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Abstract
Discovering and tracking communities in time-varying networks is an important
task in network science, motivated by applications in fields ranging from neu-
roscience to sociology. In this work, we characterize the celebrated family of
spectral methods for static clustering in terms of the low-rank approximation of
high-dimensional node embeddings. From this perspective, it becomes natural to
view the evolving community detection problem as one of subspace tracking on
the Grassmann manifold. While the resulting optimization problem is nonconvex,
we adopt a recently proposed block majorize-minimize Riemannian optimization
scheme to learn the Grassmann geodesic which best fits the data. Our frame-
work generalizes any static spectral community detection approach and leads
to algorithms achieving favorable performance on synthetic and real temporal
networks, including those that are weighted, signed, directed, mixed-membership,
multiview, hierarchical, cocommunity-structured, bipartite, or some combination
thereof. We demonstrate how to specifically cast a wide variety of methods into
our framework, and demonstrate greatly improved dynamic community detection
results in all cases.

1 Introduction
Consider a multiplex graph whose layers represent snapshots G1, . . . , GT of a time-varying network
with d nodes. The goal is to partition eachGi into communities — node groupings of relatively higher
intraconnectivity — in a manner that is temporally coherent and robust to noise [1]. This problem of
evolving community detection has recently found myriad applications. For example, in social and
computer networks, the continual estimation of community structure allows for robust containment
of infection [2]. In brain networks, communities are believed to represent node collections dedicated
to specialized functions such as memory or vision [3]; tracking changes (induced e.g. via hormonal
fluctuations) in these collections illuminates how physiological factors influence cognition [4].

Many classical approaches to evolving community detection behave locally, matching network
topology and/or partitions across adjacent snapshots [5]. More recently, a number of global [6, 7],
or cross-time [8], approaches have arisen in the offline setting. These methods utilize information
across all snapshots to obtain more stable communities of long-term temporal coherence [5, 8].
Numerous techniques for static community detection have been extended to this global setting
[6, 9, 10]. However, the well-studied family of spectral methods, approaches based on clustering
Euclidean node embeddings derived from the extreme end of a real matrix’s spectrum [11–17], is a
collection of notable exceptions. In addition to being among the most competitive [18], scalable [19],
and theoretically rich [20–23] approaches to static community detection, spectral methods are also
among the most general, with the above definition including techniques for clustering signed [24–26],
mixed-membership [19, 27], directed [28, 29], multiview [24, 30], cocommunity-structured [31],
hierarchical [32], hyper [33], motif-based [34], and higher-order [35, 36] networks. It is thus of great
interest to develop temporal methods for spectral community detection inheriting these properties.
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Notation Description
G A (simple, directed, multiview...) graph with d nodes, suitably connected
A The (possibly weighted) adjacency matrix of G

deg(ℓ) The degree of a node ℓ of G defined as deg(ℓ) =
∑

j ̸=ℓAℓj

vol(S) The volume of a node subset S, defined as vol(S) =
∑

v∈S deg(v)
D The degree matrix diag(deg(1), . . . ,deg(d)) of G.

λ(H);λi(H) The spectrum of a matrix H; the ith largest eigenvalue of H .
σ(H);σi(H) The singular values of a matrix H; the ith largest singular value of H .
⟨H⟩ The span of a matrix or vector H

St(d, k) The Stiefel manifold of matrices in Rd×k with orthonormal columns
Ok The orthogonal group of matrices in Rk×k with orthonormal columns

Gr(d, k) The Grassmann manifold of k-dimensional linear subspaces of Rd

A An algorithm which clusters d nodes with Euclidean embeddings into Rk

derived from the extreme of a matrix spectrum (a static spectral method)
Mk = UkΣkV

⊤
k The rank-k singular value decomposition Uk(M)Σk(M)V k(M)⊤ of M

MCM of A A matrix M satisfying ⟨Uk(M)⟩ = ⟨C⟩, where C’s rows are the spectral
embeddings from A into Rk. Called a modeled clustering matrix (MCM)

Contributions. We study a natural and versatile framework for temporally generalizing spectral
methods for static community detection in a global fashion. Our approach is based on the observation
(Section 2) that any spectral method may be characterized in terms of a least squares-optimal low-
rank approximation of some matrix M . In this light, it becomes natural to formulate the evolving
spectral community detection problem using dynamics on the Grassmann manifold Gr(d, k) of k-
dimensional linear subspaces of Rd [37]. Identifying {Gi}Ti=1 with a discrete trajectory on Gr(d, k),
the aforementioned notions of ‘stability’ and ‘temporal coherence’ may be interpreted as constraining
this subspace trajectory to lie on some highly regular Grassmann curve. Recent subspace estimation
literature [38, 39] suggests geodesic curves to be an elegant and effective candidate. Our approach is
to thus learn the Grassmann geodesic that best models the data, capturing a robust continuum of node
embeddings from which a sequence of clusterings may be computed. Advantages include:

• Any community detection method based on the leading or trailing eigenvectors of a matrix admits
temporal generalization, as shown in Section 2.2. This is achieved using subspace estimation
methods that leverage the regularity of Grassmann geodesics. The proposed framework provides
algorithms for community detection in a vast array of evolving networks, including evolving
networks with weighted, signed, and/or directed edges, evolving networks with overlapping,
hierarchical, or cocommunity structure, and evolving networks with multiple views (Table 1).

