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Abstract

Large Language Models (LLMs) have demonstrated impressive capabilities across
various tasks, but fine-tuning them for domain-specific applications often requires
substantial domain-specific data that may be distributed across multiple organi-
zations. Federated Learning (FL) offers a privacy-preserving solution, but faces
challenges with computational constraints when applied to LLMs. Low-Rank Adap-
tation (LoRA) has emerged as a parameter-efficient fine-tuning approach, though a
single LoRA module often struggles with heterogeneous data across diverse do-
mains. This paper addresses two critical challenges in federated LoRA fine-tuning:
1. determining the optimal number and allocation of LoRA experts across hetero-
geneous clients, and 2. enabling clients to selectively utilize these experts based
on their specific data characteristics. We propose FedLEASE (Federated adap-
tive LoRA Expert Allocation and SElection), a novel framework that adaptively
clusters clients based on representation similarity to allocate and train domain-
specific LoRA experts. It also introduces an adaptive top-M Mixture-of-Experts
mechanism that allows each client to select the optimal number of utilized ex-
perts. Our extensive experiments on diverse benchmark datasets demonstrate that
FedLEASE significantly outperforms existing federated fine-tuning approaches in
heterogeneous client settings while maintaining communication efficiency.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range
of tasks, from natural language understanding and generation to reasoning and problem solving
[22, 38, 1, 39, 36]. Despite their impressive general abilities, these models often require fine-tuning
to achieve optimal performance in domain-specific applications and specialized tasks [18]. Fine-
tuning adapts pre-trained LLMs to particular domains, enhancing their performance on targeted tasks
by incorporating domain-specific knowledge and patterns. This process has proven essential for
applications in healthcare, finance, law, and science, where specialized expertise is required [9, 11].
However, effective fine-tuning typically requires large volumes of high-quality, domain-specific data,
which may be distributed across multiple organizations. In many real-world scenarios, such data
cannot be centralized due to privacy concerns or regulatory restrictions [43]. Federated Learning
(FL) [31, 28, 27, 4, 41, 47, 21, 25] has emerged as a promising solution to this challenge, enabling
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collaborative model training across distributed data sources without sharing the raw data. In FL,
clients train models locally using their private data and share only model updates with a central
server, thereby preserving data privacy while leveraging the collective knowledge embedded in the
distributed datasets.

The application of FL to LLM fine-tuning presents significant challenges due to the computational and
communication constraints inherent in federated settings. Full fine-tuning of LLMs, which typically
contain billions of parameters, is prohibitively expensive for many FL clients with limited resources.
This has led to growing interest in Parameter-Efficient Fine-Tuning (PEFT) methods [18], which
significantly reduce the number of trainable parameters. Among these PEFT approaches, Low-Rank
Adaptation (LoRA) [19] has gained substantial traction due to its simplicity and effectiveness. LoRA
introduces small trainable low-rank matrices alongside the frozen pre-trained weights, substantially
reducing the number of parameters that need to be updated during fine-tuning in FL settings [23].

Although LoRA enables efficient domain adaptation, recent studies [14, 33] show that a single LoRA
module often falls short in handling heterogeneous domains and complex tasks—especially in FL
settings where clients hold data from distinct domains. Existing FL methods [45, 5, 35, 16] largely
rely on a single shared LoRA module across all clients. While some personalized approaches [44]
combine global and local LoRA modules to address heterogeneity, such binary designs cannot capture
nuanced client similarities, where some clients share domain traits while others diverge significantly.
This oversimplification leads to suboptimal knowledge sharing and underutilization of the collective
learning potential. On the other hand, using too many LoRA experts—e.g., one per client—introduces
computational overhead and risks representational collapse due to redundancy [8]. These competing
constraints give rise to two key research questions: (1) Given heterogeneous client distributions,
what is the optimal number of LoRA experts to allocate, and how should clients contribute to their
training? Furthermore, client heterogeneity suggests that different clients may benefit from different
expert combinations, leading to a second question: (2) Given allocated experts, how can each client
dynamically determine the optimal number of experts to use based on its data characteristics?

To address these questions, we conducted extensive empirical analysis with heterogeneous clients in a
federated learning environment. Our analysis yielded two significant observations: First, clients with
similar domain characteristics should collaboratively train shared LoRA experts, while clients with
dissimilar data distributions should contribute to distinct experts. Second, different clients require
different numbers of experts to achieve optimal performance, necessitating an adaptive approach
to expert utilization rather than a fixed selection strategy. Based on these insights, we propose
FedLEASE (short for Federated adaptive Lora Expert Allocation and SElection), a novel framework
for federated LoRA fine-tuning that systematically addresses both research questions. For the first
problem of optimal expert allocation, we introduce a principled data-driven approach that determines
both how many experts are needed and which clients should collaborate on each expert. FedLEASE
implements a brief initial training phase followed by mathematical clustering of clients based on
their LoRA parameter similarity. This process leverages the silhouette coefficient to identify the
optimal number of experts while ensuring clients with similar task characteristics contribute to shared
experts. For the second problem, we introduce a novel adaptive top-M mechanism that transforms the
conventional Mixture-of-Experts (MoE) paradigm [20]. While traditional MoE approaches require
manually specifying a fixed number of experts (top-k) for all inputs—a significant limitation in
heterogeneous federated settings—our adaptive mechanism automatically determines the optimal
number of experts for each client based on their specific data characteristics. Through an innovative
router architecture that expands the output space from RM×d to R(2M−1)×d, our approach enables
dynamic expert selection ranging from a single expert to the full ensemble while guaranteeing
the inclusion of each client’s assigned expert. Together, these innovations create a comprehensive
solution to the dual challenges of expert allocation and selection in federated LoRA fine-tuning. Our
contributions can be summarized as follows:

• We identify and formalize two key challenges in federated LoRA fine-tuning: allocation of
LoRA experts, and enabling clients to selectively utilize them based on data characteristics.

• We propose FedLEASE, a novel framework that clusters clients to train domain-specific
LoRA experts and enables flexible expert selection via an adaptive top-M MoE mechanism.

• Extensive experiments on diverse benchmarks demonstrate that FedLEASE consistently
outperforms existing federated fine-tuning methods, achieving superior performance in
heterogeneous settings while maintaining communication efficiency.
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2 Related Works

Parameter-Efficient Fine-Tuning. Parameter-efficient fine-tuning (PEFT) reduces the cost of
adapting large language models by updating only a small subset of parameters while freezing the
rest [18]. Common PEFT techniques include adapters [12, 13], prefix-tuning [24, 26], and low-rank
adaptation (LoRA) [19, 29]. LoRA injects trainable low-rank matrices into pre-trained weights,
significantly cutting trainable parameters and computation. However, a single LoRA module can
struggle with diverse domains and complex tasks [14, 29, 37], prompting Mixture-of-Experts (MoE)
extensions that combine multiple small LoRA modules [29, 37]. Conversely, too many experts may
introduce redundancy and collapse representations [8]. These centralized findings motivate our study
of optimal LoRA deployment under heterogeneous data distributions in federated learning.

