
Mixture of Experts Meets
Prompt-Based Continual Learning

Minh Le3 An Nguyen2∗ Huy Nguyen1∗ Trang Nguyen3∗

Trang Pham3∗ Linh Van Ngo2 Nhat Ho1

1 The University of Texas at Austin
2 Hanoi University of Science and Technology

3 VinAI Research

Abstract

Exploiting the power of pre-trained models, prompt-based approaches stand out
compared to other continual learning solutions in effectively preventing catastrophic
forgetting, even with very few learnable parameters and without the need for a
memory buffer. While existing prompt-based continual learning methods excel in
leveraging prompts for state-of-the-art performance, they often lack a theoretical
explanation for the effectiveness of prompting. This paper conducts a theoretical
analysis to unravel how prompts bestow such advantages in continual learning,
thus offering a new perspective on prompt design. We first show that the attention
block of pre-trained models like Vision Transformers inherently encodes a special
mixture of experts architecture, characterized by linear experts and quadratic gating
score functions. This realization drives us to provide a novel view on prefix tuning,
reframing it as the addition of new task-specific experts, thereby inspiring the
design of a novel gating mechanism termed Non-linear Residual Gates (NoRGa).
Through the incorporation of non-linear activation and residual connection, NoRGa
enhances continual learning performance while preserving parameter efficiency.
The effectiveness of NoRGa is substantiated both theoretically and empirically
across diverse benchmarks and pretraining paradigms. Our code is publicly avail-
able at https://github.com/Minhchuyentoancbn/MoE_PromptCL.

1 Introduction

Humans possess a remarkable ability to learn continuously by integrating new skills and knowledge
while retaining past experiences. However, current AI models often fail to retain this ability. Unlike
humans, they often suffer from catastrophic forgetting [28, 30, 32, 38], a phenomenon where they
struggle to retain knowledge from previous tasks while learning new ones. Inspired by human
learning, Continual Learning [2, 28, 43, 1, 12] is an ongoing field that aims to train a model across
a sequence of tasks while mitigating this challenge. Traditional continual learning methods often
rely on storing past data for fine-tuning, which can raise concerns about memory usage and privacy
[5, 39, 51]. To address these limitations, prompt-based approaches have emerged as a promising
alternative within rehearsal-free continual learning. By attaching prompts - small sets of learnable
parameters - to a frozen pre-trained model, these approaches enable efficient adaptation to new tasks
with minimal modifications to the underlying model [56, 26, 61]. The effectiveness of prompt-based
methods has been demonstrated by several recent works achieving state-of-the-art performance on
various continual learning benchmarks [49, 53, 54].

While prompt-based methods have demonstrably achieved impressive results, their emphasis largely
lies on prompt utility, leaving a gap in our theoretical comprehension of their effectiveness. This

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Minhchuyentoancbn/MoE_PromptCL

absence of a theoretical foundation hinders our ability to further refine and optimize these methods. In
this work, we offer a new perspective by focusing on prefix tuning [26] and its connection to mixture
of experts models [19, 15, 13, 11]. We demonstrate that self-attention blocks in Vision Transformers
[8] implicitly encode a special mixture of experts architecture, revealing a surprising connection
between these seemingly disparate concepts. Leveraging this connection, we propose that applying
prefix tuning within pre-trained models can be interpreted as introducing new experts. The newly
introduced experts collaborate with the pre-trained experts, facilitating efficient adaptation of the
model to new tasks.

Drawing insights from this analysis, we observe that the original prefix tuning suffers from suboptimal
sample efficiency, requiring a substantial amount of data for reasonable parameter estimation. To
address this challenge, we propose a novel gating mechanism termed Non-linear Residual Gates
(NoRGa). This architecture integrates non-linear activation functions and residual connections within
the gating score functions. Our work focuses on improving within-task prediction accuracy, a key
component of continual learning performance as identified in previous research [22, 49]. We posit
that NoRGa can enhance this aspect, which contributes to improved overall continual learning
performance while maintaining parameter efficiency. We further provide theoretical justification for
this improvement, demonstrating how NoRGa accelerates parameter estimation rates.

Our contributions can be summarized as follows: (1) We reveal a novel connection between
self-attention and a mixture of experts, providing a fresh perspective on prompt-based continual
learning approaches; (2) Leveraging this insight, we propose Non-linear Residual Gates (NoRGa),
an innovative gating mechanism that enhances continual learning performance while maintaining
parameter efficiency, and provide a theoretical justification for this improvement; (3) Extensive
experiments across various continual learning benchmarks and pre-training settings demonstrate that
our approach achieves state-of-the-art performance compared to existing methods.

Notation. For any n ∈ N, we denote [n] as the set {1, 2, . . . , n} . Next, for any set S, we let |S| stand
for its cardinality. For any vector u := (u1, u2, . . . , ud) ∈ Rd and α := (α1, α2, . . . , αd) ∈ Nd, we
let uα = uα1

1 uα2
2 . . . uαd

d , |u| := u1+u2+ . . .+ud and α! := α1!α2! . . . αd!, while ∥u∥ stands for its
2-norm value. Lastly, for any two positive sequences {an}n≥1 and {bn}n≥1, we write an = O(bn)
or an ≲ bn if an ≤ Cbn for all n ∈ N, where C > 0 is some universal constant. The notation
an = OP (bn) indicates that an/bn is stochastically bounded.

2 Background and Related Works

We first provide background and related works on continual learning. Then, we define the attention
mechanism, followed by discussions on prompt-based continual learning and mixture of experts.

Continual Learning (CL) addresses the challenge of training a model incrementally on a sequence
of T tasks, denoted by D = {D1, ...,DT }. Each task’s training data Dt = {(x(t)

i , y
(t)
i)}Nt

i=1 contains
pairs of input sample x

(t)
i ∈ X (t), and corresponding label y(t)i ∈ Y(t). Notably, the class labels are

distinct for each task, i.e., Y(t)
⋂
Y(t′) = ∅,∀t ̸= t′. Consider a neural network with a backbone

function fθ and an output layer hψ. The model predicts a label ŷ = hψ(fθ(x)) ∈ Y =
⋃T
t=1 Y(t),

where x ∈ X =
⋃T
t=1 X (t) is an unseen test sample from arbitrary tasks. Importantly, during training

on a new task, the model can only access the current data, without access to data from previous tasks.
Prior approaches often rely on storing past task samples for training on new tasks, raising concerns
regarding storage and privacy [5, 6, 39, 51, 59].

Our work focuses on the class-incremental learning (CIL) setting, where task identities are not
provided during inference, unlike in task-incremental learning (TIL) [46]. A recent theory by [22]
analyzes the CIL objective by decomposing the probability of a test sample x of the j-th class in task
t into two probabilities:

P (x ∈ X (t)
j |D) = P (x ∈ X (t)

j |x ∈ X
(t),D)P (x ∈ X (t)|D), (1)

where the first term involves within-task prediction (WTP) and the second term pertains to task-
identity inference (TII). This equation highlights that by improving either the WTP performance or
the TII, we can consequently improve the overall CIL performance, as shown in [22, 49].

Attention Mechanism. Within the Transformer architecture, the attention mechanism plays a crucial
role. One prevalent variant is scaled dot-product attention[47], formally defined as follows:

2

Definition 2.1 (Scaled Dot-Product Attention). Let K ∈ RN×dk be a key matrix with N key vectors,
and V ∈ RN×dv be a value matrix with N corresponding value vectors. Given a query matrix
Q ∈ RM×dk , Attention over (K,V) is defined as

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V (2)

where the softmax function acts on the rows of matrix QK⊤ ∈ RM×N .

Vision Transformer (ViT) [8] employs the same attention mechanism within multiple Multi-head
Self-Attention (MSA) layers, which is formally defined as follows:
Definition 2.2 (Multi-head Self-Attention Layer). Let XQ,XK ,XV denote the input query, key,
and value matrix, respectively, where XQ = XK = XV = [x1, ...,xN]⊤ ∈ RN×d, and N is the
length of the input sequence. The output is expressed as

MSA(XQ,XK ,XV) := Concat(h1, ...,hm)WO ∈ RN×d, (3)

hi := Attention(XQWQ
i ,X

KWK
i ,X

VWV
i), i ∈ [m]. (4)

where WO ∈ Rmdv×d,WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk , and WV
i ∈ Rd×dv are projection matrices,

and m is the number of heads in the MSA layer. In ViTs, they use dk = dv = d/m.

Prompt-based continual learning. Prompt-based approaches have emerged as a promising alterna-
tive within rehearsal-free continual learning [61, 52, 44]. In vision tasks, prompt-based methods often
leverage a pre-trained ViT as a feature extractor fθ, with its parameters θ typically frozen. These
methods enhance the model by introducing prompts, small sets of learnable parameters that influence
the operations of the MSA layer [53]. Prompts are strategically injected into the query, key, and value
matrices to guide the ViT in learning new tasks. We denote the prompt parameters by p ∈ RLp×d,
where Lp is the sequence length and d is the embedding dimension. Previous work [53] outlines two
main prompt-based approaches: Prompt Tuning (ProT) [25] and Prefix Tuning (PreT) [26]. While
Prompt Tuning directly concatenates the same prompt parameter p to the query, key, and value, prefix
tuning divides p into prefixes {pK ,pV } ∈ R

Lp
2 ×d and appends it to the key and value vectors:

fPre−T
prompt(p,X

Q,XK ,XV) := MSA

(
XQ,

[
pK

XK

]
,

[
pV

XV

])
= Concat(h̃1, ..., h̃m)WO (5)

Existing prompt-based methods in CL address catastrophic forgetting by creating new adaptive
prompts for each new task. During testing, the model chooses suitable prompt combinations to handle
unseen data from any encountered task [49]. L2P [54] proposes a shared prompt pool for all tasks,
utilizing a query-key mechanism for prompt selection. Instead of using the same prompt pool across
tasks, DualPrompt [53] introduces G-Prompt and E-Prompt to capture task-agnostic and task-specific
information, respectively. S-Prompt [52] focuses on learning task-specific prompts and employs a
ProT strategy similar to L2P. CODA-Prompt [42] expands the prompt pool across tasks and performs
a weighted summation of the prompt pool using attention factors. A recent work, HiDe-Prompt
[49], achieves state-of-the-art performance by introducing a new hierarchical decomposition of CIL
objectives and optimizing each component for better performance.

In this study, we focus on prefix tuning as our primary prompt-based methodology and follow the
framework presented in HiDe-Prompt [49]. During training, HiDe-Prompt co-optimizes task-specific
prompts pt and model’s output layer parameters ψ for each new task t using the WTP objective.
These prompts are stored within a prompt pool P = {p1, ...,pT }. At test time, a separate lightweight
auxiliary output layer ĥω : RD → RT , trained with the TII objective, takes the uninstructed
representation fθ(x) of a new data point x as input to infer the task identity, guiding the selection of
the most suitable prompt pk from the prompt pool P. Subsequently, the final prediction is given as
ŷ = hψ(fθ(x,pk)). For further details, please refer to Appendix D.

Mixture of experts (MoE) extends classical mixture models with an adaptive gating mechanism
[19, 21]. An MoE model consists of a group of N expert networks fi : Rd → Rdv , for all i ∈ [N],
and a gate function G : Rd → RN . Given an input h ∈ Rd, MoE computes a weighted sum of expert
outputs fi(h) based on learned score function si : Rd → R for each expert:

y :=

N∑
j=1

G(h)j · fj(h) :=
N∑
j=1

exp (sj(h))∑N
ℓ=1 exp (sℓ(h))

· fj(h), (6)

3

𝑄

𝐾

𝑉

𝑋

𝑊𝑄

𝑊𝐾

𝑊𝑉

transpose

softmax

𝑖

𝑗

expert 𝑓𝑗

score function 𝑠𝑖,𝑗

Each entry in the
attention matrix
is a score
function 𝑠𝑖,𝑗

Each row in the value matrix
is an expert 𝑓𝑗

Figure 1: An illustrative depiction of the relationship between self-attention and MoE. Each output
vector of a head in the MSA layer can be viewed as the output of a MoE model. These MoE
models share the same set of experts encoded in the value matrix. Each entry in the attention matrix
corresponds to a score function within this architecture.

whereG(h) := softmax(s1(h), . . . , sN (h)). Building on this concept, works by [10, 41] established
the MoE layer as a fundamental building block to scale up model capacity efficiently. Please refer to
Appendix C for a comprehensive discussion of related works.

3 Connection between Prefix Tuning and Mixture of Experts

We first explore the relationship between attention and mixture of experts in Section 3.1, followed by
establishing the connection between prefix tuning and the mixture of experts in Section 3.2.

3.1 Mixture of Experts Meets Attention

Following the notation established in Definition 2.2, let’s consider the l-th head within the MSA layer.
Let X =

[
x⊤
1 , . . . ,x

⊤
N

]⊤ ∈ RNd, which is the concatenation of input sequence embeddings into
a single one-dimensional vector. We define the matrix Ei ∈ Rd×Nd such that EiX := xi for all
i ∈ [N]. Furthermore, we introduce an MoE architecture consisting of a group of N expert networks
fj : RNd → Rdv , N gating functions Gi : RNd → RN with the score function for the j-th expert of
the i-th gating si,j : RNd → R, where

fj(X) :=WV
l

⊤
EjX =WV

l

⊤
xj , si,j(X) :=

X⊤E⊤
i W

Q
l W

K
l

⊤
EjX√

dv
=

x⊤
i W

Q
l W

K
l

⊤
xj√

dv

for i and j ∈ [N]. From equation (4), we can express the output of the l-th head as follows:

hl = softmax

(
XQWQ

l W
K
l

⊤
XK⊤

√
dv

)
XVWV

l = [hl,1, . . . ,hl,N]
⊤ ∈ RN×dv , (7)

hl,i =

N∑
j=1

exp

(
x⊤

i W
Q
l W

K
l

⊤
xj√

dv

)
∑N
k=1 exp

(
x⊤

i W
Q
l W

K
l

⊤xk√
dv

)WV
l

⊤
xj =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X))

fj(X), (8)

for i ∈ [N]. Expanding on equation (8), we can discern that each attention head within the MSA layer
implicitly embodies a special mixture of experts architecture. This architecture encompasses N MoE
models, each featuring its own quadratic gating function Gi. However, instead of employing N2

4

Expert 1

Expert 2

Expert 3

Expert 4

Expert 5

Attention matrix

New prefix
experts

Gating function
Value matrix

Value
vectors

Prefix
vectors

+

𝜎

Residual
connection

Non-linear
activation

score function
for pretrained
experts

score function
of original prefix
tuning

score function of
NoRGa

Figure 2: Left: An illustrative depiction of prefix tuning as the introduction of new experts into
pre-trained MoE models. Right: Visualization of NoRGa implementation, integrating non-linear
activation and residual connections into the prefix tuning attention matrix.

separate expert networks for each model, this architecture utilizes N shared linear expert networks
fj for j ∈ [N], significantly reducing the number of parameters. Notably, each expert network and
its corresponding gating function process the entire input sequence directly, rather than individual
embedding xi as in traditional MoE layers [41]. This connection between self-attention and mixture
of experts is depicted in Figure 1. In the subsequent section, we explore how prompt-based techniques
can be viewed through this lens.

