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Abstract

Data selection for fine-tuning Large Language001
Models (LLMs) aims to select a high-quality002
subset from a given candidate dataset to train003
a Pending Fine-tune Model (PFM) into a004
Selective-Enhanced Model (SEM). It can im-005
prove the model performance and accelerate006
the training process. Although a few surveys007
have investigated related works of data selec-008
tion, there is a lack of comprehensive compari-009
son between existing methods due to their var-010
ious experimental settings. To address this is-011
sue, we first propose a three-stage scheme for012
data selection and comprehensively review ex-013
isting works according to this scheme. Then,014
we design a unified comparing method with015
ratio-based efficiency indicators and ranking-016
based feasibility indicators to overcome the dif-017
ficulty of comparing various models with di-018
verse experimental settings. After an in-depth019
comparative analysis, we find that the more020
targeted method with data-specific and model-021
specific quality labels has higher efficiency, but022
the introduction of additional noise information023
should be avoided when designing selection al-024
gorithms. Finally, we summarize the trends in025
data selection and highlight the short-term and026
long-term challenges to guide future research.027

1 Introduction028

Large language models nowadays can generate029

natural and authentic human languages and com-030

plete many classic NLP challenges (Naveed et al.,031

2023; Vaswani et al., 2017; Wang et al., 2022;032

Zhong et al., 2022). Following the knowledge-033

based pretraining, the user-oriented supervised in-034

struction fine-tuning endows LLMs with the most035

significant performance rise.036

After the success of LIMA (Zhou et al., 2024),037

data selection has gradually become a research038

hotspot, which focuses on excavating efficient cri-039

teria to select high-quality samples from existing040

datasets to fine-tune models in downstream tasks041
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Figure 1: An illustration of data selection for fine-tuning
LLMs according to selection criteria. Compared with
the Baseline Model (BM), which comes from a Pending
Fine-tune Model (PFM) fine-tuned on the full candidate
dataset, the Selective-Enhanced Model (SEM) achieves
a better performance with less training data.

such as open Q&A and customer service system, as 042

shown in Figure 1. With fewer but better training 043

samples, the selected subset can simultaneously 044

improve fine-tuned LLMs’ performance and accel- 045

erate their training. Although recent works (Wang 046

et al., 2024; Albalak et al., 2024) have investigated 047

most of the existing data selection methods, there is 048

a lack of in-depth analysis and comparison between 049

each method and a clear development trajectory 050

due to different settings. 051

To address these issues, we first propose a three- 052

stage data selection scheme that summarizes key 053

parts of the entire data selection process, includ- 054

ing data preprocessing, data selector construction, 055

and data selector evaluation. Then, we comprehen- 056

sively sort out the existing works with the follow- 057

ing three aspects: (1) the type of format-conversion 058

of original data after data preprocessing, (2) the 059

information source of quality labels and the cor- 060

responding calculation methods used in selector 061

construction, (3) and the various settings in the 062

evaluation process, including candidate datasets, 063

models, and metrics. 064

To directly compare the existing works, we 065
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Figure 2: The Three-stage Scheme of Data Selection for Fine-tuning LLMs.

then design ratio-based efficiency indicators and066

ranking-based feasibility indicators, overcoming067

their different settings. Specifically, we develop a068

unified automatic efficiency evaluation method to069

evaluate them quantitively based on the efficiency070

curve assumption. We also introduce a manual fea-071

sibility evaluation framework that considers sim-072

plicity and flexibility to evaluate them qualitatively.073

After a comprehensive evaluation and analysis of074

the existing work, we find it difficult to balance075

efficiency and feasibility in existing works: (1) the076

more targeted the data selection method, the higher077

the efficiency, but it also comes with an increase078

in complexity, descending the feasibility; (2) when079

adopting more complex algorithms to improve the080

efficiency of selectors, it is important to avoid in-081

troducing additional information as noise to ensure082

effective selection.083

Finally, we not only obtain the technological084

development trend of existing works from three085

aspects (Candidate Dataset, Quality Measurement,086

and Selected Feature) in a timeline but also give087

the short-term and long-term challenges we need088

to pay attention to in future research, including the089

data selection for specific domain and multi-turn090

conversation and how to find a unified and effective091

metrics for high-quality data.092

2 The Scheme of Data Selection093

Data selection for fine-tuning LLMs aims to se-094

lect a high-quality subset from a given candidate095

dataset according to some selection criteria, as illus-096

trated in Figure 1. Then, the selected subset is used097

to fine-tune a vanilla pre-trained language model,098

which is called a Pending Fine-tune Model (PFM),099

yielding a Selective-Enhanced Model (SEM). Com-100

pared with the Baseline Model (BM) fine-tuned on101

the full candidate dataset, the SEM is expected to102

achieve higher performance at a lower cost. 103

By reviewing existing popular works, we con- 104

cretize the data selection for fine-tuning LLMs into 105

a three-stage scheme as shown in Figure 2. The 106

scheme consists of (1) data preprocessing (Sec- 107

tion 3), (2) data selector construction (Section 4), 108

and (3) data selector evaluation (Section 5) by con- 109

sidering the data features, selection criteria, and 110

usefulness verification respectively. 111

In data preprocessing, many works retain the 112

original characteristics of the text, while others 113

transform the texts into human-designed features 114

for better explainability (Cao et al., 2023) or model- 115

oriented features for more direct and targeted selec- 116

tion (Xia et al., 2024). After that, data selector con- 117

struction focuses on the design of selection criteria, 118

which are expected to genuinely reflect the quality 119

of each sample. Existing data selection methods 120

can be first divided up by the information source of 121

quality labels (internal (Li et al., 2024b) or external 122

(Chen et al., 2024)) and then further classified by 123

the different ways of obtaining those quality labels 124

(Liu et al., 2024; Cao et al., 2023; Xia et al., 2024). 125

Finally, data selector evaluation verfies the useful- 126

ness of the data selection by the performance im- 127

provement of the selective-enhanced model (SEM) 128

over the baseline model (BM). This can be obtained 129

by pairwise comparing the response from the two 130

models directly (Cao et al., 2023) or comparing 131

their scores in some popular benchmarks such as 132

MT-Bench (Lu et al., 2023). 133

3 Data Preprocessing 134

While some works preserve the original texts 135

believing that they contain the most information (Li 136

et al., 2024b; Chen et al., 2024), others transform 137

raw texts into representative features. These can be 138

further divided into human-designed features and 139
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model-oriented features. The former complies with140