PEFT in Federated Learning. PEFT methods have become particularly suitable for resource-
constrained federated learning settings by adjusting only a small number of lightweight parameters
while keeping most pre-trained parameters unchanged. Various PEFT approaches have been integrated
within FL frameworks [3], such as prompt-based fine-tuning [46, 17] and adapter-based tuning
techniques [7, 6]. In this paper, we focus specifically on LoRA-based approaches in FL. FedIT [45]
pioneered this direction by combining LoRA with the standard FedAvg algorithm, demonstrating its
viability in distributed settings. Subsequent works like [42, 5] attempted to further enhance LoRA
in FL by addressing challenges related to inexact server aggregation. Other research efforts [16]
have investigated LoRA’s application in data heterogeneous settings, but primarily focused on the
relatively simpler label distribution non-IID scenario, where clients share the same underlying task
but differ in their label distributions. Our work addresses a more complex and realistic scenario
where clients may possess data from both similar and different tasks, representing true domain
heterogeneity. Unlike prior works that typically employ a binary global-local architecture [44], we
investigate the fundamental question of determining the optimal number and allocation of LoRA
experts given heterogeneous client distributions. Additionally, while existing approaches apply the
same aggregation strategy to all clients regardless of their data characteristics, our method adaptively
determines client groupings and enables adaptive expert selection based on client-specific needs.

3 Preliminary and Motivation

3.1 LoRA and MoE Integration
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Figure 1: Illustration of LoRA-MoE mechanism.

Low-Rank Adaptation (LoRA) [19] has been
proven to achieve comparable performance to
full fine-tuning by inserting trainable low-rank
matrices into each layer of a pre-trained model.
For a pre-trained model with parameters W0 ∈
Rl×d, where d is the input dimension and l is the
output dimension, LoRA introduces two sequen-
tial low-rank matrices A ∈ Rr×d and B ∈ Rl×r

to fit the residual weights for adaptation, where
r ≪ min(d, l). The forward computation is
expressed as: y = W0x+BAx, where A is typ-
ically initialized with random Gaussian values,
while B is initialized to zero to ensure a stable start to the fine-tuning process. Although LoRA
performance is comparable to full fine-tuning in many scenarios, its effectiveness can significantly
deteriorate when applied to heterogeneous data containing multiple tasks with different corpora. The
performance gap between LoRA and full fine-tuning widens in such complex setting [2].

Recent research [37, 29] has explored integrating LoRA with MoE to address multi-domain adaptation
challenges. In this integration, each expert in the MoE framework is implemented as a separate LoRA
module rather than as a full neural network. A router network computes routing probabilities and the
forward computation for such a LoRA-MoE system can be expressed as:

y = W0x+
∑
i

pi(x) ·BiAix, (1)

where pi(x) is the routing probability for expert i, and Ai ∈ Rr×d and Bi ∈ Rl×r are the low-rank
matrices for the i-th LoRA expert. A extended top-k MoE mechanism selects the LoRA experts
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based on top-k routing probabilities for each input, where k is a fixed and pre-defined number. This
integration offers significant advantages for handling diverse domains by leveraging different LoRA
experts for different input types while maintaining the parameter efficiency of LoRA. In centralized
settings, this approach has shown promising results for multi-domain adaptation [37]. However,
applying LoRA-MoE in federated learning introduces unique challenges, particularly in determining
the optimal number of experts, their allocation across heterogeneous clients, and how many experts
each client should utilize based on their specific data.

3.2 Heterogeneous Federated Fine-tuning Scenario

Consider a system with N clients, where each client i ∈ {1, 2, ..., N} possesses a local dataset
Di = (xi

j , y
i
j)

|Di|
j=1

, with each dataset potentially originating from similar or heterogeneous tasks. The
goal of heterogeneous federated fine-tuning is to obtain models for each client that perform well on
their respective data distributions. This can be formulated as the following optimization problem:
minW L(W) =

∑N
i=1

|Di|
|D| Li(Wi), where Li is the local loss function for client i, |D| =

∑N
i=1 |Di|

is the total size of data across all clients, andW = {Wi}Ni=1 denotes the set of fine-tuned models.

3.3 Observations

The objective of this work is to address two key problems of LoRA in complex heterogeneous
federated learning settings: (1) determining the optimal number and allocation of LoRA experts,
and (2) enabling each client to selectively utilize these experts according to their specific data
characteristics. To investigate these issues, we conduct empirical studies that yield important insights.

Observation 1: Clients with similar tasks/domains should contribute to the same LoRA expert
through averaging, while those with different ones should be assigned to different LoRA experts.
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Figure 2: Performance comparison between FedIT
and FedLORA-MoE under two scenarios with dif-
ferent clients’ task heterogeneity.

In realistic federated learning settings,
client heterogeneity often goes beyond sim-
ple label distribution shifts and encom-
passes fundamental task differences. To ex-
amine this, we designed two experimental
scenarios. Scenario 1 involved four clients,
each assigned a different GLUE task (SST-
2, QNLI, MRPC, QQP) [40], represent-
ing a task-heterogeneous setting. Scenario
2 used four clients all holding data from
the same task (QNLI), thereby represent-
ing a task-homogeneous setting. For each
scenario, we compared two methods: (1)
FedIT [45], where each client trains a sin-
gle shareable LoRA module that is averaged at the server, and (2) FedLoRA-MoE, where clients
train individual LoRA modules without averaging. Instead, all modules are shared, and each client
trains a MoE router to dynamically combine its own module with others’.

As shown in Figure 2, our experimental results indicate that in Scenario 1, FedIT performs signifi-
cantly worse than FedLoRA-MoE, suggesting that clients with different tasks struggle to contribute
effectively to a single shared LoRA module. This observation is consistent with findings in centralized
settings [14, 37], where a single LoRA module proves insufficient for handling diverse domains.
Conversely, in Scenario 2, FedIT outperforms FedLoRA-MoE, suggesting that using separate LoRA
experts for homogeneous clients may be redundant and can degrade performance while increasing
inference overhead, which aligns with results from [8]. These findings offer key insights into expert
allocation strategies under varying task heterogeneity in FL.

Observation 2: Task heterogeneity among clients can be detected through representation
similarity of LoRA B matrices after brief local training.

We observe that task similarity between clients can be effectively assessed by computing the cosine
similarity of their LoRA B matrices after a short period of local training. To validate this, we
conducted an experiment with four clients: two using the SST-2 dataset and two using the QNLI
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Figure 3: Visualization result of cosine similarity among clients using different LoRA matrices.
Note that client 0 and 1 hold data from SST-2 and client 2 and 3 hold data from QNLI.

dataset. As shown in Figure 3, clients working on the same task develop highly similar LoRA B
matrices, while those working on different tasks exhibit significantly lower similarity. Interestingly,
this pattern is exclusive to the LoRA B matrices; the A matrices show no consistent relationship
with task similarity. This observation supports findings in [37, 16], which suggest that the output
transformation matrix B captures task-specific information, whereas the input matrix A tends to
encode general linguistic features shared across tasks. Although a similar task-specific pattern can be
observed by analyzing the product BA, this requires matrix multiplication and full-rank projection
recovery, which incurs significantly higher computational cost. In contrast, using the B matrices
alone provides a lightweight yet effective proxy for task similarity, making it more practical in FL.

Observation 3: Clients utilize varying numbers of LoRA experts for optimal performance.
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Figure 4: Comparison on accuracy of clients
using different top-k strategies under the task-
heterogeneous setting.

To investigate our second research question, we
conducted additional experiments under the task-
heterogeneous setting (Scenario 1) using the
FedLoRA-MoE approach. We varied the top-k
parameter in the MoE router, testing values of
k = 2, 3, 4 (where k = 4 corresponds to using
all available experts). As shown in Figure 4,
different clients achieve optimal performance
at different k values—some benefit most from
k = 2, while others perform better with k = 3
or k = 4. This result highlights that even if the
total number of trained LoRA experts is fixed,
clients have varying needs regarding how many
experts they should utilize. A static top-k se-
lection strategy is therefore suboptimal across
all clients. These findings motivate the design
of an adaptive expert selection mechanism that
dynamically determines the optimal number of
experts for each client based on its specific data characteristics.