3.2 Prefix Tuning via the Perspective of Mixture of Experts

Building on the connection between self-attention and mixture of experts, we propose that applying
prefix tuning can be interpreted as the introduction of new experts to customize the pre-trained model
for a specific task, as illustrated in Figure 2. Specifically, similar to Section 3.1, we consider the l-th
head within the MSA layer. We denote pK =

[
pK1 , . . . ,p

K
L

]⊤ ∈ RL×d, pV =
[
pV1 , . . . ,p

V
L

]⊤ ∈
RL×d, where L =

Lp

2 . We define new prefix experts fN+j : RNd → Rdv along with their
corresponding new score functions si,N+j : RNd → R as follows:

fN+j(X) :=WV
l

⊤
pVj , si,N+j(X) :=

X⊤E⊤
i W

Q
l W

K
l

⊤
pKj√

dv
=

x⊤
i W

Q
l W

K
l

⊤
pKj√

dv
(9)

for i ∈ [N] and j ∈ [L]. Then from equation (5), the output of the l-th head can be expressed as:

h̃l = Attention

(
XQWQ

l ,

[
pK

XK

]
WK
l ,

[
pV

XV

]
WV
l

)
=
[
h̃l,1, . . . , h̃l,N

]⊤
∈ RN×dv , (10)

h̃l,i =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X)) +

∑L
k′=1 exp(si,N+k′(X))

fj(X)

+

L∑
j′=1

exp(si,N+j′(X))∑N
k=1 exp(si,k(X)) +

∑L
k′=1 exp(si,N+k′(X))

fN+j′(X) (11)

It’s worth noting that WQ
l , WK

l , and WV
l remain fixed, with only pK and pV being learnable. By

examining equation (8) and equation (11), we can interpret each head in a multi-head self-attention
layer within a pre-trained model as a mixture of experts architecture with pre-trained experts fj
and gating score functions si,j for i and j ∈ [N]. Prefix tuning extends this MoE by introducing L
additional prefix experts fN+j′ defined by prefix vectors pVj′ and linear score functions si,N+j′ for
i ∈ [N] and j′ ∈ [L]. These new experts collaborate with the pre-trained ones within the MoE model,
facilitating the model’s adaptation to downstream tasks.

We argue that our introduction of a novel connection between self-attention, prefix tuning, and MoE
offers a fresh perspective on the design of previous prompt-based continual learning methods. In the
context of continual learning, the pre-trained experts serve as a knowledge base, while prefix tuning
augments it with task-specific knowledge encoded in new experts. Moreover, we draw a parallel
between the pre-trained experts and the G(eneral)-Prompt utilized in DualPrompt, which captures

5

task-agnostic information [53]. Both are shared across tasks, making them useful for prediction,
especially when task identification is incorrect. Notably, the new experts achieve their efficiency
through simple linear gating functions and independence from the input, unlike the pre-trained experts.
For simplicity, we call the MoE model (11) as linear gating prefix MoE.

Statistical suboptimality. The connection between prefix tuning and the MoE within the linear
gating prefix MoE model (11) allows us to theoretically explore the statistical behavior of the prefix
tuning. In Appendix A, by interpreting the linear gating prefix MoE as a regression problem with
sample size n, we demonstrate that the convergence rate for estimating the model parameters, e.g.,
prompts, can be as slow as O(1/ logτ (n)) where τ > 0 is some constant. This suggests that a huge
amount of data is required to achieve reasonable parameter estimation in the linear gating prefix MoE
model, which can be discouraging in practice. To address this statistical limitation, the next section
introduces a novel non-linear residual gating score function to replace the linear gating function.

4 Non-linear Residual Gate Meets Prefix Tuning
As discussed earlier, prefix tuning introduces additional experts within the MoE framework, resulting
in the linear gating prefix MoE model. However, as outlined in Appendix A, this approach suffers
from suboptimal sample efficiency for parameter estimation. To overcome this and enhance overall
CIL performance, we propose an innovative approach that significantly improves sample efficiency
while promoting WTP performance in Section 4.1 and provide theoretical explanations in Section 4.2.

4.1 NoRGa: Non-linear Residual Gate

We propose a simple yet effective modification to the linear gating prefix MoE model by incorporating
non-linear activation and residual connection within the score functions of prefix experts as follows:

ŝi,N+j(X) :=
X⊤E⊤

i W
Q
l W

K
l

⊤
pKj√

dv
+ α · σ

(
τ ·

X⊤E⊤
i W

Q
l W

K
l

⊤
pKj√

dv

)
= si,N+j(X) + α · σ(τ · si,N+j(X)), i ∈ [N], j ∈ [L], (12)

where α, τ ∈ R are learnable scalar factors, and σ is a non-linear activation function. The new score
function in equation (12) consists of a linear and a non-linear component. We call the new prefix
MoE model with score functions (12) as non-linear residual gating prefix MoE.

The use of a non-linear activation function here is motivated by the algebraic independence condition
in Definition 4.2 to theoretically guarantee the optimal sample efficiency of expert and parameter
estimations (cf. Theorem 4.3). It’s worth noting that removing the linear component si,N+j(X)
in the score function (12) could potentially lead to the vanishing gradient problem during training.
To mitigate this challenge, we incorporate a residual connection [14] into the formulation. Our
modification introduces minimal additional parameters (α and τ) compared to the original score
function, ensuring parameter efficiency. This is particularly crucial in continual learning scenarios
where the number of parameters grows with each new task. For implementation, we define Hl =

WQ
l W

K
l

⊤. From equation (5), the attention matrix of the l-th head can then be written as:

Al =
XQHl[p

K⊤
, XK⊤

]√
dv

=
[XQHlp

K⊤
, XQHlX

K⊤
]√

dv
= [Aprompt

l , Apretrain
l]. (13)

Here, Aprompt
l denotes the attention score matrix for the prompts, and Apretrain

l represents the
attention score matrix for the pre-trained experts. To implement NoRGa, we can directly modify the
final attention matrix as follows:

Âl = [Âprompt
l , Apretrain

l], (14)

Âprompt
l = Aprompt

l + α · σ(τ ·Aprompt
l). (15)

The implementation of NoRGa is illustrated in Figure 2. Despite its simplicity, our modification
can significantly enhance sample efficiency and promote more reasonable parameter estimation,
as demonstrated in our theoretical analysis in Section 4.2. Within the HiDe-Prompt framework,
task-specific prompt parameters are trained using the WTP objective for each new task. Consequently,
our modification leads to better parameter estimation, which directly contributes to improved WTP
performance, ultimately improving overall continual learning efficacy. Importantly, NoRGa maintains
the same parameter count as HiDe-Prompt, which is crucial in CL because of the memory constraint.
Here, we evaluated σ with tanh, sigmoid, and GELU, finding tanh to perform well in most cases.

6

4.2 Theoretical Explanation for Non-linear Residual Gating Prefix MoE

Similar to the setting in Appendix A, we prove that estimating parameters in the non-linear residual
gating prefix MoE model (12) is statistically efficient in terms of the number of data. To provide
a fair comparison to the linear gating prefix MoE, we focus only on the first head and its first row,
namely, l = 1 and i = 1 in equation (12). Then, we proceed to provide a theoretical justification
of our claim by viewing this row as an output of a regression setting. In particular, we assume that
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ RNd × R are i.i.d. samples generated from model:

Yi = gG∗(Xi) + εi, i = 1, 2, . . . , n, (16)
where ε1, . . . , εn are independent Gaussian noise variables such that E[εi|Xi] = 0 and Var(εi|Xi) =
ν2 for all 1 ≤ i ≤ n. Additionally, we assume that X1,X2, . . . ,Xn are i.i.d. samples from some
probability distribution µ. The regression function gG∗(·) in equation (16) then takes the form of a
non-linear residual gating prefix MoE model with N pre-trained experts and L unknown experts,

gG∗(X) :=

N∑
j=1

exp(X⊤B0
jX + c0j)

T (X)
· h(X, η0j)

+

L∑
j′=1

exp((β∗
1j′)

⊤X + ασ(τ(β∗
1j′)

⊤X) + β∗
0j′)

T (X)
· h(X, η∗j′), (17)

where T (X) :=
∑N
k=1 exp(X

⊤B0
kX + c0k) +

∑L
k′=1 exp((β

∗
1k′)

⊤X + ασ(τ(β∗
1k′)

⊤X) + β∗
0k′),

G∗ :=
∑L
j′=1 exp(β

∗
0j′)δ(β∗

1j′ ,η
∗
j′)

denotes a mixing measure, i.e., a weighted sum of Dirac measures

δ, associated with unknown parameters (β∗
1j′ , β

∗
0j′ , η

∗
j′)

L
j′=1 in RNd×R×Rq . Here, the matrix B0

j is

equivalent to (E⊤
1 W

Q
1 W

K
1

⊤
Ej/
√
dv) in the score function s1,j(X), and the vector β∗

1j′ corresponds

to the vector (E⊤
1 W

Q
1 W

K
1

⊤
pKj′ /
√
dv) in ŝ1,N+j′(X). Furthermore, the experts h(X, η0j) and

h(X, η∗j′) represent fj(X) and fN+j′(X), respectively. In our formulation, for the generality of
the ensuing theory, we consider general parametric forms of the experts h(X, η0j) and h(X, η∗j′),
i.e., we do not only constrain these expert functions to be the forms of the simple experts in the
aforementioned model. Similar to the setting in Appendix A, B0

j , c0j , and the expert parameters η0j
are known. Our goal is to estimate the unknown prompt-related parameters β∗

1j′ , β
∗
0j′ , and η∗j′ .

Least squares estimation. We will use the least squares method [45] to estimate the unknown
parameters (β∗

0j′ , β
∗
1j′ , η

∗
j′)

L
j′=1 or, equivalently, the ground-truth mixing measure G∗. In particular,

we take into account the estimator

Ĝn := argmin
G∈GL′ (Θ)

n∑
i=1

(
Yi − gG(Xi)

)2
, (18)

where we denote GL′(Θ) := {G =
∑ℓ
i=1 exp(β0i)δ(β1i,ηi) : 1 ≤ ℓ ≤ L′, (β0i, β1i, ηi) ∈ Θ} as the

set of all mixing measures with at most L′ atoms. In practice, since the true number of experts L is
typically unknown, we assume that the number of fitted experts L′ is sufficiently large, i.e., L′ > L.

To begin with, we explore the convergence behavior of the regression estimator gĜn
(·) to the true

regression function gG∗(·) under the L2(µ)-norm in the following theorem:

Theorem 4.1 (Regression Estimation Rate). Equipped with a least squares estimator Ĝn given in
equation (18), the model estimation gĜn

(·) converges to the true model gG∗(·) at the following rate:

∥gĜn
− gG∗∥L2(µ) = OP (

√
log(n)/n). (19)

Proof of Theorem 4.1 is in Appendix B.1. The bound (19) implies that the rate for estimating the
regression function gG∗(·) is of order OP (

√
log(n)/n), which is parametric on the sample size n.

More importantly, it also indicates that if there exists a loss function among parameters L such that
∥gĜn

− gG∗∥L2(µ) ≳ L(Ĝn, G∗), then we would obtain the bound L(Ĝn, G∗) = OP (
√
log(n)/n),

which leads to the desired parameter and expert estimation rates.

We now turn our attention to the parameter and expert estimation problems. To understand how the
non-linear residual gating affects these problems, we analyze the properties of the expert h(·, η) and
the activation function σ(·) to determine which formulations will achieve favorable performance.

7

Definition 4.2 (Algebraic independence). We say that an expert function h(·, η) and an activation
function σ(·) are algebraically independent if they are twice differentiable w.r.t their parameters,
and if for any k ≥ 1 and pair-wise distinct parameters (β11, η1), . . . , (β1k, ηk), the following set of
functions in X is linearly independent for almost every X ∈ RNd:{

Xν
[
(1 + σ′(β⊤

1jX))|ν| + 1{|ν|=2}σ
′′(β⊤

1jX)
]
· ∂

|γ|h

∂ηγ
(X, ηj) : j ∈ [k∗],

ν ∈ NNd, γ ∈ Nq : 0 ≤ |ν|+ |γ| ≤ 2
}
.

Intuitively, the algebraic independence condition ensures that there will be no interactions among
parameters of the expert function h(·, η) and the activation function σ(·). Technically, a key step in
our argument is to decompose the regression discrepancy gĜn

(X)− gG∗(X) into a combination of
linearly independent terms by applying Taylor expansions to the product of the softmax’s numerator
and the expert function, i.e., exp(β⊤

1 X+ασ(τβ⊤
1 X))h(X, η). Thus, the above condition guarantees

that all the derivative terms in the Taylor expansion are linearly independent. To exemplify the
algebraic independence condition, we consider the following simple examples of the expert functions
h(·, η) and the activation σ(·) that are algebraically independent.

Example. When the expert function h(·, η) is formulated as a neural network h(X, (a, b)) =
φ(a⊤X + b) with the activation φ(·) ∈ {ReLU(·),GELU(·), z 7→ zp}, where (a, b) ∈ RNd × R,
and the activation function σ(·) is one among the functions sigmoid(·), tanh(·),GELU(·), then they
satisfy the algebraic independence condition in Definition 4.2.