human instinct, such as the linguistic indicators141

(Cao et al., 2023; Wei et al., 2023), while the latter142

is directly extracted from the model itself, such as143

model gradients (Xia et al., 2024).144

Human-designed Features. To guide data se-145

lection with respect to human preference, some146

works use explainable human-designed features147

with linguistic information. Instruction-Mining148

(Cao et al., 2023) converts a sample into a vector149

consisting of several NLP metrics, including co-150

herence, naturalness, understandability, etc. Based151

on this, InstructionGPT-4 (Wei et al., 2023) 1 ad-152

ditionally introduces the GPT4 score as one of its153

indicators to better represent the quality of data by154

measuring whether the generated text adheres to155

the model’s language proficiency.156

Model-oriented Features. For more direct and157

targeted selection, other works use model-oriented158

features extracted from the model as the represen-159

tations of data. For example, LESS (Xia et al.,160

2024) creates a datastore of effective and reusable161

low-dimensional gradient features from the LLM162

to directly minimize loss on a target task instead of163

relying on surface form features.164

4 Data Selector Construction165

Data selector construction focuses on the design166

of the selection criterion, considering both the in-167

formation source of the quality label and the way168

to obtain it, which serves as the fundamental judg-169

ment of data quality. The source of quality labels170

can be divided into internal and external informa-171

tion. The former indicates that the data quality is172

only related to the information carried by the can-173

didate dataset itself (Li et al., 2024b,a), while the174

latter considers the information beyond the candi-175

date dataset, such as discrete quality labels from176

external LLM preference (Chen et al., 2024) and177

continuous quality labels from sample influence (Li178

et al., 2024c).179

4.1 Leveraging Internal Information180

Some works attempt to mine the internal infor-181

mation within the given candidate dataset to obtain182

quality labels directly. The pioneering work (Li183

et al., 2024b) proposes Instruction Following Diffi-184

culty (IFD) as the quality label, which measures the185

contribution of the instruction to the generation of186

1It also considers CLIP score and multimodal features
since it is a multimodal model.

the corresponding output. To obtain the IFD score, 187

this work first trains an LLaMA-7B (the same as 188

PFM) with a portion of the candidate dataset to 189

be the pre-experienced model. The IFD score is 190

then determined by assessing how the likelihood 191

of generating a specific answer changes when the 192

instruction is provided versus when it is not, using 193

this pre-experienced model. 194

Inspired by the IFD work, SuperFiltering (Li 195

et al., 2024a) adopts a smaller model (GPT-2) as 196

the pre-experienced model to select data by lever- 197

aging the consistency in IFD and perplexity from 198

small pre-experienced models to large ones, en- 199

abling weak to strong data filtering. 200

4.2 Leveraging External Information 201

Other works rely on external information other 202

than the given candidate dataset to obtain the qual- 203

ity of samples, which can be further divided into 204

discrete quality labels and continuous quality labels 205

according to the organizational form. 206

4.2.1 Discrete Quality Labels from LLM 207

Preference 208

To reduce the high-cost and time-consuming hu- 209

man annotations of sample quality, some works 210

use exclusive LLMs (such as ChatGPT) or commu- 211

nity LLMs (such as LLaMA) to annotate quality 212

automatically, followed by a designed selection al- 213

gorithm. Such a quality label for the sample is 214

usually discrete and explicit, given by the external 215

LLM with the preference prompt. 216

Exclusive LLM Preference. One representative 217

work is AlpaGasus (Chen et al., 2024), which ob- 218

tains quality labels by prompting ChatGPT to give 219

each sample a specific score directly and select the 220

samples ranked by the score, align with the what 221

humans would do. The prompt is a designed tem- 222

plate with common evaluation aspects, like helpful- 223

ness and accuracy, which is universal for any given 224

candidate dataset and PFM. Instead of using a sin- 225

gle score in AlpaGasus, Instag (Lu et al., 2023) 226

obtains fine-grained quality labels (tags of instruc- 227

tion’s intention) annotated by ChatGPT, measuring 228

the quality of samples from both diversity and com- 229

plexity. Then, they designed a complexity-first 230

diversity sampling algorithm for data selection that 231

takes both perspectives into account. 232

Community Model Preference. Furthermore, 233

DEITA (Liu et al., 2024) utilizes the Evol-Instruct 234

method (Xu et al., 2023) to construct samples of dif- 235

ferent complexities and qualities for training com- 236
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Method Candidate Datasets Evaluating SEMs Counterpart Models Evaluation Metrics
BM Others Wins-ties-losses Benchmark Scoring

AlpaGasus Alpaca LLaMA-2 7B ✔ ✔ Vicuna, Koala, WizardLM,
Self-Instruct

InstructEval

Instruction-Mining OpenOrca & DOLLY LLaMA 7B ✔ ✔ MT-Bench OPENLLM, MT-Bench
InstructionGPT-4 MiniGPT-4 LLaMA-2 ✔ ✘ LLaVA-Bench MME, VQA, MT-Bench
IFD Alpaca & WizardLM LLaMA-2 7B ✔ ✘ Vicuna, Koala, WizardLM,

Self-Instruct, LIMA
OPENLLM

Superfiltering Alpaca & Alpaca-GPT4 & WizardLM LLaMA-2 7B/13B ✔ ✘ WizardLM OPENLLM, AlpacaEval
Nuggets Alpaca LLaMA-2 7B ✔ ✘ - MT-Bench, AlpacaEval
LESS FLAN V2 & CoT & DOLLY & Oasst LLaMA-2-13B; Mistral

