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Abstract
In this paper, we analyze the effect of “weak con-
founding” on causal estimands. More specifically,
under the assumption that the unobserved con-
founders that render a query non-identifiable have
small entropy, we propose an efficient linear pro-
gram to derive the upper and lower bounds of
the causal effect. We show that our bounds are
consistent in the sense that as the entropy of unob-
served confounders goes to zero, the gap between
the upper and lower bound vanishes. Finally, we
conduct synthetic and real data simulations to
compare our bounds with the bounds obtained
by the existing work that cannot incorporate such
entropy constraints and show that our bounds are
tighter for the setting with weak confounders.

1. Introduction
A key challenge in causal inference is determining the
strength of the confounder, which refers to the degree to
which the confounder is associated with the treatment and
the outcome. The stronger the association, the more likely it
is that the confounder is biasing the estimate of the effect of
the exposure on the outcome. Many existing studies used in-
formation theoretic quantities such as directed information
(Etesami & Kiyavash, 2014; Quinn et al., 2015) and relative
entropy (Janzing et al., 2013) as measurements of the edge
strength. Researchers have used entropy to discover the
causal direction in the graphs (Kocaoglu et al., 2017; Comp-
ton et al., 2020). Janzing and Schölkopf (2010) developed a
theory for causal inference based on the algorithmic inde-
pendence of the Markov kernels. Vreeken and Budhathoki
(2015; 2018) extend this idea by using minimum descrip-
tion length for causal discovery. Another common usage
of information theory in causal inference is quantifying the
causal influence of variables. Ay and Polani (2008) defined
information flow to measure the strength of causal effect
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based on the causal independence of the variables. Similar
to relative entropy or mutual information, the information
flow measures the independence between a set of nodes B
and A after intervening on another set S.

We are interested in the problem of estimating causal effect
when confounders are “simple,” i.e., the entropy of the
confounder is small. The information passing through such
confounders should not be arbitrarily large, so we should
get tighter bounds on the causal effect compared to the
methods that cannot utilize this side information. However,
it is nontrivial to incorporate low-entropy constraints since
entropy is a concave function. Enforcing small entropy as a
constraint directly changes the feasible set to a non-convex
set. Therefore, the problem cannot be solved directly using
the existing formulations. In this paper, we address this
problem by quantifying the tradeoff between the strength of
the unobserved confounder measured by its entropy and the
upper and lower bounds on causal effect.

The main contributions of this paper are as follows:

• We formulate a novel optimization problem to effi-
ciently estimate the bounds of causal effect using coun-
terfactual probabilities, and apply the low-entropy con-
founder constraint using this formulation.

• We examine the conditions on the entropy constraint
for the optimization to yield a tighter bound. We an-
alytically show the condition when either or both of
X,Y (Figure 1) are binary variables.

• We experiment with our method on both simulated
and real-world data, and show that our bound is much
tighter than the existing which cannot incorporate such
entropy constraints.

2. Background and Notations
Notations. This paper uses uppercase letters X,Y, Z to
denote the random variables and lowercase letters xi, yi, zi
for their states. We use {x, x′}, {y, y′} to denote the states
of binary variables. The Greek letters α, β, θ are used to
denote some constant value for the probability mass func-
tion or information-theoretic quantities. |X| represents
the number of states for a random variable. The upper-
case letter with a lowercase letter as the subscript shows
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(a) DAG G with latent con-
founder

(b) Single world intervention
graph of DAG G

Figure 1. A graph consist of treatment X , outcome Y and an un-
observed confounder Z with small entropy.

an intervened variable, i.e., P (Yx = y) := P (y|do(x)).
This notation is used for counterfactual distributions, e.g.,
P (Yx = y|X = x′) means the probability of y had we inter-
vened on x given that x′ is observed. For a probability mass
function P (Y = y,X = x), we write P (y, x) as an abbre-
viation. For counterfactual distribution P (Yx = y, x′), we
keep the notation of a random variable to avoid confusion.

Counterfactual and Single-World Intervention Graph
(SWIG). Counterfactual queries are questions of the form
What would happen if an intervention or action had been
taken differently, given what already has happened. Pearl
(2009) introduced counterfactual reasoning with the SCM. A
counterfactual query P (Yx = y|x′) reads, “The probability
of y had we intervened on x given x′ is observed.” In general,
given an SCM, the counterfactual queries can be estimated
with three steps: “abduction,” “action,” and “prediction.”
The first step is to use the observed x′ as evidence to update
the exogenous variables U . The second step is to apply the
intervention by replacing the value in the SCM with x. And
lastly, make predictions with the updated SCM.

Richardson and Robins (2013) introduced a graphical rep-
resentation to link the counterfactual distribution and DAG,
called Single World intervention graphs (SWIGs). We can
represent the interventional variable Yx as a node in the
DAG and split the treatment variable into nodes X and
X = x. As shown in Figure 1b, we have Yx independent
from X given Z.

