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Abstract

We are interested in probabilistic prediction in on-
line settings in which data does not follow a proba-
bility distribution. Our work seeks to achieve two
goals: (1) producing valid probabilities that accu-
rately reflect model confidence; (2) ensuring that
traditional notions of performance (e.g., high accu-
racy) still hold. We introduce online algorithms
guaranteed to achieve these goals on arbitrary
streams of datapoints, including data chosen by
an adversary. Specifically, our algorithms produce
forecasts that are (1) calibrated—i.e., an 80% con-
fidence interval contains the true outcome 80% of
the time—and (2) have low regret relative to a user-
specified baseline model. We implement a post-hoc
recalibration strategy that provably achieves these
goals in regression; previous algorithms applied
to classification or achieved (1) but not (2). In the
context of Bayesian optimization, an online model-
based decision-making task in which the data dis-
tribution shifts over time, our method yields accel-
erated convergence to improved optima.

1 INTRODUCTION

In applications of machine learning (ML), data can change
over time. Online learning algorithms can guarantee good
predictive accuracy (e.g., as measured by squared error) on
arbitrary data streams, even ones chosen adversarially [Cesa-
Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]. However,
we are often interested not only in minimizing predictive
error, but also in outputting valid probabilities representative
of future outcomes [Vovk et al., 2005b, Kuleshov et al.,
2018, Angelopoulos and Bates, 2021]. For example a doctor
might wish to estimate the probability of a patient being
sick; similarly, a power grid operator might want to know
the likelihood that demand for electricity will increase.

In this paper, we are interested in probabilistic predictions
in online settings where data does not follow a probability
distribution [Shalev-Shwartz, 2007]. This setting is chal-
lenging because we need to achieve two goals on data that
shifts over time: (1) producing valid probabilities that accu-
rately reflect model confidence; (2) ensuring that traditional
notions of performance (e.g., achieving a low squared error)
still hold. Additionally, without a data distribution, these
goals may not be straightforward to define.

Our approach towards the first goal uses calibration to de-
fine valid probabilistic forecasts [Foster and Vohra, 1998,
Kuleshov and Ermon, 2017, Gibbs and Candès, 2021]. In-
tuitively, an algorithm outputs calibrated predictions if the
predicted and the empirical probabilities of a predicted out-
come match—i.e., an 80% confidence interval contains the
true outcome 80% of the time. We formalize the second
goal by requiring that calibrated predictions have low regret
relative to a baseline uncalibrated forecaster, as measured
by a proper score [Gneiting et al., 2007b]. We focus on real-
valued outcomes, and define online calibrated regression, a
task that seeks to achieve the above two goals.

We propose algorithms for online calibrated regression that
output accurate probabilistic predictions via the post-hoc
recalibration of a black-box baseline model. Unlike classical
recalibration methods [Platt, 1999, Kuleshov et al., 2018],
ours work on online non-IID data (even data chosen by an
adversary). In contrast to classical online learning [Shalev-
Shwartz, 2007], we provide guarantees on not only regret,
but also on the validity of probabilistic forecasts. Crucially,
unlike many online calibrated and conformal prediction
algorithms for classification [Foster and Vohra, 1998] or
regression [Gibbs and Candès, 2021], we ensure low regret
relative to a baseline forecaster.

Accurate predictive uncertainties can be especially useful in
decision-making settings, where an agent uses a model of
future outcomes to estimate the results of its actions (e.g.,
the likelihood of treating a patient) [Malik et al., 2019].
We complement our algorithms with formal guarantees on
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expected utility estimation in decision-making applications.
We apply our algorithms to several regression tasks, as well
in the context of Bayesian optimization, an online model-
based decision-making task in which the data distribution
shifts over time. We find that improved uncertainties in the
Bayesian optimization model yield faster convergence to
optimal solutions which are also often of higher quality.

Contributions. First, we formulate a new problem called
online calibrated regression, which requires producing cali-
brated probabilities on potentially adversarial input while
retaining the predictive power of a given baseline uncali-
brated forecaster. Second, we propose an algorithm for this
task that generalizes recalibration in regression to non-IID
data. Third, we show that the algorithm can improve the
performance of Bayesian optimization, highlighting its po-
tential to improve decision-making.

2 BACKGROUND

We place our work in the framework of online learning
[Shalev-Shwartz, 2007]. At each time step t = 1, 2, ..., we
are given features xt ∈ X . We use a forecaster H : X →
F to produce a forecast ft = H(xt), ft ∈ F in a set
of forecasts F over a target y ∈ Y . Nature then reveals
the true target yt ∈ Y and we incur a loss of ℓ(yt, ft),
where ℓ : Y × F → R+ is a loss function. Unlike in
classical machine learning, we do not assume that the xt, yt
are i.i.d.: they can be random, deterministic, or even chosen
by an adversary. In this regime, online learning algorithms
admit strong performance guarantees measured in terms of
regret RT (g) relative to a constant prediction g, RT (g) =∑T

t=1 ℓ(yt, ft)− ℓ(yt, g). The worst-case regret at time T
equals RT = maxg∈F RT (g).

Online forecasting Our work extends the online learning
setting to probabilistic predictions. We focus on regression,
where yt ∈ R and the prediction ft can be represented by a
cumulative distribution function (CDF), which we denote
by Ft : R→ [0, 1]; Ft(z) denotes the predicted probability
that y is less than z. The quality of probabilistic forecasts
is evaluated using proper losses ℓ. Formally, a loss ℓ(y, f)
is proper if f ∈ argming∈F Ey∼(f)ℓ(y, g) ∀f ∈ F .; i.e.,
the true data probability minimizes the loss. An important
proper loss for CDF predictions is the continuous ranked
probability score, defined as ℓCRPS(y, F ) =

∫∞
−∞(F (z) −

Iy≤z)
2dz.

Online calibration Proper losses decompose into a cal-
ibration and a sharpness component: these quantities pre-
cisely define an ideal forecast. Intuitively, calibration means
that a 60% prediction should be valid 60% of the time;
sharpness means that confidence intervals should be tight.

In the online setting, there exist algorithms guaranteed to

produce calibrated forecasts of binary outcomes yt ∈ {0, 1}
even when the yt is adversarial Foster and Vohra [1998],
Cesa-Bianchi and Lugosi [2006], Abernethy et al. [2011].
These algorithms are oftentimes randomized; hence their
guarantees hold almost surely (a.s.). Here, and in all other
usages going forward, “almost surely” refers to the simu-
lated randomness in the randomized algorithm, and not the
data. However, most calibration methods do not account for
covariates xt Foster and Vohra [1998] or assume simple bi-
nary yt Kuleshov and Ermon [2017], Foster and Hart [2023].
We extend this work to regression and add guarantees on
regret. We provide a detailed comparison of our work with
the broader literature along with some motivating examples
in Appendix F.

3 ONLINE CALIBRATED REGRESSION

Next, we define a task in which our goal is to produce
calibrated forecasts in a regression setting while maintaining
the predictive accuracy of a baseline uncalibrated forecaster.

We start with a forecaster H (e.g., an online learning algo-
rithm) that outputs uncalibrated forecasts Ft at each step;
these forecasts are fed into a recalibrator such that the result-
ing forecasts Gt are calibrated and have low regret relative to
the baseline forecasts Ft. Formally, we introduce the setup
of online recalibration, in which at every step t = 1, 2, ...
we have:

1: Nature reveals features xt ∈ Rd. Forecaster H predicts
Ft = H(xt)

2: A recalibration algorithm produces a calibrated forecast
Gt based on Ft.

3: Nature reveals continuous label yt ∈ Y ⊆ R bounded
by |yt| < B/2, where B > 0.

4: Based on xt, yt, we update the recalibration algorithm
and optionally update H .

Our task is to produce calibrated forecasts. Intuitively, we
say that a forecast Ft is calibrated if for every y′ ∈ Y ,
the probability Ft(y

′) on average matches the frequency
of the event {y ≤ y′}—in other words the Ft behave like
calibrated CDFs. We formalize this intuition by introducing
the ratio

ρT (y, p) =

∑T
t=1 Iyt≤y,Ft(y)=p∑T

t=1 IFt(y)=p

. (1)

Intuitively, we want ρT (y, p)→ p, as T →∞ for all y. In
other words, out of the times when the predicted probability
Ft(y

′) for {yt ≤ y′} to be p, the event {yt ≤ y′} holds a
fraction p of the time. We define ρT (y, p) to be zero when
the denominator in Equation (1) is zero. Below, we enforce
that ρT (y, p)→ p for forecasts p that are played infinitely
often, in that

∑T
t=1 IFt(y)=p → ∞; if a forecast ceases

to be played, there is no need (or opportunity) to improve
calibration for that forecast.



We measure calibration using an extension of the aforemen-
tioned calibration error CT . We define the calibration error
of forecasts {Ft} as

CT (y) =
∑

p∈PT (y)

|ρT (y, p)− p|

(
1

T

T∑
t=1

I{Ft(y)=p}

)
,

(2)
where PT (y) = {F1(y), F2(y), ..., FT (y)} is the set of pre-
vious predictions for {yt ≤ y}. To measure (mis)calibration
for the recalibrated forecasts Gt, we replace Ft with Gt in
Equation (2).

Definition 1. A sequence of forecasts Gt is ϵ-calibrated
for y ∈ Y if CT (y) ≤ RT + ϵ for RT = o(1), where RT

represents the convergence rate.

The interpretation of ϵ-calibration is simple: for example, if
ϵ = 0.01, then of the times when we predict a 90% chance
of rain, the observed occurrence of rain will be between
89% and 91%. For most applications, an error tolerance of a
few % is acceptable. Note that the use of an error tolerance ϵ
mirrors previous works [Foster and Vohra, 1998, Abernethy
et al., 2011, Kuleshov and Ermon, 2017].

The goal of recalibration is also to produce forecasts that
have high predictive value [Gneiting et al., 2007a]. We en-
force this by requiring that the Gt have low regret relative
to the baseline Ft in terms of the CRPS proper loss. Since
the expected CRPS is a sum of calibration and sharpness
terms, by maintaining a good CRPS while being calibrated,
we effectively implement Gneitig’s principle of maximiz-
ing sharpness subject to calibration [Gneiting et al., 2007b].
Formally, this yields the following definition.

Definition 2. A sequence of forecasts Gt is ϵ-recalibrated
relative to forecasts Ft if (a) the forecasts Gt are ϵ-
calibrated for all y ∈ Y and (b) the regret of Gt with
respect to Ft is a.s. small w.r.t. ℓCRPS:

lim sup
T→∞

1

T

T∑
t=1

(ℓCRPS(yt, Gt)− ℓCRPS(yt, Ft)) ≤ ϵ.