7B
✔ ✘ - MMLU, TYDIQA, BBH

InsTag WizardLM & UltraChat & ShareGPT LLaMA-1/-2 ✘ ✔ - MT-Bench
DEITA Alpaca & DOLLY & Oasst & FLAN 2022

& WizardLM & UltraChat & ShareGPT
LLaMA-1/-2 13B; Mistral
7B

✘ ✔ - OPENLLM, MT-Bench

Table 1: The candidate dataset, SEMs, counterpart models, and evaluation metrics used in each method. The "✔"
under BM means the work uses the same BM as the SEM; under Others, the "✔" means the work uses models other
than BM, including oracle LLMs and other fine-tuned SEMs.

munity models (LLaMA) as the stronger complex-237

ity scorer and quality scorer than that trained on the238

original data. They evaluate the instruction com-239

plexity score and response quality score of each240

candidate sample separately. Then, they designed a241

score-first, diversity-aware data selection algorithm242

to select the samples according to the rank of the243

multiplied score of the two aspects of each sample.244

4.2.2 Continuous Quality Labels from Sample245

Influence246

Other works adopt more direct and model-247

specific methods to select data by utilizing the sam-248

ple influence on the model’s final performance as249

the quality label, which is usually continuous and250

implicit. According to the calculation methods of251

sample influence, they can be further divided into252

two types: model-centric (Cao et al., 2023; Wei253

et al., 2023; Li et al., 2024c) and data-centric (Xia254

et al., 2024).255

Model-centric. Instruction-Mining (Cao et al.,256

2023) employ the Least Squares method to con-257

struct the mapping between the 4-dimensional-258

indicator representations of the sample and the in-259

ference loss (Wang et al., 2023; Zheng et al., 2024)260

on the PFM model. Then, they utilize BLEND-261

SEARCH to select the candidate data effectively,262

combining global and local optimizations with263

Bayesian optimization and different local search264

threads. InstructionGPT-4 (Wei et al., 2023)265

adopts the same methodology on a multimodal266

model by adding visual-caption features. Different267

from Instruction-Mining, which needs fine-tuning,268

Nuggets (Li et al., 2024c) more directly utilizes the269

performance difference between taking the sample270

as the one-shot and the zero-shot setting of PFM271

on predetermined tasks as the sample influence.272

Data-centric. Unlike the above works that at-273

tempt to measure the sample influence from the im-274

pact on the PFM models performance, LESS (Xia 275

et al., 2024) uses the similarity between the gra- 276

dient of candidate samples and that of the data 277

in existing specific-task datasets to obtain sample 278

influence. They first use the 5% samples of the 279

candidate dataset to warm up the PFM model to ob- 280

tain the LoRA gradient of each sample, following 281

random projection to get the feature. Then, they 282

design a data selection algorithm, using the aver- 283

age gradient of each task on the validation set as 284

anchor points for similarity calculation with can- 285

didate samples’ features, and select the top 5% of 286

data points that improved all tasks. 287

5 Data Selector Evaluation 288

To evaluate the usefulness of selectors, the 289

method is to select a subset from a candidate dataset 290

through the selector and then fine-tune a model to 291

be the selectively enhanced model (SEM) based 292

on this subset to compare the performance with 293

the same model fine-tuned on full data (Baseline 294

model, BM) or other popular oracle LLMs. Table 1 295

shows the detailed evaluation setting, including the 296

choice of candidate datasets, counterpart models 297

used in the comparison, and evaluation metrics that 298

provide the performance. 299

Candidate Datasets. Most of the works (Li 300

et al., 2024a,b; Liu et al., 2024) use the popular 301

open-sourced datasets as candidate datasets to push 302

forward better performance of fine-tuned models 303

by selecting higher-quality samples in them. The 304

candidate dataset is further divided into the typical 305

group, including Alpaca (Taori et al., 2023), Dolly 306

(Conover et al., 2023), FLAN (Wei et al., 2022), 307

etc., and the advanced group developed from the 308

typical datasets to achieve higher quality, including 309

WizardLM (Xu et al., 2023), UltraChat (Ding et al., 310

2023), etc. 311
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Counterpart Models. To objectively evaluate312

the performance of the SEM, most works choose313

BM as the counterpart model for comparison. They314

tend to use the popular LLaMA series (Chen et al.,315

2024; Lu et al., 2023) as well as Mistral (Liu et al.,316

2024; Xia et al., 2024) models as backbones of the317

SEM and BM to obtain relative improvement evalu-318

ation, which directly shows the improvement effect319

of the selector. Other works (Xia et al., 2024; Chen320

et al., 2024) compare the SEM with SOTA mod-321

els (such as GPT-4, Claude, and LLaMA-Chat 7B)322

to obtain absolute improvement evaluation, which323

indicates how good SEM achieves.324

Evaluation Metrics. Similar to the counterpart325

models, the evaluation metric adopts the relative326

and absolute methods to comprehensively evalu-327

ate the selector. The absolute metric uses Wins-328

ties-losses pairing scored by GPT-4 to indicate the329

direct performance difference between the SEM330

and counterpart model, while the absolute metric331

uses benchmark scoring to directly score and rank332

the SEM. Benchmark scoring is separated into a333

traditional group examining the loss of the model’s334

response on test datasets (such as MMLU and TY-335

DIQA) and a group using GPT-4 to score on various336

benchmarks, such as OPENLLM, MT-Bench.337

6 Comparing Data Selection Methods338

To spot the key factors that lead to superior se-339

lectors, we attempt to compare the existing works340

from the efficiency and feasibility. To address the341

difficulty of comparison caused by the inconsis-342

tency of the evaluation settings (e.g., candidate343

dataset, PFM, and metrics) across different works,344

we propose a unified comparison method with sev-345

eral aligned strategies, including developing quan-346

titative ratio-based efficiency indicators and quali-347

tative ranking-based feasibility indicators.348

6.1 Efficiency of the Selector349

We first compared the efficiency of data selectors350

in these works, which can measure the accuracy of351

selectors in selecting the ground-truth high-quality352

data. The efficiency is mostly expressed by the two353

indicators in a scatter plot: (1) the performance354

of SEM and (2) the absolute size of the selected355

subset. To obtain and unify the efficiency of each356

work for comparison, we develop two new ratio-357

based indicators in the efficiency graph with the358

establishment of the efficiency curve assumption.359

Method SEM Same Model Other Models
Wins
Rate

Bench. Wins
Rate

Bench.