3. Bounding Causal Effect with Entropy
Constraint

3.1. Bounds via Counterfactual Probabilities

We propose an optimization problem using counterfactual
probabilities to utilize the entropy of the unobserved con-
founder.

For the causal graph in Figure 1, the interventional distribu-
tion can be represented as P (Yx) = P (Yx, x) + P (Yx, x

′).

Figure 2. The entropy threshold to obtain tighter bounds. The
thresholds are obtained by sampling P (x0) and P (y0|x0) from
0 to 1 which are the x and y axies in the figure. The orange
surface represents the entropy threshold for obtaining a tighter
upper bound; the blue surface represents the entropy threshold for
obtaining a tighter lower bound.

By the consistensy property (Robins, 1987), we have
P (Yx, x) = P (Y, x). And by the axiom of probability,
P (yx, x

′) ≤ P (x′) for any y ∈ Y .

P (y, x) ≤ P (Yx = y)

= P (y, x) + P (yx, x
′)

≤ P (y, x) + P (x′)

= 1− P (y′, x)

If there were no confounder between X and Y , the inter-
ventional distribution would be identical to the conditional
distribution P (Yx) = P (Y |x) for all x ∈ X . Therefore
P (Yx = y, x′) = P (Yx = y)P (x′) = P (y|x′)P (x′). Yx

and X are d-separated by the confounder Z, i.e. Yx ⊥⊥
X|Z.

By the data processing inequality, the mutual information
of Yx and X is bounded by the entropy of confounder
Z. Under the assumption that the confounder Z is weak,
i.e., H(Z) ≤ θ. A minimum value of mutual informa-
tion I(Yx;X) exists for the causal effect to attain max-
imum/minimum. By exploiting the d-separation in the
SWIG, we can impose the entropy constraint for the op-
timization problem. We present an optimization problem
with entropy constraint based on this method.

Theorem 3.1. Let (X,Y ) be the pair of variables in the
causal graph in Figure 1 with the joint distribution P (X,Y ).
Suppose |X| = n, |Y | = m. Assuming X and Y are con-
founded by a set of small entropy unobserved variables Z,
i.e., H(Z) ≤ θ for some θ ∈ R. The causal effect of xq on
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yp is bounded by LB ≤ P (yp|do(xq)) ≤ UB, where

LB/UB = min /max

∑
j

bpjP (xj)


subject to∑
i,j

bijP (xj) = 1,

biqP (xq) = P (yi, xq) ∀i,
0 ≤ bij ≤ 1 ∀i, j,∑
i,j

bijP (xj) log

(
bij∑

k bikP (xk)

)
= I(Yx;X) ≤ θ.

Here bij are the parameters for the optimization problem.
We form the causal effect bounds estimation as a maximiza-
tion and minimization problem.

4. Condition for Obtaining Tighter Bounds
For Theorem 3.1, the optimization problem has a constraint
on I(Yx;X). The entropy constraint depends on the mu-
tual information between X and another variable. The
bounds with entropy constraint will be identical to Tian-
Pearl bounds (Tian & Pearl, 2000) when the upper bound
on the confounders entropy is large. We define the greatest
value of entropy constraint that yields tighter bounds as the
“entropy threshold”.
Definition 4.1. Let (X,Y ) the pair of variables in the
causal graph in Figure 1. Given an observational distri-
bution P (X,Y ) and a causal query P (yp|do(xq)), the en-
tropy threshold is the greatest entropy constraint such that
the bounds obtained from Theorem 3.1 are tighter than the
Tian-Pearl bounds.

The entropy threshold depends on the observational distri-
bution P (X,Y ). The following lemmas show the entropy
threshold when either X and Y are binary variables.
Lemma 4.2. Let (X,Y ) be the pair of binary variables
in the causal graph in Figure 1. Consider P (Yx, X) for
any x ∈ X . Assume, without loss of generality, P (y|x) ≥
P (y′|x). Then the following conditions are equivalent:

1. P (Yx = y) attain the Tian-Pearl lower bound,

2. P (Yx = y′) attain the Tian-Pearl upper bound,

3. I(Yx;X) is maximized for the given P (X,Y ).

Lemma 4.3. Let (X,Y ) be the pair of variables in the
causal graph in Figure 1, where |X| = 2 and |Y | = m. The
causal effect P (Yx = yp) attain the Tian-Pearl upper bound
when P (Yx = yp|x′) = 1; attain the Tian-Pearl lower
bound with minimum mutual information when P (Yx =

yi|x′) = P (Yx=yi|X=x)∑
j ̸=p P (Y=yj |X=x) for all i ̸= p.

Lemma 4.4. Let (X,Y ) be the pair of variables in the
causal graph in Figure 1, where |Y | = 2 and |X| = n.
The causal effect P (y|do(xq)) attain the Tian-Pearl upper
bound when P (Yxq

= y|xj) = 1,∀j ̸= q; attain the Tian-
Pearl lower bound when P (Yxq

= y|xj) = 0,∀j ̸= q.