Finally, we establish the rates for estimating parameters and experts in the non-linear residual gating
prefix MoE model in Theorem 4.3. Prior to presenting the theorem statement, let us design a loss
function among parameters based on a notion of Voronoi cells [27], which is a commonly employed
approach for the convergence analysis of expert estimation in MoE models [36, 34, 35, 33], yet
tailored to the setting of this paper. In particular, the Voronoi loss used for our analysis is defined as

L1(G,G∗) :=
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(β0i)
[
∥∆β1ij′∥2 + ∥∆ηij′∥2

]

+
∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(β0i)
[
∥∆β1ij′∥+ ∥∆ηij′∥

]
+

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(β0i)− exp(β∗
0j′)
∣∣∣, (20)

where we denote ∆β1ij′ := β1i−β∗
1j′ and ∆ηij′ := ηi−η∗j′ . Above, Vj′ ≡ Vj′(G), for j′ ∈ [L], is a

Voronoi cell associated with the mixing measureG generated by the true component ω∗
j := (β∗

1j′ , η
∗
j′),

which is defined as follows:

Vj′ := {i ∈ {1, 2, . . . , L′} : ∥ωi − ω∗
j′∥ ≤ ∥ωi − ω∗

ℓ ∥, ∀ℓ ̸= j′}, (21)

where we denote ωi := (β1i, ηi) as a component of G. Note that, the cardinality of each Voronoi
cell Vj′ indicates the number of components ωi of G approximating the true component ω∗

j′ of G∗.
Additionally, since L1(G,G∗) = 0 if and only if G ≡ G∗, it follows that when L1(G,G∗) becomes
sufficiently small, the differences ∆β1ij′ and ∆ηij′ are also small. This observation indicates that,
although L1(G,G∗) is a proper metric as it is not symmetric, it is an appropriate loss function for
measuring the discrepancy between the least square estimator Ĝn and the true mixing measures G∗.

Theorem 4.3. Assume that the expert function h(x, η) and the activation σ(·) are algebraically
independent, then we achieve the following lower bound for any G ∈ GL′(Θ):

∥gG − gG∗∥L2(µ) ≳ L1(G,G∗),

which together with Theorem 4.1 indicates that L1(Ĝn, G∗) = ÕP (n−1/2).

Proof of Theorem 4.3 is in Appendix B.2. A few comments on Theorem 4.3 are in order: (i) From
the bound L1(Ĝn, G∗) = ÕP (n−1/2), we deduce that the estimation rates for the over-specified
parameters β∗

1j′ , η
∗
1j′ , where j′ ∈ [L] : |Vj′ | > 1, are all of order OP (4

√
log(n)/n). Since the expert

h(·, η) is twice differentiable over a bounded domain, it is also a Lipschitz function. Thus, denote

8

Table 1: Overall performance comparison on Split CIFAR-100 and Split ImageNet-R. We present
Final Average Accuracy (FA), Cumulative Average Accuracy (CA), and Average Forgetting Measure
(FM) of all methods under different pre-trained models.

PTM Method Split CIFAR-100 Split Imagenet-R

FA (↑) CA(↑) FM(↓) FA (↑) CA(↑) FM(↓)

Sup-21K

L2P 83.06± 0.17 88.27± 0.71 5.61± 0.32 67.53± 0.44 71.98± 0.52 5.84± 0.38
DualPrompt 87.30± 0.27 91.23± 0.65 3.87± 0.43 70.93± 0.08 75.67± 0.52 5.47± 0.19
S-Prompt 87.57± 0.42 91.38± 0.69 3.63± 0.41 69.88± 0.51 74.25± 0.55 4.73± 0.47
CODA-Prompt 86.94± 0.63 91.57± 0.75 4.04± 0.18 70.03± 0.47 74.26± 0.24 5.17± 0.22
HiDe-Prompt 92.61± 0.28 94.03± 0.01 1.50± 0.28 75.06± 0.12 76.60± 0.01 4.09± 0.13
NoRGa (Ours) 94.48± 0.13 95.83± 0.37 1.44± 0.27 75.40± 0.39 79.52± 0.07 4.59± 0.07

iBOT-21K

L2P 79.13± 1.25 85.13± 0.05 7.50± 1.21 61.31± 0.50 68.81± 0.52 10.72± 0.40
DualPrompt 78.84± 0.47 86.16± 0.02 8.84± 0.67 58.69± 0.61 66.61± 0.67 11.75± 0.92
S-Prompt 79.14± 0.65 85.85± 0.17 8.23± 1.15 57.96± 1.10 66.42± 0.71 11.27± 0.72
CODA-Prompt 80.83± 0.27 87.02± 0.20 7.50± 0.25 61.22± 0.35 66.76± 0.37 9.66± 0.20
HiDe-Prompt 93.02± 0.15 94.56± 0.05 1.26± 0.13 70.83± 0.17 73.23± 0.08 6.77± 0.23
NoRGa (Ours) 94.76± 0.15 95.86± 0.31 1.34± 0.14 73.06± 0.26 77.46± 0.42 6.88± 0.49

iBOT-1K

L2P 75.51± 0.88 82.53± 1.10 6.80± 1.70 59.43± 0.28 66.83± 0.92 11.33± 1.25
DualPrompt 76.21± 1.00 83.54± 1.23 9.89± 1.81 60.41± 0.76 66.87± 0.41 9.21± 0.43
S-Prompt 76.60± 0.61 82.89± 0.89 8.60± 1.36 59.56± 0.60 66.60± 0.13 8.83± 0.81
CODA-Prompt 79.11± 1.02 86.21± 0.49 7.69± 1.57 66.56± 0.68 73.14± 0.57 7.22± 0.38
HiDe-Prompt 93.48± 0.11 95.02± 0.01 1.63± 0.10 71.33± 0.21 73.62± 0.13 7.11± 0.02
NoRGa (Ours) 94.01± 0.04 95.11± 0.35 1.61± 0.30 72.77± 0.20 76.55± 0.46 7.10± 0.39

DINO-1K

L2P 72.23± 0.35 79.71± 1.26 8.37± 2.30 57.21± 0.69 64.09± 0.74 7.47± 0.96
DualPrompt 73.95± 0.49 81.85± 0.59 9.32± 1.42 57.98± 0.71 65.39± 0.27 9.32± 0.69
S-Prompt 74.39± 0.17 81.60± 0.74 9.07± 1.13 57.55± 0.72 64.90± 0.13 8.73± 0.56
CODA-Prompt 77.50± 0.64 84.81± 0.30 8.10± 0.01 63.15± 0.39 69.73± 0.25 6.86± 0.11
HiDe-Prompt 92.51± 0.11 94.25± 0.01 1.67± 0.20 68.11± 0.18 71.70± 0.01 6.45± 0.58
NoRGa (Ours) 93.43± 0.33 94.65± 0.62 1.65± 0.25 71.77± 0.44 75.76± 0.49 6.42± 0.68

MoCo-1K

L2P 77.24± 0.69 83.73± 0.70 5.57± 0.75 54.13± 0.67 62.09± 0.76 4.88± 0.42
DualPrompt 77.56± 0.63 84.37± 0.51 6.54± 0.50 54.45± 0.30 62.92± 0.41 5.34± 0.41
S-Prompt 77.20± 0.39 84.47± 0.37 7.00± 0.62 53.94± 0.32 62.42± 0.51 5.16± 0.48
CODA-Prompt 77.83± 0.34 84.97± 0.23 12.60± 0.02 55.75± 0.26 65.49± 0.36 10.46± 0.04
HiDe-Prompt 91.57± 0.20 93.70± 0.01 1.51± 0.17 63.77± 0.49 68.26± 0.01 9.37± 0.71
NoRGa (Ours) 93.52± 0.06 94.94± 0.29 1.63± 0.13 64.52± 0.16 70.21± 0.64 9.06± 0.19

Ĝn :=
∑Ln

i=1 exp(β̂0i)δ(β̂n
1i,η̂

n
i), we achieve that

sup
X
|h(X, η̂ni)− h(X, η∗j′)| ≲ ∥η̂ni − η∗j′∥ ≲ OP (

4
√

log(n)/n). (22)

The above bound indicates that if the experts h(·, η∗j) are fitted by at least two other experts, then their
estimation rates are also of order OP (4

√
log(n)/n); (ii) For exactly-specified parameters β∗

1j′ , η
∗
j′ ,

where j′ ∈ [L] : |Vj′ | = 1, the rates for estimating them are faster than those of their over-specified
counterparts, standing at order OP (

√
log(n)/n). By arguing similarly to equation (22), the experts

h(·, η∗j′) also enjoy the faster estimation rate of order OP (
√
log(n)/n), which is parametric on the

sample size n; (iii) It follows from the above rates that we only need a polynomial number of data
(roughly ϵ−4 where ϵ is the desired approximation error) to estimate the parameters and experts
of the non-linear residual gating prefix MoE. By contrast, when using the linear gating, as being
demonstrated in Appendix A, it requires an exponential number of data. This highlights the statistical
benefits of using the non-linear residual gating MoE model over the linear gating prefix MoE model.

5 Experiments
Datasets. We evaluate various continual learning methods on widely used CIL benchmarks, including
Split CIFAR-100 [23] and Split ImageNet-R [23], consistent with prior work [49]. We further explore
the model’s performance on fine-grained classification tasks with Split CUB-200 [48] and large
inter-task differences with 5-Datasets [9]. Please refer to Appendix E for more details.

Evaluation Metrics. We utilize several established metrics described in [50]. These include: final
average accuracy (FA), which represents the average accuracy after the final task; cumulative average
accuracy (CA), which refers to the historical average accuracy; and average forgetting measure (FM).
We give more emphasis to FA and CA due to their comprehensiveness, as noted in [42].

Baselines. We compare our approach with several representative prompt-based approaches including
L2P [54], DualPrompt [53], CODA-Prompt [42], S-Prompt [52], and HiDe-Prompt [49]. Additionally,

9

Table 2: Final average accuracy (FA) on Split CUB-200 and 5-Datasets.

Method Split CUB-200 5-Datasets

Sup-21K iBOT-21K Sup-21K iBOT-21K

L2P 75.46 46.60 81.84 82.25
DualPrompt 77.56 45.93 77.91 68.03
S-Prompt 77.13 44.22 86.06 77.20
CODA-Prompt 74.34 47.79 64.18 51.65
HiDe-Prompt 86.56 78.23 93.83 94.88
NoRGa (Ours) 90.90 80.69 94.16 94.92

Table 3: Ablation study of different activation functions, measured by final average accuracy (FA).

Method Split CIFAR-100 Split CUB-200

Sup-21K iBOT-21K Sup-21K iBOT-21K

HiDe-Prompt 92.61 93.02 86.56 78.23
NoRGa tanh 94.36 94.76 90.87 80.69
NoRGa sigmoid 94.48 94.69 90.90 80.18
NoRGa GELU 94.05 94.63 90.74 80.54

we evaluate against state-of-the-art pre-trained model-based continual learning methods, including
ADAM [60] and RanPAC [29]. We further extend our evaluation by applying HiDe-Prompt with
parameter-efficient fine-tuning techniques like LoRA [17] and Adapters [16]. In line with [49],
we utilize the checkpoints of ViT that use supervised pre-training of Imagenet-21K (denoted as
Sup-21K), and some self-supervised pre-training such as iBOT-21K, iBOT-1K [62], DINO-1K [4],
and MoCo-1K [7]. For implementation details, see Appendix E.

Main Results. In Table 1, we evaluate several continual learning methods on Split CIFAR-100 and
Split ImageNet-R using diverse pre-trained models. NoRGa achieves state-of-the-art FA and CA
across all datasets and models, consistently outperforming HiDe-Prompt. On Sup-21K, NoRGa
demonstrates impressive FA results on both CIFAR-100 and ImageNet-R. It also maintains the highest
CA, with significant margins of 1.80% and 2.92% on CIFAR-100 and ImageNet-R, respectively,
compared to HiDe-Prompt. These results highlight NoRGa’s strong ability to retain knowledge
and exhibit minimal forgetting, as evidenced by the low FM values on both datasets. NoRGa also
surpasses HiDe-Prompt on self-supervised models, with FA improvements up to 1.95% and 3.66%.
We further investigate two scenarios: fine-grained classification tasks and large inter-task differences
through experiments on Split CUB-200 and 5-Datasets, respectively, as shown in Table 2. NoRGa
maintains its lead, achieving FA gaps of 4.34% and 2.46% on Split CUB-200, and the highest
FA on 5-Datasets. While gains in some metrics may be modest, NoRGa consistently outperforms
HiDe-Prompt in either FA or CA, underscoring its robustness. For example, on Split ImageNet-R
with Sup-21K weights, the FA improvement is small (75.06% vs. 75.40%), but the CA gains are
substantial (76.60% vs. 79.52%), demonstrating the method’s effectiveness and robustness.

Ablation Study. To assess the impact of non-linear activation functions on NoRGa’s performance, we
evaluated the model’s behavior with different choices for the activation function σ, including tanh,
sigmoid, and GELU in Table 3. The results show that NoRGa achieves state-of-the-art performance
on both Split CIFAR-100 and Split CUB-200 datasets with all three activation functions. These
findings suggest that NoRGa exhibits robustness to the choice of non-linear activation within a
reasonable range. While all functions perform well, the tanh activation function demonstrates
generally strong performance across scenarios. Further results are provided in the Appendix.

6 Conclusion
This paper presents an initial exploration of self-attention and prefix-tuning through the lens of
mixture of experts. We find that applying prefix tuning can be viewed as introducing new prefix
experts to adapt the pre-trained model. However, limitations in sample efficiency exist. We address
this by proposing NoRGa, a novel gating mechanism to enhance continual learning performance.
Our results demonstrate NoRGa’s effectiveness both theoretically and empirically. While the current
implementation of the expert network prioritizes simplicity, future research directions could involve
investigating more intricate architectures. Furthermore, the choice of activation functions in our work
requires fine-tuning, which opens avenues for future research on adaptively learning activation.

10

References
[1] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning with a network of

experts. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3366–3375, 2017.