AlpaGasus LLaMA-2 7B 1.284 0.949 - -
SuperFiltering LLaMA-2 7B 1.475 0.962 - -
InsTag LLaMA 13B 1.344 - - 0.985
DEITA LLaMA-2 13B 1.467 - - 1.000
InstructionGPT-4 MiniGPT-4 1.443 - - -
Nuggets LLaMA-2 7B 1.519 - - -
IFD LLaMA-2 7B 1.747 - - -
LESS LLaMA-2 13B (1.570) 0.973 - -
Instruction-Mining LLaMA-2 7B (1.400) - 0.212 0.991

Table 2: The performance improvement under four eval-
uation settings. In the Same model, we compare SEM
and BM, while in other models, we compare SEM and
the same-size models trained based on other backbones
(such as LLaMA chat).

6.1.1 Ratio-based Efficiency Indicators 360

To align original indicators, we develop two 361

ratio-based efficiency indicators: (1) the Perfor- 362

mance Improvement Ratio (PIR) and (2) the Se- 363

lected Dataset Fraction (SDF), which eliminates 364

the bias rooted in the settings (e.g., evaluation met- 365

rics and size of dataset). 366

Performance Improvement Ratio. On the one 367

hand, we design the following steps to obtain the 368

PIR. As outlined in Table 2, we initially categorize 369

evaluation settings into four groups (for more de- 370

tails, see Appendix A.1). We then compute the aver- 371

age performance improvement ratio of the method 372

across various testing datasets under different set- 373

tings. This is done by averaging the ratios of perfor- 374

mance scores of the SEM to those of the counter- 375

part model for each group. Each ratio is calculated 376

by dividing the SEM’s performance score by that 377

of the counterpart model in the same evaluation 378

setting. Then, we take the most confident indicator 379

(wins rate in the same model) as the representative 380

indicator for the PIR and estimate missing values 381

by leveraging the consistency of performance under 382

different evaluations in one selector. 383

Selected Dataset Fraction. On the other hand, 384

we utilize the SDF to assess the impact of data size 385

uniformly. This fraction is calculated by taking the 386

ratio of the selected dataset size to the total size 387

of the original candidate dataset. It ensures that 388

each dataset is represented proportionally, eliminat- 389

ing bias caused by the varying sizes of candidate 390

datasets, which range from 3,439 entries (Wei et al., 391

2023) to 306,044 entries (Lu et al., 2023). 392

6.1.2 The Efficiency Curve Assumption 393

As shown in Figure 3, we draw the unified effi- 394

ciency graph of each method, where each point is 395

selected based on the best performance reported in 396
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Figure 3: The example of the efficiency curve of three
representative works (IFD, Instruction-Mining, and Al-
paGasus). The blue dashed line indicates the baselines
on the same fraction. Other colored dashed lines indi-
cate the tangent of the curve at a specific fraction (0.05).

the work. Although a method with a higher PIR397

and a smaller SDF is more efficient, it is difficult398

to compare two different works directly as there is399

no explicit proportional relationship between these400

two indicators.401

Therefore, inspired by the scaling law (Kaplan402

et al., 2020; Chung et al., 2024) and LIMA (Zhou403

et al., 2024), we first propose the efficiency curve404

assumptions to get the unified efficiency curve:405

(1) The unified efficiency curve is logarithm-like,406

which is upward, concave, and approaching linear407

after experiencing a rapid but short increase; (2)408

The slope of the superior efficiency is always larger409

than the inferior efficiency. (More information is410

shown in Appendix A.2). Based on this, we first411

draw the unified efficiency curve of each work and412

select three representative works (IFD, Instruction-413

Mining, and AlpaGasus) as an example in Figure 3.414

It can result in a lossless shift of the work along415

the curve, allowing for the comparison of various416

works within the same selected dataset fraction.417

To compare any two methods directly, we fur-418

ther set up the efficiency baseline (lbase) by using419

the approximate estimation of the line connecting420

Instruction-Mining and Instruction-GPT4, where421

they are almost on the same efficiency curve due to422

adopting a similar data selection method, as shown423

in Figure 4.424

After that, we can indicate the superior or infe-425

rior efficiency of work (represented as the green or426

red line) in comparison to the baseline by the signed427

distance between them, as the distance is with a428

fixed proportion to the efficiency difference. Meth-429

Figure 4: The efficiency graph among popular data
selection methods. The yellow line is the efficiency
baseline (lbase), and the grey area is the infeasible area.

ods that perform above the baseline are represented 430

by a green line, indicating superior efficiency com- 431

pared to the baseline, whereas those below it are 432

shown with a red line, indicating inferior efficiency 433

compared to the baseline. The larger the distance, 434

the greater the efficiency difference. We also ob- 435

serve an infeasible area, but it does not affect our 436

comparative work in this paper. Further details are 437

available in Appendix A.3. 438

6.2 Feasibility of the Selector 439

On the other hand, we expect excellent meth- 440

ods to be not only highly efficient but also easy 441

to use in practice. Therefore, we propose Simplic- 442

ity and Flexibility as two ranking-based feasibility 443

indicators, which qualitatively assess the imple- 444

mentation difficulty and competence in handling 445

new selection tasks of the existing works, as shown 446

in Table 3. 447

6.2.1 Ranking-based Feasibility Indicators 448

Simplicity. It evaluates the complexity of the 449

selection process and the reproducibility (Rep.) of 450

work. In terms of complexity, we focus on the 451

number of LLM models that need to be trained 452

during the selection process, as well as the overall 453

algorithm steps (including the number of times 454

using LLM inference). Regarding reproducibility 455

(Rep.), we manually check whether the method 456

released its open-source code that can be easily 457

adapted to other scenarios. More details can be 458

found in the Appendix A.4.1. 459

Flexibility. It mainly considers whether a data 460

selection method can be more easily applied to 461

other scenarios based on transferability and exten- 462
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Methods # Trained LLMs # Algorithm Steps Rep. Simplicity Transferability Extensibility Flexibility Feasibility
(# Using LLMs) Model Free Dataset Free ChatGPT/GPT-4 Free