Next, we show the relation between observational distribu-
tion P (X,Y ) and the entropy threshold via the following
theorem.

Theorem 4.5. Let (X,Y ) be a pair of variables in a causal
graph G as shown in Figure 1, where either X or Y
is binary. Let (U, V ) be two binary variables such that
P (v0|u0) = P (yp|xq), P (v1|u0) = 1 − P (yp|xq), and
P (u0) = P (xq). The entropy threshold for the bounds of
P (yp|do(xq)) is equal to max(I(U ;V )).

By Theorem 4.5, we can compute the entropy threshold
for a given distribution P (X,Y ). Then if we know that
the confounder is simple, i.e., with entropy less than the
threshold, we can use the entropy constraint to obtain a
tighter bound.

Figure 2 shows the entropy threshold for different value of
P (x) and P (y|x). The entropy threshold is higher when
P (x) is close to 0.5. For fixed P (x), the threshold increases
as P (y|x) is close to 0 or 1, which corresponds to the causal
effect’s lower and upper bound. Without entropy constraint,
the gap between bounds is only related to P (x).

5. Experiments
We demonstrated our method with simulated and real-world
datasets in this section. First, we show the behavior of the
bounds with randomly sampled distributions P (X,Y ). We
change the entropy constraint θ from 1 to 0 for each sampled
distribution. We also experiment with the full distribution
P (X,Y, Z) where Z is the low entropy confounder and
X,Y in high dimensions. We show the experimental results
with the real-world dataset such as Adult (Dua & Graff,
2017). Since our algorithm works for discrete random vari-
ables with binary treatment or outcome, we take a subset of
features in the graph and modify some features by discretiz-
ing continuous variables or combining states with very low
probabilities. And finally, we experiment with our method
in the finite sample setting.

5.1. Randomly Sampled Distributions

To compare the bounds with the actual causal effect,
we sample the full joint distribution P (X,Y, Z) accord-
ing to the Figure 1. We treat Z as an unobserved
variable and use P (X,Y ) as observational data and the
entropy of Z as the constraint. The details for sam-
pling the full distribution are in Appendix G. We tested
three cases: (|X| = 2, |Y | = 2) , (|X| = 2, |Y | = 10) and
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Table 1. Results of Causal Effect in ADULT dataset

DATASET SUBGROUP X Y H(Z) E-C BOUNDS T-P BOUNDS

ADULT RELATIONSHIP INCOME AGE
BELOW HIGH SCHOOL, FULL-TIME YES <= 50K 0.21 [0.605, 0.934] [0.423, 0.934]
BELOW HIGH SCHOOL, FULL-TIME NO <= 50K 0.21 [0.762, 0.985] [0.496, 0.985]
BELOW HIGH SCHOOL, FULL-TIME YES > 50K 0.21 [0.066, 0.395] [0.066, 0.577]
BELOW HIGH SCHOOL, FULL-TIME NO > 50K 0.21 [0.015, 0.238] [0.015, 0.504]
ABOVE HIGH SCHOOL, PART-TIME YES <= 50K 0.41 [0.186, 0.903] [0.183, 0.903]
ABOVE HIGH SCHOOL, PART-TIME NO <= 50K 0.41 [0.779, 0.982] [0.703, 0.983]
ABOVE HIGH SCHOOL, PART-TIME YES > 50K 0.41 [0.017, 0.814] [0.096, 0.817]
ABOVE HIGH SCHOOL, PART-TIME NO > 50K 0.41 [0.017,0.220] [0.017, 0.297]
ABOVE HIGH SCHOOL, FULL-TIME YES <= 50K 0.12 [0.310, 0.664] [0.250, 0.734]
ABOVE HIGH SCHOOL, FULL-TIME NO <= 50K 0.12 [0.725, 0.953] [0.438, 0.953]
ABOVE HIGH SCHOOL, FULL-TIME YES > 50K 0.12 [0.336, 0.690] [0.266, 0.750]
ABOVE HIGH SCHOOL, FULL-TIME NO > 50K 0.12 [0.046, 0.275] [0.046, 0.562]

(|X| = 10, |Y | = 2). We generate 20K samples for each
case and compute the entropy constraint bounds. The result
is shown in Figure 6. The samples are grouped according to
the entropy of the confounder. We compare the average gap
for each group. The error bars represent the 95% confidence
interval. The number of samples in each group is shown
in Figure 7. Note the asymmetric behavior of |X| and |Y |.
When |X| is large, it is less likely to have P (x) close to
0.5, and as the Figure 2 shows, the entropy threshold is low
when P (x) is close to 0 or 1, so there are small number of
distributions yields tighter bounds as shown in Figure 7(c).
On the other hand, when |Y | = 10, |X| = 2, it is more
likely to obtain P (x) that close to 0.5 while P (y|x) is close
to the boundary. So the entropy threshold is higher on aver-
age, and there are more distributions with tighter bounds as
shown in Figure 7(b).

