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Abstract

Data selection for fine-tuning Large Language
Models (LLMs) aims to select a high-quality
subset from a given candidate dataset to train
a Pending Fine-tune Model (PFM) into a
Selective-Enhanced Model (SEM). It can im-
prove the model performance and accelerate
the training process. Although a few surveys
have investigated related works of data selec-
tion, there is a lack of comprehensive compari-
son between existing methods due to their var-
ious experimental settings. To address this is-
sue, we first propose a three-stage scheme for
data selection and comprehensively review ex-
isting works according to this scheme. Then,
we design a unified comparing method with
ratio-based efficiency indicators and ranking-
based feasibility indicators to overcome the dif-
ficulty of comparing various models with di-
verse experimental settings. After an in-depth
comparative analysis, we find that the more
targeted method with data-specific and model-
specific quality labels has higher efficiency, but
the introduction of additional noise information
should be avoided when designing selection al-
gorithms. Finally, we summarize the trends in
data selection and highlight the short-term and
long-term challenges to guide future research.

1 Introduction

Large language models nowadays can generate
natural and authentic human languages and com-
plete many classic NLP challenges (Naveed et al.,
2023; Vaswani et al., 2017; Wang et al., 2022;
Zhong et al., 2022). Following the knowledge-
based pretraining, the user-oriented supervised in-
struction fine-tuning endows LLMs with the most
significant performance rise.

After the success of LIMA (Zhou et al., 2024),
data selection has gradually become a research
hotspot, which focuses on excavating efficient cri-
teria to select high-quality samples from existing
datasets to fine-tune models in downstream tasks
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Figure 1: An illustration of data selection for fine-tuning
LLMs according to selection criteria. Compared with
the Baseline Model (BM), which comes from a Pending
Fine-tune Model (PFM) fine-tuned on the full candidate
dataset, the Selective-Enhanced Model (SEM) achieves
a better performance with less training data.

such as open Q&A and customer service system, as
shown in Figure 1. With fewer but better training
samples, the selected subset can simultaneously
improve fine-tuned LLMs’ performance and accel-
erate their training. Although recent works (Wang
et al., 2024; Albalak et al., 2024) have investigated
most of the existing data selection methods, there is
a lack of in-depth analysis and comparison between
each method and a clear development trajectory
due to different settings.

To address these issues, we first propose a three-
stage data selection scheme that summarizes key
parts of the entire data selection process, includ-
ing data preprocessing, data selector construction,
and data selector evaluation. Then, we comprehen-
sively sort out the existing works with the follow-
ing three aspects: (1) the type of format-conversion
of original data after data preprocessing, (2) the
information source of quality labels and the cor-
responding calculation methods used in selector
construction, (3) and the various settings in the
evaluation process, including candidate datasets,
models, and metrics.

To directly compare the existing works, we
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Figure 2: The Three-stage Scheme of Data Selection for Fine-tuning LLM:s.

then design ratio-based efficiency indicators and
ranking-based feasibility indicators, overcoming
their different settings. Specifically, we develop a
unified automatic efficiency evaluation method to
evaluate them quantitively based on the efficiency
curve assumption. We also introduce a manual fea-
sibility evaluation framework that considers sim-
plicity and flexibility to evaluate them qualitatively.
After a comprehensive evaluation and analysis of
the existing work, we find it difficult to balance
efficiency and feasibility in existing works: (1) the
more targeted the data selection method, the higher
the efficiency, but it also comes with an increase
in complexity, descending the feasibility; (2) when
adopting more complex algorithms to improve the
efficiency of selectors, it is important to avoid in-
troducing additional information as noise to ensure
effective selection.

Finally, we not only obtain the technological
development trend of existing works from three
aspects (Candidate Dataset, Quality Measurement,
and Selected Feature) in a timeline but also give
the short-term and long-term challenges we need
to pay attention to in future research, including the
data selection for specific domain and multi-turn
conversation and how to find a unified and effective
metrics for high-quality data.

2 The Scheme of Data Selection

Data selection for fine-tuning LLMs aims to se-
lect a high-quality subset from a given candidate
dataset according to some selection criteria, as illus-
trated in Figure 1. Then, the selected subset is used
to fine-tune a vanilla pre-trained language model,
which is called a Pending Fine-tune Model (PFM),
yielding a Selective-Enhanced Model (SEM). Com-
pared with the Baseline Model (BM) fine-tuned on
the full candidate dataset, the SEM is expected to

achieve higher performance at a lower cost.

By reviewing existing popular works, we con-
cretize the data selection for fine-tuning LLMs into
a three-stage scheme as shown in Figure 2. The
scheme consists of (1) data preprocessing (Sec-
tion 3), (2) data selector construction (Section 4),
and (3) data selector evaluation (Section 5) by con-
sidering the data features, selection criteria, and
usefulness verification respectively.

In data preprocessing, many works retain the
original characteristics of the text, while others
transform the texts into human-designed features
for better explainability (Cao et al., 2023) or model-
oriented features for more direct and targeted selec-
tion (Xia et al., 2024). After that, data selector con-
struction focuses on the design of selection criteria,
which are expected to genuinely reflect the quality
of each sample. Existing data selection methods
can be first divided up by the information source of
quality labels (internal (Li et al., 2024b) or external
(Chen et al., 2024)) and then further classified by
the different ways of obtaining those quality labels
(Liu et al., 2024; Cao et al., 2023; Xia et al., 2024).
Finally, data selector evaluation verfies the useful-
ness of the data selection by the performance im-
provement of the selective-enhanced model (SEM)
over the baseline model (BM). This can be obtained
by pairwise comparing the response from the two
models directly (Cao et al., 2023) or comparing
their scores in some popular benchmarks such as
MT-Bench (Lu et al., 2023).