4 ALGORITHMS FOR ONLINE
REGRESSION

Next, we propose an algorithm for performing online recali-
bration (Algorithm 1). This algorithm sequentially observes
uncalibrated CDF forecasts Ft and returns forecasts Gt such
that Gt(z) is a calibrated estimate for the outcome yt ≤ z.
This algorithm relies on a classical calibration subroutine
(e.g., Foster and Vohra [1998]), which it uses in a black-box
manner to construct Gt.

Algorithm 1 can be seen as producing a [0, 1]→ [0, 1] map-
ping that remaps the probability of each z into its correct
value. More formally, Algorithm 1 partitions [0, 1] into M

Algorithm 1 Online Recalibration

Require: Online binary calibration subroutine Scal with
resolution N ; number of intervals M

1: Initialize I = {[0, 1
M ), [ 1

M , 2
M ), ..., [M−1

M , 1]}, a set of
intervals that partition [0, 1].

2: Initialize S = {Scal
j | j = 0, ...,M − 1}, a set of M

instances of Scal, one per Ij ∈ I.
3: for t = 1, 2, ...: do
4: Observe uncalibrated forecast Ft.
5: Define Gt(z) as the output of Scal

⌊Ft(z)⌋, where
⌊Ft(z)⌋ is the index of the subroutine associated with
the interval containing Ft(z).

6: Output Gt. Observe yt and update recalibrator:
7: for j = 1, 2, ...,M : do
8: otj = 1 if F (yt) ≤ j

M else 0. Pass otj to Scal
j .

intervals I = {[0, 1
M ), [ 1

M , 2
M ), ..., [M−1

M , 1]}; each inter-
val is associated with an instance Scal of a binary calibration
algorithm (e.g., Foster and Vohra [1998]; see below). In or-
der to compute Gt(z), we compute ptz = Ft(z) and invoke
the subroutine Scal

j associated with interval Ij containing
ptz . After observing yt, each Scal

j observes the binary out-
come otj = IFt(yt)≤ j

M
and updates itself.

4.1 ONLINE BINARY CALIBRATION
SUBROUTINES

A key component of Algorithm 1 is the binary calibration
subroutine Scal. This subroutine is treated as a black box,
hence can implement a range of known algorithms including
regret minimization [Foster and Vohra, 1998, Cesa-Bianchi
and Lugosi, 2006], Blackwell approchability [Abernethy
et al., 2011] or defensive forecasting [Vovk et al., 2005b].
More formally, let ptj denote the output of the j-th calibra-
tion subroutine Scal

j at time t. For any p ∈ [0, 1], we define

ρ
(j)
T (p) = (

∑T
t=1 otjIptj=p)/(

∑T
t=1 Iptj=p) to be the em-

pirical frequency of the event {otj = 1} Online calibration
subroutines ensure that ρ(j)T (p) ≈ p.

Assumptions. Specifically, a subroutine Scal
j normally

outputs a set of discretized probabilities i/N for i ∈
{0, 1, ..., N}. We refer to N as their resolution. We de-
fine the calibration error of Scal

j at i/N as C
(j)
T,i =∣∣∣ρ(j)T (i/N)− i

N

∣∣∣ ( 1
T

∑T
t=1 I

(j)
t,i

)
where I(j)t,i = I{ptj =

i/N}. We may write the calibration loss of Scal
j as C(j)

T =∑N
i=0 C

(j)
T,i.

We will assume that the subroutine Scal used in Algorithm 1
is ϵ-calibrated in that C(j)

T ≤ RT + ϵ uniformly (RT = o(1)
as T → ∞). Recall also that the target yt is bounded as
|yt| < B/2.



4.2 ONLINE RECALIBRATION PRODUCES
CALIBRATED FORECASTS

Intuitively, Algorithm 1 produces valid calibrated estimates
Gt(z) for each z because each Scal

j is a calibrated subrou-
tine. More formally, we seek to quantify the calibration of
Algorithm 1. Since the Scal output discretized probabilities,
we may define the calibration loss of Algorithm 1 at y as

CT (y) =

N∑
i=0

∣∣∣∣ρT (y, i/N)− i

N

∣∣∣∣
(

1

T

T∑
t=1

It,i

)
, (3)

where It,i = I{F (yt) = i/N}. The following lemma estab-
lishes that combining the predictions of each Scal

j preserves
their calibration. Specifically, the calibration error of Algo-
rithm 1 is bounded by a weighted average of RTj

terms,
each is o(1), hence the bound is also o(1) (see next section).

Lemma 1 (Preserving calibration). Given y ∈ Y , let Tj =
|{1 ≤ t ≤ T : ⌊Ft(y)⌋ = j/M}| denote the number of
calls to Scal

j by Algorithm 1. If each Scal
j is ϵ-calibrated,

then Algorithm 1 is also ϵ-calibrated and the following
bound holds uniformly a.s. over T :

CT (y) ≤
M∑
j=1

Tj

T
RTj + ϵ (4)

4.3 ONLINE RECALIBRATION PRODUCES
FORECASTS WITH VANISHING REGRET

Next, we want to show that the Gt do not decrease the
predictive performance of the Ft, as measured by ℓCRPS.
Intuitively, this is true because the ℓCRPS is a proper loss that
is the sum of calibration and sharpness, the former of which
improves in Gt.

Establishing this result will rely on the following key tech-
nical lemma [Kuleshov and Ermon, 2017] (see Appendix).

Lemma 2. Each ϵ-calibrated Scal
j a.s. has

a small regret w.r.t. the ℓ2 norm and sat-
isfies uniformly over time Tj the bound
maxi,k

∑Tj

t=1 Iptj=i/N (ℓ2(otj , i/N)− ℓ2(otj , k/N)) ≤
2(RTj

+ ϵ).

An important consequence of Lemma 2 is that a calibrated al-
gorithm has vanishing regret relative to any fixed prediction
(since minimizing internal regret also minimizes external
regret). Using this fact, it becomes possible to establish that
Algorithm 1 is at least as accurate as the baseline forecaster.

Lemma 3 (Recalibration with low regret accuracy). Con-
sider Algorithm 1 with parameters M ≥ N > 1/ϵ and let ℓ
be the CRPS proper loss. Then the recalibrated Gt a.s. have
vanishing ℓ-loss regret relative to Ft and we have a.s.:

1

T

T∑
t=1

ℓ(yt, Gt)−
1

T

T∑
t=1

ℓ(yt, Ft) < NBRT +
2B

N

Proof (sketch). When ptj = Gt(y) is the output of a given
binary calibration subroutine Scal

j at some y, we know what
⌊F (y)⌋ = j/M (by construction). Additionally, we know
from Lemma 2 that Scal

j minimizes regret. Thus, it has
vanishing regret in terms of ℓ2 loss relative to the fixed
prediction j/M :

∑Tj

t=1(otj−ptj)2 ≤
∑Tj

t=1(otj−j/M)2+
o(Tj). But otj = IF (yt)≤j/m, and during the times t when
Scal
j was invoked, during the times t when Scal

j was invoked
ptj = Gt(y) and j/M = Ft(y). Aggregating over j and
integrating over y yields our result.

These two lemmas lead to our main claim: that Algorithm 1
solves the online recalibration problem.

Theorem 1. Let Scal be an (ϵ/2B)-calibrated online sub-
routine with resolution N ≥ 2B/ϵ. Then Algorithm 1 with
parameters Scal and M = N outputs ϵ-recalibrated fore-
casts.

Proof. By Lemma 1, Algorithm 1 is (ϵ/2B)-calibrated and
by Lemma 3, its regret w.r.t. the Ft tends to < 2B/N < ϵ.
Hence, Theorem 1 follows.

General proper losses Throughout our analysis, we have
used the CRPS loss to measure the regret of our algorithm.
This raises the question: is the CRPS loss necessary? One
answer to this question is that if the loss ℓ used to measure
regret is not a proper loss, then recalibration is not possible.

Theorem 2. If ℓ is not proper, then no algorithm achieves
recalibration w.r.t. ℓ for all ϵ > 0.

On the other hand, in Appendix B, we provide a more gen-
eral analysis that shows that: (1) a calibrated Scal must have
vanishing regret relative to a fixed prediction as measured
using any proper score; (2) Algorithm 1 achieves vanishing
regret relative to any proper score. See Appendix B for a
formal statement and proof.

5 APPLICATIONS

5.1 CHOICE OF RECALIBRATION SUBROUTINE

Algorithm 1 is compabible with any binary recalibration
subroutine Scal. Two choices of Scal include methods based
on internal regret minimization [Mannor and Stoltz, 2010]
and ones based on Blackwell approachability [Abernethy
et al., 2011]. These yield different computational costs and
convergence rates for Algorithm 1.

Specifically, recall that RT denotes the rate of convergence
of the calibration error CT of Algorithm 1. For most online
calibration subroutines Scal, RT ≤ f(ϵ)/

√
T for some f(ϵ).



In such cases, we can further bound the calibration error in
Lemma 1 as

M∑
j=1

Tj

T
RTj
≤

M∑
j=1

√
Tjf(ϵ)

T
≤ f(ϵ)√

ϵT
. (5)

In the second inequality, we set the Tj to be equal. Thus,
our recalibration procedure introduces an overhead of 1√

ϵ

in the convergence rate of the calibration error CT and of
the regret in Lemma 3. In addition, we require 1

ϵ times more
memory and computation time (we run 1/ϵ instances of
Scal
j ).

When using an internal regret minimization subroutine,
the overall calibration error of Algorithm 1 is bounded as
O(1/ϵ

√
ϵT ) with O(1/ϵ) time and O(1/ϵ2) space complex-

ity. These numbers improve to O(log(1/ϵ)) time complexity
for a O(1/ϵ

√
T ) calibration bound when using the method

of Abernethy et al. [2011] based on Blackwell approacha-
bility. The latter choice is what we recommend.

5.2 UNCERTAINTY ESTIMATION

We complement our results with ways in which Algorithm
1 can yield predictions for various confidence intervals.

Theorem 3. Let Gt for t = 1, 2, ..., T denote a sequence of
(ϵ/2)-calibrated forecasts. For any interval [y1, y2], we have
1
T

∑T
t=1(Gt(y2)−Gt(y1))→ 1

T

∑T
t=1 I{yt ∈ [y1, y2]} as

T →∞ a.s.