[2] E. Belouadah, A. Popescu, and I. Kanellos. A comprehensive study of class incremental learning
algorithms for visual tasks. Neural Networks, 135:38–54, 2021.

[3] Y. Bulatov. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Available:
http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html, 2, 2011.

[4] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. In Proceedings of the International Conference
on Computer Vision (ICCV), 2021.

[5] H. Cha, J. Lee, and J. Shin. Co2l: Contrastive continual learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 9516–9525, October
2021.

[6] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. S. Torr, and
M. Ranzato. On tiny episodic memories in continual learning, 2019.

[7] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers,
2021.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. ICLR, 2021.

[9] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach. Adversarial continual learning.
arXiv preprint arXiv:2003.09553, 2020.

[10] D. Eigen, M. Ranzato, and I. Sutskever. Learning factored representations in a deep mixture of
experts. In ICLR Workshops, 2014.

[11] Z. Fan, R. Sarkar, Z. Jiang, T. Chen, K. Zou, Y. Cheng, C. Hao, Z. Wang, et al. M3vit: Mixture-
of-experts vision transformer for efficient multi-task learning with model-accelerator co-design.
Advances in Neural Information Processing Systems, 35:28441–28457, 2022.

[12] N. L. Hai, T. Nguyen, L. N. Van, T. H. Nguyen, and K. Than. Continual variational dropout:
a view of auxiliary local variables in continual learning. Machine Learning, 113(1):281–323,
2024.

[13] H. Hazimeh, Z. Zhao, A. Chowdhery, M. Sathiamoorthy, Y. Chen, R. Mazumder, L. Hong,
and E. Chi. Dselect-k: Differentiable selection in the mixture of experts with applications to
multi-task learning. Advances in Neural Information Processing Systems, 34:29335–29347,
2021.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.
[15] N. Ho, C.-Y. Yang, and M. I. Jordan. Convergence rates for gaussian mixtures of experts.

Journal of Machine Learning Research, 23(323):1–81, 2022.
[16] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-

tariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In International conference
on machine learning, pages 2790–2799. PMLR, 2019.

[17] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[18] Q. Huang, Z. An, N. Zhuang, M. Tao, C. Zhang, Y. Jin, K. Xu, L. Chen, S. Huang, and
Y. Feng. Harder tasks need more experts: Dynamic routing in moe models. arXiv preprint
arXiv:2403.07652, 2024.

[19] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3, 1991.

[20] P. Janson, W. Zhang, R. Aljundi, and M. Elhoseiny. A simple baseline that questions the use of
pretrained-models in continual learning. arXiv preprint arXiv:2210.04428, 2022.

[21] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

11

[22] G. Kim, C. Xiao, T. Konishi, Z. Ke, and B. Liu. A theoretical study on solving continual
learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 5065–5079. Curran
Associates, Inc., 2022.

[23] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[24] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[25] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3045–3059. Association for Computational Linguistics, Nov. 2021.

[26] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

[27] T. Manole and N. Ho. Refined convergence rates for maximum likelihood estimation under finite
mixture models. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 14979–15006. PMLR, 17–23
Jul 2022.

[28] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[29] M. D. McDonnell, D. Gong, A. Parvaneh, E. Abbasnejad, and A. van den Hengel. Ranpac: Ran-
dom projections and pre-trained models for continual learning. Advances in Neural Information
Processing Systems, 36, 2024.

[30] S. V. Mehta, D. Patil, S. Chandar, and E. Strubell. An empirical investigation of the role of
pre-training in lifelong learning. Journal of Machine Learning Research, 24(214):1–50, 2023.

[31] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in nat-
ural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011.

[32] C. V. Nguyen, A. Achille, M. Lam, T. Hassner, V. Mahadevan, and S. Soatto. Toward under-
standing catastrophic forgetting in continual learning, 2019.

[33] H. Nguyen, P. Akbarian, and N. Ho. Is temperature sample efficient for softmax Gaussian
mixture of experts? In Proceedings of the ICML, 2024.

[34] H. Nguyen, P. Akbarian, F. Yan, and N. Ho. Statistical perspective of top-k sparse softmax
gating mixture of experts. In International Conference on Learning Representations, 2024.

[35] H. Nguyen, N. Ho, and A. Rinaldo. On least square estimation in softmax gating mixture of
experts. In Proceedings of the ICML, 2024.

[36] H. Nguyen, T. Nguyen, and N. Ho. Demystifying softmax gating function in Gaussian mixture
of experts. In Advances in Neural Information Processing Systems, 2023.

[37] A. Panos, Y. Kobe, D. O. Reino, R. Aljundi, and R. E. Turner. First session adaptation: A
strong replay-free baseline for class-incremental learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 18820–18830, 2023.

[38] H. Phan, A. P. Tuan, S. Nguyen, N. V. Linh, and K. Than. Reducing catastrophic forgetting in
neural networks via gaussian mixture approximation. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 106–117. Springer, 2022.

[39] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[40] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor. Imagenet-21k pretraining for the
masses, 2021.

[41] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer. In International Conference
on Learning Representations (ICLR), 2017.

12

[42] J. S. Smith, L. Karlinsky, V. Gutta, P. Cascante-Bonilla, D. Kim, A. Arbelle, R. Panda, R. Feris,
and Z. Kira. Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free
continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11909–11919, June 2023.

[43] Q. Tran, H. Phan, K. Than, D. Phung, and T. Le. Continual learning with optimal transport
based mixture model. arXiv preprint arXiv:2211.16780, 2022.

[44] Q. Tran, L. Tran, K. Than, T. Tran, D. Phung, and T. Le. Koppa: Improving prompt-based
continual learning with key-query orthogonal projection and prototype-based one-versus-all.
arXiv preprint arXiv:2311.15414, 2023.

[45] S. van de Geer. Empirical processes in M-estimation. Cambridge University Press, 2000.
[46] G. M. van de Ven, T. Tuytelaars, and A. S. Tolias. Three types of incremental learning. Nature

Machine Intelligence, 4:1185–1197, 2022.
[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and

I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[48] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. California Institute of Technology, 2011.

[49] L. Wang, J. Xie, X. Zhang, M. Huang, H. Su, and J. Zhu. Hierarchical decomposition of
prompt-based continual learning: Rethinking obscured sub-optimality. Advances in Neural
Information Processing Systems, 2023.

[50] L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of continual learning: Theory,
method and application, 2024.

[51] L. Wang, X. Zhang, K. Yang, L. Yu, C. Li, H. Lanqing, S. Zhang, Z. Li, Y. Zhong, and J. Zhu.
Memory replay with data compression for continual learning. In International Conference on
Learning Representations, 2021.

[52] Y. Wang, Z. Huang, and X. Hong. S-prompts learning with pre-trained transformers: An occam’s
razor for domain incremental learning. In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

[53] Z. Wang, Z. Zhang, S. Ebrahimi, R. Sun, H. Zhang, C.-Y. Lee, X. Ren, G. Su, V. Perot, J. Dy,
et al. Dualprompt: Complementary prompting for rehearsal-free continual learning. European
Conference on Computer Vision, 2022.

[54] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su, V. Perot, J. Dy, and T. Pfister.
Learning to prompt for continual learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 139–149, 2022.

[55] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

[56] Y. Xin, S. Luo, H. Zhou, J. Du, X. Liu, Y. Fan, Q. Li, and Y. Du. Parameter-efficient fine-tuning
for pre-trained vision models: A survey, 2024.

[57] B. Yu. Assouad, Fano, and Le Cam. Festschrift for Lucien Le Cam, pages 423–435, 1997.
[58] J. Yu, Y. Zhuge, L. Zhang, P. Hu, D. Wang, H. Lu, and Y. He. Boosting continual learning

of vision-language models via mixture-of-experts adapters. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 23219–23230, 2024.

[59] G. Zhang, L. Wang, G. Kang, L. Chen, and Y. Wei. Slca: Slow learner with classifier alignment
for continual learning on a pre-trained model. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023.

[60] D.-W. Zhou, Z.-W. Cai, H.-J. Ye, D.-C. Zhan, and Z. Liu. Revisiting class-incremental learning
with pre-trained models: Generalizability and adaptivity are all you need. International Journal
of Computer Vision, pages 1–21, 2024.

[61] D.-W. Zhou, H.-L. Sun, J. Ning, H.-J. Ye, and D.-C. Zhan. Continual learning with pre-trained
models: A survey, 2024.

[62] J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. Yuille, and T. Kong. ibot: Image bert pre-training
with online tokenizer. International Conference on Learning Representations (ICLR), 2022.

13

Supplement to “Mixture of Experts Meets Prompt-Based
Continual Learning”

In this supplementary material, we first analyze the statistical suboptimality of the Linear Gating
Prefix MoE Model (11) in Appendix A. Appendix B provides proofs for the theoretical results
presented in Section 4.2. In Appendix C, we discuss related works on mixture of experts. Appendix D
outlines the training algorithm for HiDe-Prompt while Appendix E presents the experimental setup
and details. Further, Appendix F presents further experiments on the task-incremental learning
setting to empirically demonstrate the benefits of using our proposed Non-linear Residual Gating
Prefix MoE (12) over the Linear Gating Prefix MoE Model. Appendix G and Appendix H compare
NoRGa with other parameter-efficient fine-tuning techniques and pre-trained model-based methods.
In Appendix I, we present the efficiency tests, while Appendix J explores the impact of learnable α
and τ . Finally, Appendix K compares the training times between NoRGa and HiDe-Prompt.

A Statistical Suboptimality of Linear Gating Prefix MoE Model

In this appendix, we demonstrate that estimating parameters and experts in the linear gating prefix
MoE model (11) can be statistically inefficient in terms of the number of data. To simplify our
findings, we particularly focus on the first head, namely, l = 1 in equation (11), and the first row of
this head, namely, i = 1 in equation (11). Then, we proceed to provide a theoretical justification of
our claim for the suboptimality of the linear gating prefix MoE by viewing this row as an output of
the regression setting. In particular, we assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ RNd × R
is an i.i.d. sample generated from the following model:

Yi = fG∗(Xi) + εi, i = 1, 2, . . . , n, (23)

where ε1, . . . , εn are independent Gaussian noise variables such that E[εi|Xi] = 0 and Var(εi|Xi) =
ν2 for all 1 ≤ i ≤ n. Additionally, we assume that X1,X2, . . . ,Xn are i.i.d. samples from some
probability distribution µ. Motivated by linear gating prefix MoE model (11), the regression function
fG∗(·) in equation (23) admits the form of the linear gating prefix MoE model with pre-trained N
experts and L unknown experts, namely

fG∗(X) : =

N∑
j=1

exp(X⊤B0
jX + c0j)∑N

k=1 exp(X
⊤B0

kX + c0k) +
∑L
k′=1 exp((β

∗
1k′)

⊤X + β∗
0k′)
· h(X, η0j)

+

L∑
j′=1

exp((β∗
1j′)

⊤X + β∗
0j′)∑N

k=1 exp(X
⊤B0

kX + c0k) +
∑L
k′=1 exp((β

∗
1k′)

⊤X + β∗
0k′)
· h(X, η∗j′), (24)

where G∗ :=
∑L
j′=1 exp(β

∗
0j′)δ(β∗

1j′ ,η
∗
j′)

denotes a mixing measure, i.e., a weighted sum of Dirac

measures δ, associated with unknown parameters (β∗
1j′ , β

∗
0j′ , η

∗
j′)

L
j′=1 in RNd × R× Rq. Here, the

matrix B0
j plays the role of the matrix E⊤

1 W
Q
1 W

K
1

⊤
Ej√

dv
in the score function s1,j(X). Furthermore, the

vector β∗
1j′ corresponds to the vector

E⊤
i W

Q
l W

K
l

⊤
pK
j′√

dv
in the score function s1,N+j′(X). Furthermore,

the experts h(X, η0j) correspond to the role of fj(X) and h(X, η∗j′) correspond to the role of
fN+j′(X). In our formulation, we consider general parametric forms of the experts h(X, η0j) and
h(X, η∗j′), i.e., we do not only constrain these expert functions to be the forms of the simple experts
in the linear gating prefix MoE model.

Similar to the linear gating prefix MoE model (11), the matrices B0
j , the biases c0j , and the expert

parameters η0j are known. Our aim is to estimate the unknown gating parameters β∗
1j′ , β

∗
0j′ , and η∗j′

that correspond to the prompts.

Least squares estimation: We will use the least squares method [45] to estimate the unknown
parameters (β∗

0j′ , β
∗
1j′ , η

∗
j′)

L
j′=1 or, equivalently, the ground-truth mixing measure G∗. In particular,

we take into account the estimator

G̃n := argmin
G∈GL′ (Θ)

n∑
i=1

(
Yi − fG(Xi)

)2
, (25)

14

where we denote GL′(Θ) := {G =
∑ℓ
i=1 exp(β0i)δ(β1i,ηi) : 1 ≤ ℓ ≤ L′, (β0i, β1i, ηi) ∈ Θ} as the

set of all mixing measures with at most L′ atoms. In practice, since the true number of true experts L
is typically unknown, we assume that the number of fitted experts L′ is sufficiently large, i.e. L′ > L.

Let us recall that our main objective in this appendix is to show that using the linear gating in the
prefix MoE model is not sample efficient. To illustrate that point, we consider a simple scenario when
the expert function takes the form h(X, (a, b)) = (a⊤X + b)p, for some p ∈ N. Additionally, we
also design a new Voronoi loss function as below to facilitate our arguments.

L2,r(G,G∗) :=

L∑
j=1

∣∣∣ ∑
i∈Vj

exp(β0i)− exp(β∗
0j)
∣∣∣+ L∑

j=1

∑
i∈Vj

exp(β0i)
[
∥∆β1ij∥r + ∥∆aij∥r + |∆bij |r

]
,

(26)

where we denote ∆β1ij′ := β1i − β∗
1j′ and ∆ηij′ := ηi − η∗j′ .

Now, we are ready to state the result of parameter estimation under the linear gating prefix MoE
model in the following theorem:

Theorem A.1. Assume that the experts take the form h(X, (a, b)) = (a⊤X + b)p, for some p ∈ N,
then we achieve the following minimax lower bound of estimating G∗:

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [L2,r(Gn, G)] ≳ n−1/2,

for any r ≥ 1, where EfG indicates the expectation taken w.r.t the product measure with fnG.