AlpaGasus 0 2(1) ✘ 1 ✔ ✔ ✘ 1 1
InsTag 0 3(1) ✘ 2 ✔ ✔ ✘ 1 2
Nuggets 0 4(2) ✔ 2 ✘ ✔ ✔ 2 3
SuperFiltering 1* 3(1*) ✔ 3 ✘ ✘ ✔ 4 4
IFD 1 3(1) ✔ 4 ✘ ✘ ✔ 4 5
LESS 1 4(2) ✔ 5 ✘ ✘ ✔ 4 6
DEITA 2 5(4) ✔ 6 ✔ ✘ ✘ 3 6
Instruction-Mining 129 4(0) ✘ 8 ✘ ✔ ✔ 2 7
InstructionGPT-4 30 4(1) ✔ 7 ✘ ✔ ✘ 5 8

Table 3: The feasibility ranking of existing methods, considering the simplicity and flexibility. The former consists
of three indicators: (1) # Trained LLMs, (2) # Algorithm Steps, and (3) Reproducibility, while the latter considers
extensibility and transferability. * indicates SuperFiltering trained a GPT-2 instead of LLaMA model. More details
are shown in Appendix A.4.

sibility. Transferability mainly depends on whether463

the construction of the selection method depends464

on the PFM model (Model Free) and given dataset465

(Dataset Free), while extensibility mainly consid-466

ers whether the method relies on certain specific467

necessary models (such as ChatGPT and GPT-4).468

More details can be found in the Appendix A.4.2.469

Finally, we provide a comprehensive feasibil-470

ity rank for the existing models, taking into ac-471

count both simplicity and flexibility, as shown in472

Table 3. The priority of each element in the sim-473

plicity is the number of trained LLMs, algorithm474

steps, and whether it has reproducibility. The prior-475

ity of each element in Flexibility is Model Free in476

Transferability, Dataset Free in Transferability, and477

ChatGPT/GPT-4 Free in Extensibility.478

6.3 Overall Consideration of the Selector479

It can be visually seen from Figure 4 the effi-480

ciency ranking of each method. The IFD is the481

best, but AlpaGasus is the worst. This is because482

IFD is more targeted: The Instruction Following483

Difficulty score is calculated not only based on in-484

formation from within the candidate dataset but485

also on the feature extracted by the pending fine-486

tuned model (PFM). Moreover, its quality labels487

come from the loss of the model, which is more488

direct and does not introduce external information489

interference. On the other hand, AlpaGasus only490

utilized external ChatGPT scoring without consid-491

ering the impact of specific data quality distribution,492

characteristics of the PFM, and optimization objec-493

tives on the performance of the model trained after494

data selection.495

Although the performance is not satisfactory, Al-496

paGasus performs the best in terms of flexibility,497

as shown in Table 3. Its high simplicity, due to not498

requiring training in LLM and having fewer steps499

in the data selection process, makes it easy for sub-500

sequent works to reproduce its results, even though501

no official publicly available source code exists. In 502

addition, it can be more freely transferred into other 503

scenarios (model-free and dataset-free) as it only 504

relies on ChatGPT without any other information. 505

Although Instruction-Mining and InstructionGPT- 506

4 perform better than AlpaGasus, they sacrifice 507

a lot of feasibility due to their heavy reliance on 508

fine-tuning numerous LLMs and complex quality 509

indicators from the dataset and models. 510

In summary, existing methods are difficult to 511

achieve both high performance and high feasibility 512

simultaneously. We observe that the more targeted 513

the data selection method, the better the perfor- 514

mance of SEM will be. For example, DEITA is 515

more complex than Alpaca due to training the LLM 516

based on PFM and considering the diversity of the 517

data, resulting in better performance. However, 518

more complex processes and algorithms may intro- 519

duce additional external information than optimize 520

the target directly, and they are also more difficult 521

to transfer. For example, LESS performs worse 522

than IFD, although it is more complex due to the 523

introduction of external datasets. 524

7 Discussions 525

7.1 Trends 526

To explore the current research trends, we have 527

sorted out the existing work from three aspects 528

(Candidate Dataset, Quality Measurement, and Se- 529

lected Feature) in chronological order, as shown in 530

Figure 5. It is worthwhile to notice that there is a 531

clear trend: current research is gradually evolving 532

toward more targeted data selection. 533

Specifically, the selector evolves from general to 534

specific in selecting the candidate dataset, where 535

the general one can select any dataset once con- 536

structed (Cao et al., 2023), and the specific one 537

has to adjust according to the candidate dataset 538

(Li et al., 2024b). The quality measurement be- 539
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Figure 5: The timeline of the data selection methods.