This theorem justifies the use of Ft(y2) − Ft(y1) to esti-
mate the probability of the event that yt falls in the interval
[y1, y2]: on average, predicted probabilities will match true
outcomes. The proof follows directly from the definition of
ϵ-calibration. This result directly mirrors the construction
for calibrated confidence intervals in Kuleshov et al. [2018].

5.3 ONLINE DECISION-MAKING

Consider a doctor seeing a stream of patients. For each pa-
tient xt, they use a model M of an outcome yt to estimate a
loss ℓ(xt) = Ey∼M(xt)ℓ(xt, y, a(xt)) for a decision a(xt)
(which could be a(xt) = argmina Ey∼M(xt)[ℓ(xt, y, a)],
e.g., a treatment that optimizes an expected outcome). We
want to guarantee that the doctor’s predictions will be cor-
rect: over time, the estimated expected value will not exceed
from the realized loss. Crucially, we want this to hold in
non-IID settings.

Our framework enables us to achieve this result with only a
weak condition—calibration. The following concentration
inequality shows that estimates of v are unlikely to exceed
the true v on average (proof in Appendix C). If data was IID,
this would be Markov’s inequality: surprisingly, a similar
statement holds in non-IID settings.

Theorem 4. Let M be a calibrated model and let ℓ(y, a, x)
be a monotonically non-increasing or non-decreasing loss
in y. Then for any sequence (xt, yt)

T
t=1 and r > 1, we have:

lim
T→∞

1

T

T∑
t=1

I [ℓ(yt, a(xt), xt) ≥ rℓ(xt))] ≤ 1/r (6)

6 EXPERIMENTS

Next, we evaluate Algorithm 1 on regression tasks as well as
on Bayesian optimization, a sequential decision-making pro-
cess that induces a non-i.i.d. data distribution. We performed
all experiments on a laptop, indicating the low overhead of
our method.

Baselines We compare our randomized online calibration
with two baselines. Calibrated regression is a popular algo-
rithm for the IID setting [Kuleshov et al., 2018] and can
be seen as estimating the same mapping as Algorithm 1
using kernel density estimation with a tophat kernel. Non-
randomized online calibration uses the same subroutine as
Algorithm 1, but outputs the expected probability as op-
posed to a random sample; we found this to be a strong
baseline that outperforms simple density estimation and
reveals the value of randomization.

Analysis of calibration. We assess the calibration of
the base model and the recalibrated model with calibra-
tion scores defined using the probability integral trans-
form [Gneiting et al., 2007a]. We define the calibration
score as cal(p1, y1, .., pn, yn) =

∑m
j=1((qj− qj−1)− p̂j)

2,
where q0 = 0 < q1 < q2 < .. < qm = 1 are m confi-
dence levels. The p̂j is estimated as p̂j = |{yt|qj−1 ≤ pt ≤
qj , t = 1, .., N}|/N.

6.1 UCI DATASETS

We experiment with four multivariate UCI datasets [Dua and
Graff, 2017] to evaluate our online calibration algorithm.

Setup. Our dataset consists of input and output pairs
{xt, yt}Tt=1 where T is the size of the dataset. We sim-
ulate a stream of data by sending batches of data-points
{xt, yt}n(t

′+1)
t=nt′+1 to our model, where t′ is the time-step and

n is the batch-size. This simulation is run for ⌈T/n⌉ time-
steps. For each batch, Bayesian ridge regression is fit to the
data and the recalibrator is trained. We set N = 20 in the
recalibrator and use a batch size of n = 10 unless stated
otherwise.

Aquatic toxicity datasets We evaluate our algorithm on
the QSAR (Quantitative Structure-Activity Relationship)
Aquatic Toxicity Dataset 1(a) (batch size n=5) and Fish Tox-
icity Dataset 1(b) (batch size n=10), where aquatic toxicity
towards two different types of fish is predicted using 8 and



Table 1: Evaluation of Online Calibration on UCI Datasets. We compare the performance of online calibration against
non-randomized online calibration, kernel density estimation, and uncalibrated (i.e., raw) baselines. Our method produces
the lowest calibration errors in the last time step. Results hold with std error quoted in braces (10 experimental runs, fixed
dataset).

Dataset Uncalibrated Kernel Density Online Calibration Online Calibration
(Raw) Estimation (Non-randomized)

Aq. Toxicity (Daphnia Magna) 0.0081 (0.0001) 0.0055 (0.0002) 0.0058 (0.0003) 0.0027 (0.0001)
Aq. Toxicity (Fathead Minnow) 0.0111 (0.0000) 0.0097 (0.0005) 0.0084 (0.0005) 0.0031 (0.0003)
Energy Efficiency 0.3322 (0.0001) 0.2857 (0.0356) 0.1702 (0.0094) 0.1156 (0.0061)
Facebook Comment Volume 0.2510 (0.0000) 0.0589 (0.0050) 0.0623 (0.0000) 0.0518 (0.0002)

(a) Aquatic Toxicity (Daphnia Magna) (b) Aquatic Toxicity (Fathead Minnow)

Figure 1: Performance of Online Calibration on the Aquatic Toxicity Datasets. Aquatic toxicity towards two different types
of fish (Daphnia Magna 1(a) and Fathead Minnow 1(b)) is predicted by the base model. In both datasets, online calibration
outperforms the baseline methods.

6 molecular descriptors as features respectively. In Figure 1,
we can see that the randomized online calibration algorithm
produces a lower calibration error than the non-randomized
baseline. We also compare the performance of our algorithm
against uniform kernel density estimation by maintaining a
running average of probabilities in each incoming batch of
data-points. For the Fish Toxicity Dataset, we can see that
only online calibration improves calibration errors relative
to the baseline model. We report all final calibration errors
in Table 1.

Energy efficiency dataset The heating load and cooling
load of a building is predicted using 8 building parameters
as features. In Figure 2(a), we see that the calibration errors
produced by the online calibration algorithm drop sharply
within the initial 10 time-steps. The baselines also produce
a drop in calibration scores, but it happens more gradually.

Facebook comment volume dataset In Figure 2(b), the
Facebook Comment Volume Dataset is used where the num-
ber of comments is to be predicted using 53 attributes asso-

ciated with a post. We use the initial 10000 data-points from
the dataset for this experiment. Here, the non-randomized
and randomized online calibration algorithms produce a
similar drop in calibration errors, but the randomized on-
line calibration algorithm still dominates both baselines
(Table 1).

6.2 BAYESIAN OPTIMIZATION

We also apply online recalibration in the context of Bayesian
optimization, an online model-based decision-making task
in which the data distribution shifts over time (it is the
result of our actions). We find that improved uncertainties
yield faster convergence to higher quality optima.

Setup Bayesian optimization attempts to find the global
minimum x⋆ = argminx∈X f(x) of an unknown function
f : X → R over an input space X ⊆ RD. We are given an
initial labeled dataset xt, yt ∈ X × R for n = 3. At every
time-step t, we use normal and recalibrated uncertainties
from the probabilistic modelM : X → (R→ [0, 1]) of f



(a) Energy Efficiency (b) Facebook Comment Volume

Figure 2: Performance of Online Calibration on the Energy Efficiency and Facebook Comment Volume Datasets. In both
datasets, online recalibration (blue, bottom) attains a lower calibration error at a faster rate than baselines (red and top,
middle).
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Figure 3: Performance of Recalibration Methods on Bayesian Optimization Benchmarks

Table 2: Recalibrated Bayesian Optimization

Benchmark Uncalibrated Recalibrated

Ackley (2D) 9.925 (3.502) 8.313 (3.403)
SixHump (2D) -0.378 (0.146) -1.029 (0.002)
Ackley (10D) 14.638 (0.591) 10.867 (2.343)
Alpine (10D) 13.911 (1.846) 12.163 (1.555)

(here, a Gaussian Process) to select the next data-point xnext

and iteratively update the modelM. We use popular bench-
mark functions to evaluate the performance of Bayesian
optimization. We use the Lower Confidence Bound (LCB)
acquisition function to select the data-point xt. See Ap-
pendix E for details.

Table 2 shows that the online recalibration of uncertainties in
a Bayesian optimization (BO) model achieves lower minima
than an uncalibrated model (results averaged over 5 overall
BO runs with fixed initialization). Figure 3 shows that online
recalibrated Bayesian optimization can also reach optima
in fewer steps. The error bars for the Beale and Mccormick
functions are too small to be visible in the plots. All error

bars denote standard errors.

7 DISCUSSION

Adversarial calibration methods Table 3 compares our
method against its closest alternatives. Unlike previous algo-
rithms aimed at classification that output a binary forecast
pt ∈ [0, 1] [Foster and Vohra, 1998, Kuleshov and Ermon,
2017], we study marginal quantile calibration in regression.
Our work resembles adaptive conformal inference [Gibbs
and Candès, 2021], but provides a CDF-like object Ft in-
stead of one confidence interval qt ∈ [0, 1] and yields a
different notion of calibration. Crucially, we provide regret
guarantees relative to a baseline model.

Specifically, our technical goal is marginal CDF calibration:
estimating the probability of the event yt ≤ y for all y.
Note that these probabilities are marginal over the yt; this
is in contrast to conditional calibration for yt = 1|pt = p
as in Kuleshov and Ermon [2017]. We call our technical
strategy online CDF regression (by analogy to quantile re-
gression): we remap the predicted probabilities Ft(y) (for



Table 3: Comparison to Existing Methods in the Literature

Method Setting Output Calibration Recalibrator Regret Proof Technique

Foster and Vohra [1998] Class. pt ∈ [0, 1] Conditional n/a n/a Int. regret min.
Kuleshov and Ermon [2017] Class. pt ∈ [0, 1] Conditional p-to-p L2 loss Int. regret min.
Gibbs and Candès [2021] Regr. qt ∈ [0, 1] One quantile q-to-q n/a Quantile regr.
Ours Regr. CDF Ft CDF ∀y F (y)-to-F (y) CRPS CDF regr.

any y) to a calibrated probability R(Ft(y)). Our proof tech-
nique establishes calibration by relating final calibration to
the calibration of each subroutine using Jensen’s inequality.
We establish low regret by aggregating the regret of all the
subroutines within one CRPS loss.

Most existing methods in online calibrated classification
Foster and Vohra [1998], Vovk et al. [2005b], Abernethy
et al. [2011], Okoroafor et al. [2024] or regression Gibbs
and Candès [2021] do not provide guarantees for regret, ex-
cept online recalibrated classification Kuleshov and Ermon
[2017] and calibeating Foster and Hart [2023], Lee et al.
[2022]. However, these methods are only for binary classifi-
cation, whereas ours are for regression.When compared with
Lee et al. [2022], our work achieves a different calibration
definition that is more appropriate for continuous outcomes
together with a different notion of regret (See Appendix F.1
for a detailed comparison).