There are two main implications of the result in Theorem A.1:

(i) The rates for estimating parameters β∗
1j , a

∗
j and b∗j are slower than OP (n−1/2r), for any r ≥ 1.

This means that they are slower than any polynomial rates, and could be of order OP (1/ log(n)).
Using the same reasoning described after equation (22), we have

sup
x
|φ((âni)⊤X + b̂ni)− φ((a∗j)⊤X + b∗j)| ≲ ·∥âni − a∗j∥+ |̂bni − b∗j |. (27)

As a consequence, the rates for estimating experts φ((a∗j)
⊤X + b∗j) are no better than those for

estimating the parameters a∗j and b∗j , and could also be as slow as OP (1/ log(n)).

(ii) The above rates imply that we need an exponential number of data (roughly exp(1/ϵτ) where ϵ is
the desired approximation error) to estimate the parameters and experts of the linear gating prefix
MoE. This fact demonstrates that using the linear gating in the prefix MoE model is not sample
efficient from the perspective of the expert estimation problem.

Proof of Theorem A.1. Prior to presenting the main proof of Proposition A.1, let us introduce the
following key result:

Lemma A.2. If the following holds for any r ≥ 1:

lim
ε→0

inf
G∈GL′ (Θ):L2,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

L2,r(G,G∗)
= 0, (28)

then we obtain that

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [L2,r(Gn, G)] ≳ n−1/2. (29)

Proof of Lemma A.2. Indeed, from the Gaussian assumption on the noise variables ϵi, we obtain
that Yi|Xi ∼ N (fG∗(Xi), σ

2) for all i ∈ [n]. Next, the assumption in equation (28) indicates for
sufficiently small ε > 0 and a fixed constant C1 > 0 which we will choose later, we can find a mixing
measure G′

∗ ∈ GL′(Θ) such that L2,r(G
′
∗, G∗) = 2ε and ∥fG′

∗
− fG∗∥L2(µ) ≤ C1ε. From Le Cam’s

15

lemma [57], as the Voronoi loss function L2,r satisfies the weak triangle inequality, we obtain that

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [L2,r(Gn, G)]

≳
L2,r(G

′
∗, G∗)

8
exp(−nEX∼µ[KL(N (fG′

∗
(X), σ2),N (fG∗(X), σ2))])

≳ ε · exp(−n∥fG′
∗
− fG∗∥2L2(µ)),

≳ ε · exp(−C1nε
2), (30)

where the second inequality is due to the fact that

KL(N (fG′
∗
(X), σ2),N (fG∗(X), σ2)) =

(fG′
∗
(X)− fG∗(X))2

2σ2
.

By choosing ε = n−1/2, we obtain that ε · exp(−C1nε
2) = n−1/2 exp(−C1). As a consequence,

we achieve the desired minimax lower bound in equation (29).

Main proof. We need to prove that the following limit holds true for any r ≥ 1:

lim
ε→0

inf
G∈GL′ (Θ):L2,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

L2,r(G,G∗)
= 0. (31)

For that purpose, it suffices to build a sequence of mixing measures (Gn)n≥1 such that both
L2,r(Gn, G∗)→ 0 and

∥fGn
− fG∗∥L2(µ)

L2,r(Gn, G∗)
→ 0,

as n→∞. To this end, we consider the sequence Gn =
∑L+1
i=1 exp(βn0i)δ(βn

1i,a
n
i ,b

n
i)

, where

• exp(βn01) = exp(βn02) =
1
2 exp(β

∗
01) +

1
2nr+1 and exp(βn0i) = exp(βn0(i−1)) for any 3 ≤

i ≤ L+ 1;

• βn11 = βn12 = β∗
11 and βn1i = βn1(i−1) for any 3 ≤ i ≤ L+ 1;

• an1 = an2 = a∗1 and ani = ani−1 for any 3 ≤ i ≤ L+ 1;

• bn1 = b∗1 +
1
n , bn2 = b∗1 − 1

n and bni = b∗i−1 for any 3 ≤ i ≤ L+ 1.

As a result, the loss function L2,r(Gn, G∗) is reduced to

L2,r(Gn, G∗) =
1

nr+1
+
[
exp(β∗

01) +
1

nr+1

]
· 1

nr
= O(n−r). (32)

which indicates indicates that L2,r(Gn, G∗)→ 0 as n→∞.

Now, we prove that ∥fGn
− fG∗∥L2(µ)/L2,r(Gn, G∗) → 0. For that purpose, let us consider the

quantity

Qn(X) :=
[N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

L∑
j′=1

exp((β∗
1j′)

⊤X + β∗
0j′)
]
· [gGn

(X)− gG∗(X)].

For simplicity, let us consider the polynomial degree p = 1 as the arguments for other values of p can
be adapted accordingly. Recall from equation (46) that Qn(X) can be decomposed as follows:

Qn(X) =

L∑
j=1

∑
i∈Aj

exp(βn0i)
[
exp((βn1i)

⊤X)((ani)
⊤X + bni)− exp((β∗

1j)
⊤X)((a∗j)

⊤X + b∗j)
]

−
L∑
j=1

∑
i∈Aj

exp(βn0i)
[
exp((βn1i)

⊤X)gGn
(X)− exp((β∗

1j)
⊤X)gGn

(X)
]

+

L∑
j=1

(∑
i∈Aj

exp(βn0i)− exp(β∗
0j)
)[

exp((β∗
1j)

⊤X)((a∗j)
⊤X + b∗j)− exp((β∗

1j)
⊤X)gGn

(X)
]

:= An(X)−Bn(X) + Cn(X).

16

From the definitions of βn1i, a
n
i and bni , we can rewrite An(X) as follows:

An(X) =

2∑
i=1

1

2

[
exp(β∗

01) +
1

nr+1

]
exp((β∗

11)
⊤X)[((ani)

⊤X + bni)− ((a∗1)
⊤X + b∗1)]

=
1

2

[
exp(β∗

01) +
1

nr+1

]
exp((β∗

11)
⊤X)[(bn1 − b∗1) + (bn2 − b∗1)]

= 0.

Additionally, it can also be checked that Bn(X) = 0, and Cn(X) = O(n−(r+1)). Therefore, it
follows that Cn(X)/L2,r(Gn, G∗)→ 0. As a consequence, Qn(X)/L2,r(Gn, G∗)→ 0 as n→∞
for almost every X .

Since the term
[∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑L
j′=1 exp((β

∗
1j′)

⊤X + β∗
0j′)
]

is bounded, we
deduce that [fGn(X)− fG∗(X)]/L2,r → 0 for almost every X . This result indicates that

∥fGn
− fG∗∥L2(µ)/L2,r(Gn, G∗)→ 0

as n→∞. Hence, the proof of claim (31) is completed.

B Proof of Theoretical Results
In this appendix, we present rigorous proofs for the theoretical results introduced in Section 4, namely
Theorem 4.1 and Theorem 4.3, in that order.

B.1 Proof of Theorem 4.1

For the proof of the theorem, we first introduce some notation. Firstly, we denote by FL′(Θ) the set of
conditional densities of all mixing measures in GL′(Θ), that is, FL′(Θ) := {gG(X) : G ∈ GL′(Θ)}.
Additionally, for each δ > 0, the L2(µ) ball centered around the conditional density gG∗(Y |X) and
intersected with the set FL′(Θ) is defined as

FL′(Θ, δ) :=
{
g ∈ FL′(Θ) : ∥g − gG∗∥L2(µ) ≤ δ

}
.

In order to measure the size of the above set, Geer et. al. [45] suggest using the following quantity:

JB(δ,FL′(Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B (t,FL′(Θ, t), ∥ · ∥L2(µ)) dt ∨ δ, (33)

where HB(t,FL′(Θ, t), ∥ · ∥L2(µ)) stands for the bracketing entropy [45] of FL′(Θ, u) under the
L2(µ)-norm, and t ∨ δ := max{t, δ}. By using the similar proof argument of Theorem 7.4 and
Theorem 9.2 in [45] with notations being adapted to this work, we obtain the following lemma:
Lemma B.1. Take Ψ(δ) ≥ JB(δ,FL′(Θ, δ)) that satisfies Ψ(δ)/δ2 is a non-increasing function of
δ. Then, for some universal constant c and for some sequence (δn) such that

√
nδ2n ≥ cΨ(δn), we

achieve that

P
(
∥gĜn

− gG∗∥L2(µ) > δ
)
≤ c exp

(
−nδ

2

c2

)
,

for all δ ≥ δn.

We now demonstrate that when the expert functions are Lipschitz continuous, the following bound
holds:

HB(ε,FL′(Θ), ∥ · ∥L2(µ)) ≲ log(1/ε), (34)

for any 0 < ε ≤ 1/2. Indeed, for any function gG ∈ FL′(Θ), since the expert functions are
bounded, we obtain that h(X, η) ≤ M for all X where M is a bounded constant of the expert
functions. Let τ ≤ ε and {π1, . . . , πN̄} be the ζ-cover under the L∞ norm of the set FL′(Θ) where
N̄ := N(ζ,FL′(Θ), ∥ · ∥L∞) is the η-covering number of the metric space (FL′(Θ), ∥ · ∥L∞). Then,
we construct the brackets of the form [Li(X), Ui(X)] for all i ∈ [N̄] as follows:

Li(x) := max{πi(X)− ζ, 0},
Ui(x) := max{πi(X) + ζ,M}.

17

From the above construction, we can validate that FL′(Θ) ⊂ ∪N̄i=1[Li(X), Ui(X)] and Ui(X) −
Li(X) ≤ min{2ζ,M}. Therefore, it follows that

∥Ui − Li∥2L2(µ)
=

∫
(Ui − Li)2dµ(X) ≤

∫
4ζ2dµ(X) = 4ζ2,

which implies that ∥Ui − Li∥L2(µ) ≤ 2ζ. By definition of the bracketing entropy, we deduce that

HB(2ζ,FL′(Θ), ∥ · ∥L2(µ)) ≤ logN = logN(ζ,FL′(Θ), ∥ · ∥L∞). (35)

Therefore, we need to provide an upper bound for the covering number N̄ . In particular, we denote
∆ := {(β1, β0) ∈ RNd×Nd × RNd × R : (β1, β0, η) ∈ Θ} and Ω := {η ∈ Rq : (β1, β0, η) ∈ Θ}.
Since Θ is a compact set, ∆ and Ω are also compact. Therefore, we can find ζ-covers ∆ζ and Ωζ for
∆ and Ω, respectively. We can check that

|∆ζ | ≤ OP (τ−(Nd+1)L′
), |Ωζ | ≲ OP (τ−qL

′
).

For each mixing measure G =
∑L′

i=1 exp(β0i)δ(β1i,ηi) ∈ GL′(Θ), we consider other two mixing
measures:

Ǧ :=

L′∑
i=1

exp(β0i)δ(β1i,ηi)
, G :=

L′∑
i=1

exp(β0i)δ(β1i,ηi)
.

Here, ηi ∈ Ωζ such that ηi is the closest to ηi in that set, while (β1i, β0i) ∈ ∆ζ is the closest to
(β1i, β0i) in that set. From the above formulations, we get that

∥gG − gǦ∥L∞

= sup
X∈X

L′∑
j=1

exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j) · |h(X, ηj)− h(X, ηj)|∑N
i′=1 exp(X

⊤B0
i′X + c0i′) +

∑L′

j′=1 exp(β
⊤
1j′X + ασ(τβ⊤

1j′x) + β0j′)

≤
L′∑
j=1

sup
X∈X

exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j) · |h(X, ηj)− h(X, ηj)|∑N
i′=1 exp(X

⊤B0
i′X + c0i′) +

∑L′

j′=1 exp(β
⊤
1j′X + ασ(τβ⊤

1j′X) + β0j′)

≤
L′∑
j=1

sup
X∈X

|h(X, ηj)− h(X, ηj)|

≤
L′∑
j=1

sup
X∈X

[L1(X) · ∥ηj − ηj∥]

≲ L′ζ ≲ ζ.

Here, the second inequality occurs as the softmax weight is bounded by one, and the third inequality
follows from the fact that the expert h(X, ·) is a Lipschitz function with some Lipschitz constant
L1(X) > 0. Next, let us denote

D : =

N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

L′∑
j′=1

exp(β⊤
1j′X + ασ(τβ⊤

1j′X) + β0j′),

D : =

N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

L′∑
j′=1

exp(β
⊤
1j′X + ασ(τβ

⊤
1j′X) + β0j′).

18

Then, we have

∥gǦ − gG∥L∞

= sup
X∈X

∣∣∣∣∣ 1D(
N∑
i=1

exp(X⊤B0
iX + c0i)h(X, η0i) +

L′∑
j=1

exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j)h(X, ηj)
)

− 1

D

(N∑
i=1

exp(X⊤B0
iX + c0i)h(X, η0i) +

L′∑
j=1

exp(β
⊤
1jX + ασ(τβ

⊤
1jX) + β0j)h(X, ηj)

)∣∣∣∣∣
≤
∣∣∣ 1
D
− 1

D

∣∣∣ · N∑
i=1

sup
X∈X

∣∣∣ exp(X⊤B0
iX + c0i)h(X, η0i)

∣∣∣
+

L′∑
j=1

sup
X∈X

∣∣∣∣∣exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j)

D
−

exp(β
⊤
1jX + ασ(τβ

⊤
1jX) + β0j)

D

∣∣∣∣∣ · |h(X, ηj)|.

(36)

Now, we will bound two terms in the above right hand side. Firstly, since both the input space X and
the parameter space Θ are bounded, we have that

1

D
− 1

D
≲ |D −D|

≤
L′∑
j′=1

∣∣∣ exp(β⊤
1j′X + ασ(τβ⊤

1j′X) + β0j′)− exp(β
⊤
1j′X + ασ(τβ

⊤
1j′X) + β0j′)

∣∣∣
≲

L′∑
j′=1

∣∣∣(β1j − β1j)
⊤X + α[σ(τβ⊤

1j′X)− σ(τβ⊤
1j′X)] + (β0j − β0j)

∣∣∣
≤

L′∑
j′=1

|(β1j − β1j)
⊤X|+ |α| · |σ(τβ⊤

1j′X)− σ(τβ⊤
1j′X)|+ |β0j − β0j |

≲
L′∑
j=1

[
∥β1j − β1j∥ · ∥X∥+ |ατ | · ∥β1j − β1j∥ · ∥X∥+ |β0j − β0j |

]
≤ L′(B + |ατ |B + 1)ζ ≲ ζ.