comes more straightforward to the PFM, which540

is developed from the LLM score of the exter-541

nal model (Chen et al., 2024) to PFM loss (Xia542

et al., 2024) coming from the internal model. The543

selected feature becomes more complex from us-544

ing concrete indicators (Quality Score and Multi-545

dimension Indicator) to abstract indicators (PFM546

Loss and Model Optimize indicator). The concrete547

indicator introduces semantic factors to explain548

data quality, while the abstract indicator uses the in-549

formation from PFM such as loss (Li et al., 2024a)550

and gradient (Xia et al., 2024).551

Additionally, the number of concrete indicators552

used in the selector increases. DEITA and InsTag553

employ more indicators than AlpaGasus, which554

solely relies on quality scores from Chat-GPT. Fur-555

thermore, DEITA and InsTag achieve far better556

overall performance than AlpaGasus due to their557

taking data diversity into consideration.558

7.2 Challenges559

Although there has been significant progress in560

data selection for fine-tuning LLMs, we still face561

both short-term and long-term challenges.562

In the near future, the urgent task is to provide563

solutions for specific data selection needs, such564

as specific domains and multi-turns conversations.565

Specific domains. Most data selection methods566

focus on overall performance improvement, but the567

contribution of selected data to different domains is568

not the same. The existing works (Cao et al., 2023;569

Wei et al., 2023; Chen et al., 2024; Lu et al., 2023;570

Li et al., 2024c) demonstrated that selected data can571

bring significant improvements in writing and role-572

playing but minor improvements in mathematics573

and reasoning. Although LESS provides a task-574

oriented data selection method, future work still575

needs to consider how to dynamically select data576

based on the model’s shortcomings in a specific do-577

main to improve it in specific domains without af-578

fecting other domains. Multi-turn conversations.579

Most existing data selection methods are aimed at 580

single-turn conversations because their quality is 581

easier to measure but lacks attention to multi-turn 582

conversation data. Although DEITA (Liu et al., 583

2024) viewed the multi-turns conversation as mul- 584

tiple single-turn Q&A, they did not consider the 585

characteristics of the multi-turns, such as global 586

goal and consistency in a conversation. 587

From a long-term research perspective, there are 588

two more in-depth questions that need to be ex- 589

plored: how to balance performance and flexibility 590

and how to find a unified metric for measuring 591

data quality. As we mentioned in the analysis, it 592

is difficult for current research to achieve excel- 593

lent performance in both efficiency and feasibility 594

because their improvements in efficiency tend to 595

use more refined and targeted methods rather than 596

truly more effective select paradigms. The reason 597

behind this is that existing work considers various 598

indicators to measure data quality for selection but 599

only starts from the external model’s observations 600

of the data or the impact of data selection on model 601

performance rather than the quality distribution of 602

the dataset itself. Therefore, exploring a unified 603

and effective metric that can uniformly measure 604

data quality is one of the fundamental issues in the 605

data selection research field. 606

8 Conclusion 607

In this paper, we conducted an extensive sur- 608

vey on data selection for fine-tuning large-scale 609

language models. We first construct a three-stage 610

data selection scheme for the entire process and re- 611

view the current research progress of data selection 612

based on it, including data preprocessing, data se- 613

lector construction, and data selector evaluation. To 614

address the issue of incompatibility caused by dif- 615

ferent experimental settings, we propose a unified 616

comparison method from quantitative efficiency 617

evaluation and qualitative feasibility evaluation by 618

designing ratio-based indicators and ranking-based 619

indicators. We find that the data selection meth- 620

ods achieve higher efficiency with data-specific, 621

model-specific, and target-specific designs, but the 622

complex methods could improve efficiency only if 623

it is designed to avoid external information noise. 624

Therefore, it is difficult for the existing methods 625

to balance efficiency and feasibility. Apart from 626

drawing the timeline of the existing work, we also 627

point out the short-term challenges and long-term 628

challenges for future research. 629
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Limitation630

We mainly research data selection for instruc-631

tion fine-tuning LLMs instead of data rewriting632

or augmentation. Although we have already com-633

prehensively examined the existing works, we ac-634

knowledge that there may still be some works we635

neglected, especially the very recent work that was636

published on the preprint platforms.637

Besides, we focus on outlining the scheme of638

existing work on data selection and propose an639

analytical method for comparing various works640

directly. Therefore, the descriptions of each work641

could be limited to key points relevant to our study642

rather than providing a comprehensive overview643

due to limited space.644
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A Appendix 781

A.1 Performance Improvement Ratio 782

Method SEM Same Model Other Models
Wins
Rate

Bench. Wins
Rate

Bench.

AlpaGasus LLaMA-2 7B 1.284 0.949 - -
SuperFiltering LLaMA-2 7B 1.475 0.962 - -
InsTag LLaMA 13B 1.344 - - 0.985
DEITA LLaMA-2 13B 1.467 - - 1.000
InstructionGPT-4 MiniGPT-4 1.443 - - -
Nuggets LLaMA-2 7B 1.519 - - -
IFD LLaMA-2 7B 1.747 - - -
LESS LLaMA-2 13B (1.570) 0.973 - -
Instruction-Mining LLaMA-2 7B (1.400) - 0.212 0.991

Table 4: The performance improvement under four eval-
uation settings. In the Same model, we compare SEM
and BM, while in other models, we compare SEM and
the same-size models trained based on other backbones
(such as LLaMA chat).

Since different works use different evaluation 783

methods, it is difficult to compare them directly. 784

Therefore, to uniformly evaluate their performance, 785

according to the compared counterpart model, we 786

first divide the various evaluation settings men- 787

tioned in all works into BM comparison with SEM 788

on the same PFM and comparison with other mod- 789

els (such as LLaMA chat). Then, we further divide 790

them into wins rate and benchmark improvement 791

(Bench.) with the different metrics. In total, we 792

have four evaluation settings, as shown in Table 4, 793

and we take the average of each type in Eq. (1) if 794

it has multiple evaluations in one setting. 795

1

n

n∑
i=0

Xi

Yi
(1) 796

where Xi and Yi are, respectively, the performance 797

of the SEM and the counterpart model under the 798

same evaluation setting i, and n is the total number 799

of the evaluation settings using the same kind of 800

evaluation metric (wins-ties-losses or benchmark 801

scoring) and counterpart model. We then choose 802

the wins rate under BM as the ratio indicator of PIR 803

not only because it directly reflects the improve- 804

ment effect made by the selector but also because 805

most of the works provide this value. 806

To fill the missing value, we leverage the con- 807

sistency of model performance: the same model 808

should perform similarly under different categories. 809

Therefore, we obtain the bridge function by linearly 810

regressing the other works with the wins rate under 811

BM as the label, then use the bridge function to 812

transfer the value of work under other categories 813

into the wins rate under BM. 814
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IFD
Instruction-Mining
AlpaGasus

Figure 6: The example of the efficiency curve of three
representative works (IFD, Instruction-Mining, and Al-
paGasue). The blue dashed line indicates the baselines
on the same fraction. Other colored dashed lines indi-
cate the tangent of the curve at a specific fraction (0.05).