3 Data Preprocessing

While some works preserve the original texts
believing that they contain the most information (Li
et al., 2024b; Chen et al., 2024), others transform
raw texts into representative features. These can be
further divided into human-designed features and



model-oriented features. The former complies with
human instinct, such as the linguistic indicators
(Cao et al., 2023; Wei et al., 2023), while the latter
is directly extracted from the model itself, such as
model gradients (Xia et al., 2024).

Human-designed Features. To guide data se-
lection with respect to human preference, some
works use explainable human-designed features
with linguistic information. Instruction-Mining
(Cao et al., 2023) converts a sample into a vector
consisting of several NLP metrics, including co-
herence, naturalness, understandability, etc. Based
on this, InstructionGPT-4 (Wei et al., 2023) ! ad-
ditionally introduces the GPT4 score as one of its
indicators to better represent the quality of data by
measuring whether the generated text adheres to
the model’s language proficiency.

Model-oriented Features. For more direct and
targeted selection, other works use model-oriented
features extracted from the model as the represen-
tations of data. For example, LESS (Xia et al.,
2024) creates a datastore of effective and reusable
low-dimensional gradient features from the LLM
to directly minimize loss on a target task instead of
relying on surface form features.

4 Data Selector Construction

Data selector construction focuses on the design
of the selection criterion, considering both the in-
formation source of the quality label and the way
to obtain it, which serves as the fundamental judg-
ment of data quality. The source of quality labels
can be divided into internal and external informa-
tion. The former indicates that the data quality is
only related to the information carried by the can-
didate dataset itself (Li et al., 2024b,a), while the
latter considers the information beyond the candi-
date dataset, such as discrete quality labels from
external LLM preference (Chen et al., 2024) and
continuous quality labels from sample influence (Li
et al., 2024c).

4.1 Leveraging Internal Information

Some works attempt to mine the internal infor-
mation within the given candidate dataset to obtain
quality labels directly. The pioneering work (Li
et al., 2024b) proposes Instruction Following Diffi-
culty (IFD) as the quality label, which measures the
contribution of the instruction to the generation of

'Tt also considers CLIP score and multimodal features
since it is a multimodal model.

the corresponding output. To obtain the IFD score,
this work first trains an LLaMA-7B (the same as
PFM) with a portion of the candidate dataset to
be the pre-experienced model. The IFD score is
then determined by assessing how the likelihood
of generating a specific answer changes when the
instruction is provided versus when it is not, using
this pre-experienced model.

Inspired by the IFD work, SuperFiltering (Li
et al., 2024a) adopts a smaller model (GPT-2) as
the pre-experienced model to select data by lever-
aging the consistency in IFD and perplexity from
small pre-experienced models to large ones, en-
abling weak to strong data filtering.

4.2 Leveraging External Information

Other works rely on external information other
than the given candidate dataset to obtain the qual-
ity of samples, which can be further divided into
discrete quality labels and continuous quality labels
according to the organizational form.

4.2.1 Discrete Quality Labels from LLM
Preference

To reduce the high-cost and time-consuming hu-
man annotations of sample quality, some works
use exclusive LLMs (such as ChatGPT) or commu-
nity LLMs (such as LLaMA) to annotate quality
automatically, followed by a designed selection al-
gorithm. Such a quality label for the sample is
usually discrete and explicit, given by the external
LLM with the preference prompt.

Exclusive LLLM Preference. One representative
work is AlpaGasus (Chen et al., 2024), which ob-
tains quality labels by prompting ChatGPT to give
each sample a specific score directly and select the
samples ranked by the score, align with the what
humans would do. The prompt is a designed tem-
plate with common evaluation aspects, like helpful-
ness and accuracy, which is universal for any given
candidate dataset and PFM. Instead of using a sin-
gle score in AlpaGasus, Instag (Lu et al., 2023)
obtains fine-grained quality labels (tags of instruc-
tion’s intention) annotated by ChatGPT, measuring
the quality of samples from both diversity and com-
plexity. Then, they designed a complexity-first
diversity sampling algorithm for data selection that
takes both perspectives into account.

Community Model Preference. Furthermore,
DEITA (Liu et al., 2024) utilizes the Evol-Instruct
method (Xu et al., 2023) to construct samples of dif-
ferent complexities and qualities for training com-



Method Candidate Datasets Evaluating SEMs

Counterpart Models Evaluation Metrics

BM Others Wins-ties-losses Benchmark Scoring
AlpaGasus Alpaca LLaMA-2 7B v v Vicuna, Koala, WizardLM, InstructEval
Self-Instruct
Instruction-Mining OpenOrca & DOLLY LLaMA 7B v v MT-Bench OPENLLM, MT-Bench
InstructionGPT-4 MiniGPT-4 LLaMA-2 v X LLaVA-Bench MME, VQA, MT-Bench
IFD Alpaca & WizardLM LLaMA-2 7B v X Vicuna, Koala, WizardLM, OPENLLM
Self-Instruct, LIMA
Superfiltering Alpaca & Alpaca-GPT4 & WizardLM LLaMA-2 7B/13B v X WizardLM OPENLLM, AlpacaEval
Nuggets Alpaca LLaMA-2 7B v X - MT-Bench, AlpacaEval
LESS FLAN V2 & CoT & DOLLY & Oasst LLaMA-2-13B; Mistral ¢ X MMLU, TYDIQA, BBH
7B
InsTag WizardLM & UltraChat & ShareGPT LLaMA-1/-2 X v MT-Bench
DEITA Alpaca & DOLLY & Oasst & FLAN 2022 LLaMA-1/-2 13B; Mistral X v OPENLLM, MT-Bench