As a result, we deduce that∣∣∣ 1
D
− 1

D

∣∣∣ · N∑
i=1

sup
X∈X

∣∣∣ exp(X⊤B0
iX + c0i)h(X, η0i)

∣∣∣ ≲ ζ. (37)

Regarding the second term, note that

exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j)

D
−

exp(β
⊤
1jX + ασ(τβ

⊤
1jX) + β0j)

D

= exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j)
(1

D
− 1

D

)
+

1

D

[
exp(β⊤

1jX + ασ(τβ⊤
1jX) + β0j)− exp(exp(β

⊤
1jX + ασ(τβ

⊤
1jX) + β0j))

]
.

Since both the input space and the parameter space are bounded, we have

exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j)
(1

D
− 1

D

)
≲

1

D
− 1

D
≲ ζ,

1

D

[
exp(β⊤

1jX + ασ(τβ⊤
1jX) + β0j)− exp(β

⊤
1jX + ασ(τβ

⊤
1jX) + β0j)

≲ (B + |ατ |B + 1)ζ ≲ ζ,

19

which yields that

L′∑
j=1

sup
X∈X

∣∣∣∣∣exp(β⊤
1jX + ασ(τβ⊤

1jX) + β0j)

D
−

exp(β
⊤
1jX + ασ(τβ

⊤
1jX) + β0j)

D

∣∣∣∣∣ · |h(X, ηj)|

≲ ζ

L′∑
j=1

sup
X∈X

|h(X, ηj)| ≲ ζ. (38)

From equations (36), (37) and (38), we obtain that ∥gǦ − gG∥L∞ ≲ ζ. According to the triangle
inequality, we have

∥gG − gG∥L∞ ≤ ∥gG − gǦ∥L∞ + ∥gǦ − gG∥L∞ ≲ ζ.

By definition of the covering number, we deduce that

N(ζ,FL′(Θ), ∥ · ∥L∞) ≤ |∆ζ | × |Ωζ | ≤ O(n−(Nd+1)L′
)×O(n−qL

′
) ≤ O(n−(Nd+1+q)L′

).
(39)

Combine equations (35) and (39), we achieve that

HB(2ζ,FL′(Θ), ∥ · ∥L2(µ)) ≲ log(1/τ).

Let ζ = ε/2, then we obtain that

HB(ε,FL′(Θ), ∥ · ∥L2(µ)) ≲ log(1/ε).

As a result, it follows that

JB(δ,FL′(Θ, δ)) =

∫ δ

δ2/213
H

1/2
B (t,FL′(Θ, t), ∥ · ∥L2(µ)) dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ. (40)

Let Ψ(δ) = δ · [log(1/δ)]1/2, then Ψ(δ)/δ2 is a non-increasing function of δ. Furthermore, equa-
tion (40) indicates that Ψ(δ) ≥ JB(δ,FL′(Θ, δ)). In addition, let δn =

√
log(n)/n, then we get

that
√
nδ2n ≥ cΨ(δn) for some universal constant c. Finally, by applying Lemma B.1, we achieve the

desired conclusion of the theorem.

B.2 Proof of Theorem 4.3

Our goal is also to demonstrate the following inequality:

inf
G∈GL′ (Θ)

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0. (41)

For that purpose, we divide the proof of the above inequality into local and global parts in the sequel.

Local part: In this part, we demonstrate that

lim
ε→0

inf
G∈GL′ (Θ):L1(G,G∗)≤ε

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0. (42)

Assume by contrary that the above claim is not true, then there exists a sequence of mixing measures
Gn =

∑L
i=1 exp(β

n
0i)δ(βn

1i,η
n
i) in GL′(Θ) such that L1n := L1(Gn, G∗)→ 0 and

∥gGn − gG∗∥L2(µ)/L1n → 0, (43)

as n→∞. Let us denote by Vnj := Vj(Gn) a Voronoi cell of Gn generated by the j-th components
of G∗. Since our arguments are asymptotic, we may assume that those Voronoi cells do not depend
on the sample size, i.e., Vj = Vnj . Thus, the Voronoi loss L1n can be represented as

L1n :=
∑

j:|Vj |>1

∑
i∈Vj

exp(βn0i)
[
∥∆βn1ij∥2 + ∥∆ηnij∥2

]

+
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)
[
∥∆βn1ij∥+ ∥∆ηnij∥

]
+

k∗∑
j=1

∣∣∣ ∑
i∈Vj

exp(βn1i)− exp(β∗
1j)
∣∣∣, (44)

20

where we denote ∆βn1ij := βn1i − β∗
1j and ∆ηnij := ηni − η∗j .

Since L1n → 0, we get that (βn1i, η
n
i)→ (β∗

1j , η
∗
j) and

∑
i∈Vj

exp(βn0i)→ exp(β∗
0j) as n→∞ for

any i ∈ Vj and j ∈ [L]. Now, we divide the proof of the local part into three steps as follows:

Step 1 - Taylor expansion. In this step, we would like to decompose the quantity

Qn(X) :=
[N∑
i′=1

exp(X⊤A0
i′X + c0i′) +

L∑
j′=1

exp((β∗
1j′)

⊤X + ασ(τ(β∗
1j′)

⊤X) + β∗
0j′)
]

× [gGn
(X)− gG∗(X)] (45)

into a combination of linearly independent elements using Taylor expansion. In particular, the quantity
Qn(X) is decomposed as follows:

L∑
j=1

∑
i∈Vj

exp(βn0i)
[
exp((βn1i)

⊤X + ασ(τ(βn1i)
⊤X))h(X; ηni)− exp((β∗

1j)
⊤X + ασ(τ(β∗

1j)
⊤X))h(X; η∗j)

]

−
L∑
j=1

∑
i∈Vj

exp(βn0i)
[
exp((βn1i)

⊤X + ασ(τ(βn1i)
⊤X))− exp((β∗

1j)
⊤X + ασ(τ(β∗

1j)
⊤X))

]
gGn(X)

+

L∑
j=1

(∑
i∈Vj

exp(βn0i)− exp(β∗
0j)
)
exp((β∗

1j)
⊤X + ασ(τ(β∗

1j)
⊤X))

[
h(X; η∗j)− gGn(X)

]
:= An(X)−Bn(X) + Cn(X). (46)

Decomposition of An(X). Let us denote E(X;β1) := exp(β⊤
1 X + ασ(τβ⊤

1 X)), then An can be
separated into two terms as follows:

An(X) :=
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)h(x; η

n
i)− E(X;β∗

1j)h(X; η∗j)
]

+
∑

j:|Vj |>1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)h(X; ηni)− E(X;β∗

1j)h(X; η∗j)
]

:= An,1(X) +An,2(X).

By means of the first-order Taylor expansion, we have

An,1(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)

α!

∑
|α|=1

(∆βn1ij)
α1(∆ηnij)

α2
∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j) +Rn,1(X)

=
∑

j:|Vj |=1

∑
|α1|+|α2|=1

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j) +Rn,1(X),

where Rn,1(X) is a Taylor remainder such that Rn,1(X)/L1n → 0 as n→∞, and

Sn,j,α1,α2 :=
∑
i∈Vj

exp(βn0i)

α!
(∆βn1ij)

α1(∆ηnij)
α2 .

On the other hand, by applying the second-order Taylor expansion, we get that

An,2(X) =
∑

j:|Vj |>1

∑
1≤|α1|+|α2|≤2

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j) +Rn,2(X),

in which Rn,2(X) is a Taylor remainder such that Rn,2(X)/L1n → 0 as n→∞.

Decomposition of Bn. Recall that we have

Bn(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)− E(X;β∗

1j)
]
gGn

(X)

+
∑

j:|Vj |>1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)− E(x;β∗

1j)
]
gGn(X)

:= Bn,1(X) +Bn,2(X).

21

By invoking first-order and second-order Taylor expansions to Bn,1(X) and Bn,2(X), it follows that

Bn,1(X) =
∑

j:|Vj |=1

∑
|ℓ|=1

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗

1j)gGn(X) +Rn,3(X),

Bn,2(X) =
∑

j:|Vj |>1

∑
1≤|ℓ|≤2

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗

1j)gGn(X) +Rn,4(X),

where we define

Tn,j,ℓ :=
∑
i∈Vj

exp(βn0i)

ℓ!
(∆βn1ij)

ℓ.

Additionally, Rn,3(X) and Rn,4(X) are Taylor remainders such that Rn,3(X)/L1n → 0 and
Rn,3(X)/L1n → 0 as n→∞.

Collect the above results together, we can represent Qn(x) as

Qn(X) =

L∑
j=1

∑
0≤|α1|+|α2|≤2

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j),

−
L∑
j=1

∑
0≤|ℓ|≤2

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗

1j)gGn
(X) +

4∑
i=1

Rn,i(X), (47)

where we define Sn,j,0d×d,0q = Tn,j,0d×d
=
∑
i∈Vj

exp(βn0i)− exp(β∗
0j) for any j ∈ [L].

Step 2 - Non-vanishing coefficients. In this step, we demonstrate that at least one among ratios
of the forms Sn,j,α1,α2

/L1n and Tn,j,ℓ/L1n goes to zero as n tends to infinity. Indeed, assume by
contrary that

Sn,j,α1,α2

L1n
→ 0,

Tn,j,ℓ
L1n

→ 0,

for any j ∈ [L], 0 ≤ |α1|, |α2|, |ℓ| ≤ 2. Then, we get

1

L1n

L∑
j=1

∣∣∣ ∑
i∈Vj

exp(βn0i)− exp(β∗
0j)
∣∣∣ = L∑

j=1

∣∣∣Sn,j,0d×d,0q

L1n

∣∣∣→ 0. (48)

Now, we consider indices j ∈ [L] such that its corresponding Voronoi cell has only one element, i.e.
|Vj | = 1.

• For arbitrary u, v ∈ [Nd], let α1 ∈ NNd×Nd and α2 = 0q such that α(uv)
1 = 1

while other entries equal to zero. Then, we have 1
L1n
·
∑
i∈Vj

exp(βn0i)|(∆βn1ij)(uv)| =
|Sn,j,α1,α2

|/L1n → 0 as n → ∞. By taking the summation of the previous term with
u, v ∈ [Nd], we achieve that 1

L1n

∑
i∈Vj

exp(βn0i)∥∆βn1ij∥1 → 0. Owing to the topological
equivalence between norm-1 and norm-2, it follows that

1

L1n

∑
i∈Vj

exp(βn0i)∥∆βn1ij∥ → 0. (49)

• For arbitrary u ∈ [Nd], let α1 = 0Nd×Nd and α2 ∈ Nq such that α(u)
2 = 1 while other

entries equal to zero. Then, we get 1
L1n
·
∑
i∈Vj

exp(βn0i)|(∆ηnij)(u)| = |Sn,j,α1,α2
|/L1n →

0 as n→∞. By taking the summation of the previous term with u ∈ [q], we achieve that
1

L1n

∑
i∈Vj

exp(βn0i)∥∆ηnij∥1 → 0, or equivalently,

1

L1n

∑
i∈Vj

exp(βn0i)∥∆ηnij∥ → 0. (50)

22

Combine the limits in equations (49) and (50), we obtain that
1

L1n

∑
j:|Vj |=1

∑
i∈Vj

exp(βn0i)[∥∆βn1ij∥+ ∥∆ηnij∥]→ 0, (51)

as n→∞.

Next, we consider indices j ∈ [L] such that its corresponding Voronoi cell has more than one element,
i.e. |Vj | > 1.

• For arbitrary u, v ∈ [Nd], let α1 ∈ NNd×Nd and α2 = 0q such that α(uv)
1 = 2

while other entries equal to zero. Then, we have 1
L1n
·
∑
i∈Vj

exp(βn0i)|(∆βn1ij)(uv)|2 =

|Sn,j,α1,α2
|/L1n → 0 as n → ∞. By taking the summation of the previous term with

u, v ∈ [Nd], we achieve that
1

L1n

∑
i∈Vj

exp(βn0i)∥∆βn1ij∥2 → 0. (52)

• For arbitrary u ∈ [Nd], let α1 = 0Nd×Nd and α2 ∈ Nq such that α(u)
2 = 2 while other en-

tries equal to zero. Then, we get 1
L1n
·
∑
i∈Vj

exp(βn0i)|(∆ηnij)(u)|2 = |Sn,j,α1,α2
|/L1n → 0

as n→∞. By taking the summation of the previous term with u ∈ [q], we achieve that
1

L1n

∑
i∈Vj

exp(βn0i)∥∆ηnij∥2 → 0. (53)

Putting the limits in equations (49) and (50), we have
1

L1n

∑
j:|Vj |>1

∑
i∈Vj

exp(βn0i)[∥∆βn1ij∥+ ∥∆ηnij∥]→ 0, (54)

as n → ∞. Taking the summation of three limits in equations (48), (51) and (54), we deduce that
1 = L1n/L1n → 0 as n→∞, which is a contradiction. Thus, at least one among ratios of the forms
Sn,j,α1,α2

/L1n and Tn,j,ℓ/L1n goes to zero as n tends to infinity.

Step 3 - Application of Fatou’s lemma. In this step, we show that all the ratios Sn,j,α1,α2
/L1n and

Tn,j,ℓ/L1n go to zero as n → ∞, which contradicts to the conclusion in Step 2. In particular, by
denoting mn as the maximum of the absolute values of those ratios. From the result of Step 2, it
follows that 1/mn ̸→ ∞.

Recall from the hypothesis in equation (43) that ∥gGn − gG∗∥L2(µ)/L1n → 0 as n → ∞, which
indicates that ∥gGn

− gG∗∥L1(µ)/L1n → 0. Therefore, by applying the Fatou’s lemma, we get that

0 = lim
n→∞

∥gGn − gG∗∥L1(µ)

mnL1n
≥
∫

lim inf
n→∞

|gGn(X)− gG∗(X)|
mnL1n

dµ(X) ≥ 0.