A.2 Efficiency Curve Assumption815

To directly compare the work with different per-816

formance improvement ratios and selected data817

fractions, we construct an efficiency curve assump-818

tion, which consists of two parts:819

(1) According to relevant theories (such as scal-820

ing law) (Kaplan et al., 2020; Sun et al., 2017;821

Moskovskaya et al., 2023), they suggest that the822

impact of logarithmic data size on the loss is lin-823

ear if the augmented dataset maintains the same824

quality structure. Inspired by these theories, we ac-825

count for a dataset with fixed quality, its function of826

the performance improvement ratio, and selected827

dataset fraction compilation To the logarithmic-828

like function, which is upward, considered, and829

approaching linear after experiencing a rapid but830

short increase. This way, we can move it on this831

performance curve to different proportions for easy832

comparison (such as 0.05, where the blue dash line833

is located) while maintaining the same efficiency.834

(2) The efficiency of the method represented835

by the above curve with a larger slope is superior836

to that represented by the below one. It can be837

intuitively derived from the first part with the fact838

that high-quality data leads to better performance of839

SEM cite zhou2024lima Therefore, if the method840

is superior, which indicates its selected dataset has841

good quality structure, it increases the performance842

improvement must be greater than the inferior one843

at every point of selected dataset fraction.844

Therefore, the efficiency (Effk) is reflected845

on the slope of the efficiency curve func-846

tion (f(x;Effk)), where the superior efficiency847

(Eff s
n = dfs(xn)

dxn
) is larger than the inferior effi- 848

ciency (Eff i
n = dfi(xn)

dxn
) at every fraction of se- 849

lected subset (xn). Although the slope of the curve 850

is unobtainable because the mathematical expres- 851

sion of the efficiency curve is inaccessible, the com- 852

parison efficiency (CEff ) of work is reflected in 853

its position by leveraging the curve assumption on 854

the baseline. The comparison efficiency transfers 855

the representation of efficiency from the slope of 856

the curve into the distance between the curve and 857

the baseline, which reflects the efficiency differ- 858

ence between them. 859

As shown in Eq. (2) and (3), for the comparison 860

efficiency of a certain work k (Effk) and the base- 861

line (Eff b), the comparison efficiency (CEffk) 862

can be calculated by the Eq (4). 863

Effk =

∫
dfk(x)

dx
dx (2) 864

Eff b =

∫
dfb(x)

dx
dx (3) 865

CEffk = Effk − Eff b = fk(x)− fb(x) (4) 866

where x in Eq. (4) is set as same as work k (xk) 867

which is the only known point of fk(x). Then, the 868

CEffk can be represented as Eq. (5): 869

CEffk = fk(xk)− fb(xk) (5) 870

To make the comparison efficiency straightfor- 871

ward, we scalar it into the distance between the 872

work k and the baseline Let Dkb be the distance 873

between work k and the baseline, and θ be the an- 874

gle between the baseline and x-axis as shown in Eq. 875

(6). 876

Dkb = CEffk cos(90◦ − θ) (6) 877

As a result, the CEffk is proportional to Dkb 878

as shown in Eq. (7). 879

CEffk ∝ Dkb (7) 880

The comparison efficiency method virtually 881

scalars the SDF of all works into an identical value 882

according to the baseline, where the efficiency of 883

work is reflected in the difference between the ac- 884

tual and virtual PIR. 885
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Efficiency Curve
Potential Efficiency Curve

Figure 7: The demonstration of infeasible area. The
green line is the efficiency curve of InsTag, where the
dashed lines indicate its potential position.