& WizardLM & UltraChat & ShareGPT 7B

Table 1: The candidate dataset, SEMs, counterpart models, and evaluation metrics used in each method. The "v"
under BM means the work uses the same BM as the SEM; under Others, the "¢" means the work uses models other
than BM, including oracle LLMs and other fine-tuned SEMs.

munity models (LLaMA) as the stronger complex-
ity scorer and quality scorer than that trained on the
original data. They evaluate the instruction com-
plexity score and response quality score of each
candidate sample separately. Then, they designed a
score-first, diversity-aware data selection algorithm
to select the samples according to the rank of the
multiplied score of the two aspects of each sample.

4.2.2 Continuous Quality Labels from Sample
Influence

Other works adopt more direct and model-
specific methods to select data by utilizing the sam-
ple influence on the model’s final performance as
the quality label, which is usually continuous and
implicit. According to the calculation methods of
sample influence, they can be further divided into
two types: model-centric (Cao et al., 2023; Wei
et al., 2023; Li et al., 2024c¢) and data-centric (Xia
et al., 2024).

Model-centric. Instruction-Mining (Cao et al.,
2023) employ the Least Squares method to con-
struct the mapping between the 4-dimensional-
indicator representations of the sample and the in-
ference loss (Wang et al., 2023; Zheng et al., 2024)
on the PFM model. Then, they utilize BLEND-
SEARCH to select the candidate data effectively,
combining global and local optimizations with
Bayesian optimization and different local search
threads. InstructionGPT-4 (Wei et al., 2023)
adopts the same methodology on a multimodal
model by adding visual-caption features. Different
from Instruction-Mining, which needs fine-tuning,
Nuggets (Li et al., 2024c) more directly utilizes the
performance difference between taking the sample
as the one-shot and the zero-shot setting of PFM
on predetermined tasks as the sample influence.

Data-centric. Unlike the above works that at-
tempt to measure the sample influence from the im-

pact on the PFM models performance, LESS (Xia
et al., 2024) uses the similarity between the gra-
dient of candidate samples and that of the data
in existing specific-task datasets to obtain sample
influence. They first use the 5% samples of the
candidate dataset to warm up the PFM model to ob-
tain the LoRA gradient of each sample, following
random projection to get the feature. Then, they
design a data selection algorithm, using the aver-
age gradient of each task on the validation set as
anchor points for similarity calculation with can-
didate samples’ features, and select the top 5% of
data points that improved all tasks.

5 Data Selector Evaluation

To evaluate the usefulness of selectors, the
method is to select a subset from a candidate dataset
through the selector and then fine-tune a model to
be the selectively enhanced model (SEM) based
on this subset to compare the performance with
the same model fine-tuned on full data (Baseline
model, BM) or other popular oracle LLMs. Table 1
shows the detailed evaluation setting, including the
choice of candidate datasets, counterpart models
used in the comparison, and evaluation metrics that
provide the performance.

Candidate Datasets. Most of the works (Li
et al., 2024a,b; Liu et al., 2024) use the popular
open-sourced datasets as candidate datasets to push
forward better performance of fine-tuned models
by selecting higher-quality samples in them. The
candidate dataset is further divided into the typical
group, including Alpaca (Taori et al., 2023), Dolly
(Conover et al., 2023), FLAN (Wei et al., 2022),
etc., and the advanced group developed from the
typical datasets to achieve higher quality, including
WizardLM (Xu et al., 2023), UltraChat (Ding et al.,
2023), etc.



Counterpart Models. To objectively evaluate
the performance of the SEM, most works choose
BM as the counterpart model for comparison. They
tend to use the popular LLaMA series (Chen et al.,
2024; Lu et al., 2023) as well as Mistral (Liu et al.,
2024; Xia et al., 2024) models as backbones of the
SEM and BM to obtain relative improvement evalu-
ation, which directly shows the improvement effect
of the selector. Other works (Xia et al., 2024; Chen
et al., 2024) compare the SEM with SOTA mod-
els (such as GPT-4, Claude, and LLaMA-Chat 7B)
to obtain absolute improvement evaluation, which
indicates how good SEM achieves.

Evaluation Metrics. Similar to the counterpart
models, the evaluation metric adopts the relative
and absolute methods to comprehensively evalu-
ate the selector. The absolute metric uses Wins-
ties-losses pairing scored by GPT-4 to indicate the
direct performance difference between the SEM
and counterpart model, while the absolute metric
uses benchmark scoring to directly score and rank
the SEM. Benchmark scoring is separated into a
traditional group examining the loss of the model’s
response on test datasets (such as MMLU and TY-
DIQA) and a group using GPT-4 to score on various
benchmarks, such as OPENLLM, MT-Bench.

6 Comparing Data Selection Methods

To spot the key factors that lead to superior se-
lectors, we attempt to compare the existing works
from the efficiency and feasibility. To address the
difficulty of comparison caused by the inconsis-
tency of the evaluation settings (e.g., candidate
dataset, PFM, and metrics) across different works,
we propose a unified comparison method with sev-
eral aligned strategies, including developing quan-
titative ratio-based efficiency indicators and quali-
tative ranking-based feasibility indicators.