This result implies that 1
mnL1n

· [gGn(X) − gG∗(X)] → 0 as n → ∞ for µ-almost surely X .

Looking at the formulation ofQn(X) in equation (45), since the term
[∑k0

i′=1 exp(X
⊤A0

i′X+c0i′)+∑k∗
j′=1 exp((β

∗
1j′)

⊤X + σ((β∗
1j′)

⊤X) + β∗
0j′)
]

is bounded, we deduce that the term Qn(X)
mnL1n

→ 0

for µ-almost surely X .

Let us denote
Sn,j,α1,α2

mnL1n
→ ϕj,α1,α2

,
Tn,j,ℓ
mnL1n

→ φj,ℓ,

with a note that at least one among them is non-zero. Then, from the decomposition of Qn(X) in
equation (47), we have

L∑
j=1

1+1{|Vj |>1}∑
|α1|+|α2|=0

ϕj,α1,α2
·∂

|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j),

−
L∑
j=1

1+1{|Vj |>1}∑
|ℓ|=0

φj,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗

1j)gG∗(X) = 0,

23

for µ-almost surely X . It is worth noting that the term ∂|α1|E
∂β

α1
1

(X;β∗
1j) · ∂

|α2|h
∂ηα2

(X; η∗j) can be
explicitly expressed as

• When |α1| = 0, |α2| = 0: exp((β∗
1j)

⊤X + σ((β∗
1j)

⊤X))h(X; η∗j);

• When |α1| = 1, |α2| = 0: X(u)
(
1 + σ′((β∗

1j)
⊤X)

)
exp((β∗

1j)
⊤X +

σ((β∗
1j)

⊤X))h(X; η∗j);

• When |α1| = 0, |α2| = 1: exp((β∗
1j)

⊤X + σ((β∗
1j)

⊤X)) ∂h
∂η(w) (X; η∗j);

• When |α1| = 1, |α2| = 1:

x(u)
(
1 + σ′((β∗

1j)
⊤x)

)
exp((β∗

1j)
⊤x+ σ((β∗

1j)
⊤x))

∂h

∂η(w)
(x; η∗j);

• When |α1| = 2, |α2| = 0:

X(u)x(v)
[
(1+σ′((β∗

1j)
⊤X))2+σ′′((β∗

1j)
⊤X)

]
exp((β∗

1j)
⊤X+σ((β∗

1j)
⊤X))h(X; η∗j)

• When |α1| = 0, |α2| = 2: exp((β∗
1j)

⊤X + σ((β∗
1j)

⊤X)) ∂2h
∂η(w)∂η(w′) (X; η∗j).

Recall that the expert function h satisfies the condition in Definition 4.2, i.e. the set{
Xν
[
(1 + σ′((β∗

1j)
⊤X))|ν| + 1{|ν|=2}σ

′′((β∗
1j)

⊤X)
]
· ∂

|γ|h

∂ηγ
(X, η∗j) : j ∈ [L], 0 ≤ |ν|+ |γ| ≤ 2

}
is linearly independent for almost every X . Therefore, we obtain that ϕj,α1,α2

= φj,ℓ = 0 for all
j ∈ [L], 0 ≤ |α1|+ |α2|, |ℓ| ≤ 1 + 1{|Vj |>1}. This result turns out to contradict the fact that at least
one among them is different from zero. Hence, we achieve the inequality in equation (42).

Global part. It is worth noting that the inequality (42) suggests that there exists a positive constant
ε′ such that

inf
G∈GL′ (Θ):L1(G,G∗)≤ε′

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0.

Therefore, it is sufficient to prove that

inf
G∈GL′ (Θ):L1(G,G∗)>ε′

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0. (55)

Assume by contrary that the inequality (55) does not hold true, then we can find a sequence of mixing
measures G′

n ∈ GL′(Θ) such that L1(G
′
n, G∗) > ε′ and

lim
n→∞

∥gG′
n
− gG∗∥L2(µ)

L1(G′
n, G∗)

= 0,

which indicates that ∥gG′
n
− gG∗∥L2(µ) → 0 as n→∞. Recall that Θ is a compact set, therefore,

we can replace the sequence G′
n by one of its subsequences that converge to a mixing measure

G′ ∈ GL′(Ω). Since L1(G
′
n, G∗) > ε′, we deduce that L1(G

′, G∗) > ε′.

Next, by invoking the Fatou’s lemma, we have that

0 = lim
n→∞

∥gG′
n
− gG∗∥2L2(µ)

≥
∫

lim inf
n→∞

∣∣∣gG′
n
(X)− gG∗(X)

∣∣∣2 dµ(X).

Thus, we get that gG′(X) = gG∗(X) for µ-almost surely X . From the identifiability property of
the non-linear residual gating prefix MoE (cf. the end of this proof), we deduce that G′ ≡ G∗.
Consequently, it follows that L1(G

′, G∗) = 0, contradicting the fact that L1(G
′, G∗) > ε′ > 0.

Hence, the proof is completed.

Identifiability of Non-linear Residual Gating MoE.

We now prove the identifiability of the non-linear residual gating prefix MoE. In particular, we will
show that if gG(X) = gG∗(X) for almost every X , then it follows that G ≡ G∗.

24

For ease of presentation, let us denote

softmaxG(u) : =
exp(u)∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑L
j′=1 exp((β1j′)

⊤X + ασ(τ(β1j′)⊤X) + β0j′)
,

softmaxG∗(u
∗) : =

exp(u∗)∑N
i′=1 exp(X

⊤B0
i′X + c0i′) +

∑L
j′=1 exp((β

∗
1j′)

⊤X + ασ(τ(β∗
1j′)

⊤X) + β∗
0j′)

,

where

u ∈
{
X⊤B0

i′X + c0i′ , (β1j′)
⊤X + ασ(τ(β1j′)

⊤X) + β0j′ : i
′ ∈ [N], j′ ∈ [L′]

}
,

u∗ ∈
{
X⊤B0

i′X + c0i′ , (β
∗
1j′)

⊤X + ασ(τ(β∗
1j′)

⊤X) + β∗
0j′ : i

′ ∈ [N], j′ ∈ [L]
}
.

Since gG(X) = gG∗(X) for almost every X , we have

N∑
i=1

softmaxG(X
⊤BiX + c0i) · h(X, η0i) +

L′∑
j=1

softmaxG

(
(β1j)

⊤X + ασ(τ(β1j)
⊤X) + β0j

)
· h(X, ηj)

=

N∑
i=1

softmaxG∗(X
⊤BiX + c0i) · h(X, η0i) +

L∑
j=1

softmaxG∗

(
(β∗

1j)
⊤X + ασ(τ(β∗

1j)
⊤X) + β∗

0j

)
· h(X, η∗j).

(56)

As the expert function h satisfies the conditions in Definition 4.2, the set {h(X, η′i) : i ∈ [k′]}, where
η′1, . . . , η

′
k′ are distinct vectors for some k′ ∈ N, is linearly independent. If L′ ̸= L, then there exists

some i ∈ [L′] such that ηi ̸= η∗j for any j ∈ [L]. This implies that
∑L′

j=1 softmaxG

(
(β1j)

⊤X +

ασ(τ(β1j)
⊤X) + β0j

)
· h(X, ηj) = 0, which is a contradiction. Thus, we must have that L = L′.

As a result,{
softmaxG

(
(β1j)

⊤X + ασ(τ(β1j)
⊤X) + β0j

)
: j ∈ [L′]

}
=
{
softmaxG∗

(
(β∗

1j)
⊤X + ασ(τ(β∗

1j)
⊤X) + β∗

0j

)
: j ∈ [L]

}
,

for almost every X . WLOG, we may assume that

softmaxG

(
(β1j)

⊤X + ασ(τ(β1j)
⊤X) + β0j

)
= softmaxG∗

(
(β∗

1j)
⊤X + ασ(τ(β∗

1j)
⊤X) + β∗

0j

)
,

(57)

for almost every X for any j ∈ [L]. Since the softmax function is invariant to translation, this
result indicates that β1j = β∗

1j and β0j = β∗
0j + v0 for some v0 ∈ R for any j ∈ [L]. Recall from

the universal assumption that β0L′ = β0L = 0, we get that β0j = β∗
0j for any j ∈ [L]. Then,

equation (56) can be rewritten as
L∑
j=1

exp(β0j) exp
(
(β1j)

⊤X + ασ(τ(β1j)
⊤X)

)
h(X, ηj)

=

L∑
j=1

exp(β∗
0j) exp

(
(β∗

1j)
⊤X + ασ(τ(β∗

1j)
⊤X

)
h(X, η∗j), (58)

for almost every X . Next, we denote P1, P2, . . . , Pm as a partition of the index set [L], where
m ≤ L′, such that exp(β0i) = exp(β∗

0i′) for any i, i′ ∈ Pj and j ∈ [L]. On the other hand, when
i and i′ do not belong to the same set Pj , we let exp(β0i) ̸= exp(β0i′). Thus, we can reformulate
equation (58) as
m∑
j=1

∑
i∈Pj

exp(β0i) exp
(
(β1i)

⊤X + ασ(τ(β1i)
⊤X

)
h(X, ηi)

=

m∑
j=1

∑
i∈Pj

exp(β∗
0i) exp

(
(β∗

1i)
⊤X + ασ(τ(β∗

1i)
⊤X

)
h(X, η∗i),

25

for almost every X . Recall that β1i = β∗
1i and β0i = β∗

0i for any i ∈ [L], then the above equation
leads to

{ηi : i ∈ Pj} ≡ {η∗i : i ∈ Pj},
for almost every X for any j ∈ [m]. As a consequence,

G =

m∑
j=1

∑
i∈Pj

exp(β0i)δ(β1i,ηi) =

m∑
j=1

∑
i∈Pj

exp(β∗
0i)δ(β∗

1i,η
∗
i)

= G∗.

Hence, we reach the conclusion of this proposition.

C Discussion of related Mixture of Experts works
Recently, the MoE model has been employed to mitigate catastrophic forgetting in continual learning.
For example, [58] focused on continual learning in vision-language models by adapting a pre-trained
vision-language model to new tasks through learning a mixture of specialized adapter modules.
[58] introduced an MoE structure onto a frozen CLIP, utilizing a mixture of adapters to modify the
MLP block after the MSA layer. In contrast, our work centers on general continual learning with
pre-trained models, leveraging the inherent MoE architecture of MSA layers. Consequently, our
MoE model placement differs from that of [58]. By employing prefix tuning, we demonstrate that
it is analogous to introducing new prefix experts to scale and adapt these pre-trained MoE models
to downstream tasks. Furthermore, while [58] utilizes task-specific routers, our approach employs
task-specific prompts that encapsulate both task-specific router and expert parameters.

The parameters cost is usually considered in practical memory-constrained continual learning sce-
narios. Dynamic routing mechanism can be employed for gating-based neural networks [18]. To
improve the parameter efficiency of the final model, we can integrate this mechanism in the proposed
method. Specifically, each head in the MSA layers comprises N MoE models, where N is the length
of the input sequence. This allows for a dynamic routing mechanism to enhance parameter efficiency.
For instance, [18] proposed a dynamic routing strategy that adaptively adjusts the number of activated
experts based on the input. The computation for any MoE model’s gating is directly correlated with
the corresponding row in the attention matrix, which encapsulates the MoE model’s score functions.
For example, selecting the top k experts via Top-K routing in the i-th MoE model is equivalent to
identifying the top k largest values in the i-th row of the attention matrix. To implement [18], we first
sort the elements in the i-th row from highest to lowest, then find the smallest set of experts whose
cumulative probability exceeds the threshold. Consequently, unselected experts remain inactive,
reducing the need to compute all elements of the value matrix within self-attention.

D Training Algorithm of HiDe-Prompt
In this appendix, we outline the detailed algorithm of HiDe-Prompt, utilizing the same notation as in
Section 2.

Each previously encountered class c ∈ Y(i), i = 1, . . . , t − 1 has its instructed and uninstructed
representations approximated by Gaussian distributions, denoted as Gc and Ĝc, respectively.

HiDe-Prompt maintains an expandable pool of task-specific prompts et, each optimized for a specific
task Dt using a cross-entropy loss within the WTP objective. To prevent forgetting, previous prompts
e1, . . . , et−1 remain frozen. Knowledge transfer across tasks is facilitated by a prompt ensemble (PE)
strategy: the current prompt is initialized with the last one et ← et−1 and refined using a weighted
combination of all past prompts pt = α

∑t−1
i=1 ei+(1−α)et, where α is a hyper-parameter. Notably,

HiDe-Prompt incorporates contrastive regularization within the WTP objective, pushing features of
the new task away from those of past tasks represented by the prototypes of old class distributions Gc.
LetHt = {fθ(x(t)

i ,pt)| i = 1, . . . , Nt} be the embedding transformation of Dt and µc be the mean
of Gc. The contrastive loss can be written as

LCR(pt) =
∑
h∈Ht

t−1∑
i=1

∑
c∈Y(i)

log(
exp(h · µc/τ)∑

h′∈Ht
exp(h · h′/τ) +

∑t−1
i=1

∑
c′∈Y(i) exp(h · µc′/τ)

), (59)

where τ is the temperature that is set to 0.8. The overall objective function of WTP for learning a
new task t is defined as

LWTP(ψ,pt) = LCE(ψ,pt) + λLCR(pt), (60)

26

Algorithm 1 HiDe-Prompt’s training algorithm

Input: Pre-trained transformer backbone fθ, training sets D1, . . . ,DT , number of tasks T , number
of epochs E, hyper-parameters α, τ and λ.