Next, we will consider experiments in a more realistic set-
ting and see how the entropy constraint could be useful in
the real-world problem of causal inference.

Figure 3. Causal graph for a subset of features from the ADULT
dataset.

5.2. Real-World Dataset Experiment

In this section, we experiment with the ADULT Dataset
(Dua & Graff, 2017). We take a subset of features from the

dataset with the causal graph as shown in Figure 3. In this
experiment, we treat age as a protected feature, which may
not be accessible from the dataset, and only the entropy of
age is known. If we assume age not having a too complex ef-
fect on other variables, i.e., the causal effects of any variable
to the income is not much different for groups of people un-
der 65 on average; and similarly for groups of people above
65. Under such an assumption, we convert the age variable
to a binary variable as “young” or “senior” people by using
65 as a cutting point. Since other confounding variables
exist between cause and effect, we take the conditional joint
distribution as the subgroup and compute the bounds. Some
of the results are summarized in Table 1.

In the real-world setting, we need expert knowledge about
the complexity of confounders. Even if the confounder has
many states, if we know many of these states may have a
similar effect on the outcome, we could still assume the
confounder has small entropy.

6. Conclusion
In this paper, we proposed a way with counterfactual proba-
bility to utilize entropy as a constraint to estimate the bounds
of the causal effect. We demonstrate a method to compute
the entropy threshold easily so that we can use the entropy
threshold as a criterion for applying entropy constraint. For
the real-world problem, if we know that two variables are
confounded by a confounder with entropy no more than
the entropy threshold, we can apply the method and obtain
tighter bounds. We show the relationship of the entropy
threshold with the observed distribution experimentally. We
experiment with our method with simulated and real-world
data.
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A. Proof of Theorem 3.1
Recall the Theorem 3.1.

Theorem 3.1. Let (X,Y ) be the pair of variables in the causal graph in Figure 1 with the joint distribution P (X,Y ).
Suppose |X| = n, |Y | = m. Assuming X and Y are confounded by a set of small entropy unobserved variables Z, i.e.,
H(Z) ≤ θ for some θ ∈ R. The causal effect of xq on yp is bounded by LB ≤ P (yp|do(xq)) ≤ UB, where

LB/UB = min /max

∑
j

bpjP (xj)


subject to∑
i,j

bijP (xj) = 1,

biqP (xq) = P (yi, xq) ∀i,
0 ≤ bij ≤ 1 ∀i, j,∑
i,j

bijP (xj) log

(
bij∑

k bikP (xk)

)
= I(Yx;X) ≤ θ.

Proof. To show the LB and UB bound the causal effect, we first need to show the causal effect lies in the feasible set of the
optimization problem.

Let P (Yxq
, X) be the counterfactual distribution for xq ∈ X . Let bij = P (Yxq

= yi|xj), Then we have the following∑
ij

bijP (xj) =
∑

P (Ry, Rx) = 1

biqP (xq) = P (Yx = yi|xn)P (xq) = P (yi, xq) ∀i

∑
i,j

bijP (xj) log

(
bij∑

k bikP (xk)

)
= I(Yx;X) ≤ θ.

Since Yx and X are d-separated by the confounder, by the data processing inequality, the mutual information between them
is less than the entropy of the confounder. So the last inequality holds. Therefore we have P (y0|do(x0)) in the feasible set.

Since mutual information is a convex function of the conditional distributions, the set of bij satisfies I(Yx;X) ≤ θ is convex.
The objective function and all other constraints are linear functions of bij , so the optimization problem is convex and obtains
global optimal in the feasible set.

We use the CVXPY package to solve the problem and formulate the constraint according to the Disciplined Convex
Programming rules.

B. Proof of Lemma 4.2
Recall the Lemma 4.2

Lemma 4.2. Let (X,Y ) be the pair of binary variables in the causal graph in Figure 1. Consider P (Yx, X) for any x ∈ X .
Assume, without loss of generality, P (y|x) ≥ P (y′|x). Then the following conditions are equivalent:

1. P (Yx = y) attain the Tian-Pearl lower bound,



Submission and Formatting Instructions for the SCIS workshop, ICML 2023

2. P (Yx = y′) attain the Tian-Pearl upper bound,

3. I(Yx;X) is maximized for the given P (X,Y ).

Proof. By the law of total probability, we have that

P (Yx = y) = P (Yx = y|x)P (x) + P (Yx = y|x′)P (x′),

and similarly
P (Yx = y′) = P (Yx = y′|x)P (x) + P (Yx = y′|x′)P (x′).

From the observational distribution, we have P (Yx = y|x) = P (y|x) , P (Yx = y′|x) = P (y′|x). Denote
p = P (Yx = y|x′), 1− p = P (Yx = y′|x′).