6.1 Efficiency of the Selector

We first compared the efficiency of data selectors
in these works, which can measure the accuracy of
selectors in selecting the ground-truth high-quality
data. The efficiency is mostly expressed by the two
indicators in a scatter plot: (1) the performance
of SEM and (2) the absolute size of the selected
subset. To obtain and unify the efficiency of each
work for comparison, we develop two new ratio-
based indicators in the efficiency graph with the
establishment of the efficiency curve assumption.

Method SEM Same Model Other Models
Wins Bench. Wins Bench.
Rate Rate
AlpaGasus LLaMA-27B 1284 0949 -
SuperFiltering LLaMA-27B 1475 0.962 -
InsTag LLaMA 13B 1344 - 0.985
DEITA LLaMA-2 13B 1467 - 1.000
InstructionGPT-4 MiniGPT-4 1.443 - -
Nuggets LLaMA-27B 1519 -
IFD LLaMA-27B  1.747 -
LESS LLaMA-2 13B  (1.570) 0.973 - -
Instruction-Mining LLaMA-27B  (1.400) - 0212 0991

Table 2: The performance improvement under four eval-
uation settings. In the Same model, we compare SEM
and BM, while in other models, we compare SEM and
the same-size models trained based on other backbones
(such as LLaMA chat).

6.1.1 Ratio-based Efficiency Indicators

To align original indicators, we develop two
ratio-based efficiency indicators: (1) the Perfor-
mance Improvement Ratio (PIR) and (2) the Se-
lected Dataset Fraction (SDF), which eliminates
the bias rooted in the settings (e.g., evaluation met-
rics and size of dataset).

Performance Improvement Ratio. On the one
hand, we design the following steps to obtain the
PIR. As outlined in Table 2, we initially categorize
evaluation settings into four groups (for more de-
tails, see Appendix A.1). We then compute the aver-
age performance improvement ratio of the method
across various testing datasets under different set-
tings. This is done by averaging the ratios of perfor-
mance scores of the SEM to those of the counter-
part model for each group. Each ratio is calculated
by dividing the SEM’s performance score by that
of the counterpart model in the same evaluation
setting. Then, we take the most confident indicator
(wins rate in the same model) as the representative
indicator for the PIR and estimate missing values
by leveraging the consistency of performance under
different evaluations in one selector.

Selected Dataset Fraction. On the other hand,
we utilize the SDF to assess the impact of data size
uniformly. This fraction is calculated by taking the
ratio of the selected dataset size to the total size
of the original candidate dataset. It ensures that
each dataset is represented proportionally, eliminat-
ing bias caused by the varying sizes of candidate
datasets, which range from 3,439 entries (Wei et al.,
2023) to 306,044 entries (Lu et al., 2023).

6.1.2 The Efficiency Curve Assumption

As shown in Figure 3, we draw the unified effi-
ciency graph of each method, where each point is
selected based on the best performance reported in
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Figure 3: The example of the efficiency curve of three
representative works (IFD, Instruction-Mining, and Al-
paGasus). The blue dashed line indicates the baselines
on the same fraction. Other colored dashed lines indi-
cate the tangent of the curve at a specific fraction (0.05).

the work. Although a method with a higher PIR
and a smaller SDF is more efficient, it is difficult
to compare two different works directly as there is
no explicit proportional relationship between these
two indicators.

Therefore, inspired by the scaling law (Kaplan
et al., 2020; Chung et al., 2024) and LIMA (Zhou
et al., 2024), we first propose the efficiency curve
assumptions to get the unified efficiency curve:
(1) The unified efficiency curve is logarithm-like,
which is upward, concave, and approaching linear
after experiencing a rapid but short increase; (2)
The slope of the superior efficiency is always larger
than the inferior efficiency. (More information is
shown in Appendix A.2). Based on this, we first
draw the unified efficiency curve of each work and
select three representative works (IFD, Instruction-
Mining, and AlpaGasus) as an example in Figure 3.
It can result in a lossless shift of the work along
the curve, allowing for the comparison of various
works within the same selected dataset fraction.

To compare any two methods directly, we fur-
ther set up the efficiency baseline (/;,.) by using
the approximate estimation of the line connecting
Instruction-Mining and Instruction-GPT4, where
they are almost on the same efficiency curve due to
adopting a similar data selection method, as shown
in Figure 4.

After that, we can indicate the superior or infe-
rior efficiency of work (represented as the green or
red line) in comparison to the baseline by the signed
distance between them, as the distance is with a
fixed proportion to the efficiency difference. Meth-
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Figure 4: The efficiency graph among popular data
selection methods. The yellow line is the efficiency
baseline (I34s¢), and the grey area is the infeasible area.

ods that perform above the baseline are represented
by a green line, indicating superior efficiency com-
pared to the baseline, whereas those below it are
shown with a red line, indicating inferior efficiency
compared to the baseline. The larger the distance,
the greater the efficiency difference. We also ob-
serve an infeasible area, but it does not affect our
comparative work in this paper. Further details are
available in Appendix A.3.

6.2 Feasibility of the Selector

On the other hand, we expect excellent meth-
ods to be not only highly efficient but also easy
to use in practice. Therefore, we propose Simplic-
ity and Flexibility as two ranking-based feasibility
indicators, which qualitatively assess the imple-
mentation difficulty and competence in handling
new selection tasks of the existing works, as shown
in Table 3.

6.2.1 Ranking-based Feasibility Indicators

Simplicity. It evaluates the complexity of the
selection process and the reproducibility (Rep.) of
work. In terms of complexity, we focus on the
number of LLM models that need to be trained
during the selection process, as well as the overall
algorithm steps (including the number of times
using LLM inference). Regarding reproducibility
(Rep.), we manually check whether the method
released its open-source code that can be easily
adapted to other scenarios. More details can be
found in the Appendix A.4.1.