Marginal calibration Our definition of calibration in re-
gression is marginal across all xt, yt; this is in contrast
to classification [Foster and Vohra, 1998], where calibra-
tion is conditional (also known as distributional) on each
p. Marginal calibration implies that the true outcome falls
below the 90% quantile 90% of times (averaged over all t).
Distribution calibration in regression Kuleshov and Desh-
pande [2022] would be PPAD-hard by reduction from multi-
class [Hazan and Kakade, 2012]. Marginal calibration is
also currently a common definition of calibration for regres-
sion. For example, Kuleshov et al. [2018] in the IID setting
or Gibbs and Candès [2021] in the online setting adopt this
definition.

Batch vs online calibration Algorithm 1 can be seen
as a direct counterpart to the histogram technique, a sim-
ple method for density estimation. With the histogram ap-
proach, the Ft is split into N bins, and the average y value
is estimated for each bin. Because of the i.i.d. assump-
tion, the output probabilities are calibrated, and the bin
width determines the sharpness. Note that by Hoeffding’s
inequality, the average for a specific bin converges at a faster
rate of O(1/

√
Tj)[Devroye et al., 1996], as opposed to the

O(1/
√
ϵTj) rate given by Abernethy et al. [2011]; hence

online calibration is harder than batch.

8 PREVIOUS WORK & CONCLUSION

Calibrated probabilities are widely used as confidence mea-
sures in the context of binary classification. Such proba-
bilities are obtained via recalibration methods, of which
Platt scaling Platt [1999] and isotonic regression Niculescu-
Mizil and Caruana [2005] are by far the most popular.
Recalibration methods also possess multiclass extensions,
which typically involve training multiple one-vs-all predic-
tors Zadrozny and Elkan [2002], as well as extensions to
ranking losses Menon et al. [2012], combinations of esti-
mators Zhong and Kwok [2013], and structured prediction
Kuleshov and Liang [2015]. Recalibration algorithms have
applied to improve reinforcement learning [Malik et al.,
2019], Bayesian optimization [Deshpande et al., 2024, Stan-
ton et al., 2023] and deep learning [Kuleshov and Desh-
pande, 2022]. Crucially, all of these methods implicitly rely
on the assumption that data is sampled i.i.d. form an underly-
ing distribution; they can be interpreted as density estimation
techniques.

Online calibration was first proposed by [Foster and Vohra,
1998]. Existing algorithms are based on internal regret mini-
mization Cesa-Bianchi and Lugosi [2006] or on Blackwell
approachability Foster [1997]; recently, these approaches
were shown to be closely related Abernethy et al. [2011],
Mannor and Stoltz [2010]. Conformal prediction [Vovk
et al., 2005b] is a technique for constructing calibrated
predictive sets; it has been extended to handle distribution
shifts [Hendrycks et al., 2018, Tibshirani et al., 2019, Barber
et al., 2022], and online adversarial data [Gibbs and Candès,
2021].

Conclusion We presented a novel approach to uncertainty
estimation that leverages online learning. Our approach ex-
tends existing online learning methods to handle predictive
uncertainty while ensuring high accuracy, providing formal
guarantees on calibration and regret on adversarial input.

We introduced a new problem called online calibrated fore-
casting, and proposed algorithms that generalize calibrated
regression to non-IID settings. Our methods are effective
on several predictive tasks and hold potential to improve
performance in sequential model-based decision-making
settings where we are likely to observe non-stationary data.
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A CORRECTNESS OF THE RECALIBRATION PROCEDURE

In the appendix, we provide the proofs of the theorems from the main part of the paper.

Notation We use IE denote the indicator function of E, [N ] and [N ]0 to (respectively) denote the sets {1, 2, ..., N} and
{0, 1, 2, ..., N}, and ∆d to denote a d-dimensional simplex.

Setup We place our work in the framework of online learning [Shalev-Shwartz, 2007]. At each time step t = 1, 2, ...,
we are given features xt ∈ X . We use a forecaster H : X → P to produce a prediction pt = H(xt), pt ∈ P in the set
of distributions P over a target y ∈ Y . Nature then reveals the true target yt ∈ Y and we incur a loss of ℓ(yt, pt), where
ℓ : Y × P → R+ is a loss function. The forecaster H updates itself based on xt, yt, and we proceed to time t+ 1.

Unlike in classical machine learning, we do not assume that the xt, yt are i.i.d.: they can be random, deterministic or even
chosen by an adversary. Online learning algorithms feature strong performance guarantees in this regime, where performance
is usually measured in terms of regret RT (q) relative to a constant prediction q, RT (q) =

∑T
t=1 ℓ(yt, pt)− ℓ(yt, q). The

worst-case regret at time T equals RT = maxq∈P RT (q).

In this paper, the predictions pt are probability distributions over the outcome yt. We focus on regression, where yt ∈ R and
the prediction pt can be represented by a cumulative distribution function (CDF), denoted Ft : R→ [0, 1] and defined as
Ft(z) = pt(y ≤ z).

Learning with expert advice A special case of this framework arises when each xt represents advice from N experts,
and H outputs pt ∈ ∆N−1, a distribution over experts. Nature reveals an outcome yt, resulting in an expected loss of∑N

i=1 ptiℓ(yt, ati), where ℓ(yt, ati) is the loss under expert i’s advice ati. Performance in this setting is measured using two
notions of regret.

Definition 3. The external regret Rext
T and the internal regret Rint

T are defined as

Rext
T =

T∑
t=1

ℓ̄(yt, pt)− min
i∈[N ]

T∑
t=1

ℓ(yt, ait) Rint
T = max

i,j∈[N ]

T∑
t=1

pti (ℓ(yt, ait)− ℓ(yt, ajt)) ,

where ℓ̄(y, p) =
∑N

i=1 piℓ(y, ait) is the expected loss.

Calibration for online binary calibration For now, we focus on the ℓ1 norm, and we define the calibration error of a
forecaster Scal as

CT =

N∑
i=0

∣∣∣∣ρT (i/N)− i

N

∣∣∣∣
(

1

T

T∑
t=1

I{pt=
i
N }

)
, (7)

where ρT (p) =
∑T

t=1 ytIpt=p∑T
t=1 Ipt=p

denotes the frequency at which event y = 1 occurred over the times when we predicted p.
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We further define the calibration error when Scal
j predicts i/N as

C
(j)
T,i =

∣∣∣∣ρ(j)T (i/N)− i

N

∣∣∣∣
(

1

Tj

T∑
t=1

I(j)t,i

)

where I(j)t,i = I{pt = i
N ∩ FH

t ∈ [ j−1
M , j

M )} is an indicator for the event that Scal
j is triggered at time t and predicts i/N .

Similarly, It,i = I{pt = i/N} =
∑M

j=1 I
(j)
t,i indicates that i/N was predicted at time t, and Tj =

∑T
t=1

∑N
i=0 I

(j)
t,i is the

number of calls to Scal
j . Also,

ρ
(j)
T (i/N) =

∑T
t=1 I

(j)
t,i yt∑T

t=1 I
(j)
t,i

is the empirical success rate for Scal
j .

Note that with these definitions, we may write the calibration losses of Scal
j as C(j)

T =
∑N

i=0 C
(j)
T,i.

Calibration for regression A sequence of forecasts Ft achieves online quantile calibration for all y ∈ Y and all p ∈ P ,
ρT (y, p)→ p, a.s. as T →∞, where

ρT (y, p) =

∑T
t=1 Iyt≤y,Ft(y)=p∑T

t=1 IFt(y)=p

(8)

In other words, out of the times when the predicted probability Ft(y
′) for {yt ≤ y′} to be p, the event {yt ≤ y′} holds a

fraction p of the time.

We also seek to quantify more precisely the calibration of Algorithm 1, specifically compare ρ(y, p) with p. We define for
this the quantity

CT,i(y) =

∣∣∣∣ρT (y, i/N)− i

N

∣∣∣∣
(

1

T

T∑
t=1

It,i

)
,

and we define the calibration loss of Algorithm 1 at y as CT (y) =
∑N

i=0 CT,i(y).

Proper losses The quality of probabilistic forecasts is evaluated using proper losses ℓ. Formally, a loss ℓ(y, p) is proper if
p ∈ argminq∈P Ey∼(p)ℓ(y, q) ∀p ∈ P. An important proper loss for CDF predictions F is the continuous ranked probability
score, defined as

ℓCRPS(y, F ) =

∫ ∞

−∞
(F (z)− Iy≤z)

2dz. (9)

A.1 ASSUMPTIONS

We assume that each subroutine Scal is an instance of a binary calibrated forecasting algorithm (e.g., the methods introduced
in Chapter 4 in Cesa-Bianchi and Lugosi [2006]) that produce predictions in [0, 1] that are (ϵ, ℓ2)-calibrated and that
C2

T ≤ RT + ϵ uniformly (RT = o(1) as T →∞; T is the number of calls to instance Scal
j ). We also assume that for each t,

the target yt lies in some bounded interval Y of R of length at most B.

A.2 ONLINE CALIBRATED REGRESSION

First, we look at algorithms for online calibrated regression (without covariates). Our algorithms leverage classical online
binary calibration [Foster and Vohra, 1998] as a subroutine. Formally, Algorithm 1 partitions [−B

2 ,
B
2 ] into M intervals

I = {[−B
2 , −B

2 + B
M ), ..., [B2 −

B
M , B

2 ]}; each interval is associated with an instance of an online binary recalibration
subroutine Scal [Foster and Vohra, 1998, Cesa-Bianchi and Lugosi, 2006]. In order to compute Gt(y ≤ z), we invoke
the subroutine Scal

j associated with interval Ij containing z. After observing yt, each Scal
j observes whether yt falls in its

interval and updates its state.



Theorem 5. Let YI be the set of upper bounds of the intervals I and let PS be the output space of Scal. Algorithm 1
achieves online calibration and for all y ∈ YI , p ∈ PS we have ρT (y, p)→ p a.s. as T →∞.

Proof. The above theorem follows directly from the construction of Algorithm 1: for each y ∈ Y , we run an online binary
calibration algorithm to target the event yt ≤ y.