4 Proposed Method

In this section, we describe the framework design of our proposed method FedLEASE by explaining
how it addresses the two important challenges in complex federated fine-tuning settings. A theoretical
analysis of the proposed method can be found in Section F.

4.1 Adaptive LoRA Experts Allocation

A fundamental challenge in federated LoRA fine-tuning is determining the optimal number of experts
and identifying which clients should contribute to each expert. We address this challenge through a
systematic data-driven approach that analyzes similarity patterns in client-specific adaptations. Our
method begins with a brief initialization phase where each client i ∈ {1, 2, . . . , N} independently
trains a LoRA module (Ai, Bi) for E epochs using its local dataset Di. This phase serves to capture
initial task-specific adaptations in the LoRA parameters. Upon completion, each client transmits its
LoRA parameters to the central server.
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Figure 5: Illustration of our proposed adaptive LoRA experts allocation and top-M experts
selection mechanism. Average Singe LoRA and Individual LoRA shows the LoRA experts
allocation strategies employed by FedIT and FedLoRA-MoE respectively as described in Section 3.3.
Vanilla Top-2 Router is an example of the MoE-based fixed top-k LoRA experts selection strategy.

Based on the observations in Section 3.3, the Bi matrices exhibit distinct similarity patterns that align
with underlying task relationships. Accordingly, we define a distance metric between clients i and j
using cosine similarity across all layers:

d(i, j) =
1

|L|
∑
l∈L

(
1−

Bl
i ·Bl

j

∥Bl
i∥ · ∥Bl

j∥

)
, (2)

where L is the set of model layers, Bl
i is the flattened Bi matrix at layer l, and ∥ · ∥ denotes the

Euclidean norm. To identify the optimal expert allocation, we systematically evaluate all potential
clustering configurations. For each possible number of clusters k ∈ {2, 3, . . . ,Mmax}, where Mmax

should be set to satisfy the maximum number of LoRA modules given the limited computation
resources of clients, we apply Agglomerative Hierarchical Clustering [32] to partition clients Ck =
Cluster({Bi}Ni=1, d, k), resulting in k clusters Ck = {Ck

1 , C
k
2 , . . . , C

k
k}.

We evaluate the quality of each clustering configuration using the silhouette coefficient [34], which
measures how well each client fits within its assigned cluster relative to others. The average silhouette
score for a k-cluster configuration is defined as S(k) = 1

N

∑N
i=1 s

k(i), where sk(i) is the silhouette

coefficient for client i given by sk(i) = bk(i)−ak(i)
max(ak(i),bk(i))

. Here, ak(i) denotes the average dissimilarity
between client i and all other clients in the same cluster (intra-cluster cohesion), while bk(i) is the
minimum average dissimilarity between client i and clients in other clusters (inter-cluster separation).

The optimal number of experts M = argmax
2≤k≤Mmax

S(k) is selected as the k that maximizes the average

score. This approach ensures that we identify both the optimal number of experts needed and
the most coherent grouping of clients based on their adaptation patterns. A high silhouette score
indicates that clients within the same cluster exhibit similar adaptation characteristics, while clients
in different clusters show distinct patterns. Once the optimal clustering CM = {CM

1 , CM
2 , . . . , CM

M }
is determined, we initialize each LoRA by aggregating the clients within the corresponding cluster:

Aexpert
j =

1

|CM
j |

∑
i∈CM

j

Ai, Bexpert
j =

1

|CM
j |

∑
i∈CM

j

Bi (3)

The server then distributes the experts along with their cluster assignment information. This approach
effectively balances between having too few experts (which would fail to capture domain diversity)
and too many experts (which would lead to redundancy and inefficient parameter usage).
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4.2 Adaptive top-M LoRA Experts

Having addressed the first critical question of expert allocation in the previous section, we now turn
our attention to the second challenge: how can each client selectively utilize these experts based on its
specific data characteristics? This question is particularly important as our observation 3 demonstrated
that different clients require different numbers of experts to achieve optimal performance.

After receiving the allocated LoRA experts, each client enters the main training phase with access to
all M experts. During this phase, each client only updates its assigned LoRA expert while leveraging
knowledge from other experts to enhance performance on its local data distribution. The challenge
lies in determining how many and which experts each client should selectively utilize, as a fixed top-k
selection strategy proves suboptimal across heterogeneous clients. A standard Mixture-of-Experts
approach with top-k selection would formulate the forward computation as:

y = W0x+
∑

i∈TopK(ω,k)

ωiBiAix, (4)

where ω = (ω1, . . . , ωM ) denotes the routing weights computed as ωi = softmax(Gix) with
Gi ∈ RM×d being the trainable router.

This standard approach, however, presents two limitations in our context: (1) it requires manual
tuning of k for each client, which is impractical in federated settings, and (2) it does not guarantee
the inclusion of the client’s assigned expert, which is essential for effective parameter updates.
We address these limitations through an innovative adaptive routing mechanism that ensures the
client’s assigned expert is always selected while dynamically determining the appropriate number
of additional experts to utilize. Instead of employing a conventional router with dimensions RM×d,
we expand the router’s output space to R(2M−1)×d, where the first M outputs are connected to the
client’s assigned expert, while the remaining M − 1 outputs correspond to the other experts.

Formally, our adaptive routing mechanism is expressed as:

y = W0x+
∑

i∈TopK(ω̂,M)

ω̂i ·
{
BjAjx, if i < M

Bi−M+1Ai−M+1x, if i ≥M
, (5)

where ω̂ = softmax(Gix) ∈ R2M−1 and j denotes the expert index assigned to the client.

An illustration of the proposed adaptive top-M mechanism is shown in Figure 5. The proposed
router ω̂ ∈ R2M−1 allows each client to decide, for every input, how many and which experts
contribute, instead of relying on a globally fixed k. When the top-ranked scores lie among the first M
entries of ω̂, the computation is dominated by the client’s own assigned expert Ej . When large scores
appear in the remaining M−1 positions, the client leverages additional experts. Intermediate cases
arise naturally: if the router selects p of the first M entries (i.e., p internal components of the assigned
expert Ej) together with M−p entries from the other experts, then in effect M−p+1 unique experts
participate in the forward computation.

To make the mechanism more concrete, consider a case with M=3 experts {E1, E2, E3} and a client
whose assigned expert is E1. The router produces

ω̂ =
[

ω̂E1
1 , ω̂E1

2 , ω̂E1
3︸ ︷︷ ︸

connected to assigned expert E1

, ω̂E2
4 , ω̂E3

5︸ ︷︷ ︸
connected to other expertsE2,E3

]
where the first three entries are independently learned routing scores corresponding to distinct internal
components of the assigned expert E1 (all routed to B1A1x), and the last two correspond to the other
experts E2 and E3 (routed to B2A2x and B3A3x). With different input samples inducing different
routing score distributions, our proposed top-M mechanism can accordingly select different expert
combinations:

• Sample 1: if the top-3 are ω̂E1
1 , ω̂E1

2 , ω̂E1
3 , then only the assigned expert E1 contributes.

• Sample 2: if the top-3 are ω̂E1
1 , ω̂E1

2 , ω̂E2
4 , then two unique experts {E1, E2} are selected.