Flexibility. It mainly considers whether a data
selection method can be more easily applied to
other scenarios based on transferability and exten-



Methods # Trained LLMs # Algorithm Steps Rep. Simplicity Transferability Extensibility Flexibility Feasibility
(# Using LLMs) Model Free Dataset Free ChatGPT/GPT-4 Free
AlpaGasus 0 2(1) X 1 v v X 1 1
InsTag 0 3(1) X 2 v v X 1 2
Nuggets 0 42) v 2 X v v 2 3
SuperFiltering 1%# 3(1%) v 3 X X v 4 4
IFD 1 3(D) v 4 4 b 4 4 4 5
LESS 1 4(2) v 5 X 4 v 4 6
DEITA 2 5(4) v 6 (4 b 4 b 4 3 6
Instruction-Mining 129 4(0) b 4 8 b 4 4 v 2 7
InstructionGPT-4 30 4(1) (4 7 X v X 5 8

Table 3: The feasibility ranking of existing methods, considering the simplicity and flexibility. The former consists
of three indicators: (1) # Trained LLMs, (2) # Algorithm Steps, and (3) Reproducibility, while the latter considers
extensibility and transferability. * indicates SuperFiltering trained a GPT-2 instead of LLaMA model. More details

are shown in Appendix A.4.

sibility. Transferability mainly depends on whether
the construction of the selection method depends
on the PFM model (Model Free) and given dataset
(Dataset Free), while extensibility mainly consid-
ers whether the method relies on certain specific
necessary models (such as ChatGPT and GPT-4).
More details can be found in the Appendix A.4.2.
Finally, we provide a comprehensive feasibil-
ity rank for the existing models, taking into ac-
count both simplicity and flexibility, as shown in
Table 3. The priority of each element in the sim-
plicity is the number of trained LLMs, algorithm
steps, and whether it has reproducibility. The prior-
ity of each element in Flexibility is Model Free in
Transferability, Dataset Free in Transferability, and
ChatGPT/GPT-4 Free in Extensibility.

6.3 Overall Consideration of the Selector

It can be visually seen from Figure 4 the effi-
ciency ranking of each method. The IFD is the
best, but AlpaGasus is the worst. This is because
IFD is more targeted: The Instruction Following
Difficulty score is calculated not only based on in-
formation from within the candidate dataset but
also on the feature extracted by the pending fine-
tuned model (PFM). Moreover, its quality labels
come from the loss of the model, which is more
direct and does not introduce external information
interference. On the other hand, AlpaGasus only
utilized external ChatGPT scoring without consid-
ering the impact of specific data quality distribution,
characteristics of the PFM, and optimization objec-
tives on the performance of the model trained after
data selection.

Although the performance is not satisfactory, Al-
paGasus performs the best in terms of flexibility,
as shown in Table 3. Its high simplicity, due to not
requiring training in LLM and having fewer steps
in the data selection process, makes it easy for sub-
sequent works to reproduce its results, even though

no official publicly available source code exists. In
addition, it can be more freely transferred into other
scenarios (model-free and dataset-free) as it only
relies on ChatGPT without any other information.
Although Instruction-Mining and InstructionGPT-
4 perform better than AlpaGasus, they sacrifice
a lot of feasibility due to their heavy reliance on
fine-tuning numerous LL.Ms and complex quality
indicators from the dataset and models.

In summary, existing methods are difficult to
achieve both high performance and high feasibility
simultaneously. We observe that the more targeted
the data selection method, the better the perfor-
mance of SEM will be. For example, DEITA is
more complex than Alpaca due to training the LLM
based on PFM and considering the diversity of the
data, resulting in better performance. However,
more complex processes and algorithms may intro-
duce additional external information than optimize
the target directly, and they are also more difficult
to transfer. For example, LESS performs worse
than IFD, although it is more complex due to the
introduction of external datasets.

7 Discussions

7.1 Trends

To explore the current research trends, we have
sorted out the existing work from three aspects
(Candidate Dataset, Quality Measurement, and Se-
lected Feature) in chronological order, as shown in
Figure 5. It is worthwhile to notice that there is a
clear trend: current research is gradually evolving
toward more targeted data selection.

Specifically, the selector evolves from general to
specific in selecting the candidate dataset, where
the general one can select any dataset once con-
structed (Cao et al., 2023), and the specific one
has to adjust according to the candidate dataset
(Li et al., 2024b). The quality measurement be-
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Figure 5: The timeline of the data selection methods.

comes more straightforward to the PFM, which
is developed from the LLM score of the exter-
nal model (Chen et al., 2024) to PFM loss (Xia
et al., 2024) coming from the internal model. The
selected feature becomes more complex from us-
ing concrete indicators (Quality Score and Multi-
dimension Indicator) to abstract indicators (PFM
Loss and Model Optimize indicator). The concrete
indicator introduces semantic factors to explain
data quality, while the abstract indicator uses the in-
formation from PFM such as loss (Li et al., 2024a)
and gradient (Xia et al., 2024).

Additionally, the number of concrete indicators
used in the selector increases. DEITA and InsTag
employ more indicators than AlpaGasus, which
solely relies on quality scores from Chat-GPT. Fur-
thermore, DEITA and InsTag achieve far better
overall performance than AlpaGasus due to their
taking data diversity into consideration.

7.2 Challenges

Although there has been significant progress in
data selection for fine-tuning LLMs, we still face
both short-term and long-term challenges.