We first show the case P (y′|x) ≤ P (y|x).
(1 =⇒ 2) Assume P (Yx = y) attain the Tian-Pearl lower bound, i.e. P (Yx = y) = P (y, x). Since P (Yx = y|x) =
P (y|x), we have P (Yx = y|x′)P (x′) = 0. Since P (x′) > 0, P (Yx = y|x′) = 0, so P (Yx = y′|x′) = 1. Then we have
P (Yx = y′) = P (Yx = y′|x)P (x) + P (x′) = 1− P (x, y) attain the Tian-Pearl upper bound. Thus 1 =⇒ 2.

(2 =⇒ 3) Assume P (Yx = y′) attain the Tian-Pearl upper bound, we have P (Yx = y′|x′) = 1 and P (Yx = y|x′) = 0.
We want to show that the mutual information is maximized when p = 1. Since I(Yx;X) is a convex function of P (Yx|X),
it is a convex of p. I(Yx;X) = 0 when p = P (Yx = y|x), and monotonically increasing for both p > P (Yx = y|x)
and p < P (Yx = y|x). So I(Yx;X) obtains the local maximum at two boundaries p = 0, 1. To compare those two
points, denote I(Yx;X) as the mutual information if p = 0, and I ′ as the mutual information if p = 1. Then we have
I−I ′ = P (x′)

(
log P (x′)

1+P (y′|x) − log P (x′)
1+P (y|x)

)
≤ 0, since P (y′|x) ≤ P (y|x). The global maximum of mutual information

is at p = P (Yx = y|x′) = 1.

(3 =⇒ 1) Assumes I(Yx;X) attain maximum given P (X,Y ). The above argument shows that P (Yx = y|x′) = 1. So
P (Yx = y) = P (x) + P (x, y) attain the Tian-Pearl upper bound.

C. Proof of Lemma 4.3
Recall Lemma 4.3

Lemma 4.3. Let (X,Y ) be the pair of variables in the causal graph in Figure 1, where |X| = 2 and |Y | = m. The causal
effect P (Yx = yp) attain the Tian-Pearl upper bound when P (Yx = yp|x′) = 1; attain the Tian-Pearl lower bound with
minimum mutual information when P (Yx = yi|x′) = P (Yx=yi|X=x)∑

j ̸=p P (Y=yj |X=x) for all i ̸= p.

Proof. Given P (Y,X), we have P (Yx = yi|xi) = P (yi|x) for all i ≤ n. If P (Yx = yp|x′) = 1, then P (Yx = yp) attain
the Tian-Pearl upper bound:

P (Yx = yp) = P (Yx = yp|x)P (x) + P (Yx = yp|x′)P (x′) = P (yp, x) + P (x′) = 1−
∑
i ̸=p

P (yi, x).

Next show the minimum mutual information that attain the Tian-Pearl lower bound. P (Yx = yi) = P (Yx = yi|x)P (x) +
P (Yx = yi|x′)P (x′) attain the Tian-Pearl lower bound if P (Yx = yi|x′) = 0 for all i ̸= p.
Since we fixed P (Yx|x) = P (Y |x), the domain of the mutual information is to a (n− 1)simplex ∆n−1 of P (Yx|x′). Since
I(Yx;X) is convex with respect to P (Yx|X), this restricted function is also convex. Clearly, the restricted function obtains
minimum when P (Yx|x′) = P (Yx|x). Since we fixed P (yp|x′) = 0, this corresponding to the restricted function on the
(n− 2)-simplex. With a similar argument, this restricted function is also convex. Now we only need to find the local extrema
on the (n− 2)-simplex.

Let P (Yx = yp|x′) = 0, and denote P (yi|x) = αi for all i ≤ n and P (Yx = yi|x′) = βi for all 1 ≤ i ≤ n. So
P (Yx) = [α0P (x), α1P (x) + β1(P (x′), . . . , αnP (x) + βnP (x′)].
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Using the grouping property of entropy, we can write entropy as

H(Yx) = Hb (α0P (x)) +H

(
α1P (x) + β1P (x′)

1− α0P (x)
, . . . ,

αnP (x) + βnP (x′)

1− α0P (x)

)
(1− α0P (x))

= Hb (α0P (x)) +Hb

(
α1P (x) + β1P (x′)

1− α0P (x)

)
(1− α0P (x))

+H

(
α2P (x) + β2P (x′)

1− α0P (x)
, . . . ,

αnP (x) + βnP (x′)

1− α0P (x)

)(∑n
i=2(αiP (x) + βiP (x′))

1− α0P (x)

)

Similarly, we can write the conditional entropy as

H(Yx|X) = P (x)H(Yx|x)− P (x′)H(Yx|x′)

= P (x)H(Yx|x)− P (x′)H(β1, . . . , βn)

= P (x)H(Yx|x)− P (x′)Hb(β1)− P (x′)H

(
β2∑n
i=2 βi

, . . . ,
βn∑n
i=2 βi

)
P

(
n∑

i=2

βi

)

the mutual information as

I(Yx;X) = H(Yx)−H(Yx|X)

