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(a) Aerial view of test environment (b) Vision-based driving, view from onboard camera (c) Side view of vehicle

Fig. 1. Conditional imitation learning allows an autonomous vehicle trained end-to-end to be directed by high-level commands. (a) We train and evaluate
robotic vehicles in the physical world (top) and in simulated urban environments (bottom). (b) The vehicles drive based on video from a forward-facing
onboard camera. At the time these images were taken, the vehicle was given the command “turn right at the next intersection”. (c) The trained controller
handles sensorimotor coordination (staying on the road, avoiding collisions) and follows the provided commands.

Abstract— Deep networks trained on demonstrations of hu-
man driving have learned to follow roads and avoid obstacles.
However, driving policies trained via imitation learning cannot
be controlled at test time. A vehicle trained end-to-end to imitate
an expert cannot be guided to take a specific turn at an up-
coming intersection. This limits the utility of such systems. We
propose to condition imitation learning on high-level command
input. At test time, the learned driving policy functions as a
chauffeur that handles sensorimotor coordination but continues
to respond to navigational commands. We evaluate different
architectures for conditional imitation learning in vision-based
driving. We conduct experiments in realistic three-dimensional
simulations of urban driving and on a 1/5 scale robotic truck
that is trained to drive in a residential area. Both systems
drive based on visual input yet remain responsive to high-level
navigational commands.

I. INTRODUCTION

Imitation learning is receiving renewed interest as a
promising approach to training autonomous driving sys-
tems. Demonstrations of human driving are easy to collect
at scale. Given such demonstrations, imitation learning can
be used to train a model that maps perceptual inputs to
control commands; for example, mapping camera images to
steering and acceleration. This approach has been applied to
lane following [27], [4] and off-road obstacle avoidance [22].
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However, these systems have characteristic limitations. For
example, the network trained by Bojarski et al. [4] was given
control over lane and road following only. When a lane
change or a turn from one road to another were required,
the human driver had to take control [4].

Why has imitation learning not scaled up to fully au-
tonomous urban driving? One limitation is in the assumption
that the optimal action can be inferred from the perceptual
input alone. This assumption often does not hold in practice:
for instance, when a car approaches an intersection, the
camera input is not sufficient to predict whether the car
should turn left, right, or go straight. Mathematically, the
mapping from the image to the control command is no longer
a function. Fitting a function approximator is thus bound to
run into difficulties. This had already been observed in the
work of Pomerleau: “Currently upon reaching a fork, the
network may output two widely discrepant travel directions,
one for each choice. The result is often an oscillation in
the dictated travel direction” [27]. Even if the network can
resolve the ambiguity in favor of some course of action, it
may not be the one desired by the passenger, who lacks a
communication channel for controlling the network itself.

In this paper, we address this challenge with conditional
imitation learning. At training time, the model is given
not only the perceptual input and the control signal, but
also a representation of the expert’s intention. At test time,
the network can be given corresponding commands, which
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resolve the ambiguity in the perceptuomotor mapping and
allow the trained model to be controlled by a passenger
or a topological planner, just as mapping applications and
passengers provide turn-by-turn directions to human drivers.
The trained network is thus freed from the task of planning
and can devote its representational capacity to driving. This
enables scaling imitation learning to vision-based driving in
complex urban environments.

We evaluate the presented approach in realistic simulations
of urban driving and on a 1/5 scale robotic truck. Both
systems are shown in Figure 1. Simulation allows us to
thoroughly analyze the importance of different modeling
decisions, carefully compare the approach to relevant base-
lines, and conduct detailed ablation studies. Experiments
with the physical system demonstrate that the approach can
be successfully deployed in the physical world. Recordings
of both systems are provided in the supplementary video.

II. RELATED WORK

Imitation learning has been applied to a variety of tasks,
including articulated motion [2], [28], [11], autonomous
flight [1], [13], [30], modeling navigational behavior [37],
[38], off-road driving [22], [32], and road following [4], [6],
[27], [36]. Technically, these applications differ in the input
representation (raw sensory input or hand-crafted features),
the control signal being predicted, the learning algorithms,
and the learned representations. Most relevant to our work
are the systems of Pomerleau [27], LeCun et al. [22], and
Bojarski et al. [4], who used ground vehicles and trained
deep networks to predict the driver’s actions from camera
input. These studies focused on purely reactive tasks, such
as lane following or obstacle avoidance. In comparison, we
develop a command-conditional formulation that enables the
application of imitation learning to more complex urban
driving. Another difference is that we learn to control not
only steering but also acceleration and braking, enabling the
model to assume full control of the car.