Specifically, note that for each y ∈ YI , the empirical frequency ρ(y, p) reduces to the definition of the empirical frequency
of a classical binary calibration algorithm targeting probability p and the binary outcome that yt ≤ y. The output of the
algorithm for Ft(y) is also a prediction for the binary outcome yt ≤ y produced by a classical onlne binary calibration
algorithm. Thus, by construction, we have the desired result.

Algorithms Scal for online binary calibration are randomized. Our procedure needs to be randomized as well and this is a
fundamental property of our task.

Theorem 6. There does not exist a deterministic online calibrated regression algorithm that achieves online calibration.

Proof. This claim follows because we can encode a standard online binary calibration problem as calibrated regression.
Specifically, given a non-randomized online calibrated regression algorithm, we could solve an online binary classification
problem. Suppose the adversary chooses a binary yt ∈ {0, 1} ⊆ [0, 1] that defines one of two classes. Then we can define an
instance of calibrated regression with two buckets [0, 0.5) and [0.5, 1). We use the forecast Ft(0.5) as our prediction for
yt = 0 and one minus that as the prediction for 1. Then, the error on the ratio ρT (0.5, p) yields the definition of calibration
in binary classification. If our deterministic online calibration regression algorithm works, then we have ρT (0.5, p)→ p,
which means that the empirical ratio for the binary algorithm goes to the predicted frequency p as well. But that would yield
a deterministic algorithm for online binary calibration, which we know can’t exist.

A.3 PROVING THE CALIBRATION OF ALGORITHM 1

First, we will provide a proof of Lemma 1; this proof holds for any norm ℓp.

Lemma 4 (Preserving calibration). If each Scal
j is (ϵ, ℓp)-calibrated, then Algorithm 1 is also (ϵ, ℓp)-calibrated and the

following bound holds uniformly over T :

CT ≤
M∑
j=1

Tj

T
RTj + ϵ. (10)

Proof. Let I(j)i =
∑T

t=1 I
(j)
t,i and note that

∑T
t=1 It,i =

∑M
j=1 I

(j)
i . We may write

CT,i(y) =

∑T
t=1 It,i
T

∣∣∣∣ρT (y, i/N)− i

N

∣∣∣∣p =

∑M
j=1 I

(j)
i

T

∣∣∣∣∣∣
M∑
j=1

∑T
t=1 I

(j)
t,i otj∑M

j=1 I
(j)
i

− i

N

∣∣∣∣∣∣
p

=

∑M
j=1 I

(j)
i

T

∣∣∣∣∣∣
M∑
j=1

I(j)i ρ
(j)
T (y, i/N)∑M
j=1 I

(j)
i

− i

N

∣∣∣∣∣∣
p

≤
M∑
j=1

I(j)i

T

∣∣∣∣ρ(j)T (y, i/N)− i

N

∣∣∣∣p =

M∑
j=1

Tj

T
C

(j)
T,i,

where in the last line we used Jensen’s inequality. Plugging in this bound in the definition of CT , we find that

CT =

N∑
i=1

CT,i ≤
M∑
j=1

N∑
i=1

Tj

T
C

(j)
T,i ≤

M∑
j=1

Tj

T
RTj

+ ϵ,

Since each RTj → 0, Algorithm 1 will be ϵ-calibrated.



A.4 RECALIBRATED FORECASTS HAVE LOW REGRET UNDER THE CRPS LOSS

Lemma 5 (Recalibration preserves accuracy). Consider Algorithm 1 with parameters M ≥ N > 1/ϵ. Suppose that the
Scal are (ϵ, ℓ2)-calibrated. Then the recalibrated Gt a.s. have vanishing ℓCRPS-regret relative to Ft:

1

T

T∑
t=1

ℓCRPS(yt, Gt)−
1

T

T∑
t=1

ℓCRPS(yt, Ft) < NBRT +
2B

N
. (11)

Proof. Our proof will rely on the following fact about any online calibration subroutine Scal. We start by formally
establishing this fact.

Fact 1. Let Scal be an binary online calibration subroutine with actions 0, 1/N, ...1 whose ℓ2 calibration error Cp
T is

bounded by RT = o(T ). Then the predictions pt from Scal also minimize external regret relative to any single action i/N :

T∑
t=1

(pt − yt)
2 − (

i

N
− yt)

2 ≤ NRT for all i (12)

We refer the reader to Lemma 4.4 in Cesa-Bianchi and Lugosi [2006] for a proof.

Next, we prove our main claim. We start with some notation. Let I = {[0, 1
M ), [ 1

M , 2
M ), ..., [M−1

M , 1]} be a set of intervals
that partition [0, 1] and let Ij = [ j−1

M , j
M ) be the j-th interval. Also, for each j, we use ij denote the index i ∈ [N ] that is

closest to j in the sense of | ijN −
j
M | ≤

1
N . By our assumption that M ≥ N , this index exists.

We begin our proof by from the definition of the CRPS regret:

1

T

T∑
t=1

ℓCRPS(yt, Gt)−
1

T

T∑
t=1

ℓCRPS(yt, Ft)

=
1

T

T∑
t=1

∫ ∞

−∞
(Gt(z)− Iyt≤z)

2dz − 1

T

T∑
t=1

∫ ∞

−∞
(Ft(z)− Iyt≤z)

2dz

=

∫ ∞

−∞

1

T

T∑
t=1

[
(Gt(z)− Iyt≤z)

2 − (Ft(z)− Iyt≤z)
2
]
dz

=

∫
z∈Y

1

T

T∑
t=1

[
(Gt(z)− Iyt≤z)

2 − (Ft(z)− Iyt≤z)
2
]
dz

=

∫
z∈Y

1

T

T∑
t=1

[
(Gt(z)− IFt(yt)≤Ft(z))

2 − (Ft(z)− IFt(yt)≤Ft(z))
2
]
dz

In the second-to-last line, we have used the fact that the forecasts have finite support, i.e., the yt live within a closed bounded
set Y . In the last line, we replaced the event yt ≤ z with Ft(yt) ≤ Ft(z), which is valid because Ft is monotonically
increasing.

Let’s now analyze the above integrand for one fixed value of z:

1

T

T∑
t=1

[
(Gt(z)− IFt(yt)≤Ft(z))

2 − (Ft(z)− IFt(yt)≤Ft(z))
2
]
. (13)

Since Ft outputs a finite number of values in the set {0, 1
M , ..., 1}, let j/M denote the value Ft(z) = j/M taken by Ft at z.

Additionally, observe that IFt(yt)≤ j
M

= otj , where otj is the binary target variable given to Scal
j at the end of step t. Finally,

recall that when Ft(z) =
j
M , we have defined Gt(z) to be the output of Scal

j at time t, which we denote as Gtj . This yields
the following expression for the above integrand for a fixed z:

1

T

T∑
t=1

[
(Gtj − otj)

2 − (
j

M
− otj)

2

]
. (14)



Next, recall that ij is the index i ∈ [N ] that is closest to j in the sense of | ijN −
j
M | ≤

1
N . Recall also that M ≥ N . Note

that this implies

ℓ2(
j

M
, otj) ≥ ℓ2(

ij
M

, otj) +
∂ℓ2
∂p

(p, otj)(
j

M
− ij

M
) ≥ 2

N
. (15)

Using this inequality, we obtain the following bound for our earlier integrand:

1

T

T∑
t=1

[
(Gtj − otj)

2 − (
ij
N
− otj)

2

]
+

2

N
. (16)

Crucially, this expression is precisely the external regret of recalibration subroutine Scal
j relative to the fixed action ij

N and
measured in terms of the L2 loss. By Fact 1, we know that this external regret is bounded by NRT . Since this bound holds
pointwise for any value of z, we can plug it into our original integral to obtain a bound on the CRPS regret:∫

z∈Y

1

T

T∑
t=1

[
(Gt(z)− IFt(yt)≤Ft(z))

2 − (Ft(z)− IFt(yt)≤Ft(z))
2
]
dz

≤
∫
z∈Y

[
NRT +

2

N

]
dz

≤ NBRT +
2B

N

In the last line, we used the fact that the integration is over a finite set Y whose measure is bounded by B > 0. This
establishes the main claim of this proposition.

A.5 CORRECTNESS OF ALGORITHM 1

We now prove our main result about the correctness of Algorithm 1.

Theorem 1. Let Scal be an (ℓ1, ϵ/3B)-calibrated online subroutine with resolution N ≥ 3B/ϵ. and let ℓ be a proper loss
satisfying the assumptions of Lemma 3. Then Algorithm 1 with parameters Scal and N is an ϵ-accurate online recalibration
algorithm for the loss ℓ.

Proof. It is easy to show that Algorithm 1 is (ℓ1, ϵ/3B)-calibrated by the same argument as Lemma 1 (see the next section
for a formal proof). By Lemma 4, its regret w.r.t. the raw FH

t tends to < 3B/N < ϵ. Hence, the theorem follows.

A.6 CALIBRATION IMPLIES NO INTERNAL REGRET

Here, we show that a calibrated forecaster also has small internal regret relative to any bounded proper loss [Kuleshov and
Ermon, 2017].

Lemma 1. If ℓ is a bounded proper loss, then an ϵ-calibrated Scal a.s. has a small internal regret w.r.t. ℓ and satisfies
uniformly over time T the bound

Rint
T = max

ij

T∑
t=1

Ipt=i/N (ℓ(yt, i/N)− ℓ(yt, j/N)) ≤ 2B(RT + ϵ). (17)

Proof. Let T be fixed for the rest of this proof. Let Iti = Ipt=i/N be the indicator of Scal outputting prediction i/N at time
t, let Ti =

∑T
t=1 Iti denote the number of time i/N was predicted, and let

Rint
T,ij =

T∑
t=1

Iti (ℓ(yt, i/N)− ℓ(yt, j/N)) (18)

denote the gain (measured using the proper loss ℓ) from retrospectively switching all the plays of action i to j. This value
forms the basis of the definition of internal regret (Section 2).



Let T (i, y) =
∑T

t=1 ItiI{yt = y} denote the total number of i/N forecasts at times when yt = y ∈ {0, 1}. Observe that we
have

T (i, y) =

T∑
t=1

ItiI{yt = y} =
∑T

t=1 ItiI{yt = y}
Ti

Ti =

∑T
t=1 ItiI{yt = y}∑T

t=1 Iti
Ti

= q(i, y)Ti + Ti

(∑T
t=1 ItiI{yt = y}∑T

t=1 Iti
− q(i, y)

)
= q(i, y)Ti + Ti (ρT (i/N)− i/N) ,

where q(i, y) = i/N if y = 1 and 1− i/N if y = 0. The last equality follows using some simple algebra after adding and
subtracting one inside the parentheses in the second term.