• Sample 3: if the top-3 are ω̂E1
2 , ω̂E2

4 , ω̂E3
5 , then all three experts {E1, E2, E3} participate.

This mechanism guarantees that each client’s designated expert Ej always participates—facilitating
stable local updates—while allowing flexible, data-driven cooperation with other experts. By enabling
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the router to balance the internal components of Ej with the contributions from the remaining
{Em}m̸=j , the method adapts to both input complexity and inter-client heterogeneity, avoiding any
manual tuning of k and achieving effective expert utilization for federated fine-tuning.

4.3 Algorithm Workflow

FedLEASE operates in two phases: initialization and iterative training. A detailed Algorithm 1 can
be found in Section A.

Server Operations. In the initialization phase, the server clusters clients based on the similarity of
their initial Bi matrices using the silhouette-based method in Section 4.1, yielding M clusters C =
{C1, . . . , CM}. For each cluster Cj , expert parameters (Aexpert

j , Bexpert
j ) are initialized by averaging

LoRA modules within the cluster and distributed to all clients along with cluster assignments.

In each communication round, the server receives updated expert parameters and router networks
from clients and performs within-cluster aggregation. The updated experts and routers are then
broadcast to clients for the next training round.

Client Operations. Each client i begins with E epochs of local fine-tuning to obtain (Ai, Bi). After
clustering, the client receives the full set of experts and its assigned cluster ID. During local training,
client i updates only its assigned expert and the corresponding router Gi

j ∈ R(2M−1)×d, keeping
all other experts fixed. Using the adaptive top-M strategy in Section 4.2, each client dynamically
determines how many experts to utilize, ranging from just one to all M , based on its local data. Upon
completion, only the updated expert and router are uploaded to the server.

5 Experiment

In this section, we evaluate the performance of FedLEASE, against baseline methods on two types of
datasets: natural language understanding (NLU) and natural language generation (NLG).

5.1 Training Details

For the NLU task, we use RoBERTa [30] as the pre-trained model and fine-tune it on the GLUE
benchmark [40]. For the NLG task, we adopt LLaMA2 [39] as the pre-trained model and fine-tune it
on the FLAN dataset [10]. All experiments are conducted on eight NVIDIA A100 GPUs.

NLU Task. We consider 16 clients in total, with four clients assigned to each of the four GLUE
datasets. Each client’s data is randomly partitioned from the corresponding full dataset. RoBERTa-
Large (355M) [30] (24 transformer layers) from HuggingFace is used as the base model. AdamW is
adopted as the optimizer for all methods, with a batch size of 128, local epochs set to 2, and a total
of 25 communication rounds. Following [35], LoRA is applied to the query and value projections
in the attention layers, and the classification head is frozen after initialization. For our method,
the upper bound of experts Mmax is set to 8 and the LoRA rank to 4. Baselines are configured
to ensure comparable computational workloads. Learning rates are selected via grid search from
η ∈ {1E−4, 3E−4, 5E−4, 1E−3, 3E−3, 5E−3}. Accuracy is utilized as the evaluation metric.

NLG Tasks. For NLG tasks, we use LLaMA-2-7B [39] with 8-bit quantization (32 transformer
layers) from Hugging Face as the base model and select four FLAN datasets—Text Editing, Struct to
Text, Sentiment Analysis, and Commonsense Reasoning—to construct a heterogeneous client setting.
A total of 8 clients are considered, with each dataset assigned to two clients. Each client has 600
training samples and 200 test samples. All methods use AdamW as the optimizer, with a batch size
of 8, local epochs set to 2, 10 communication rounds and the upper bound of experts Mmax is set to
8. LoRA is applied to the query and value matrices in the attention layers, with a LoRA rank of 8.
Learning rates are selected via grid search from η ∈ {1E−4, 3E−4, 1E−3, 3E−3, 1E−2}. Followed
by [44], we choose ROUGE-1 as the evaluation metric.

Baseline Methods. To assess the effectiveness of FedLEASE, we compare it with the following
state-of-the-art federated LoRA fine-tuning methods: FedIT [45], FedSA [16], FFA-LoRA [35], and
FedDPA [44]. Additionally, we include a clustered federated learning method, IFCA [15], and adapt
it with LoRA fine-tuning as a baseline, denoted as IFCA + LoRA.
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5.2 Natural Language Understanding

We evaluate our method on four GLUE [40] benchmark datasets: SST-2, QNLI, MRPC, and QQP.
Unlike prior works such as FedSA, which assume clients differ only in label distribution, we adopt a
more realistic heterogeneous setting, where each client is assigned a different dataset from the four.
The setup includes 16 clients in total, with four clients per dataset. Each client’s data is randomly
partitioned from the full corresponding dataset. We use RoBERTa-Large (355M) [30] from the
HuggingFace library as the base model. Additional training details are provided in Section 5.1.

Performance Comparison. Table 1 summarizes the results on the NLU tasks. FedLEASE con-
sistently outperforms all baselines, both in terms of average performance and on each individual
dataset. Notably, it achieves an average improvement of 3.16% over the strongest baseline across
the four GLUE tasks. These gains are attributed to two key innovations: (1) clients with similar
data distributions are grouped to collaboratively train a shared expert, while clients with distinct data
contribute to different LoRA experts; and (2) an adaptive top-M expert selection strategy that enables
each client to personalize expert usage based on its local data. Although IFCA+LoRA incorporates
client clustering, it falls short of FedLEASE due to its lack of cross-cluster knowledge transfer,
resulting in isolated learning and reduced generalization. In contrast, FedLEASE allows clients to
dynamically leverage experts, facilitating effective cross-task knowledge sharing. These improve-
ments are achieved without additional computational or communication overhead, highlighting the
scalability and efficiency of FedLEASE.

Table 2: Ablation on adaptive expert allocation.

Method # Experts % Param Performance (%)
FedLoRA-Single (r = 4) 1 0.1106% 82.00
FedLoRA-Single (r = 16) 1 0.4426% 83.84
FedLoRA-Individual 16 0.3320% 80.69
FedLEASE (w/o adaptive top-M ) 4 0.1383% 85.91
FedLEASE (Ours) 4 0.2075% 87.76

Ablation on Adaptive Expert Allocation.
FedLEASE assigns 16 clients to 4 experts based
on clustering results (illustrated in Section B).
To evaluate the impact of expert training allo-
cation, we compare against the following alter-
natives: FedLoRA-Single: A single expert is
trained with contributions from all clients. To
ensure fair comparison, we test two variants with
different LoRA ranks: FedLoRA-Single (r = 4) and FedLoRA-Single (r = 16). FedLoRA-Individual:
Each client trains a separate expert, resulting in 16 experts and one-to-one client-expert mapping.
FedLEASE (w/o adaptive top-M ): Uses the same expert allocation as FedLEASE but replaces
adaptive top-M router with vanilla fixed top-2. Results in Table 2 show that our clustering-based
expert allocation achieves the best performance, even without the adaptive top-M mechanism. Both
FedLoRA-Single variants underperform due to limited capacity to model heterogeneous data, while
FedLoRA-Individual, despite higher computational cost, still lags behind FedLEASE, validating the
effectiveness of our clustering strategy in balancing knowledge sharing and task specificity.

We also evaluate router aggregation strategies. Compared to maintaining individual routers per
client, our approach—averaging router networks within each group—achieves better performance
(Figure 6a), confirming the benefit of shared routing among clients with similar data.