The decomposition of complex tasks into simpler sub-
tasks has been studied from several perspectives. In robotics,
movement primitives have been used as building blocks
for advanced motor skills [17], [26]. Movement primitives
represent a simple motion, such as a strike or a throw, by a
parameterized dynamical system. In comparison, the policies
we consider have much richer parameterizations and address
more complex sensorimotor tasks that couple perception and
control, such as finding the next opportunity to turn right and
then making the turn while avoiding dynamic obstacles.

In reinforcement learning, hierarchical approaches aim
to construct multiple levels of temporally extended sub-
policies [3]. The options framework is a prominent example
of such hierarchical decomposition [33]. Basic motor skills
that are learned in this framework can be transferred across
tasks [19]. Hierarchical approaches have also been combined
with deep learning and applied to raw sensory input [20]. In
these works, the main aim is to learn purely from experience
and discover hierarchical structure automatically. This is hard
and is in general an open problem, particularly for sensori-
motor skills with the complexity we consider. In contrast,
we focus on imitation learning, and we provide additional

information on the expert’s intentions during demonstration.
This formulation makes the learning problem more tractable
and yields a human-controllable policy.

Adjacent to hierarchical methods is the idea of learn-
ing multi-purpose and parameterized controllers. Parameter-
ized goals have been used to train motion controllers in
robotics [7], [8], [18]. Schaul et al. [31] proposed a general
framework for reinforcement learning with parameterized
value functions, shared across states and goals. Dosovitskiy
and Koltun [9] studied families of parameterized goals in
the context of navigation in three-dimensional environments.
Javdani et al. [15] studied a scenario where a robot assists
a human and changes its behavior depending on its estimate
of the human’s goal. Our work shares the idea of training a
conditional controller, but differs in the model architecture,
the application domain (vision-based autonomous driving),
and the learning method (conditional imitation learning).

Autonomous driving is the subject of intensive re-
search [25]. Broadly speaking, approaches differ in their level
of modularity. On one side are highly tuned systems that de-
ploy an array of computer vision algorithms to create a model
of the environment, which is then used for planning and
control [12]. On the opposite side are end-to-end approaches
that train function approximators to map sensory input to
control commands [4], [27], [36]. Our approach is on the
end-to-end side of the spectrum, but in addition to sensory
input the controller is provided with commands that specify
the driver’s intent. This resolves some of the ambiguity in
the perceptuomotor mapping and creates a communication
channel that can be used to guide the autonomous car as one
would guide a chauffeur.

Human guidance of robot actions has been studied ex-
tensively [5], [14], [24], [34], [35]. These works tackle the
challenging problem of parsing natural language instructions.
Our work does not address natural language communication;
we limit commands to a predefined vocabulary such as
“turn right at the next intersection”, “turn left at the next
intersection”, and “keep straight”. On the other hand, our
work deals with end-to-end vision-based driving using deep
networks. Systems in this domain have been limited to
imitating the expert without the ability to naturally accept
commands after deployment [4], [6], [27], [36]. We introduce
such ability into deep networks for end-to-end vision-based
driving.

III. CONDITIONAL IMITATION LEARNING

We begin by describing the standard imitation learning
setup and then proceed to our command-conditional formula-
tion. Consider a controller that interacts with the environment
over discrete time steps. At each time step t, the controller
receives an observation ot and takes an action at. The basic
idea behind imitation learning is to train a controller that
mimics an expert. The training data is a set of observation-
action pairs D = {〈oi,ai〉}Ni=1 generated by the expert. The
assumption is that the expert is successful at performing the
task of interest and that a controller trained to mimic the
expert will also perform the task well. This is a supervised
learning problem, in which the parameters θ of a function
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approximator F (o;θ) must be optimized to fit the mapping
of observations to actions:

minimize
θ

∑

i

�
(
F (oi;θ),ai

)
. (1)