= Hb (α0P (x)) +Hb

(
α1P (x) + β1P (x′)

1− α0P (x)

)
(1− α0P (x))

+H

(
α2P (x) + β2P (x′)

1− α0P (x)
, . . . ,

αnP (x) + βnP (x′)

1− α0P (x)

)(∑n
i=2(αiP (x) + βiP (x′))

1− α0P (x)

)
− P (x)H(Yx|x)− P (x′)Hb(β1)− P (x′)H

(
β2∑n
i=2 βi

, . . . ,
βn∑n
i=2 βi

)
P

(
n∑

i=2

βi

)

Now denote terms that do not involve β1 as some constant. We can write the mutual information as follows.

I(Yx;X) = C1 + (1− α0P (x))Hb

(
α1P (x) + β1P (x′)

1− α0P (x)

)
+ C2 − C3 − P (x′)Hb(β1)− C4

Then take the derivative with respect to β1 and get

∂I(Yx;X)

∂β1
= (1− α0P (x))

(
log

1− α0P (x)− (α1P (x) + β1P (x′))

α1P (x) + β1P (x′)

)
P (x′)

1− α0P (x)
− P (x′) log

1− β1

β1

= P (x′)

(
log

1− (α0 + α1)P (x) + β1P (x′)

α1P (x) + β1P (x′)
− log

1− β1

β1

)
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Then we can find the local extrema by setting the derivative to zero.

∂I(Yx;X)

∂β1
= 0

P (x′) log
1− (α0 + α1)P (x)− β1P (x′)

α1P (x) + β1P (x′)
= P (x′) log

1− β1

β1

log
1− (α0 + α1)P (x)− β1P (x′)

α1P (x) + β1P (x′)
= log

1− β1

β1

1− (α0 + α1)P (x)− β1P (x′)

α1P (x) + β1P (x′)
=

1− β1

β1

(α1P (x) + β1P (x′))(1− β1) = (1− (α0 + α1)P (x)− β1P (x′))β1

α1P (x)− β1α1P (x) + β1P (x′) = (1− (α0 + α1)P (x))β1

(1− (α0 + α1)P (x) + α1P (x)− P (x′))β1 = α1P (x)

(P (x)− (α0 + α1)P (x) + α1P (x))β1 = α1P (x)

(1− α0 − α1 + α1)P (x)β1 = α1P (x)

β1 =
α1

1− α0

Repeat the steps for 1 ≤ i ≤ n, we can get the local minimum at βi =
αi

1−α0
for all 1 ≤ i ≤ n. Since the mutual information

is convex, these points give the global minimum of mutual information.

D. Proof of Lemma 4.4
Recall the Lemma 4.4

Lemma 4.4. Let (X,Y ) be the pair of variables in the causal graph in Figure 1, where |Y | = 2 and |X| = n. The causal
effect P (y|do(xq)) attain the Tian-Pearl upper bound when P (Yxq

= y|xj) = 1,∀j ̸= q; attain the Tian-Pearl lower bound
when P (Yxq

= y|xj) = 0,∀j ̸= q.

Proof. Given P (Y,X), we have P (Yx = y|xq) = P (y|xq) for all y ∈ Y . Assumes P (Yxq = y) attain the Tian-Pearl upper
bound, i.e.

P (Yxq
= y) = 1− P (y′, xq) = P (y, xq) +

∑
j ̸=q

(P (y, xj) + P (y′, xj)) = P (yp, xq) +
∑
j ̸=q

P (xj).

On the other hand, we have
P (Yxq

= yp) =
∑
j

P (Yxq
= yp|xj)P (xj).

Combines the above two equations, we get P (Yxq = yp|xj) = 1 for all j ̸= q.

For the lower bound, assumes P (Yxq
= yp) = P (yp, xq) by a similar argument as above, we have

P (Yxq = yp) =
∑
j

P (Yxq = yp|xj)P (xj) = P (yp, xq) +
∑
j ̸=q

P (Yxq = yp|xj)P (xj)

So from the above two equations, we get P (Yxq
= yp|xj) = 0 for all j ̸= q.