Output: Parameters p1, . . . ,pT , ω and ψ
1: Initialize e1, ω and ψ
2: for t = 1, . . . , T do
3: for c ∈ Y(t) do
4: Obtain Ĝc from fθ and Dt ▷ Uninstructed Representations
5: if t > 1 then
6: Initialize et ← et−1

7: Construct pt = α
∑t−1
i=1 ei + (1− α)et

8: else
9: Construct pt = et

10: for epoch = 1, . . . , E do
11: Optimize pt and ψ with LWTP in Eq.(60) ▷ Within-Task Prediction
12: Optimize ω with LTII in Eq.(62) ▷ Task-Identity Inference
13: Optimize ψ with LTAP in Eq.(61) ▷ Task-Adaptive Prediction
14: for c ∈ Y(t) do
15: Obtain Gc from fθ,pt and Dt ▷ Instructed Representations

return (p1, . . . ,pT , ω, ψ)

where λ is a hyper-parameter. Following WTP, HiDe-Prompt performs a further refinement step on
the output layer parameters ψ using a separate objective called task-adaptive prediction (TAP). TAP
addresses potential classifier bias by considering the Gaussian distribution of all classes encountered
so far. The final output layer hψ can be further optimized for TAP objective,

LTAP(ψ) =

t∑
i=1

∑
c∈Y(i)

∑
h∈Hi,c

−log(exp(hψ(h)[c])∑t
j=1

∑
c′∈Y(j) exp(hψ(h)[c′])

) (61)

where Hi,c is constructed by sampling an equal number of pseudo representations from Gc for
c ∈ Y(i) and i = 1, . . . , t.

For TII, HiDe-Prompt leverages a lightweight auxiliary output layer ĥω : RD → RT , to map
uninstructed representations directly to task identity. This mapping is learned explicitly through a
cross-entropy loss function,

LTII(ω) =
∑
c∈Yt

∑
ĥ∈Ĥc

−log(exp(ĥω(ĥ)[c])∑
c′∈Yt

exp(ĥω(ĥ)[c′]
) (62)

where Ĥc is constructed by sampling an equal number of pseudo representations from Ĝc for c ∈ Y(i)

and i = 1, . . . , t. Please refer to Algorithm 1 for more details.

E Experimental Details
Datasets. We use commonly-used datasets in the field of continual learning, including (1) Split
CIFAR-100 [23]: This dataset comprises images from 100 classes. These classes are divided
randomly into 10 separate incremental tasks, with each task featuring a distinct set of classes. (2)
Split ImageNet-R [23]: This dataset is composed of images from 200 classes. It includes challenging
examples from the original ImageNet [40] dataset and newly gathered images representing diverse
styles. These classes are also randomly divided into 10 distinct incremental tasks. (3) Split CUB-200
[48]: This dataset consists of fine-grained images of 200 different bird species. It is randomly
divided into 10 incremental tasks, each comprising a unique class subset. (4) 5-Datasets [9]: This
composite dataset incorporates CIFAR-10 [23], MNIST [24], Fashion-MNIST [55], SVHN [31],
and notMNIST [3]. Each of these datasets is treated as a separate incremental task, permitting for
the assessment of the effects of significant variations between tasks.

Prompt-Based Approaches. We compare NoRGa against recent prompt-based continual learning
approaches: L2P [54], DualPrompt [53], CODA-Prompt [42], S-Prompt [52] and HiDe-Prompt [49].

27

Table 4: Performance comparison in task-incremental learning setting. Here we present Final Average
Accuracy (FA).

Method Split CIFAR-100 Split CUB-200

Sup-21K iBOT-21K Sup-21K iBOT-21K

HiDe-Prompt 97.87± 0.31 97.48± 0.33 97.57± 0.08 92.34± 0.34
NoRGa tanh 98.55± 0.45 98.26± 0.36 97.86± 0.14 92.85± 0.33
NoRGa sigmoid 98.63± 0.35 98.15± 0.29 97.89± 0.14 92.85± 0.22
NoRGa GELU 98.41± 0.47 98.17± 0.30 97.76± 0.10 93.00± 0.11

Table 5: Performance comparison of different PEFT methods using ViT-B/16 with Sup-21K weights.
Here we present Final Average Accuracy (FA).

Method Split CIFAR-100 Split CUB-200

HiDe-Prompt 92.61 86.56
HiDe-LoRA 92.71 87.37
HiDe-Adapter 92.73 87.10
NoRGa 94.48 90.90

To ensure a fair comparison, we replicate these methods using the configurations reported in their
respective papers. S-Prompt in the original paper trains a separate prompt and classifier head for each
task. At evaluation, it infers domain id as the nearest centroid obtained by applying K-Means on
the training data. To adapt S-Prompt to CIL, we use one common classifier head for all tasks. For
NoRGa, we adopt the same configuration as HiDe-Prompt, which utilizes Prefix Tuning [26] as its
prompt-based methodology. Learnable scalar factors α and τ are frozen after the first task’s training
to mitigate catastrophic forgetting. We further optimize NoRGa by selecting the best non-linear
activation function σ via cross-validation among tanh, sigmoid, and GELU.

Evaluation Metric. We employ three common metrics to measure the performance the methods,
including final average accuracy (FA), cumulative average accuracy (CA), and average forgetting
measure (FM). Let Si,t denote the accuracy on the i-th task after learning the t-th task, and At
represent the average accuracy as At = 1

t

∑t
i=1 Si,t. Upon learning all T tasks, we compute

FA = AT , CA = 1
T

∑T
t=1At, and FM = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1}(Si,t − Si,T). It’s worth

noting that FA and CA are prioritized over FM, as they inherently encompass both plasticity and
forgetting, with FM providing supplementary context [42].

Implementation Details. We train and test on one NVIDIA A100 GPU for baselines and our method.
We leverage a pre-trained ViT-B/16 model as the backbone. Training employs an Adam optimizer
(β1 = 0.9, β2 = 0.999), a batch size of 128, and a constant learning rate of 0.005 for all methods
except CODA-Prompt. CODA-Prompt utilizes a cosine decaying learning rate starting at 0.001.
Additionally, a grid search technique was implemented to determine the most appropriate number of
epochs for effective training.

F Task-incremental Learning Results
Because HiDe-Prompt optimizes prompt parameters specifically for within-task prediction (WTP),
NoRGa inherently aligns with this objective, leading to generally better continual learning perfor-
mance. We demonstrate this improvement through experiments in a task-incremental learning setting,
where task labels are available during inference (as in Table 4). While HiDe-Prompt performs
well, NoRGa shows consistent improvement across all scenarios. Notably, NoRGa with sigmoid
activation achieves the highest final average accuracy in both Split CIFAR-100 and Split CUB-200
with Sup-21K training. Additionally, NoRGa demonstrates its effectiveness even with self-supervised
pre-training, further solidifying its advantage over the original prefix tuning model. Overall, NoRGa
variants outperform HiDe-Prompt on both datasets and under both training conditions.

G Comparison to Different Parameter-Efficient Fine-Tuning Methods
As the advantages of different parameter-efficient fine-tuning (PEFT) methods remain an open
question, we briefly describe them through our revealed connection between self-attention and MoE.

28

Table 6: Performance comparison of pre-trained model-based continual learning methods using
ViT-B/16 with Sup-21K weights. Here we present Final Average Accuracy (FA).

Method Split CIFAR-100 Split CUB-200

ADAM + VPT-D 85.04 85.28
ADAM + SSF 85.27 85.67
ADAM + Adapter 87.29 85.84
RanPAC 92.20 90.30
NoRGa 94.48 90.90

Table 7: Ablation study on the effect of learnable α and τ with Sup-21K weights. Here we present
Final Average Accuracy (FA).

Method Split CIFAR-100 Split CUB-200

HiDe-Prompt 92.61 86.56
Learnable α, Fixed τ 94.38 90.45
Fixed α, Learnable τ 94.42 90.48
Fixed α, Fixed τ 94.29 90.32
Learnable α, Learnable τ 94.48 90.90

Prefix tuning introduces additional parameters at the input of MSA layers to adapt the pre-trained
model representation, contrasting with Adapter [16], which insert adaptive parameters between layers,
often replacing MLP blocks. LoRA [17] approximates weight updates with low-rank matrices and
adds them to the backbone weights. Our work shows that the MSA layer in a pre-trained model can be
seen as a pre-trained MoE architecture. Applying LoRA to the MSA layer refines both the pre-trained
experts and their corresponding score functions for downstream tasks. In contrast, prefix tuning
expands the pre-trained MoE models by incorporating new experts while preserving the original
components, rather than modifying the pre-trained experts like LoRA.

NoRGa emerges as a simple, parameter-efficient fine-tuning method and can be regarded as a distinct
implementation of prompts. However, our novel perspective on the interplay between self-attention,
prefix tuning, and mixture of experts enables us to theoretically substantiate the effectiveness of
NoRGa as shown in Section 4.

For empirical comparison, we integrate the framework of HiDe-Prompt with different PEFT tech-
niques and Sup-21K weights, evaluating performance on Split CIFAR-100 and Split CUB-200. The
results are summarized in Table 5. The table shows that NoRGa consistently outperforms the other
PEFT methods on both datasets, suggesting its effectiveness. Nevertheless, further investigation with
LoRA and Adapter would be necessary to draw more definitive conclusions.

While exploring alternative PEFT methods might offer improvements in WTP performance, these
approaches lack theoretical guarantees and could lead to an increased number of parameters. In
contrast, our NoRGa method modifies the original score functions of prefix tuning to enhance WTP
performance with theoretical rigor. Importantly, NoRGa maintains the same parameter count as
HiDe-Prompt, which is crucial in CL due to memory constraints.

H Comparison with Pre-trained Model-based Methods

Previous works have demonstrated that utilizing pre-trained models (PTM) significantly enhances
performance for continual learning, often surpassing the performance of non-PTM-based methods.
Moreover, studies have shown that first-task adaptation and simple PEFT-style tuning can achieve
competitive performance [20, 37, 60, 29] with prompt-based methods. For instance, [20] demon-
strated that appending a nearest class mean (NCM) classifier to a ViT model’s feature outputs, can
serve as a strong baseline. [37, 60] enhanced this strategy by adapting the pre-trained model to the
first task using the three PEFT methods for transformer networks [60] and the FiLM method for
CNNs [37]. Additionally, [29] improved NCM by incorporating second-order statistics—covariance
and Gram matrices. However, these methods, which fine-tune only the backbone for the initial
task, may not always ensure satisfactory separation of new tasks’ features. Our work focuses on
continually adapting the backbone, utilizing task-specific prompts to consistently capture emerging

29

Figure 3: Validation loss on Split CUB-200 throughout the training of the first task.

Table 8: Comparison of training times for HiDe-Prompt and NoRGa. All experiments were conducted
on a single NVIDIA A100 GPU.

Method Split CIFAR-100 Split ImageNet-R Split CUB-200 5-Datasets

HiDe-Prompt 2.80h 2.67h 1.04h 24.06h
NoRGa 2.85h 2.70h 1.10h 24.23h

tasks’ characteristics, and proposing a novel method to enhance the CL performance of previous
prompting methods.

To validate our approach, we compare it against state-of-the-art PTM-based continual learning
methods, including ADAM [60] and RanPAC [29], using Split CIFAR-100 and Split CUB-200
datasets. The results are summarized in Table 6. In comparison to other PTM-based continual
learning methods, NoRGa demonstrates competitive performance across both evaluated datasets. For
instance, on Split CIFAR-100, NoRGa achieves an FA of 94.48%, exceeding the next best method
by over 2%. Similarly, on Split CUB-200, NoRGa delivers strong results relative to other baselines.
These improvements highlight the effectiveness of our method in mitigating catastrophic forgetting
and preserving knowledge retention across multiple tasks.

I Efficiency Tests
We compare the validation loss of NoRGa and HiDe-Prompt throughout the first task on Split
CUB-200, as illustrated in Figure 3. The results demonstrate that NoRGa consistently outperforms
HiDe-Prompt throughout the training process. This empirical evidence supports the theoretical
advantages of NoRGa over HiDe-Prompt.

J Effect of Learnable Hyperparameters
As described in Section 4.1 and Appendix E, in our framework, α and τ are learnable hyperparameters
and optimized through backpropagation during the first task, eliminating the need for manual tuning.
Additionally, our theoretical analysis of NoRGa’s statistical efficiency in Section 4.2 holds for any
values of α and τ , demonstrating the theoretical robustness. To further investigate, we evaluated
both fixed and learnable settings for these hyperparameters. For the fixed case, we set their values
to 1. We report FA on Split CUB-200 and Split CIFAR-100 with Sup-21K weights. The results are
summarized in Table 7. Although performance slightly decreased with fixed hyperparameters, it still
outperforms HiDe-Prompt, indicating our method’s empirical robustness.

K Training Times
We utilize a single A100 GPU for all experiments. The training times are summarized in Table 8.
While NoRGa exhibits slightly longer training times compared to HiDe-Prompt, it consistently
achieves significantly better performance. This demonstrates the effectiveness of NoRGa while
maintaining competitive training efficiency.

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions and scope are reflected accurately in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have already discussed the limitations of our work in the conclusion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

31

Answer: [Yes]
Justification: The full set of assumptions and proofs is given in Section 4.2 and the Appen-
dices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental details for reproducibility are specified in Section 5, and
Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

32

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: All the experimental details are specified in Section 5, and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars and relevant information in Section 5, and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources in Ap-
pendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and followed all the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Given the theoretical nature of the paper, we do not think there are any positive
or negative societal impacts of the work performed. Experiments are conducted only for
empirically justifying the theoretical results.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

34

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release any data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and models used in the paper are properly credited. See Section 5,
and Appendix E for further details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

35

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

36

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Background and Related Works
	Connection between Prefix Tuning and Mixture of Experts
	Mixture of Experts Meets Attention
	Prefix Tuning via the Perspective of Mixture of Experts

	Non-linear Residual Gate Meets Prefix Tuning
	NoRGa: Non-linear Residual Gate
	Theoretical Explanation for Non-linear Residual Gating Prefix MoE

	Experiments
	Conclusion
	Statistical Suboptimality of Linear Gating Prefix MoE Model
	Proof of Theoretical Results
	Proof of Theorem 4.1
	Proof of Theorem 4.3

	Discussion of related Mixture of Experts works
	Training Algorithm of HiDe-Prompt
	Experimental Details
	Task-incremental Learning Results
	Comparison to Different Parameter-Efficient Fine-Tuning Methods
	Comparison with Pre-trained Model-based Methods
	Efficiency Tests
	Effect of Learnable Hyperparameters
	Training Times