In the near future, the urgent task is to provide
solutions for specific data selection needs, such
as specific domains and multi-turns conversations.
Specific domains. Most data selection methods
focus on overall performance improvement, but the
contribution of selected data to different domains is
not the same. The existing works (Cao et al., 2023;
Wei et al., 2023; Chen et al., 2024; Lu et al., 2023;
Lietal., 2024¢) demonstrated that selected data can
bring significant improvements in writing and role-
playing but minor improvements in mathematics
and reasoning. Although LESS provides a task-
oriented data selection method, future work still
needs to consider how to dynamically select data
based on the model’s shortcomings in a specific do-
main to improve it in specific domains without af-
fecting other domains. Multi-turn conversations.

Most existing data selection methods are aimed at
single-turn conversations because their quality is
easier to measure but lacks attention to multi-turn
conversation data. Although DEITA (Liu et al.,
2024) viewed the multi-turns conversation as mul-
tiple single-turn Q&A, they did not consider the
characteristics of the multi-turns, such as global
goal and consistency in a conversation.

From a long-term research perspective, there are
two more in-depth questions that need to be ex-
plored: how to balance performance and flexibility
and how to find a unified metric for measuring
data quality. As we mentioned in the analysis, it
is difficult for current research to achieve excel-
lent performance in both efficiency and feasibility
because their improvements in efficiency tend to
use more refined and targeted methods rather than
truly more effective select paradigms. The reason
behind this is that existing work considers various
indicators to measure data quality for selection but
only starts from the external model’s observations
of the data or the impact of data selection on model
performance rather than the quality distribution of
the dataset itself. Therefore, exploring a unified
and effective metric that can uniformly measure
data quality is one of the fundamental issues in the
data selection research field.

8 Conclusion

In this paper, we conducted an extensive sur-
vey on data selection for fine-tuning large-scale
language models. We first construct a three-stage
data selection scheme for the entire process and re-
view the current research progress of data selection
based on it, including data preprocessing, data se-
lector construction, and data selector evaluation. To
address the issue of incompatibility caused by dif-
ferent experimental settings, we propose a unified
comparison method from quantitative efficiency
evaluation and qualitative feasibility evaluation by
designing ratio-based indicators and ranking-based
indicators. We find that the data selection meth-
ods achieve higher efficiency with data-specific,
model-specific, and target-specific designs, but the
complex methods could improve efficiency only if
it is designed to avoid external information noise.
Therefore, it is difficult for the existing methods
to balance efficiency and feasibility. Apart from
drawing the timeline of the existing work, we also
point out the short-term challenges and long-term
challenges for future research.



Limitation

We mainly research data selection for instruc-
tion fine-tuning LLMs instead of data rewriting
or augmentation. Although we have already com-
prehensively examined the existing works, we ac-
knowledge that there may still be some works we
neglected, especially the very recent work that was
published on the preprint platforms.

Besides, we focus on outlining the scheme of
existing work on data selection and propose an
analytical method for comparing various works
directly. Therefore, the descriptions of each work
could be limited to key points relevant to our study
rather than providing a comprehensive overview
due to limited space.
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A Appendix

A.1 Performance Improvement Ratio

Method SEM Same Model Other Models
Wins Bench. Wins Bench.
Rate Rate

AlpaGasus LLaMA-27B  1.284 0.949

SuperFiltering LLaMA-27B 1475 0.962 -

InsTag LLaMA 13B 1344 - 0.985

DEITA LLaMA-2 13B  1.467 1.000

InstructionGPT-4 MiniGPT-4 1443 - -

Nuggets LLaMA-27B 1519 -

IFD LLaMA-27B  1.747 -

LESS LLaMA-2 13B  (1.570) 0.973 -

Instruction-Mining LLaMA-27B  (1.400) - 0212 0.991

Table 4: The performance improvement under four eval-
uation settings. In the Same model, we compare SEM
and BM, while in other models, we compare SEM and
the same-size models trained based on other backbones
(such as LLaMA chat).

Since different works use different evaluation
methods, it is difficult to compare them directly.
Therefore, to uniformly evaluate their performance,
according to the compared counterpart model, we
first divide the various evaluation settings men-
tioned in all works into BM comparison with SEM
on the same PFM and comparison with other mod-
els (such as LLaMA chat). Then, we further divide
them into wins rate and benchmark improvement
(Bench.) with the different metrics. In total, we
have four evaluation settings, as shown in Table 4,
and we take the average of each type in Eq. (1) if
it has multiple evaluations in one setting.

ni:OYi

where X; and Y; are, respectively, the performance
of the SEM and the counterpart model under the
same evaluation setting ¢, and n is the total number
of the evaluation settings using the same kind of
evaluation metric (wins-ties-losses or benchmark
scoring) and counterpart model. We then choose
the wins rate under BM as the ratio indicator of PIR
not only because it directly reflects the improve-
ment effect made by the selector but also because
most of the works provide this value.

To fill the missing value, we leverage the con-
sistency of model performance: the same model
should perform similarly under different categories.
Therefore, we obtain the bridge function by linearly
regressing the other works with the wins rate under
BM as the label, then use the bridge function to
transfer the value of work under other categories
into the wins rate under BM.

)]
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Figure 6: The example of the efficiency curve of three
representative works (IFD, Instruction-Mining, and Al-
paGasue). The blue dashed line indicates the baselines
on the same fraction. Other colored dashed lines indi-
cate the tangent of the curve at a specific fraction (0.05).