We now use this expression to bound Rint
T,ij :

Rint
T,ij =

T∑
t=1

Iti (ℓ(yt, i/N)− ℓ(yt, j/N))

=
∑

y∈{0,1}

T (i, y) (ℓ(y, i/N)− ℓ(y, j/N))

≤
∑

y∈{0,1}

q(i, y)Ti (ℓ(y, i/N)− ℓ(y, j/N)) +
∑

y∈{0,1}

BTi |ρT (i/N)− i/N |

≤ 2BTi |ρT (i/N)− i/N | ,

where in the first inequality, we used ℓ(y, i/N)− ℓ(y, j/N) ≤ ℓ(y, i/N) ≤ B, and in the second inequality we used the
fact that ℓ is a proper loss.

Since internal regret equals Rint
T = maxi,j R

int
T,ij , we have

Rint
T ≤

N∑
i=1

max
j

Rint
T,ij ≤ 2B

N∑
i=0

Ti |ρ(i/N)− i/N | ≤ 2B(RT + ϵ).

A.7 IMPOSSIBILITY OF RECALIBRATING NON-PROPER LOSSES

We conclude the appendix by explaining why non-proper losses cannot be calibrated [Kuleshov and Ermon, 2017].

Theorem 2. If ℓ is not proper, then there is no recalibration algorithm w.r.t. ℓ.

Proof. If ℓ is not proper, there exist a p′ and q such that Ey∼Ber(p′)ℓ(y, q) < Ey∼Ber(p′)ℓ(y, p
′).

Consider a sequence yt for which yt ∼ Ber(p′) for all t. Clearly the prediction of a calibrated forecaster pt much converge
to p′ and the average loss will approach ℓ(y, p′). This means that we cannot recalibrate the constant predictor pt = q without
making its loss ℓ(y, q) higher. We thus have a forecaster that cannot be recalibrated with respect to ℓ.

B LOW REGRET RELATIVE TO BASELINE CLASSIFIERS

Here, we show that a calibrated forecaster also has small regret relative to any bounded proper loss if we use a certain
construction that combines our algorithm with a baseline forecaster. This extends our previous construction to more general
settings.



B.1 RECALIBRATION CONSTRUCTION

Setup We start with an online forecaster F that outputs uncalibrated forecasts FH
t at each step; these forecasts are fed into

a recalibrator such that the resulting forecasts pt are calibrated and have low regret relative to the baseline forecasts FH
t .

Formally, at every step t = 1, 2, ... we have:
1: Forecaster F predicts FH

t .
2: A recalibration algorithm produces a calibrated forecast pt based on FH

t .
3: Nature reveals label yt
4: Based on xt, yt, we update the recalibration algorithm and optionally update H .

Notation We define a discretization V of the space of forecasts. We assume that the forecasts live in a compact set ∆
and we define a triangulation of ∆, i.e., a partition into a set of simplices such that any two simplices intersect in either a
common face, common vertex, or not at all. Let V be the vertex set of this triangulation, and let V (p) be the set of corners
for this simplex.

Note that each distribution p can be uniquely written as a weighted average of its neighboring vertices, V (p). For v ∈
V (p), we define the test functions wv(p) to be these linear weights, so they are uniquely defined by the linear equation
p =

∑
v∈V (p) wv(p)v. We also define the discretization to be sufficiently small: given a target precision ϵ > 0 we define the

discretization such that for all f1, f2 in the same simplex we have ||f1 − f2|| < ϵ.

B.2 RECALIBRATION ALGORITHM

We are going to define a general meta-algorithm that follows a construction in which we run multiple instances of our
calibrated forecasting algorithms over the inputs of F .

More formally, we take the aforementioned partition of the space of forecasts of ∆ of F and we associate each simplex with
an instance of our calibration algorithm Scal (using the same ∆ and discretization V ). In order to compute FH

t , we invoke
the subroutine Scal

j associated with simplex Ij containing FH
t (with ties broken arbitrarily). After observing yt, we pass it to

Scal
j .

The resulting procedure produces valid calibrated estimates because each Scal
j is a calibrated subroutine. More importantly

the new forecasts do not decrease the predictive performance of F , as measured by a proper loss ℓ. In the remainder of this
section, we establish these facts formally.

B.3 THEORETICAL ANALYSIS

Notation Our task is to produce calibrated forecasts. Intuitively, we say that a forecast Ft is calibrated if for every y′ ∈ Y ,
the probability Ft(y

′) on average matches the frequency of the event {y = y′}. We formalize this by introducing the ratio

ρT (p) =

∑T
t=1 yt · Ipt=p∑T

t=1 Ipt=p

(19)

Intuitively, we want ρT (p)→ p, a.s. as T →∞ for all y. In other words, out of the times when the predicted probability for
yt is p, the average yt look like p.

The quality of probabilistic forecasts is evaluated using proper losses ℓ. Formally, a loss ℓ(y, p) is proper if p ∈
argminq∈P Ey∼(p)ℓ(y, q) ∀p ∈ P. An example in binary classification is the log-loss ℓlog(y, p) = y log(p) + (1 −
y) log(1− p). We will assume that the loss is bounded by B > 0 .

We measure calibration a calibration error CT . Our algorithms will output discretized probabilities; hence we define the
error relative to a set of possible predictions V

CT =
∑
p∈V

|ρT (p)− p|

(
1

T

T∑
t=1

I{pt=p}

)
. (20)



B.3.1 A Helper Lemma

In order to establish the correctness of our recalibration procedure, we need to start with a helper lemma. This lemma shows
that if forecasts are calibrated, then they have small internal regret.

Lemma 2. If ℓ is a bounded proper loss, then an (ϵ, ℓ1)-calibrated Scal a.s. has a small internal regret w.r.t. ℓ and satisfies
uniformly over time T the bound

Rint
T = max

ij

T∑
t=1

Ipt=pi
(ℓ(yt, pi)− ℓ(yt, pj)) ≤ 2B(RT + ϵ). (21)

Proof. Let T be fixed for the rest of this proof. Let Iti = Ipt=pi be the indicator of Scal outputting prediction pi at time t,
let Ti =

∑T
t=1 Iti denote the number of time i/N was predicted, and let

Rint
T,ij =

T∑
t=1

Iti (ℓ(yt, pi)− ℓ(yt, pj)) (22)

denote the gain (measured using the proper loss ℓ) from retrospectively switching all the plays of action i to j. This value
forms the basis of the definition of internal regret.

Let T (i, y) =
∑T

t=1 ItiI{yt = y} denote the total number of pi forecasts at times when yt = y. Observe that we have

T (i, y) =

T∑
t=1

ItiI{yt = y} =
∑T

t=1 ItiI{yt = y}
Ti

Ti =

∑T
t=1 ItiI{yt = y}∑T

t=1 Iti
Ti

= q(i, y)Ti + Ti

(∑T
t=1 ItiI{yt = y}∑T

t=1 Iti
− q(i, y)

)
= q(i, y)Ti + Ti (ρT (pi)− pi) ,

where q(i, y) = pi(y). The last equality follows using some simple algebra after adding and subtracting one inside the
parentheses in the second term.

We now use this expression to bound Rint
T,ij :

Rint
T,ij =

T∑
t=1

Iti (ℓ(yt, pi)− ℓ(yt, pj))

=
∑
y

T (i, y) (ℓ(y, pi)− ℓ(y, pj))

≤
∑
y

q(i, y)Ti (ℓ(y, pi)− ℓ(y, pj)) +BTi |ρT (pi)− pi|

≤ BTi |ρT (pi)− pi| ,

where in the first inequality, we used ℓ(y, pi)− ℓ(y, pj) ≤ ℓ(y, pi) ≤ B, and in the second inequality we used the fact that ℓ
is a proper loss.

Since internal regret equals Rint
T = maxi,j R

int
T,ij , we have

Rint
T ≤

N∑
i=1

max
j

Rint
T,ij ≤ 2B

N∑
i=0

Ti |ρ(i/N)− pi| ≤ 2B(RT + ϵ).



B.4 RECALIBRATED FORECASTS HAVE LOW REGRET RELATIVE TO UNCALIBRATED FORECASTS

Next, we use the above result to prove that the forecasts recalibrated using the above construction have low regret relative to
the baseline uncalibrated forecasts.

Lemma 3 (Recalibration preserves accuracy). Let ℓ be a bounded proper loss such that ℓ(yt, p) ≤ ℓ(yt, pj) +Bϵ whenever
||p− pj || ≤ ϵ. Then the recalibrated pt a.s. have vanishing ℓ-loss regret relative to FH

t and we have uniformly:

1

T

T∑
t=1

ℓ(yt, pt)−
1

T

T∑
t=1

ℓ(yt, F
H
t ) <

B

ϵ

M∑
j=1

Tj

T
RTj + 3Bϵ. (23)

Proof. By the previous lemma, we know that an algorithm whose calibration error is bounded by RT = o(1) also minimizes
internal regret at a rate of 2BRT , and thus external regret at a rate of 2BRT /ϵ.

Next, let us use Ij,t to indicate that Scal
j was called at time t. We establish our main claim as follows:

1

T

T∑
t=1

ℓ(yt, pt)−
1

T

T∑
t=1

ℓ(yt, F
H
t )

=
1

T

T∑
t=1

 M∑
j=1

(
ℓ(yt, pt)− ℓ(yt, F

H
t )
)
Ij,t


<

1

T

T∑
t=1

 M∑
j=1

(ℓ(yt, pt)− ℓ(yt, pj)) Ij,t +Bϵ


≤ 1

ϵ
B

M∑
j=1

Tj

T
RTj

+ 3Bϵ,

where RTj
is a bound on the calibration error of Scal

j after Tj plays.

In the first two inequality, we use our assumption on the loss ℓ. The last inequality follows because Scal
j minimizes external

regret w.r.t. the constant action pj at a rate of BRTj/ϵ.

B.5 PROVING THAT CALIBRATION HOLDS

We want to also give a proof that the recalibration construction described above yields calibrated forecasts.