E. Proof of Theorem 4.5
Recall the Theorem 4.5

Theorem 4.5. Let (X,Y ) be a pair of variables in a causal graph G as shown in Figure 1, where either X or Y is binary.
Let (U, V ) be two binary variables such that P (v0|u0) = P (yp|xq), P (v1|u0) = 1− P (yp|xq), and P (u0) = P (xq). The
entropy threshold for the bounds of P (yp|do(xq)) is equal to max(I(U ;V )).
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Proof. Let P (U, V ) be the constructed joint distribution according to the theorem. By Lemma 4.2, assuming P (y′|x) ≤
P (y|x), I(U ;V ) is maximum is equivalent to P (v0) = P (v0|u0)P (u0) + P (v0|u1)P (u1) attain maximum or minimum.
That is when P (v0|u1) = 1 or P (v1|u1) = 1

If P (v0|u1) = 1,

I(U ;V ) = H(V )−H(V |U) = Hb((1− P (yp|xq))P (xq))− P (xq)Hb(P (yp|xq)) (1)

If P (v1|u1) = 1,

I(U ;V ) = H(V )−H(V |U) = Hb(P (yp|xq)P (xq))− P (xq)Hb(P (yp|xq)) (2)

First, consider the case where Y is a binary variable and |X| = n. By Lemma 4.4, P (Yxq
= y) attain the Tian-Pearl upper

bound when P (Yxq = y|xj) = 1 for all j ̸= q. So we have

Yx =

{
y P (y|x0)P (x0) +

∑n
j=1 P (xj)

y′ P (y′|x0)P (x0)
.

Since P (Yxq = y|xj) = 1 for all j ̸= q, H(Yxq |xj) = 0 for all j ̸= q. So H(Yxq |X) = P (xq)Hb(P (y|xq)). Then we
have

I(Yxq
;X) = H(Yxq

)−H(Yxq
|X) = Hb(P (y′|xq)P (xq))− P (xq)Hb(P (y|xq)).

This equals to the Equation (1), so we have P (Yxq
= y) attain the Tian-Pearl upper bound implies I(U ;V ) obtains

maximum.

Again by Lemma 4.4, P (Yxq
= y) attain the Tian-Pearl lower bound when P (Yxq

= y′|xj) = 1 for all j ̸= q. So we have

Yx =

{
y P (y|x0)P (x0)

y′ P (y′|x0)P (x0) +
∑n

j=1 P (xj).

Since P (Yxq
= y′|xj) = 1 for all j ̸= q, H(Yxq

|xj) = 0 for all j ̸= q. So H(Yxq
|X) = P (xq)Hb(P (y|xq)). Then we

have
I(Yxq

;X) = H(Yxq
)−H(Yxq

|X) = Hb(P (y|xq)P (xq))− P (xq)Hb(P (y|xq)).

This equals to the Equation (2), so we have P (Yxq
= y) attains the Tian-Pearl lower bound implies I(U ;V ) obtains

maximum.

We have shown for the binary Y ,the causal effect P (Yx) attains Tian-Pearl bounds implies I(Yx;X) = max (I(U ;V )).
Suppose we have I(Yx;X) ≤ H(Z) < max(I(U ;V )), by the contraposition, P (Yx) cannot attains Tian-Pearl bounds.

Now consider the case where X is a binary variable and |Y | = m. By Lemma 4.3, the causal effect P (Yx = yp)
attains Tian-Pearl upper bound when P (Yx = yp|x′) = 1; attains lower bound with minimum mutual information when
P (Yx = yi|x′) = P (Yx=yi|X=x)∑

j ̸=p P (Y=yj |X=x) for all i ̸= p.

For the upper bound case, assuming P (Yx = yp|x′) = 1, we have P (Yx = yi|x′) = 0 and H(X|yi) = 0 for all i ̸= p.
H(X|Y ) = P (yp)H(X|yp).

The mutual information is
I(Yx;X) = Hb(x)− P (yp)H(X|yp).

On the other hand, we can write Equation (1) as

I(U ;V ) = H(U)−H(U |V ) = Hb(x)− P (yp)H(X|yp) = I(Yx;X).

So we have P (Yx) attains the Tian-Pearl lower bound implies I(Yx;X) = max(I(U ;V ))



Submission and Formatting Instructions for the SCIS workshop, ICML 2023

Next assuming P (Yx = yi|x′) = P (Yx=yi|X=x)∑
j ̸=p P (Y=yj |X=x) for all i ̸= p. We have P (Yx = yp|x) = 0. Denote P (Yx = yi|x) =

αi. Using the grouping property of entropy, we could get

H(Yx|X) = P (x)H(Yx|x) + P (x′)H(Yx|x′)

= P (x)H(α0, . . . , αn) + P (x′)H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)
= P (x)

[
H(αp) + (1− αp)H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)]
+ P (x′)H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)
= P (x)H(αp) + (P (x)(1− αp) + P (x′))H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)
= P (x)H(αp) + (1− αpP (x))H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)
.

Then we have

Yx =



y0 α0P (x) + α0

1−αp
P (x′)

...
...

yp αpP (x)
...

...
ym αmP (x) + αm

1−αp
P (x′)

Again by the grouping property, we have

H(Yx) = Hb(αpP (x)) + (1− αpP (x))H

(
α0P (x) + α0

1−αp
P (x′)

1− αpP (x)
, . . .

)

= Hb(αpP (x)) + (1− αpP (x))H

 α0P (x)(1−αp)+α0P (x′)
1−αp

1− αpP (x)
, . . .