A.2 Efficiency Curve Assumption

To directly compare the work with different per-
formance improvement ratios and selected data
fractions, we construct an efficiency curve assump-
tion, which consists of two parts:

(1) According to relevant theories (such as scal-
ing law) (Kaplan et al., 2020; Sun et al., 2017;
Moskovskaya et al., 2023), they suggest that the
impact of logarithmic data size on the loss is lin-
ear if the augmented dataset maintains the same
quality structure. Inspired by these theories, we ac-
count for a dataset with fixed quality, its function of
the performance improvement ratio, and selected
dataset fraction compilation To the logarithmic-
like function, which is upward, considered, and
approaching linear after experiencing a rapid but
short increase. This way, we can move it on this
performance curve to different proportions for easy
comparison (such as 0.05, where the blue dash line
is located) while maintaining the same efficiency.

(2) The efficiency of the method represented
by the above curve with a larger slope is superior
to that represented by the below one. It can be
intuitively derived from the first part with the fact
that high-quality data leads to better performance of
SEM cite zhou2024lima Therefore, if the method
is superior, which indicates its selected dataset has
good quality structure, it increases the performance
improvement must be greater than the inferior one
at every point of selected dataset fraction.

Therefore, the efficiency (Fff¥) is reflected
on the slope of the efficiency curve func-
tion (f(z; Ef f*)), where the superior efficiency
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dfs(zn)

Eff: = e, is larger than the inferior effi-
dfi(xn)

ciency (Ef f! %ﬁ") at every fraction of se-
lected subset (x,,). Although the slope of the curve
is unobtainable because the mathematical expres-
sion of the efficiency curve is inaccessible, the com-
parison efficiency (CE f f) of work is reflected in
its position by leveraging the curve assumption on
the baseline. The comparison efficiency transfers
the representation of efficiency from the slope of
the curve into the distance between the curve and
the baseline, which reflects the efficiency differ-
ence between them.

As shown in Eq. (2) and (3), for the comparison
efficiency of a certain work & (E f f*) and the base-
line (E f f?), the comparison efficiency (CE f f*)
can be calculated by the Eq (4).

Efff = / dfflf)daz @
Eff’ = / dfflf)daz 3)

CEff* =Eff*— Eff’ = fu(z) — filz) @)

where x in Eq. (4) is set as same as work k (zy)
which is the only known point of fi(x). Then, the
CEff* can be represented as Eq. (5):

CEff* = fulzx) — folzr) (5)

To make the comparison efficiency straightfor-
ward, we scalar it into the distance between the
work k and the baseline Let Dy, be the distance
between work k and the baseline, and 6 be the an-
gle between the baseline and x-axis as shown in Eq.

(©).

Dy = CEf ¥ cos(90° — 6) (6)

As a result, the CEf f* is proportional to Dy
as shown in Eq. (7).

CEff* « Dy (7

The comparison efficiency method virtually
scalars the SDF of all works into an identical value
according to the baseline, where the efficiency of
work is reflected in the difference between the ac-
tual and virtual PIR.
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Figure 7: The demonstration of infeasible area. The
green line is the efficiency curve of InsTag, where the
dashed lines indicate its potential position.

A.3 Infeasible Area

The efficiency curve method generates an in-
feasible area at each work, which is, in fact, the
possible area of its efficiency curve. Therefore, if
other work is in the infeasible area, it is incompara-
ble with the work that generates this infeasible area.
The infeasible area of the inferior work and supe-
rior work is generated differently, where Figure 7
shows respectively by using LESS and InsTag as
examples. For both superior and inferior works, the
yellow boundary of the infeasible area is parallel to
the baseline. For inferior work, the red boundary is
horizontal because the SEM should perform at least
the same on a larger data size with the same qual-
ity. For superior work, the red boundary is the line
between the work and Instruction-Mining because
the efficiency curve should never penetrate each
other (cannot penetrate the baseline here) given the
efficiency curve assumption.

All the works are mutually in the feasible area,
except DEITA in the infeasible area of InsTag. To
determine their relationship of efficiency, we sup-
pose DEITA to be more efficient than InsTag be-
cause not only does DEITA have a larger possibility
of being better than InsTag according to Figure 7
but also DEITA adopts a more advanced selection
method based on InsTag.

A.4 Feasibility

We consider simplicity and transferability as two
main aspects when evaluating a selection method’s
feasibility. This section explains how these two
aspects are qualitatively and reasonably evaluated
using further refined indicators.
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A.4.1 Simplicity

The simplicity of a data selection method takes
into account (1) the number of LLLMs trained in
selector construction, (2) the number of steps in
the selection algorithm given a completed selector,
and (3) reproducibility, which is based on the open-
source state of the code.

# of Trained LLMs. This indicator counts the
number of LLMs trained during the selector con-
struction stage. For example, AlpaGasus, InsTag,
and Nuggets use purely ChatGPT (commercial
LLM) as a scorer or tagger, so the count is 0. IFD,
SuperFiltering, and LESS train one warm-up model
(LLaMA for IFD and LESS, GPT-2 for SuperFilter-
ing) to obtain quality labels for candidate datasets,
so the count is 1. DEITA trains a complexity scorer
and a quality scorer from ChatGPT-evolved data
separately, so the count is 2. Instruction-Mining
fine-tunes 129 models to obtain loss scores on 129
data subsets to rule-fit a linear loss score predictor,
so the count is 129. The same count rule applies to
InstructionGPT-4 since these two works are almost
identical in method.