Lemma 4. If each Scal
j is (ϵ, ℓp)-calibrated, then the combined algorithm is also (ϵ, ℓp)-calibrated and the following bound

holds uniformly over T :

CT ≤
M∑
j=1

Tj

T
RTj

+ ϵ. (24)

Proof. Let M = |V |. Let I(j)i =
∑T

t=1 I
(j)
t,i where I(j)t,i = I{pt = pj ∩ FH

t = pj} and note that
∑T

t=1 It,i =
∑M

j=1 I
(j)
i . Let

also ρ
(j)
T (pi) =

∑T
t=1 I(j)t,i yt∑T
t=1 I(j)t,i

. We may write

CT,i =

∑T
t=1 It,i
T

|ρT (pi)− pi| =
∑M

j=1 I
(j)
i

T

∣∣∣∣∣∣
M∑
j=1

∑T
t=1 I

(j)
t,i yt∑M

j=1 I
(j)
i

− pi

∣∣∣∣∣∣
=

∑M
j=1 I

(j)
i

T

∣∣∣∣∣∣
M∑
j=1

I(j)i ρ
(j)
T (pi)∑M

j=1 I
(j)
i

− pi

∣∣∣∣∣∣ ≤
M∑
j=1

I(j)i

T

∣∣∣ρ(j)T (pi)− pi

∣∣∣ = M∑
j=1

Tj

T
C

(j)
T,i,



where C(j)
T,i =

∣∣∣ρ(j)T (pi)− pi

∣∣∣ ( 1
Tj

∑T
t=1 I

(j)
t,i

)
and in the last line we used Jensen’s inequality. Plugging in this bound in the

definition of CT , we find that

CT =

N∑
i=1

CT,i ≤
M∑
j=1

N∑
i=1

Tj

T
C

(j)
T,i ≤

M∑
j=1

Tj

T
RTj

+ ϵ,

Since each RTj
→ 0, the full procedure will be ϵ-calibrated.

Recall that RT denotes the rate of convergence of the calibration error CT . For most online calibration subroutines Scal,
RT ≤ f(ϵ)/

√
T for some f(ϵ). In such cases, we can further bound the calibration error in the above lemma as

M∑
j=1

Tj

T
RTj ≤

M∑
j=1

√
Tjf(ϵ)

T
≤ f(ϵ)√

ϵT
. (25)

In the second inequality, we set the Tj to be equal. Thus, our recalibration procedure introduces an overhead of 1√
ϵ

in the
convergence rate of the calibration error CT and of the regret relative to a baseline forecaster in the earlier lemma.

C APPLICATIONS: DECISION-MAKING

Next, we complement our results with a formal characterization of some benefits of calibration. We are interested in
decision-making settings where we wish to estimate the value of a function v : Y ×A× X → R over a set of outcomes Y ,
actions A, and features X . Note that the function v could be a loss ℓ(y, a, x) that quantifies the error of an action a ∈ A in a
state x ∈ X given outcome y ∈ Y .

We assume that given x, the agent chooses an action a(x) according to a decision-making process. This could be an action
a(x) = argmina Ey∼H(x)[ℓ(y, a, x)] that minimizes a loss that are trying to estimate, but any outcome is possible. The
agent then relies on a predictive model H of y to estimate the future values v(y, a, x) for the decision a(x) :

v(x) = Ey∼H(x)[v(y, a(x), x)]. (26)

We study v(y, a, x) that are monotonically non-increasing or non-decreasing in y. Examples include linear utilities u(a, x) ·
y + c(a, x) or their monotone transformations.

Expectations under calibrated models If H was a perfect predictive model, we could estimate expected values of
outcomes perfectly. In practice, inaccurate models can yield imperfect decisions. Surprisingly, our analysis shows that
in many cases, calibration (a much weaker condition that having a perfectly specified model H) is sufficient to correctly
estimate the value of various outcomes.

Surprisingly, our guarantees can be obtained with a weak condition—quantile calibration. Additional requirements are the
non-negativity and monotonicity of v. Our result is a concentration inequality that shows that estimates of v are unlikely to
exceed the true v on average.

Theorem 3. Let M be a quantile calibrated model as in and let v(y, a, x) be a monotonic value function. Then for any
sequence (xt, yt)

T
t=1 and r > 0, we have:

lim
T→∞

1

T

T∑
t=1

I [v(yt, a(xt), xt) ≥ rv(xt))] ≤ 1/r (27)

Proof. Recall that M(x) is a distribution over Y , with a density px, a quantile function Qx, and a cdf Fx. Note that for any



x and s ∈ (0, 1) and y′ ≤ F−1
x (1− s) we have:

v(x) =

∫
v(x, y, a(x))qx(y)dy

≥
∫
y≥y′

v(x, y, a(x))qx(y)dy

≥ v(x, y′, a(x))

∫
y≥y′

qx(y)dy

≥ sv(x, y′, a(x))

The above logic implies that whenever v(x) ≤ sv(x, y, a), we have y ≥ F−1
x (1− s) or Fx(y) ≥ (1− s). Thus, we have

for all t,

I{v(xt) ≤ sv(xt, yt, at)} ≤ I{Fxt(yt) ≥ (1− s)}.

Therefore, we can write

1

T

T∑
t=1

I{v(xt) ≤ sv(xt, yt, at)} ≤
1

T

T∑
t=1

I{Fxt
(yt) ≥ (1− s)} = s+ o(T ),

where the last equality follows because M is calibrated. Therefore, the claim holds in the limit as T →∞ for r = 1/s. The
argument is similar if v is monotonically non-increasing. In that case, we can show that whenever y′ > F−1

x (s), we have
v(x) ≥ sv(x, y′, a(x)). Thus, whenever v(x) ≤ sv(x, y, a), we have y ≤ F−1

x (s) or Fx(y) ≤ s. Because, Fx is calibrated,
we again have that

1

T

T∑
t=1

I{v(xt) ≤ sv(xt, yt, at)} ≤
T∑

t=1

I{Fxt
(yt) < s} = s+ o(T ),

and the claim holds with r = 1/s.

Note that this statement represents an extension of Markov inequality. Note also that this implies the same result for a
distribution calibrated model, since distribution calibration implies quantile calibration.

D EXPERIMENTS ON UCI BENCHMARKS

The existing UCI datasets [Dua and Graff, 2017] used in our experiments hold a Creative Commons Attribution 4.0
International (CC BY 4.0) license.

Computational resources. Our experiments were conducted on a laptop with 2.3 GHz 8-Core Intel Core i9 processor and
32 GB 2667 MHz DDR4 RAM. The code and datasets take 16MB memory.

Detailed setup. Our dataset consists of input and output pairs {xt, yt}Tt=1 where T is the size of the dataset. We simulate
a stream of data by sending batches of data-points {xt, yt}n(t

′+1)
t=nt′+1 to our model, where t′ is the time-step and n is the

batch-size. This simulation is run for ⌈T/n⌉ time-steps. For each batch, Bayesian ridge regression is fit to the data and the
recalibrator is trained. We set N = 20 in the recalibrator and use a batch size of n = 10 for all experiments except for the
Aquatic Toxicity dataset 1(a) where we used n = 5. The calibration is evaluated at levels [0.2, 0.4, 0.5, 0.6, 0.8].

E EXPERIMENTS ON BAYESIAN OPTIMIZATION

Bayesian optimization attempts to find the global minimum x⋆ = argminx∈X f(x) of an unknown function f : X → R
over an input space X ⊆ RD. We are given an initial labeled dataset xt, yt ∈ X ×R for t = 1, 2, ..., N of i.i.d. realizations of
random variables X,Y ∼ P . At every time-step t, we use uncertainties from the probabilistic modelM : X → (R→ [0, 1])
of f to select the next data-point xnext and iteratively update the modelM. Algorithm 2 outlines this procedure. Since the
black-box function evaluation can be expensive, the objective of Bayesian optimization in this context is to find the minima
(or maxima) of this function while using a small number of function evaluations.



Computational resources. Our experiments were conducted on a laptop with 2.3 GHz 8-Core Intel Core i9 processor and
32 GB 2667 MHz DDR4 RAM. The code and datasets take 16MB memory.

Detailed setup. We use online calibration to improve the uncertainties estimated by the modelM. Following Deshpande
et al. [2024], we use Algorithm 4 to recalibrate the modelM. Since the dataset size is small, we use the CREATESPLITS
function to generate leave-one-out cross-validation splits of our dataset D. We train the base model on train-split and use this
to obtain probabilistic forecast for data in the test-split. We collect these predictions on all test-splits to form our recalibration
dataset and use Algorithm 1 to perform calibration.

Following Deshpande et al. [2024], we perform calibrated Bayesian optimization as detailed in Algorithm 3. Specifically,
we recalibrate the base modelM after every step in Bayesian optimization. We build on the GpyOpt library [authors, 2016]
for Bayesian optimization that holds the BSD 3-clause license.

We use some popular benchmark functions to evaluate the performance of Bayesian optimization. We initialize the Bayesian
optimization with 3 randomly chosen data-points. We use the Lower Confidence Bound (LCB) acquisition function to select
the data-point xt and evaluate a potentially expensive function f as xt to obtain yt. At any given time-step T , we have the
dataset DT = {xt, yt}Tt=1 collected iteratively.

In Figure 4, we see that using online calibration of uncertainties fromM allows us to reach a lower minimum or find the
same minimum with a smaller number of steps with Bayesian optimization.

(a) SixHumpCamel (b) Beale (c) Mccormick

Figure 4: Online Calibration Improves Bayesian optimization

Algorithm 2 Bayesian Optimization

1: Initialize base modelM with data D = {xt, yt}Mt=0.
2: for n = 1, 2, ..., T : do
3: xnext = argmaxx∈X (Acquisition(x,R ◦M)).
4: ynext = f(xnext).
5: D = D

⋃
{(xnext, ynext)}

6: Update modelM with data D

Algorithm 3 Calibrated Bayesian Optimization [Deshpande et al., 2024]

1: Initialize base modelM with data D = {xt, yt}Mt=0.
2: R ← CALIBRATE(M,D).
3: for n = 1, 2, ..., T : do
4: xnext = argmaxx∈X (Acquisition(x,R ◦M)).
5: ynext = f(xnext).
6: D = D

⋃
{(xnext, ynext)}

7: Update modelM with data D
8: R ← CALIBRATE(M,D)



Algorithm 4 CALIBRATE [Deshpande et al., 2024]

Require: Base modelM, Dataset D = {xt, yt}Nt=0

1: Train a base modelM on training dataset {xt, yt}Nt=0.
2: Initialize recalibration dataset Drecal = ϕ
3: S = CREATESPLITS(D)
4: for (Dtrain,Dtest) in S: do
5: Dtrain = Train Dataset {xt, yt}Mt=0 in split s.
6: Dtest = Test Dataset {xt, yt}Lt=0 in split s.
7: Dtrain = TRAINSPLIT(s),Dtest = TESTSPLIT(s)
8: Train base modelM′ on dataset Dtrain
9: Compute CDF dataset {[M ′(xt)](yt)}Mt=1 from dataset Dtest

10: Drecal = Drecal
⋃
{[M′(xt)](yt), yt}Mt=1

11: Train recalibrator modelR on the recalibration dataset Drecal using Algorithm 1
12: Return (R)

F COMPARISON TO PRIOR WORK

Table 4 and Table 5 summarize how our work fits in the broader literature. In brief, we provide calibration with regret
guarantees in the setting of quantile regression on adversarial data. By regret guarantees we mean that performance relative
to a user-specified baseline classifier is guaranteed not to drop.