An implicit assumption behind this formulation is that
the expert’s actions are fully explained by the observations;
that is, there exists a function E that maps observations
to the expert’s actions: ai = E(oi). If this assumption
holds, a sufficiently expressive approximator will be able
to fit the function E given enough data. This explains the
success of imitation learning on tasks such as lane following.
However, in more complex scenarios the assumption that the
mapping of observations to actions is a function breaks down.
Consider a driver approaching an intersection. The driver’s
subsequent actions are not explained by the observations, but
are additionally affected by the driver’s internal state, such as
the intended destination. The same observations could lead to
different actions, depending on this latent state. This could be
modeled as stochasticity, but a stochastic formulation misses
the underlying causes of the behavior. Moreover, even if a
controller trained to imitate demonstrations of urban driving
did learn to make turns and avoid collisions, it would still
not constitute a useful driving system. It would wander the
streets, making arbitrary decisions at intersections. A pas-
senger in such a vehicle would not be able to communicate
the intended direction of travel to the controller, or give it
commands regarding which turns to take.

To address this, we begin by explicitly modeling the
expert’s internal state by a vector h, which together with
the observation explains the expert’s action: ai = E(oi,hi).
Vector h can include information about the expert’s inten-
tions, goals, and prior knowledge. The standard imitation
learning objective can then be rewritten as

minimize
θ

∑

i

�
(
F (oi;θ), E(oi,hi)

)
. (2)

It is now clear that the expert’s action is affected by infor-
mation that is not provided to the controller F .

We expose the latent state h to the controller by introduc-
ing an additional command input: c = c(h). At training
time, the command c is provided by the expert. It need
not constitute the entire latent state h, but should provide
useful information about the expert’s decision-making. For
example, human drivers already use turn signals to com-
municate their intent when approaching intersections; these
turn signals can be used as commands in our formulation.
At test time, commands can be used to affect the behavior of
the controller. These test-time commands can come from a
human user or a planning module. In urban driving, a typical
command would be “turn right at the next intersection”,
which can be provided by a navigation system or a passenger.

The training dataset becomes D = {〈oi, ci,ai〉}Ni=1. The
command-conditional imitation learning objective is

minimize
θ

∑

i

�
(
F (oi, ci;θ),ai

)
. (3)

In contrast with objective (2), the learner is informed about
the expert’s latent state and can use this additional infor-

Fig. 2. High-level overview. The controller receives an observation ot

from the environment and a command ct. It produces an action at that
affects the environment, advancing to the next time step.

mation in predicting the action. This setting is illustrated in
Figure 2.

IV. METHODOLOGY

We now describe a practical implementation of
command-conditional imitation learning. Code is available
at https://github.com/carla-simulator/
imitation-learning.

A. Network Architecture

Assume that each observation o = 〈i,m〉 comprises an
image i and a low-dimensional vector m that we refer to as
measurements, following Dosovitskiy and Koltun [9]. The
controller F is represented by a deep network. The network
takes the image i, the measurements m, and the command
c as inputs, and produces an action a as its output. The
action space can be discrete, continuous, or a hybrid of these.
In our driving experiments, the action space is continuous
and two-dimensional: steering angle and acceleration. The
acceleration can be negative, which corresponds to braking or
driving backwards. The command c is a categorical variable
represented by a one-hot vector.

We study two approaches to incorporating the command
c into the network. The first architecture is illustrated in
Figure 3(a). The network takes the command as an input,
alongside the image and the measurements. These three
inputs are processed independently by three modules: an
image module I(i), a measurement module M(m), and a
command module C(c). The image module is implemented
as a convolutional network, the other two modules as fully-
connected networks. The outputs of these modules are con-
catenated into a joint representation:

j = J(i,m, c) = 〈I(i),M(m), C(c)〉 . (4)

The control module, implemented as a fully-connected net-
work, takes this joint representation and outputs an action
A(j). We refer to this architecture as command input.
It is applicable to both continuous and discrete commands
of arbitrary dimensionality. However, the network is not
forced to take the commands into account, which can lead
to suboptimal performance in practice.

We therefore designed an alternative architecture, shown in
Figure 3(b). The image and measurement modules are as de-
scribed above, but the command module is removed. Instead,
we assume a discrete set of commands C = {c0, . . . , cK}
(including a default command c0 corresponding to no spe-
cific command given) and introduce a specialist branch Ai

for each of the commands ci. The command c acts as a
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(a) (b)

Fig. 3. Two network architectures for command-conditional imitation learning. (a) command input: the command is processed as input by the network,
together with the image and the measurements. The same architecture can be used for goal-conditional learning (one of the baselines in our experiments),
by replacing the command by a vector pointing to the goal. (b) branched: the command acts as a switch that selects between specialized sub-modules.

switch that selects which branch is used at any given time.
The output of the network is thus

F (i,m, ci) = Ai(J(i,m)). (5)

We refer to this architecture as branched. The branches Ai

are forced to learn sub-policies that correspond to different
commands. In a driving scenario, one module might special-
ize in lane following, another in right turns, and a third in
left turns. All modules share the perception stream.

