient Scaling Analysis: On the
IEMOCAP dataset, our scaling curve initially in-
creases (from 1/16 to 1/4) and then stabilizes. This
may be because the dataset has long dialogue texts
and multiple dialogue rounds, leading to increased
diversity with the addition of early data. However,
as the supervision signal strengthens, the perfor-
mance gain gradually weakens. For datasets with
fewer dialogue rounds and imbalanced categories,
such as MELD and EmoryNLP, our method only
yields a small gain in extremely low-resource sce-
narios (from 1/16 to 1/4) and achieves a relatively
stable performance improvement with the increase
of data (from 1/2 to 1). This finding supports the
idea that when a unit-scaling of data only provides
weak supervision signals, the data size needs to
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exceed a certain threshold (1/4 - 1/2) to achieve
significant improvement.

Full-Parameter Scaling Analysis: The scaling
curves of full-parameter settings on the [IEMOCAP
and EmoryNLP datasets showed significant fluctua-
tions and performance degradation in two intervals
(from 1/16 to 1/8, 1/4 to 1/2) compared to LoRA.
Fine-tuning large models with all parameters may
cause redundant parameters to overfit the patterns
in the current dialogue, which hinders the model’s
ability to generalize new supervised signals as data
volume increases. The MELD dataset also exhib-
ited performance degradation with data augmenta-
tion (from 1/4 to 1). These findings demonstrate
the stability and robustness of parameter-efficient
fine-tuning in the ERC task, providing empirical
guidance for large models in industrial interfaces
with ERC tasks of varying data characteristics.
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