Table 4: Summary of literature for IID or Exchangeable Data.

Output Type No Regret Guarantees Regret Guarantees

Classification
Predicting Sets Vovk et al. [2005a] Kuleshov and Deshpande [2022]

Predicting Probabilities Platt [1999],
Niculescu-Mizil and Caruana [2005] —

Regression

Quantiles Kuleshov et al. [2018],
Dheur and Taleb [2023, 2024] —

Distributions Song et al. [2019] Kuleshov and Deshpande [2022]

Table 5: Summary of literature for Non-IID (“Adversarial”) Data.

Output Type No Regret Guarantees Regret Guarantees

Classification
Predicting Sets Vovk et al. [2005b] —

Predicting Probabilities
Foster and Vohra [1998],
Cesa-Bianchi and Lugosi [2006], Abernethy et al. [2011],
Okoroafor et al. [2024], Noarov et al. [2024]

Kuleshov and Ermon [2017],
Foster and Hart [2023]

Regression
Marginal — Lee et al. [2022]

Quantiles Gibbs and Candès [2021],
Ramalingam et al. [2025] This work

Distributions Marx et al. [2025] —

We now summarize the existing literature. We cite a representative paper in each class.



IID DATA

Classification. Many papers on calibration or conformal prediction assume that data is IID or exchangeable. In calibration
for classification, representative works include Platt scaling Platt [1999] and isotonic regression Niculescu-Mizil and Caruana
[2005]. Both methods output a calibrated probability p of a binary outcome in {0, 1}, and admit multi-class extensions.
On the other hand, conformal prediction outputs confidence sets that contain the outcome with some probabilities. The
conformal prediction by Vovk et al. [2005b] and other authors often assumes that data are exchangeable. Kuleshov and
Deshpande [2022] proves that these methods admit regret guarantees.

Regression. In regression, the most standard definition is quantile calibration. Kuleshov et al. [2018] extends Platt scaling
to this setting. Conformal prediction for continuous outcomes (e.g., Vovk et al. [2005a]) is similar to quantile calibration,
but targets one pair of quantiles, while Kuleshov et al. [2018] outputs a full quantile function. Recently, a stronger form
of regression called distribution calibration was studied, and it directly extends calibrated classification: of the times one
forecasts predictive distribution p, the data looks like it’s distributed as p. Song et al. [2019] describes this notion and
Kuleshov and Deshpande [2022] shows it has regret guarantees.

NON-IID DATA

Another line of work seeks to extend the above results to settings where data is non-IID and can be even chosen by an
adversary. This is the setting that we study.

Classification. The earliest work is by Foster and Vohra [1998], who frame calibration as internal regret minimization.
Cesa-Bianchi and Lugosi [2006] provide a modern view on this algorithm based on online learning. Abernethy et al. [2011]
presents yet another view based on Blackwell approachability. Most algorithms fall in one of these three approaches (internal
regret, online learning, approachability)—ours is a form of internal regret minimization. Similarly, work on conformal
prediction establishes comparable results for constructing confidence sets without IID or exchangeability assumptions. There
exist many extensions of this work, including extensions for multi-class Ramalingam et al. [2025].

The drawback of these early works is that they only provide calibration results, but not regret. Thus a classifier can predict
50% chance of rain every day and still be calibrated (but not useful). Kuleshov and Ermon [2017] first introduce regret into
adversarial online binary recalibration; Foster and Hart [2023] later re-derive the same algorithm. Our work extends these
regret guarantees from classification to regression.

Regression. Gibbs and Candès [2021] provides analogous results to Foster and Vohra [1998] in online quantile regression
using an approach based on online learning. Ramalingam et al. [2025] further explains the online learning connection. The
distribution calibration extension is much more challenging—Marx et al. [2025] provides the first extension. Besides this
fully adversarial literature, there exist extensive work prediction under covariate shift (where a data distribution exists, but
its shifting an unknown)—Tibshirani et al. [2019] is an example of this long line of literature.

The challenge with methods such as those of Gibbs and Marx is the same as in classification: there is not a guarantee
that calibrated predictions will have useful predictive value. Our work provides this no-regret guarantee for a setting that
resembles quantile calibration.

F.1 COMPARISON WITH LEE AT AL. [2022]

Below we discuss how the work by Lee et al. [2022] compares and differs with out work. While the framework by Lee et al.
[2022] admits a general compact, convex action set A, the calibration definition achieved by their algorithm is different.

• Their definition says: for each time step, draw a sample from the predicted distribution and the true label distribution
over Y . Averaged over T , the empirical pdf/CDFs of the samples from both distributions should match. (This definition
can be applied to each population group when extending to multi-calibration).

• In contrast, our definition asks for quantile calibration: for any value p ∈ [0, 1], look at whether the observed outcome
yt ≤ F−1

t (p), i.e., whether yt is below the p-th quantile. The frequency that y ≤ F−1
t (p) should approach p as T

increases.

Note that these two definitions are not the same. See “Probabilistic forecasts, calibration and sharpness” by Gneiting et al.
[2007b] for counter-examples: the above definitions correspond respectively to marginal and probabilistic calibration (i.e.,



(c) and (a) in Defn. 1 of that work).

For continuous Y , our work provides a more appropriate calibration guarantee for probability distributions over continuous
outcomes: our calibration guarantee is closer to the notion of quantile calibration guarantee for regression as defined for the
IID case.

Our paper also defines guarantees on regret relative to a baseline forecaster in a different way.

• Lee et al. [2022] define regret relative to a baseline using the average Brier score (ft− bt)
2, where bt is a sample drawn

from a true (unknown) distribution over the label y chosen by an adversary, and ft is a forecast coming either from the
model or a baseline.

• In our paper, Ft is a CDF over continuous outcomes and we measure its performance relative to a sequence of baseline
functions using the Continuous Ranked Probability Score (CRPS), defined as

∫
y∈Y(Ft(y)−Gt(y))

2 dy, which is an
integral over losses between the outputs of two CDFs (typically a forecast and an empirical/step-function observed
CDF).

These definitions are clearly different: one takes the L2 loss in the space of outcomes, and the other in the space of
probabilities.

F.2 COMPARING TO KULESHOV AND ERMON [2017]

While Kuleshov and Ermon [2017] and the Calibeating technique focus on binary classification, we study regression. We
want to emphasize that moving from calibration to regression is non-trivial and significantly more involved than generalizing
the scoring rule from CDFs to point forecasts. The regression setting is significantly harder than classification, and requires
(1) non-trivial thinking about how to define calibration and (2) algorithms and analyses that are substantially different than
in classification.

The classical definition of calibration (of the times when I predict p, binary event holds p % of the time) does not easily
carry over to regression. In fact, an “easier” version of regression is multi-class calibration (imagine the continuous label y
is discretized), and even that is PPAD-hard (Hazan and Kakade, 2012).

Thus, most work on regression studies marginal notions of calibration: a p-% confidence interval contains the label p-%
of the time (note how we omit the “when I predict p” part). Still, maintaining this in a non-IID setting is non-trivial. One
well-known method is ACI (Gibbs and Candes, 2021), but it does not admit regret guarantees. We define a novel and slightly
stronger notion of marginal calibration (which has elements of conditional calibration; see Eqn 2), and we provide regret
guarantees.

Also, quantifying and minimizing regret is itself non-trivial. This requires defining a suitable notion of regret that is
compatible with our definition of calibration. We use the CRPS and CDF recalibration as measures of regret and calibration,
respectively.

While our method superficially resembles that of Kuleshov and Ermon [2017] (and Calibeating, which is the same algorithm)
in that we partition an interval and run simple subroutines in each sub-interval, the analysis is significantly different,
especially the part about minimizing regret. Superficially, while that proof takes (1/2)-page in Kuleshov and Ermon, ours is
about 2 pages long and is substantially different.

Note also that we provide a significant number of additional results that strengthen our core work: a generalized Markov
inequality that guarantees our method is able to accurately estimate losses, an analysis of confidence intervals, and an
application to online decision-making and Bayesian optimization.

F.3 COMPARING TO DESHPANDE ET AL. [2024]

Note that the focus and the methods of both papers are different. Our work makes more theoretical contributions around the
feasibility of defining and maintaining good calibration and regret in an online non-IID regression setting. The work by
Deshpande et al. [2024] is mainly empirical: it applies methods from IID regression (e.g., Kuleshov and Ermon, ICML2018)
and additional heuristics to obtain the best possible empirical results on classification.

We adopt a similar setup to Deshpande et al. [2024] in our experiments because the setting is useful and inherently non-IID.
However, because our work is more theoretical, our experiments are not as extensive as those of Deshpande et al. [2024]



(whose entire paper is mostly experimental). That said, our non-randomized baseline (orange line) is effectively equivalent
to the IID algorithm used in Deshpande et al. [2024] (it simply maintains marginal calibration by counting frequencies in
bins), and we outperform that baseline in our experiments by virtue of designing specialized non-IID algorithms.

Lastly, while the paper by Deshpande et al. [2024] has a lemma on online decision-making, ours holds in the online non-IID
setting, while theirs is only IID.

F.4 APPLICATIONS

Consider the example of predicting the demand for electricity so that the power grid operator can make decisions. The
electricity demand may fluctuate in unpredictable ways depending on changes in variables like weather, special events
producing sudden large industrial demands, time of the day, etc. The adversarial setting allows us to accommodate the worst
case deviations from i.i.d. data. Having poorly calibrated forecasts in this setting can result in poor decisions (e.g. inadequate
electricity supply). For example, an operator might want to provide electricity supply that minimizes a black-out with a
target probability: if demand forecast is miscalibrated, then the true probability could be far different from the one inferred
from the forecasted demand.

Some other examples include: 1) When assessing patient risk (e.g., sepsis probability) based on streaming vital signs, we
require a calibrated forecast to correctly determine the probability of a bad outcome. 2) When market conditions constantly
shift, predicting whether a loan is defaulted requires a calibrated probability. These are all examples of temporal data that
may become non-IID since the state of the system evolves over time.
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