A.3 Infeasible Area886

The efficiency curve method generates an in-887

feasible area at each work, which is, in fact, the888

possible area of its efficiency curve. Therefore, if889

other work is in the infeasible area, it is incompara-890

ble with the work that generates this infeasible area.891

The infeasible area of the inferior work and supe-892

rior work is generated differently, where Figure 7893

shows respectively by using LESS and InsTag as894

examples. For both superior and inferior works, the895

yellow boundary of the infeasible area is parallel to896

the baseline. For inferior work, the red boundary is897

horizontal because the SEM should perform at least898

the same on a larger data size with the same qual-899

ity. For superior work, the red boundary is the line900

between the work and Instruction-Mining because901

the efficiency curve should never penetrate each902

other (cannot penetrate the baseline here) given the903

efficiency curve assumption.904

All the works are mutually in the feasible area,905

except DEITA in the infeasible area of InsTag. To906

determine their relationship of efficiency, we sup-907

pose DEITA to be more efficient than InsTag be-908

cause not only does DEITA have a larger possibility909

of being better than InsTag according to Figure 7910

but also DEITA adopts a more advanced selection911

method based on InsTag.912

A.4 Feasibility913

We consider simplicity and transferability as two914

main aspects when evaluating a selection method’s915

feasibility. This section explains how these two916

aspects are qualitatively and reasonably evaluated917

using further refined indicators.918

A.4.1 Simplicity 919

The simplicity of a data selection method takes 920

into account (1) the number of LLMs trained in 921

selector construction, (2) the number of steps in 922

the selection algorithm given a completed selector, 923

and (3) reproducibility, which is based on the open- 924

source state of the code. 925

# of Trained LLMs. This indicator counts the 926

number of LLMs trained during the selector con- 927

struction stage. For example, AlpaGasus, InsTag, 928

and Nuggets use purely ChatGPT (commercial 929

LLM) as a scorer or tagger, so the count is 0. IFD, 930

SuperFiltering, and LESS train one warm-up model 931

(LLaMA for IFD and LESS, GPT-2 for SuperFilter- 932

ing) to obtain quality labels for candidate datasets, 933

so the count is 1. DEITA trains a complexity scorer 934

and a quality scorer from ChatGPT-evolved data 935

separately, so the count is 2. Instruction-Mining 936

fine-tunes 129 models to obtain loss scores on 129 937

data subsets to rule-fit a linear loss score predictor, 938

so the count is 129. The same count rule applies to 939

InstructionGPT-4 since these two works are almost 940

identical in method. 941

# of Algorithm Steps. The following pseudo al- 942

gorithms help count the steps in the selecting stage, 943

where the number in the bracket in the table is the 944

number of LLMs used. For example, based on the 945

Algorithm 1, AlpaGasus performs first ChatGPT 946

scoring and then ranking to get the final selected 947

subset, which consists of 2 steps with 1 LLM usage. 948

Reproducibility. ✔ means the code is open- 949

source on GitHub, ✘ means the opposite. For ex- 950

ample, AlpaGasus has been open-source by others 951

but not by the authors. Thus, we consider it to 952

be close-source. InsTag provides a demo on Mod- 953

elScope and checkpoints on HuggingFace, but no 954

codes are open-sourced. 955

A.4.2 Flexibility 956

The flexibility of a selection method considers 957

both transferability and extensibility. The former 958

corresponds to the question, "Do we need to re- 959

train a selector to maintain optimal performance 960

when changing PFM or Dataset?" while the latter 961

corresponds to "Is the selection method still func- 962

tional if a certain model is changed?" AlpaGasus’s 963

method can use another commercial model other 964

than ChatGPT freely (thus Model Free) and use 965

any dataset they want (thus Dataset Free), but it 966

heavily relies on the existence of at least one com- 967

mercial model (ChatGPT/GPT-4 as an example). 968

However, for IFD to maintain the ideal selection 969
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Methods # Trained LLMs # Algorithm Steps Rep. Simplicity Transferability Extensibility Flexibility Feasibility
(# Using LLMs) Model Free Dataset Free ChatGPT/GPT-4 Free

AlpaGasus 0 2(1) ✘ 1 ✔ ✔ ✘ 1 1
InsTag 0 3(1) ✘ 2 ✔ ✔ ✘ 1 2
Nuggets 0 4(2) ✔ 2 ✘ ✔ ✔ 2 3
SuperFiltering 1* 3(1*) ✔ 3 ✘ ✘ ✔ 4 4
IFD 1 3(1) ✔ 4 ✘ ✘ ✔ 4 5
LESS 1 4(2) ✔ 5 ✘ ✘ ✔ 4 6
DEITA 2 5(4) ✔ 6 ✔ ✘ ✘ 3 6
Instruction-Mining 129 4(0) ✘ 8 ✘ ✔ ✔ 2 7
InstructionGPT-4 30 4(1) ✔ 7 ✘ ✔ ✘ 5 8

Table 5: Feasibility rank considers both Simplicity rank and Flexibility rank. The former consists of three indicators:
(1) # Trained LLMs; (2) # Algorithm Steps (# Times Using LLMs in the algorithm) and (3) Reproducibility, while
the latter consider extensibility and transferability. The number in bracket of the "# Algorithm Steps" column
indicates the times of LLMs used in the selection algorithm. * indicates that SuperFiltering trains a GPT-2 instead
of LLaMA.

performance of the method, one must re-train a970

selector if either the PFM model or the candidate971

dataset is changed. Correspondingly, IFD doesn’t972

rely on any commercial model.973

Algorithm 1 AlpaGasus

1: Init D = Candidate Dataset, S = ChatGPT, U
= LLM Usage

2: Use S to score D (U+=1)
–> sample with score

3: Do score ranking and pick top K
4: Return Selected Subset

Algorithm 2 InsTag

1: Init D = Candidate Dataset, S = ChatGPT, U
= LLM Usage

2: Use S to tag D (U+=1)
–> sample with tags

3: Do tag normalization
–> sample with tag statistics

4: Do complexity-first diverse sampling
5: Return Selected Subset

Algorithm 3 Nuggets

1: Init D = Candidate Dataset, S = PFM, U =
LLM Usage

2: Prompt S with zero-shot D (U+=1)
–> sample with ZeroShotScore

3: Prompt S with one-shot D (U+=1)
–> sample with OneShotScore

4: OneShotScore - ZeroShotScore
–> sample with GoldenScore

5: Do score ranking and pick top K
6: Return Selected Subset

Algorithm 4 IFD & SuperFiltering

1: Init D = Candidate Dataset, S = PFM, U =
LLM Usage

2: Use D′ ∈ D to to warm up S
–> pre-experienced S′

3: Use S′ to generate IFD/Perplexity score on D
(U+=1)
–> each sample with score

4: Do score ranking and pick top K
5: Return Selected Subset

Algorithm 5 LESS
1: Init Dc = Candidate Dataset, Dt = Target

Dataset, S = PFM, U = LLM Usage
2: Use D′

c ∈ Dc to LoRA warm up S
–> LoRA Model S′

3: Use S′ to get gradients of Dc (U+=1)
–> gradient store of Dc

4: Use S′ to get gradients of Dt (U+=1)
–> gradient store of Dt

5: Do gradient-similarity-based selection
6: Return Selected Subset
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Algorithm 6 DEITA
1: Init D = Candidate Dataset, S = PFM, U =

LLM Usage
2: Use evolved datasets to train two Ss (U+=1)

–> complexity scorer model Sc and quality
scorer model Sq

3: Use Sc to score D (U+=1)
–> instruction with complexity score

4: Use Sq to score D (U+=1)
–> output with quality score

5: Multiply two scores and rank
–> ranked sample

6: Do score-first, diversity-aware selection
(U+=1)

7: Return Selected Subset

Algorithm 7 Instruction-Mining

1: Init Dc = Candidate Dataset, Dt = Training
Dataset, S = Linear Selector, U = LLM Usage

2: Use vectorized Dt to train a linear selector
–> trained S

3: Do vectorization on Dc with indicators
–> vectorized Dv

4: Use S to predict loss on Dv

–> sample with loss score
5: Do score ranking and pick top K
6: Return Selected Subset

Algorithm 8 InstructionGPT-4
1: Init Dc = Candidate Dataset, Dt = Training

Dataset, S = Transformer model, U = LLM
Usage

2: Use vectorized Dt to train a self-attention NN
(U+=1)
–> trained S

3: Do vectorization on Dc with indicators
–> vectorized Dv

4: Use S to predict loss on Dv

–> sample with loss score
5: Do score ranking and pick top K
6: Return Selected Subset
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