Ablation on Adaptive top-M Mechanism. We assess the effectiveness of our adaptive top-M
mechanism by comparing it with fixed top-k strategies (top-1 through top-4). As shown in Figure 6b,
different clients achieve optimal performance with different k values—for example, clients with QQP
dataset perform best with top-2, whereas those with MRPC dataset benefit more from top-4. Notably,
all fixed top-k strategies except top-1 achieve comparable performance and outperform baseline
methods reported in Table 1, also highlighting the importance of the expert allocation strategy. In
contrast, our adaptive top-M mechanism consistently surpasses all fixed strategies across clients,
demonstrating its capability to dynamically select the optimal number of experts per input. To further
illustrate this adaptivity, Figure 6c visualizes expert selection across layers for 16 clients in our main
experiment. The patterns show substantial variation both across clients and across layers within the

Table 1: Performance on GLUE dataset (RoBERTa-Large-355M).
Methods % Param SST-2 QNLI MRPC QQP Average ∆

FedIT [45] 0.2213% 93.33 ± 0.38 85.43 ± 1.41 76.35 ± 2.58 73.82 ± 4.01 82.23 ± 2.10 -
FFA-LoRA [35] 0.1107% 90.32 ± 0.83 77.53 ± 2.18 78.45 ± 0.84 77.95 ± 2.15 81.06 ± 1.50 -1.17
FedDPA [44] 0.2213% 91.90 ± 0.43 83.13 ± 0.69 81.60 ± 1.61 81.35 ± 1.22 84.49 ± 0.99 +2.26
FedSA [16] 0.2213% 91.97 ± 0.81 82.70 ± 0.53 82.08 ± 1.51 81.65 ± 1.37 84.60 ± 1.05 +2.37
IFCA+LoRA [15] 0.2213% 92.95 ± 0.50 85.90 ± 0.64 78.63 ± 2.38 80.42 ± 1.30 84.48 ± 1.21 +2.25
FedLEASE 0.2075% 93.33 ± 0.30 87.22 ± 1.16 86.93 ± 0.68 83.57 ± 0.96 87.76 ± 0.78 +5.53
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Figure 6: Ablation on router aggregation strategies and adaptive top-M mechanism.

same client—some layers rely on a single expert, while others combine multiple. Client ID 0-3, 4-7,
8-11 and 12-15 correspond to SST-2, QNLI, MRPC and QQP, respectively. Specifically, we can
observe that: 1. Vertical trend: As layers deepen, the average number of activated LoRA experts
tends to increase; 2. Horizontal trend: As task difficulty increases (reflected by decreasing accuracy
from SST-2 to QQP in Table 1), the average number of activated LoRA experts also increases; 3.
Cluster-level: Since we aggregate the router within each cluster group during server aggregation,
rather than maintaining each client’s individual one, clients within the same cluster tend to exhibit
similar but not identical expert selection patterns. This fine-grained adaptivity underscores the
limitations of fixed top-k approaches and confirms the necessity of our adaptive top-M mechanism.

We also conduct sensitivity analysis to evaluate the robustness of our method under various settings.
Due to space constraints, results examining the effects of local epochs, LoRA rank, number of clients,
data heterogeneity, and the expert upper bound Mmax are provided in Section C.

5.3 Natural Language Generation

Table 3: Performance on FLAN dataset (LLaMA-2-7B).

Methods % Param Text Struct to Sentiment Commonsense AverageEditing Text Analysis Reasoning

FedIT [45] 0.0622% 59.30 52.14 43.95 73.95 57.33
FFA-LoRA [35] 0.0311% 59.37 50.86 41.23 72.61 56.02
FedDPA [44] 0.0622% 65.30 53.40 47.68 72.84 59.81
FedSA [16] 0.0622% 64.82 54.48 46.70 74.81 60.20
IFCA + LoRA [15] 0.0622% 66.56 53.46 46.17 72.73 59.73

FedLEASE (Ours) 0.0584% 67.08 54.94 48.13 76.66 61.70

In addition to NLU tasks, we evaluate
our method on NLG tasks. We adopt
LLaMA-2-7B [39] as the base model
and use four FLAN datasets—Text
Editing, Struct to Text, Sentiment
Analysis, and Commonsense Reason-
ing—to construct a heterogeneous
client setting. We consider 8 clients
in total, with each dataset assigned to
two clients. Training details are provided in Section 5.1. As shown in Table 3, FedLEASE consistently
outperforms all baselines on NLG tasks. Compared to the strongest overall baseline, FedLEASE
achieves gains of 2.26%, 0.46%, 1.43%, and 1.85% on Text Editing, Struct to Text, Sentiment
Analysis, and Commonsense Reasoning, respectively. On average, FedLEASE improves by 1.50%,
highlighting its ability to handle heterogeneous client data across both classification and generation
tasks, demonstrating its generalizability beyond NLU.

6 Conclusion

We presented FedLEASE, a novel framework addressing key challenges in federated LoRA fine-
tuning for heterogeneous clients. Our approach combines intelligent client clustering for optimal
expert allocation with an adaptive top-M mechanism that dynamically determines expert selection
based on client-specific needs. Extensive experiments on NLU and NLG tasks demonstrate that
FedLEASE consistently outperforms existing approaches across diverse datasets while maintaining
communication efficiency. Our method effectively balances knowledge sharing and domain specificity.
Future work could explore dynamic clustering techniques, additional parameter-efficient fine-tuning
methods, and further communication optimizations for resource-constrained federated settings.
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expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions—(1) a
clustering-based LoRA expert allocation strategy and (2) an adaptive top-M expert selection
mechanism.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We include a limitation disucssion in section E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: section F presents formal assumptions (smoothness, convexity, bounded
sensitivity, and cluster stability) and provides a complete convergence proof for the proposed
method.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In ??, we detail the model architectures, datasets, hyperparameters, optimizer
settings, and evaluation metrics needed to reproduce the results.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include our proposed method’s code in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details can be found in ??.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Tables 1 and 3 include standard deviations for all performance metrics, and in
Section 5 we reference statistical variance across runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The sufficient information on the computing resources can be found in ??.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is foundational research which has no negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper appropriately cites and references all datasets (GLUE, FLAN) and
pre-trained models (RoBERTa, LLaMA2).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include the code for proposed method in the supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The Algorithm of FedLEASE

The algorithm of proposed FedLEASE is summarized in Algorithm 1.

Algorithm 1 FedLEASE: Federated Low-Rank Expert Learning

1: Initialization Phase:
2: Server initializes model parameters {Aj ,Bj}Mj=1

3: for each client i ∈ {1, . . . , N} do
4: Client i performs local training on (Ai,Bi) for E epochs
5: Client i sends trained parameters (Ai,Bi) to the server
6: end for
7: Server computes distance d(i, j) using cosine similarity:

8: d(i, j) = 1
|L|
∑

l∈L

(
1− Bl

i·B
l
j

∥Bl
i∥∥Bl

j∥

)
9: Server determines optimal number of experts M using silhouette scores

10: Server clusters clients using Agglomerative Hierarchical Clustering:
11: {C1, . . . , CM} ← Cluster({Bi}Ni=1, d,M)
12: Server aggregates expert parameters per cluster:
13: Aexpert

j ← 1
|Cj |

∑
i∈Cj

Ai, B
expert
j ← 1

|Cj |
∑

i∈Cj
Bi

14: Iterative Training Phase:
15: for each communication round t = 1, 2, . . . , T do
16: for each client i ∈ {1, . . . , N} with i ∈ Cj do
17: Client i receives all expert parameters {(Aexpert

k ,Bexpert
k )}Mk=1

18: Client i uses local router Gi ∈ R(2M−1)×d

19: Client i trains assigned expert j parameters and router Gi locally
20: Compute adaptive routing with weights ω̂ ← softmax(Gix) ∈ R2M−1

21: Output:

22: y ←W0x+
∑

p∈TopK(ω̂,M) ω̂p ·

{
Bexpert

j Aexpert
j x, if p < M

Bexpert
p−M+1A

expert
p−M+1x, if p ≥M

23: Client i uploads updated parameters (Ai
j ,B

i
j) to server

24: end for
25: for each expert j = 1, . . . ,M do
26: Server aggregates expert parameters:
27: Aexpert

j ← 1
|Cj |

∑
i∈Cj

Ai
j , Bexpert

j ← 1
|Cj |

∑
i∈Cj

Bi
j

28: end for
29: end for

B Clustering Results

Our clustering analysis reveals natural groupings of clients based on the cosine similarity of their
LoRA B matrices. Figure 7 presents a comprehensive visualization of the clustering results using
three complementary approaches.