B. Network Details

For all controllers, the observation o is the currently
observed image at 200×88 pixel resolution. For the measure-
ment m, we used the current speed of the car, if available (in
the physical system the speed estimates were very noisy and
we refrained from using them). All networks are composed
of modules with identical architectures (e.g., the ConvNet
architecture is the same in all conditions). The differences are
in the configuration of modules and branches as can be seen
in Figure 3. The image module consists of 8 convolutional
and 2 fully connected layers. The convolution kernel size is 5
in the first layer and 3 in the following layers. The first, third,
and fifth convolutional layers have a stride of 2. The number
of channels increases from 32 in the first convolutional layer
to 256 in the last. Fully-connected layers contain 512 units
each. All modules with the exception of the image module
are implemented as standard multilayer perceptrons. We
used ReLU nonlinearities after all hidden layers, performed
batch normalization after convolutional layers, applied 50%
dropout after fully-connected hidden layers, and used 20%
dropout after convolutional layers.

Actions are two-dimensional vectors that collate steering
angle and acceleration: a = 〈s, a〉. Given a predicted action
a and a ground truth action agt, the per-sample loss function
is defined as

�(a,agt) = �
( 〈s, a〉 , 〈sgt, agt〉

)

= ‖s− sgt‖2 + λa ‖a− agt‖2 . (6)

All models were trained using the Adam solver [16] with
minibatches of 120 samples and an initial learning rate of
0.0002. For the command-conditional models, minibatches
were constructed to contain an equal number of samples with
each command.

C. Training Data Distribution
When performing imitation learning, a key decision is

how to collect the training data. The simplest solution is to
collect trajectories from natural demonstrations of an expert
performing the task. This typically leads to unstable policies,
since a model that is only trained on expert trajectories may
not learn to recover from disturbance or drift [23], [29].

To overcome this problem, training data should include ob-
servations of recoveries from perturbations. In DAgger [29],
the expert remains in the loop during the training of the
controller: the controller is iteratively tested and samples
from the obtained trajectories are re-labeled by the expert. In
the system of Bojarski et al. [4], the vehicle is instrumented
to record from three cameras simultaneously: one facing
forward and the other two shifted to the left and to the right.
Recordings from the shifted cameras, as well as intermediate
synthetically reprojected views, are added to the training set
– with appropriately adjusted control signals – to simulate
recovery from drift.

In this paper we adopt a three-camera setup inspired by
Bojarski et al. [4]. However, we have found that the policies
learned with this setup are not sufficiently robust. Therefore,
to further augment the training dataset, we record some of the
data while injecting noise into the expert’s control signal and
letting the expert recover from these perturbations. This is
akin to the recent approach of Laskey et al. [21], but instead
of i.i.d. noise we inject temporally correlated noise designed
to simulate gradual drift away from the desired trajectory.
An example is shown in Figure 4. For training, we use the
driver’s corrective response to the injected noise (not the
noise itself). This provides the controller with demonstrations
of recovery from drift and unexpected disturbances, but
does not contaminate the training set with demonstrations
of veering away from desired behavior.

D. Data Augmentation
We found data augmentation to be crucial for good gen-

eralization. We perform augmentation online during network
training. For each image to be presented to the network,
we apply a random subset of a set of transformations
with randomly sampled magnitudes. Transformations include
change in contrast, brightness, and tone, as well as addition
of Gaussian blur, Gaussian noise, salt-and-pepper noise, and
region dropout (masking out a random set of rectangles in
the image, each rectangle taking roughly 1% of image area).
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Fig. 4. Noise injection during data collection. We show a fragment from
an actual driving sequence from the training set. The plot on the left shows
steering control [rad] versus time [s]. In the plot, the red curve is an injected
triangular noise signal, the green curve is the driver’s steering signal, and
the blue curve is the steering signal provided to the car, which is the sum
of the driver’s control and the noise. Images on the right show the driver’s
view at three points in time (trajectories overlaid post-hoc for visualization).
Between times 0 and roughly 1.0, the noise produces a drift to the right,
as illustrated in image (a). This triggers a human reaction, from 1.0 to 2.5
seconds, illustrated in (b). Finally, the car recovers from the disturbance, as
shown in (c). Only the driver-provided signal (green curve on the left) is
used for training.