= Hb(αpP (x)) + (1− αpP (x))H

 α0P (x)(1−αp)+α0(1−P (x))
1−αp

1− αpP (x)
, . . .


= Hb(αpP (x)) + (1− αpP (x))H

 α0P (x)−α0αpP (x)+α0−α0P (x)
1−αp

1− αpP (x)
, . . .


= Hb(αpP (x)) + (1− αpP (x))H

(
α0 − α0αpP (x)

(1− αp)(1− αpP (x))
, . . .

)
= Hb(αpP (x)) + (1− αpP (x))H

(
α0(1− αpP (x))

(1− αp)(1− αpP (x))
, . . .

)
= Hb(αpP (x)) + (1− αpP (x))H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)
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Finally, we have

I(Yx;X) = H(Yx)−H(Yx|X)

= Hb(αpP (x)) + (1− αpP (x))H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)
− P (x)Hb(αp) + (1− αpP (x))H

(
α0

1− αp
, . . . ,

αp−1

1− αp
,
αp+1

1− αp
, . . . ,

αm

1− αp

)
= Hb(αpP (x))− P (x)Hb(αp)

= Hb(P (yp|xq)P (xq))− P (xq)Hb(P (yp|xq))

This equals to Equation (2). So the minimum I(Yx;X) for P (Yx = yp) attains Tian-Pearl lower bound is equal to the
maximum of I(U ;V ). For any other distribution where P (Yx) attains Tian-Pearl lower bound has mutual information
greater than max (I(U ;V )). Hence P (Yx) attains Tian-Pearl lower bound implies the I(Yx;X) ≥ max (I(U ;V )).

We have shown that for the binary X , the causal effect P (Yx) attains Tian-Pearl bounds implies I(Yx;X) ≥ max (I(U ;V )).
Suppose we have I(Yx;X) ≤ H(Z) < max(I(U ;V )), by the contraposition, P (Yx) cannot attains Tian-Pearl bounds.

F. Finite Sample Experiment
We experiment with finite samples from simulated data. We test sampling distribution for (|X| = 2, |Y | = 2). We generate
1000 distributions similar to the previous section. We draw samples from each and compute the empirical distribution. The
entropy of the confounder groups the distributions. We compute the upper and lower bound for each estimated distribution
using our method and take the midpoint of bounds as an estimation. Then we calculate the average error within each group
with the ground truth of the causal effect. The results are shown in Figure 4. For confounders with entropy smaller than
0.2, the average error drops rapidly as the number of samples increases. For confounders with entropy smaller than 1, our
method has a smaller average error than bounds without entropy constraints.

(a) |X| = 2, |Y | = 2

Figure 4. The average error of midpoint estimation with finite samples

G. Sampling the Joint Distribution
Given a DAG as shown in Figure 1a, we first generate P (Z) ∼ Dir(α) for some small α value. In this experiment,
we use α = 0.1. For X with n states, we first construct a vector v = 1

T [1, 1
2 , . . . ,

1
n ], where T is normalizing factor

such that
∑

v = 1. Then for each state of Z, we create a shifted vk by rolling the values of v. Then we sample
P (X|zk) ∼ Dir(vk). Similarly, for Y with m states, we construct a vector u = 1

T [1, 1
2 , . . . ,

1
m ] and for each xj , zk, we
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sample P (Y |xj , zk) ∼ Dir(ui). This procedure was described by Chickering and Meek (2012). They use this method to
prevent parent-child relationships between nodes from being uniform for a given DAG.

H. Convergence of causal effect
Following from Theorem 4.5, the entropy threshold of P (yp|do(xq)) only depends on the value of P (xq) and P (yp|xq). So
we sample P (x) from 0.01 to 0.8 and P (y|x) from 0 to 1. Then let the p(Y |x′) be a uniform distribution. For each pair of
p(x) and p(y|x), we calculate the bounds with entropy constraint for each distribution from 1 to 0. The result is shown in
Figure 5. The entropy threshold is small when P (x) is close to 0 or 1 and P (y|x) is close to 0.5. On the other hand, the
entropy threshold is high when P (x) is close to 0.5 and P (y|x) is close to 0 or 1. For a fixed conditional probability and
entropy constraint, the gap between bounds decreases monotonically with P (x).

Figure 5. Bounds of the causal effect. The x-axis represents the entropy constraint, and the y-axis represents the causal effect P (y|do(x)).
For each row P (y|x) increases as P (x) is fixed; P (x) increases from top to bottom. The gap between the upper and lower bound
decreases monotonically as P (x) increases. The entropy threshold is high when P (x) is close to 0.5 and P (y|x) is close to 1 or 0.
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Figure 6. The average gap between bounds

(a) |X| = 2, |Y | = 2 (b) |X| = 2, |Y | = 10 (c) |X| = 10, |Y | = 2

Figure 7. The number of samples with tighter bounds. The blue bars represent the total number of distributions in each group and orange
bar shows the number of distributions with tighter bound.