Figure 7(a) shows the Silhouette scores for different numbers of clusters, ranging from k = 2 to
k = 8. The Silhouette score, which measures how similar objects are to their assigned cluster
compared to other clusters, peaks at k = 4, indicating that 4 is the optimal number of clusters for the
main experiments setting. This finding suggests that clients naturally form 4 distinct groups based
on their model adaptations. In Figure 7(b), we visualize the distance matrix derived from cosine
similarity between client LoRA B matrices. The heatmap reveals clear block diagonal structures,
which further supports the existence of distinct client clusters. The darker squares along the diagonal
represent groups of clients with high intra-cluster similarity, while lighter colors indicate greater
dissimilarity between different clusters.

Finally, Figure 7(c) presents a hierarchical clustering dendrogram based on the same cosine similarity
measure. The dendrogram provides an alternative view of client relationships, illustrating how clients
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progressively merge into larger groups. The vertical axis represents the distance at which clusters are
combined, with longer vertical lines indicating greater separation between clusters.

These clustering results provide strong evidence for natural groupings of clients, suggesting an
optimal clustering of clients into 4 distinct groups. To ensure robustness of our findings, all results
presented are averaged across 5 independent runs with different random initializations.
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numbers of clusters, showing opti-
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(b) Heatmap of distance matrix de-
rived from cosine similarity between
client LoRA B matrices.
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(c) Hierarchical clustering dendro-
gram based on cosine similarity of
client LoRA B matrices.

Figure 7: Visualization of client clustering results based on cosine similarity of LoRA B matrices.

While clustering is indeed an essential component of our proposed method—playing a key role in
expert allocation based on client similarity—the specific choice of clustering algorithm is not the
focus of our contribution. Our observations in Section 3.3 suggest that as long as the method captures
pairwise similarity between clients (e.g., via LoRA B matrices), the overall performance is relatively
robust to the particular clustering strategy.

We adopt Agglomerative Hierarchical Clustering due to its ability to operate directly on pairwise
distances without requiring pre-defined centroids. To validate the generality of our approach, we
also applied Spectral Clustering, which similarly supports pairwise similarity inputs, and observed
comparable performance. Tables 4 and 5 below demonstrate that both clustering methods achieve
similar silhouette scores and downstream performance, reinforcing that our performance gains stem
primarily from the expert allocation and adaptive top- selection mechanisms, rather than the specific
clustering algorithm used.

Table 4: Silhouette Scores Comparison
Clustering Method 2 3 4 5 6 7 8
Spectral Clustering 0.0585 0.0820 0.1023 0.0739 0.0637 0.0549 0.0218
Agglomerative Hierarchical Clustering 0.0599 0.0884 0.1066 0.0965 0.0854 0.0747 0.0660

Table 5: Performance Comparison
Clustering Method SST2 QNLI MRPC QQP Average
Spectral Clustering 93.97 86.63 86.48 83.40 87.62
Agglomerative Hierarchical Clustering 93.33 87.22 86.93 83.57 87.76

C Sensitivity Analysis

In this section, we perform multiple sensitivity analysis to demonstrate the robustness of our proposed
method under different settings.

We vary the number of local training epochs to examine its effect on performance. The results
in Figure 8 show that our proposed method consistently outperforms all baseline methods across
different local epoch settings (E = 5), confirming that FedLEASE’s effectiveness is not dependent
on specific epoch configurations.

Impact of LoRA Rank. We test the performance with different LoRA ranks, adjusting the rank
parameter for both our method and baselines. As shown in Table 6, FedLEASE maintains superior
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Figure 9: Illustration of Non-IID Label
Distribution.

performance across all tested rank values. The performance gap is particularly notable at lower ranks,
highlighting our method’s efficiency in parameter utilization.

Table 6: Impact of Rank.

Methods r = 2 r = 6
SST-2 QNLI MRPC QQP Average SST-2 QNLI MRPC QQP Average

FedIT [45] 93.20 80.37 77.35 78.95 82.47 92.97 83.88 80.68 77.45 83.74
FFA-LoRA [35] 91.83 74.48 74.10 77.10 79.38 91.63 75.50 78.07 74.60 79.95
FedDPA [44] 92.63 81.80 80.93 80.30 83.91 91.65 82.25 83.18 78.52 83.90
FedSA [16] 92.05 82.13 78.68 80.42 83.32 92.05 82.72 81.10 80.75 84.16
IFCA+LoRA [15] 93.33 84.95 77.05 81.82 84.29 93.40 85.90 79.60 82.38 85.32
FedLEASE 93.80 87.32 84.63 83.30 87.26 93.43 86.12 87.42 84.10 87.77

Table 7: Impact of Number of Clients.

Methods N = 8 N = 32
SST-2 QNLI MRPC QQP Average SST-2 QNLI MRPC QQP Average

FedIT [45] 93.50 79.63 80.70 78.25 83.02 92.72 81.65 76.67 72.70 80.94
FFA-LoRA [35] 91.70 71.10 82.23 75.15 80.05 90.42 79.82 73.53 77.12 80.22
FedDPA [44] 92.13 84.17 84.22 80.60 85.28 91.65 78.30 73.75 79.37 80.77
FedSA [16] 92.65 84.35 77.10 78.93 83.26 92.25 81.12 75.45 78.73 81.89
IFCA+LoRA [15] 93.82 85.83 81.07 79.92 85.16 93.75 84.25 81.15 78.73 84.47
FedLEASE 93.92 86.88 87.14 82.95 87.72 93.25 87.50 86.07 81.70 87.13

Impact of Client Numbers. To evaluate scalability, we change the number of clients in the system
to 8 and 32. Table 7 demonstrates that our proposed method maintains its performance advantage
with different number of clients, indicating robust scalability to federated networks.

Impact of Data Heterogeneity. We evaluate our method across varying degrees of data heterogeneity,
focusing on realistic task heterogeneity rather than simple label distribution shifts. We consider three
unbalanced task distribution settings: (1) Least heterogeneous: 16 clients having 2 kinds of NLU
datasets (10 with QNLI and 6 with QQP); (2) Mildly heterogeneous: 16 clients having 3 kinds of
NLU datasets (4 with SST-2, 7 with QNLI, 5 with QQP); and (3) Most heterogeneous: 16 clients
having 4 kinds of NLU datasets (3 with SST2, 6 with QNLI, 2 with MRPC, 5 with QQP). The
results in Table 8 demonstrate that FedLEASE consistently outperforms baseline methods across all
heterogeneity levels, with the performance advantage becoming more pronounced as heterogeneity
increases.