No geometric augmentations such as translation or rotation
were applied, since control commands are not invariant to
these transformations.

V. SYSTEM SETUP

We evaluated the presented approach in a simulated urban
environment and on a physical system – a 1/5 scale truck.
In both cases, the observations (images) are recorded by
one central camera and two lateral cameras rotated by 30
degrees with respect to the center. The recorded control
signal is two-dimensional: steering angle and acceleration.
The steering angle is scaled between -1 and 1, with extreme
values corresponding to full left and full right, respectively.
The acceleration is also scaled between -1 and 1, where 1
corresponds to full forward acceleration and -1 to full reverse
acceleration.

In addition to the observations (images) and actions (con-
trol signals), we record commands provided by the driver. We
use a set of four commands: continue (follow the road),
left (turn left at the next intersection), straight (go
straight at the next intersection), and right (turn right at
the next intersection). In practice, we represent these as one-
hot vectors.

During training data collection, when approaching an
intersection the driver uses buttons on a physical steering
wheel (when driving in simulation) or on the remote control
(when operating the physical truck) to indicate the command
corresponding to the intended course of action. The driver
indicates the command when the intended action becomes
clear, akin to turn indicators in cars or navigation instructions
provided by mapping applications. This way we collect
realistic data that reflects how a higher level planner or a
human could direct the system.

A. Simulated Environment

We use CARLA [10], an urban driving simulator, to cor-
roborate design decisions and evaluate the proposed approach
in a dynamic urban environment with traffic. CARLA is an
open-source simulator implemented using Unreal Engine 4.
It contains two professionally designed towns with buildings,
vegetation, and traffic signs, as well as vehicular and pedes-
trian traffic. Figure 5 provides maps and sample views of
Town 1, used for training, and Town 2, used exclusively for
testing.

Town 1 (training) Town 2 (testing)

Fig. 5. Simulated urban environments. Town 1 is used for training (left),
Town 2 is used exclusively for testing (right). Map on top, view from
onboard camera below. Note the difference in visual style.

In order to collect training data, a human driver is pre-
sented with a first-person view of the environment (center
camera) at a resolution of 800× 600 pixels. The driver
controls the simulated vehicle using a physical steering wheel
and pedals, and provides command input using buttons on
the steering wheel. The driver keeps the car at a speed
below 60 km/h and strives to avoid collisions with cars
and pedestrians, but ignores traffic lights and stop signs. We
record images from the three simulated cameras, along with
other measurements such as speed and the position of the car.
The images are cropped to remove part of the sky. CARLA
also provides extra information such as distance travelled,
collisions, and the occurrence of infractions such as drift
onto the opposite lane or the sidewalk. This information is
used in evaluating different controllers.

B. Physical System

The setup of the physical system is shown in Figure 6. We
equipped an off-the-shelf 1/5 scale truck (Traxxas Maxx)
with an embedded computer (Nvidia TX2), three low-cost
webcams, a flight controller (Holybro Pixhawk) running the
APMRover firmware, and supporting electronics. The TX2
acquires images from the webcams and shares a bidirectional
communication channel with the Pixhawk. The Pixhawk
receives controls from either the TX2 or a human driver
and converts them to low-level PWM signals for the speed
controller and steering servo of the truck.

1) Data collection: During data collection the truck is
driven by a human. The images from all three cameras are
synchronized with the control signals and with GPS and IMU
data from the Pixhawk, and recorded to disk. The control
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Fig. 6. Physical system setup. Red/black indicate +/- power wires, green
indicates serial data connections, and blue indicates PWM control signals.

signals are passed through the TX2 to support noise injection
as described in Section IV-C. In addition, routing the control
through the TX2 ensures a similar delay in the training data
as during test time. For the physical system we use only
three command inputs (left, straight, right), since
only a three-way switch is available on the remote control.