# of Algorithm Steps. The following pseudo al-
gorithms help count the steps in the selecting stage,
where the number in the bracket in the table is the
number of LLMs used. For example, based on the
Algorithm 1, AlpaGasus performs first ChatGPT
scoring and then ranking to get the final selected
subset, which consists of 2 steps with 1 LLM usage.

Reproducibility. ¢ means the code is open-
source on GitHub, X means the opposite. For ex-
ample, AlpaGasus has been open-source by others
but not by the authors. Thus, we consider it to
be close-source. InsTag provides a demo on Mod-
elScope and checkpoints on HuggingFace, but no
codes are open-sourced.

A.4.2 Flexibility

The flexibility of a selection method considers
both transferability and extensibility. The former
corresponds to the question, "Do we need to re-
train a selector to maintain optimal performance
when changing PFM or Dataset?" while the latter
corresponds to "Is the selection method still func-
tional if a certain model is changed?" AlpaGasus’s
method can use another commercial model other
than ChatGPT freely (thus Model Free) and use
any dataset they want (thus Dataset Free), but it
heavily relies on the existence of at least one com-
mercial model (ChatGPT/GPT-4 as an example).
However, for IFD to maintain the ideal selection



Methods # Trained LLMs # Algorithm Steps Rep. Simplicity Transferability Extensibility Flexibility Feasibility
(# Using LLMs) Model Free Dataset Free ChatGPT/GPT-4 Free
AlpaGasus 0 2(1) X 1 v v X 1 1
InsTag 0 3(1) X 2 v v X 1 2
Nuggets 0 42) v 2 X v v 2 3
SuperFiltering 1%# 3(1%) v 3 X X v 4 4
IFD 1 3(D) v 4 4 b 4 4 4 5
LESS 1 4(2) v 5 X 4 v 4 6
DEITA 2 5(4) v 6 (4 b 4 b 4 3 6
Instruction-Mining 129 4(0) b 4 8 b 4 4 v 2 7
InstructionGPT-4 30 4(1) (4 7 X v X 5 8

Table 5: Feasibility rank considers both Simplicity rank and Flexibility rank. The former consists of three indicators:
(1) # Trained LLMs; (2) # Algorithm Steps (# Times Using LLMs in the algorithm) and (3) Reproducibility, while
the latter consider extensibility and transferability. The number in bracket of the "# Algorithm Steps" column
indicates the times of LLMs used in the selection algorithm. * indicates that SuperFiltering trains a GPT-2 instead
of LLaMA.

performance of the method, one must re-train a i
selector if either the PFM model or the candidate ~ Algorithm 3 Nuggets
dataset is changed. Correspondingly, IFD doesn’t 1: Init D = Candidate Dataset, S = PFM, U =

rely on any commercial model. LLM Usage
2: Prompt S with zero-shot D (U+=1)
Algorithm 1 AlpaGasus —> sample with ZeroShotScore
1: Init D = Candidate Dataset, S = ChatGPT, U 3: Prompt S with one-shot D (U+=1)
= LLM Usage —> sample with OneShotScore
2: Use S to score D (U+=1) 4: OneShotScore - ZeroShotScore
—> sample with score —> sample with GoldenScore
3: Do score ranking and pick top K 5: Do score ranking and pick top K
4: Return Selected Subset 6: Return Selected Subset
Algorithm 2 InsTag Algorithm 4 IFD & SuperFiltering
1: Init D = Candidate Dataset, S = ChatGPT, U I: Init D = Candidate Dataset, S = PEM. U =
= LLM Usage

LLM Usage
. 2: Use D' € D toto warm up S
—> sample with tags . /
—> pre-experienced S

3: Dotag norm'a lization o 3: Use S’ to generate IFD/Perplexity score on D
—> sample with tag statistics (U+=1)

4: Do complexity-first diverse sampling
5: Return Selected Subset

2: Use S'totag D (U+=1)

—> each sample with score
4: Do score ranking and pick top K
5: Return Selected Subset

Algorithm 5 LESS

1: Init D, = Candidate Dataset, D; = Target
Dataset, S = PFM, U = LLM Usage
2: Use D/, € D, to LoRA warm up S
—> LoRA Model S’
3: Use S’ to get gradients of D, (U+=1)
—> gradient store of D,
4: Use S’ to get gradients of D; (U+=1)
—> gradient store of Dy
5: Do gradient-similarity-based selection
6: Return Selected Subset
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Algorithm 6 DEITA

1:

Init D = Candidate Dataset, S = PFM, U =
LLM Usage

: Use evolved datasets to train two Ss (U+=1)

—> complexity scorer model S, and quality
scorer model S,

: Use S, to score D (U+=1)

—> instruction with complexity score

: Use 9 to score D (U+=1)

—> output with quality score

: Multiply two scores and rank

—> ranked sample

: Do score-first, diversity-aware selection

U+=1)

: Return Selected Subset

Algorithm 7 Instruction-Mining

1:

Init D, = Candidate Dataset, D; = Training
Dataset, S = Linear Selector, U = LLM Usage

. Use vectorized D; to train a linear selector

—> trained S

: Do vectorization on D, with indicators

—> vectorized D,

: Use S to predict loss on D,

—> sample with loss score

5: Do score ranking and pick top K
6: Return Selected Subset

Algorithm 8 InstructionGPT-4

1:

Init D. = Candidate Dataset, D; = Training
Dataset, S = Transformer model, U = LLM
Usage

: Use vectorized D; to train a self-attention NN

U+=1)
—> trained S

: Do vectorization on D, with indicators

—> vectorized D,

: Use S to predict loss on D,

—> sample with loss score

5: Do score ranking and pick top K
6: Return Selected Subset
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