We further conduct the additional experiments under both task and label non-i.i.d. setting, and the
label distribution is illustrated in Figure 9. Note the task distribution is same as what we used in the
main experiment. As shown in Table 9, our proposed mthod still outperforms other baselines in this
both task and label Non-IID setting.
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Table 8: Impact of Task Heterogeneity.
Methods Least Heterogeneous Mildly Heterogeneous Most Heterogeneous

QNLI (10) QQP (6) Avg. SST-2 (4) QNLI (7) QQP (5) Avg. SST-2 (3) QNLI (6) MRPC (2) QQP (5) Avg.
FedIT [45] 87.72 71.78 79.75 92.75 88.51 69.76 83.67 92.10 85.22 71.80 77.74 81.71
FFA-LoRA [35] 86.02 77.58 81.80 91.65 86.19 69.98 82.61 76.20 81.53 70.30 75.18 75.80
FedDPA [44] 84.20 81.85 83.03 91.78 83.67 79.00 84.82 93.50 82.37 79.90 83.32 84.77
FedSA [16] 83.74 80.35 82.05 91.10 80.07 80.50 83.89 91.50 81.92 83.10 77.92 83.61
IFCA+LoRA [15] 87.75 78.22 82.98 93.50 87.77 82.16 87.81 92.50 86.75 77.50 84.16 85.23
FedLEASE 87.77 84.18 85.98 93.85 89.23 84.66 89.25 92.93 88.60 83.05 84.74 87.33

Table 9: Performance under Task and Label
Non-IID.

Methods SST-2 QNLI MRPC QQP Average
FedIT [45] 93.37 83.12 80.73 72.25 82.37
FFA-LoRA [35] 89.77 74.93 76.70 79.72 80.28
FedDPA [44] 86.28 78.48 77.15 77.18 79.77
FedSA [16] 87.25 77.85 73.50 74.43 78.26
IFCA+LoRA [15] 92.95 83.88 80.07 79.00 83.98

FedLEASE (Ours) 93.60 84.13 81.92 80.05 84.93

Table 10: Performance Comparison of Differ-
ent Model Configurations.

Expert Upper Bound Final Number of Experts SST-2 QNLI MRPC QQP Average
Mmax = 2 2 92.15 85.70 82.08 82.03 85.49
Mmax = 3 3 93.73 87.05 84.55 83.50 87.21
Mmax = 4 4 93.62 87.65 87.05 83.07 87.85
Mmax = 8 (Used) 4 93.33 87.22 86.93 83.57 87.76

Then we perform additional experiments under label non-i.i.d. setting and follow the exact setup
used in FedSA under a Dirichlet (α = 0.5) partitionaing scheme using 20 clients on the QQP dataset.
Results in Tables 11 to 14 demonstrate that FedLEASE consistently outperforms existing methods
even under label-heterogeneous conditions, further confirming the robustness and generality of our
proposed approach.

Table 11: Label Distribution under Dirichlet(0.5) on QQP
Client ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Class 0 (%) 0.7 18.1 70.3 8.0 0.4 85.8 92.3 18.7 90.9 33.2 99.9 20.6 81.8 85.9 24.6 9.8 80.5 92.1 93.1 75.2
Class 1 (%) 99.3 81.9 29.7 92.0 99.6 14.2 7.7 81.3 9.1 66.8 0.1 79.4 18.2 14.1 75.4 90.2 19.5 7.9 6.9 24.8

Table 12: Silhouette Scores under Only Label
Non-IID

Clusters 2 3 4 5 6 7 8
Score 0.1829 0.1139 0.0553 0.0532 0.0482 0.0527 0.0506

Table 13: Cluster Groups under Only Label
Non-IID

Group Clients
Group 0 2, 5, 6, 8, 10, 12, 13, 16, 17, 18, 19
Group 1 0, 1, 3, 4, 7, 9, 11, 14, 15

Impact of Expert Upper Bound Mmax. In our main experiments, we set the expert upper bound to
Mmax = 8. To investigate the sensitivity of our approach to this parameter, we conducted additional
experiments with lower upper bounds (Mmax = 2, 3, 4) using the same experimental setup: 16 clients
with data from 4 GLUE datasets. As shown in Table 10, we observe comparable performance between
Mmax = 8 and Mmax = 4 configurations. This aligns with our clustering analysis in Section B,
which indicates that this particular configuration requires only 4 experts. This finding validates that
our method can efficiently determine the appropriate number of experts needed even when the budget
(Mmax) exceeds the system’s actual requirements. When restricted to Mmax < 4, we observe a
performance degradation compared to the Mmax = 4 or Mmax = 8 settings, further confirming the
importance of allocating an adequate number of experts. Nevertheless, it is noteworthy that even with
this constrained expert budget, our proposed method still outperforms all baseline methods. This
demonstrates the robustness of our approach and its ability to make efficient use of even limited
expert resources through effective allocation and adaptive selection.

D Computational Overhead

Our clustering step is performed only once during the initialization phase and is not repeated during
iterative training. Thus, its runtime impact is negligible. As observed in Section 3.3, using only the
LoRA B matrices offers an efficient and lightweight proxy for task similarity, given their small size
compared to full model weights or BA products. As shown in Table 15, we measured the clustering
time (3.11 seconds on Intel Xeon Platinum 8570 CPU), which is significantly shorter than the total
training time (193.49 seconds with local training on the NVIDIA B200 GPU):
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Table 14: Performance under Only Label Non-IID
Method FedIT FFA-LoRA FedDPA FedSA IFCA+LoRA FedLEASE
Accuracy (%) 83.52 83.05 85.78 86.85 84.73 89.23

Table 15: Comparison of Computing Time
Time (s) FedIT FFA-LoRA FedDPA FedSA IFCA+LoRA FedLEASE
Local Per-Epoch Training Time 3.75 3.41 3.82 3.72 3.85 3.78
Global Aggregation Time 0.048 0.038 0.051 0.042 0.061 0.055
Clustering Time - - - - 2.77 3.11
Total Training Time 188.70 171.45 192.28 187.05 263.28 193.49

E Limitations

While FedLEASE achieves strong performance in heterogeneous federated fine-tuning, it has lim-
itation. The current framework assumes a static client population and fixed expert assignments
throughout training. In practical federated environments where client availability and data distri-
butions evolve over time, this rigidity may limit adaptability. Future work could explore dynamic
clustering or meta-routing strategies to accommodate such non-stationary conditions.

F Convergence Analysis

In this section, we analyze the convergence properties of our proposed FedLEASE method.