2) Model evaluation: At test time the trained model is
evaluated on the TX2 in real time. It receives images from
the central webcam and commands (left, straight,
right) from the remote control. Figure 7(b) shows an ex-
ample image from the central camera. The network predicts
the appropriate controls in an end-to-end fashion based on
only the current image and the provided command. The
predicted control is forwarded to the Pixhawk, which controls
the car accordingly by sending the appropriate PWM signals
to the speed controller and steering servo.

(a) Left camera (b) Central camera (c) Right camera

Fig. 7. Images from the three cameras on the truck. All three cameras are
used for training, with appropriately adjusted steering commands. Only the
central camera is used at test time.

VI. EXPERIMENTS

A. Simulated Environment

1) Experimental setup: The use of the CARLA simulator
enables running the evaluation in an episodic setup. In
each episode, the agent is initialized at a new location and
has to drive to a given destination point, given high-level
turn commands from a topological planner. An episode is
considered successful if the agent reaches the goal within a
fixed time interval. In addition to success rate, we measured
driving quality by recording the average distance travelled
without infractions (collisions or veering outside the lane).

The two CARLA towns used in our experiments are
illustrated in Figure 5 and in the supplementary video. Town
1 is used for training, Town 2 is used exclusively for testing.

Success rate Km per infraction
Model Town 1 Town 2 Town 1 Town 2

Non-conditional 20% 26% 5.76 0.89
Goal-conditional 24% 30% 1.87 1.22

Ours branched 88% 64% 2.34 1.18

Ours cmd. input 78% 52% 3.97 1.30
Ours no noise 56% 22% 1.31 0.54
Ours no aug. 80% 0% 4.03 0.36
Ours shallow net 46% 14% 0.96 0.42

Table 1. Results in the simulated urban environment. We compare the
presented method to baseline approaches and perform an ablation study.
We measure the percentage of successful episodes and the average distance
(in km) driven between infractions. Higher is better in both cases, but
we rank methods based on success. The proposed branched architecture
outperforms the baselines and the ablated versions.

For evaluation, we used 50 pairs of start and goal locations
set at least 1 km apart, in each town.

Our training dataset comprises 2 hours of human driving
in Town 1 of which only 10% (roughly 12 minutes) contain
demonstrations with injected noise. Collecting training data
with strong injected noise was quite exhausting for the
human driver. However, a relatively small amount of such
data proved very effective in stabilizing the learned policy.

2) Results: We compare the branched command-
conditional architecture, as shown in Figure 3(b), with two
baseline approaches, as well as several ablated versions of
the full architecture. The two baselines are standard imitation
learning and goal-conditioned imitation learning. In standard
(non-conditional) imitation learning, the action a is predicted
from the observation o and the measurement m. In the goal-
conditional variant, the controller is additionally provided
with a vector pointing to the goal, in the car’s coordinate sys-
tem (the architecture follows Figure 3(a)). Ablated versions
include: a network with the command input architecture
instead of branched (see Figure 3), and three variants of
the branched network: trained without noise-injected data,
trained without data augmentation, and implemented with a
shallower network.

The results are summarized in Table 1. The controller that
is trained using standard imitation learning only completes
20% of the episodes in Town 1 and 24% in Town 2,
which is not surprising given its ignorance of the goal.
More interestingly, the goal-conditional controller, which is
provided with an accurate vector to the goal at every time
step during both training and at test time, is performing only
slightly better than the non-conditional controller, success-
fully completing 24% of the episodes in Town 1 and 30% in
Town 2. Qualitatively, this controller eventually veers off the
road attempting to shortcut to the goal. This also decreases
the number of kilometers the controller is able to traverse
without infractions. A simple feed-forward network does not
automatically learn to convert a vector pointing to the goal
into a sequence of turns.

The proposed branched command-conditional con-
troller performs significantly better than the baseline methods
in both towns, successfully completing 88% of the episodes
in Town 1 and 64% in Town 2. In terms of distance travelled
without infractions, in Town 2 the method is on par with
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baselines, while in Town 1 it is outperformed by the non-
conditional model. This difference is misleading: the non-
conditional model drives more cleanly because it is not
constrained to travel towards the goal and therefore typically
takes a simpler route at each intersection.

The ablation study shown in the bottom part of Table 1
reveals that all components of the proposed system are
important for good performance. The branched archi-
tecture reaches the goal more reliably than the command
input one. The addition of even a small amount of training
data with noise in the steering dramatically improves the
performance. (Recall that we have only 12 minutes of noisy
data out of the total of 2 hours.) Careful data augmentation
is crucial for generalization, even within Town 1, but much
more so in the previously unseen Town 2: the model without
data augmentation was not able to complete a single episode
there. Finally, a sufficiently deep network is needed to learn
the perceptuomotor mapping in the visually rich and complex
simulated urban environment.