We define the following notation:

• C = {C1, C2, ..., CM} represents the partition of clients into M clusters

• θti = {At
i, B

t
i , G

t
i} denotes the trainable parameters for client i at round t

• Θt
j = {Aexpert,t

j , Bexpert,t
j , Gexpert,t

j } denotes the aggregated parameters for cluster j at
round t

• For any client i ∈ Cj , we define j(i) = j as the cluster it belongs to

The cluster-level parameters are computed by averaging the parameters of all clients in the cluster:

Θt
j =

1

|Cj |
∑
i∈Cj

θti (6)

We denote the client-level loss function as fi(θi|{Θk}Mk=1) and the cluster-level loss function as:

Fj(Θj |{Θk}k ̸=j) =
1

|Cj |
∑
i∈Cj

fi(θi|{Θk}Mk=1) (7)

F.1 Assumptions

To establish convergence, we make the following assumptions:

Assumption F.1 (Client-Level Smoothness). For each client i, the loss function fi is µ-smooth with
respect to θi, i.e., for any θ1i , θ

2
i :

∥∇fi(θ1i )−∇fi(θ2i )∥ ≤ µ∥θ1i − θ2i ∥ (8)

Assumption F.2 (Client-Level Strong Convexity). For each client i, the loss function fi is λ-strongly
convex with respect to θi, i.e., for any θ1i , θ

2
i :

fi(θ
2
i ) ≥ fi(θ

1
i ) + ⟨∇fi(θ1i ), θ2i − θ1i ⟩+

λ

2
∥θ2i − θ1i ∥2 (9)
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Assumption F.3 (Bounded Expert Sensitivity). The optimal parameters for client i are sensitive
to changes in the expert parameters with a bounded Lipschitz constant. For any two sets of expert
parameters {Θ1

k}Mk=1 and {Θ2
k}Mk=1:

∥θ∗i ({Θ1
k})− θ∗i ({Θ2

k})∥ ≤ β

M∑
k=1

∥Θ1
k −Θ2

k∥ (10)

where θ∗i ({Θk}) represents the optimal parameters for client i given fixed expert parameters.

Assumption F.4 (Cluster Assignment Stability). After the initial clustering phase, the assignment of
clients to clusters remains stable throughout the training process.

Theorem F.5 (Convergence of FedLEASE). With the assumptions of client-level smoothness, client-
level strong convexity, limited inter-cluster influence, and cluster assignment stability, we can derive:

∥Θt+1
j −Θt

j∥ ≤
2ϵ

1− βM
+ (βM)t max

j
∥Θ1

j −Θ0
j∥

If βM < 1 and the local training at each round converges to a neighborhood of the optimal solution,
then the sequence of cluster models {Θt

j} generated by FedLEASE converges to a stable point for
each cluster j.

F.2 Proof

At round t, each client i performs local training to update its parameters. Let θt,si represent the
parameters of client i after s steps of local training within round t.

The gradient descent update rule for client i at step s is:

θt,s+1
i = θt,si − η∇fi(θt,si |{Θ

t
k}Mk=1) (11)

From Assumption 1 (client-level smoothness), we have:

fi(θ
t,s+1
i ) ≤ fi(θ

t,s
i ) + ⟨∇fi(θt,si ), θt,s+1

i − θt,si ⟩+
µ

2
∥θt,s+1

i − θt,si ∥
2 (12)

= fi(θ
t,s
i )− η∥∇fi(θt,si )∥2 + µη2

2
∥∇fi(θt,si )∥2 (13)

= fi(θ
t,s
i )− η(1− µη

2
)∥∇fi(θt,si )∥2 (14)

Let θ∗i = θ∗i ({Θt
k}) denote the optimal parameters for client i given the fixed expert parameters at

round t. From Assumption 2 (client-level strong convexity), we have:

fi(θ
∗
i ) ≥ fi(θ

t,s
i ) + ⟨∇fi(θt,si ), θ∗i − θt,si ⟩+

λ

2
∥θ∗i − θt,si ∥

2 (15)

Then we can establish:
∥∇fi(θt,si )∥2 ≥ 2λ(fi(θ

t,s
i )− fi(θ

∗
i )) (16)

Substituting this into our earlier inequality:

fi(θ
t,s+1
i )− fi(θ

∗
i ) ≤ fi(θ

t,s
i )− fi(θ

∗
i )− η(1− µη

2
)∥∇fi(θt,si )∥2 (17)

≤ fi(θ
t,s
i )− fi(θ

∗
i )− 2ηλ(1− µη

2
)(fi(θ

t,s
i )− fi(θ

∗
i )) (18)

= (1− 2ηλ(1− µη

2
))(fi(θ

t,s
i )− fi(θ

∗
i )) (19)

Denoting ρ = (1− 2ηλ(1− µη
2 )), with properly chosen learning rate η < 2

µ , we have ρ ∈ (0, 1). By
recursively applying this inequality for s steps:

fi(θ
t,s
i )− fi(θ

∗
i ) ≤ ρs(fi(θ

t,0
i )− fi(θ

∗
i )) (20)
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From strong convexity (Assumption 2), we can relate the optimality gap in function value to the
parameter distance:

λ

2
∥θt,si − θ∗i ∥2 ≤ fi(θ

t,s
i )− fi(θ

∗
i ) (21)

Therefore:
∥θt,si − θ∗i ∥2 ≤

2ρs

λ
(fi(θ

t,0
i )− fi(θ

∗
i )) (22)

With a sufficient number of local training steps S, we can ensure:

∥θt+1
i − θ∗i ({Θt

k})∥ ≤ ϵi (23)

where θt+1
i = θt,Si and ϵi can be made arbitrarily small by increasing S.

This establishes that each client’s model converges to an approximate optimal solution for fixed
expert parameters.

Now we analyze the stability of cluster models across communication rounds. For a cluster j, with
the assumption of Cluster Assignment Stability, the aggregated parameters after round t are:

Θt+1
j =

1

|Cj |
∑
i∈Cj

θt+1
i (24)

The difference between consecutive cluster models is:

∥Θt+1
j −Θt

j∥ =

∥∥∥∥∥∥ 1

|Cj |
∑
i∈Cj

θt+1
i − 1

|Cj |
∑
i∈Cj

θti

∥∥∥∥∥∥ (25)

≤ 1

|Cj |
∑
i∈Cj

∥θt+1
i − θti∥ (26)

For each client i ∈ Cj , we have:

∥θt+1
i − θti∥ ≤ ∥θt+1

i − θ∗i ({Θt
k})∥+ ∥θ∗i ({Θt

k})− θ∗i ({Θt−1
k })∥+ ∥θ∗i ({Θt−1

k })− θti∥ (27)

≤ ϵi + β

M∑
k=1

∥Θt
k −Θt−1

k ∥+ ϵi (28)

= 2ϵi + β

M∑
k=1

∥Θt
k −Θt−1

k ∥ (29)

Let ϵ = maxi ϵi and ∆t = maxj ∥Θt+1
j −Θt

j∥. Substituting into our cluster difference bound:

∥Θt+1
j −Θt

j∥ ≤
1

|Cj |
∑
i∈Cj

(2ϵ+ β

M∑
k=1

∥Θt
k −Θt−1

k ∥) (30)

= 2ϵ+ β

M∑
k=1

∥Θt
k −Θt−1

k ∥ (31)

≤ 2ϵ+ βM∆t−1 (32)

Taking the maximum over all clusters:

∆t ≤ 2ϵ+ βM∆t−1 (33)

When βM < 1, this is a contraction, and by iterating:

∆t ≤ 2ϵ

t−1∑
i=0

(βM)i + (βM)t∆0 (34)

≤ 2ϵ

1− βM
+ (βM)t∆0 (35)
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As t → ∞, ∆t → 2ϵ
1−βM , which can be made arbitrarily small by increasing local training steps

(reducing ϵ).

Our analysis demonstrates that FedLEASE converges at both client and cluster levels:

1. Each client’s model converges to an approximate optimal solution with error bounded by ϵi

2. The cluster models stabilize with a maximum change between rounds bounded by 2ϵ
1−βM

The convergence is guaranteed when:

• The learning rate is appropriately chosen (η < 2
µ )

• The inter-cluster influence is limited (βM < 1)
• Sufficient local training steps are performed (to reduce ϵ)
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