B. Physical System
1) Experimental setup: The training dataset consists of 2

hours of driving the truck via remote control in a residential
area. Figure 8 shows a map with the route on which
the vehicle was evaluated. The route includes a total of
14 intersections with roughly the same number of left,
straight, and right.

We measure the performance in terms of missed inter-
sections, interventions, and time to complete the course. If
the robotic vehicle misses an intersection for the first time,
it is rerouted to get a second chance to do the turn. If it
manages to do the turn the second time, this is not counted as
a missed intersection but increases the time taken to complete
the route. However, if the vehicle misses the intersection for
the second time, this is counted as missed and we intervene to
drive the vehicle through the turn manually. Besides missed
intersections, we also intervene if the vehicle goes off the
road for more than five seconds or if it collides with an
obstacle. The models were all evaluated in overcast weather
conditions. The majority of training data was collected in
sunny weather.

2) Main results: We select the most important compar-
isons from the extensive evaluation performed in simulation
(Section VI-A) and perform them on the physical system.
Table 2 shows the results of several variants of command-
conditional imitation learning: branched and command
input architectures, as well as two ablated models, trained
without data augmentation or without noise-injected data.
It is evident that the branched architecture achieves the
best performance. The ablation experiments show the impact
of our noise injection method and augmentation strategy.
The model trained without noise injection is very unstable,
as indicated by the average number of interventions rising
from 0.67 to 8.67. Moreover, it misses almost 25% of the
intersections and takes double the time to complete the
course. The model trained without data augmentation fails
completely. The truck misses most intersections and very
frequently leaves the lane resulting in almost 40 interven-
tions. It takes more than four times longer to complete the

Fig. 8. A map of the primary route used for testing the physical system.
Intersections traversed by the truck are numbered according to their order
along the route. Colors indicate commands provided to the vehicle when it
approaches the intersection: blue = left, green = straight, orange =
right.

course. This extreme degradation highlights the importance
of generalization in real world settings with constantly
changing environmental conditions such as weather and
lighting. Proper data augmentation dramatically improves
performance given limited training data.

Model Missed turns Interventions Time

Ours branched 0% 0.67 2:19
Ours cmd. input 11.1% 2.33 4:13
Ours no noise 24.4% 8.67 4:39
Ours no aug. 73% 39 10:41

Table 2. Results on the physical system. Lower is better. We compare the
branched model to the simpler command input architecture and to
ablated versions (without noise injection and without data augmentation).
Average performance across 3 runs is reported for all models except for
“Ours no aug.”, for which we only performed 1 run to avoid breaking the
truck.

3) Generalization to new environments: Beyond the im-
plicit generalization to varying weather conditions that occur
naturally in the physical world, we also evaluate qualitatively
how well the model generalizes to previously unseen envi-
ronments with very different appearance. To this end, we
run the truck in three environments shown in Figure 9. The
truck is able to consistently follow the lane in all tested
environments and is responsive to commands. These and
other experiments are shown in the supplementary video.

Fig. 9. Testing in new environments with very different appearance.

VII. DISCUSSION

We proposed command-conditional imitation learning: an
approach to learning from expert demonstrations of low-level
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controls and high-level commands. At training time, the com-
mands resolve ambiguities in the perceptuomotor mapping,
thus facilitating learning. At test time, the commands serve
as a communication channel that can be used to direct the
controller.

We applied the presented approach to vision-based driving
of a physical robotic vehicle and in realistic simulations
of dynamic urban environments. Our results show that
the command-conditional formulation significantly improves
performance in both scenarios.

While the presented results are encouraging, they also re-
veal that significant room for progress remains. In particular,
more sophisticated and higher-capacity architectures along
with larger datasets will be necessary to support autonomous
urban driving on a large scale. We hope that the presented
approach to making driving policies more controllable will
prove useful in such deployment.

Our work has not addressed human guidance of au-
tonomous vehicles using natural language: a mode of human-
robot communication that has been explored in the litera-
ture [5], [14], [24], [34], [35]. We leave unstructured natural
language communication with autonomous vehicles as an
important direction for future work.
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