• If the desired number of communities kc is known in advance, the framework produces algo-
rithms capable of utilizing this information (Algorithm 2). If not, a simple yet effective extension
can ascertain kc at each time step automatically (Figure 4, Algorithm 9).

• An intuitive heuristic (proven in Section 3) allows practitioners to visualize the extent to which
their data satisfies the framework’s core assumption regarding Grassmann geodesic structure
when kc = 2. Empirically, it indicates that smooth temporal evolution guarantees the presence
of approximately geodesic structure in a dynamic stochastic block model (dynamic SBM),
affirming that the geodesic assumption is a natural one.

• The proposed method is remarkable for the performance gains it achieves across the diverse array
of networks mentioned above. For all network types considered, the adjusted mutual information
and/or element-centric similarity between the estimated and true dynamic communities is above
0.8 — and often very near 1.0 (perfect recovery) — on appropriate variants of the dynamic SBM
and on real data. This represents significant gains over the static counterparts and other dynamic
methods. The approach is robust to noise, reliably recovering planted community structure in
noise regimes for which the corresponding static methods perform around random chance.

Related Work. Much early work on evolving community detection focuses on the online setting
via the following ‘two-stage approach [5]’:

1. Detect communities per-snapshot using a static method, such as [40–43] ;
2. Match communities across adjacent snapshots; we will call this local temporal smoothing [8].
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For example, [44] applies the Louvain method [41] at each snapshot, imposing local temporal
smoothing by initializing the method at snapshot t with results from snapshot t− 1. The technique in
[45] computes similarity scores between the static communities detected at time t and those at t±1, 2
and uses a ‘network sliding window’ to smoothen away noise. In terms of spectral methods, a local
temporal smoothing approach to spectral clustering is offered in [46]. The authors apply spectral
clustering per-snapshot, but with an added ‘temporal cost’ parameter to the normalized cut objective
function that quantifies how well a partition at time t clusters the data at time t− 1. They then relax
their objective in a manner similar to that deriving static spectral clustering [47], and obtain an optimal
solution to this relaxation at each time step in terms of eigenvectors of a new, ‘temporally smoothed’
matrix. In what may be viewed as a substantial offline extension of this, [48] offers an approach to
temporal spectral clustering via the simultaneous estimation of T smoothened Laplacian eigenbases
Ū i, i ∈ [T ], which are encouraged to be close both to their static counterpart U i and smoothened
predecessor Ū i−1. This approach is ‘global’ in the sense that its objective function aggregates
community information across all time points, and hence estimates all communities simultaneously.
At the same time, it is ‘local’ in the sense that the objective only considers relationships between data
in directly adjacent snapshots. In offline contexts where the full graph sequence is known a priori,
it is natural to pursue methods capable of capturing long-term temporal correlations [7]. Recent
such global approaches include [6], which concatenates adjacency matrix snapshots into a rank-3
tensor and applies nonnegative tensor factorization techniques, generalizing [49]; [50], which offers a
dynamic model based on preferential attachment phenomena, generalizing [9]; and [10], which applies
methods of statistical inference to the dynamic stochastic block model [51], generalizing techniques
surveyed in [52]. Analogously, our work simultaneously generalizes to the global temporal setting
methods such as spectral modularity maximization [12–14], (un)normalized spectral clustering/graph
partitioning [15, 16, 53], Bethe Hessian clustering [17], and the multitudinous extensions of these to
different network modalities. Different spectral approaches find utility in different contexts, and we
envision accordingly diverse applications for our framework. All proofs are deferred to the appendix.

2 Proposed Framework
Our proposed framework leverages the general assumption of spectral methods that the extremal
eigenvectors of a given matrix provide a good embedding for clustering graph nodes [11–17]. We will
show that these eigenvectors also span a subspace of best low-rank approximation to a modification
of said matrix, and low-dimensional subspaces have a natural dynamic extension with curves on
the Grassmann manifold of k-dimensional subspaces of Rd, which forms a compact Riemannian
manifold with metric inherited from Euclidean space [37] . Our framework produces an extension
of any static spectral method to the time-varying setting by applying a recent novel algorithm for
fitting Grassmann geodesics [38]. In this section, we first discuss the general template for spectral
community detection in a single network instance. A key feature is the connection of a subspace for
node embeddings to a low-rank matrix approximation. We then give our proposed method, which
uses ideas from subspace tracking to guarantee those subspace node embeddings are smooth in time.

Let {Gi}Ti=1 be a multiplex graph whose layers represent snapshots of a time-varying network with
d nodes. The goal is to partition each Gi into k communities — divisions into groups of increased
connectivity [54] — in a temporally coherent manner. For the case T = 1, a number of successful
static community detection methods exist. Especially well-studied are the spectral methods, which
derive Euclidean node embeddings from the eigenvectors of a clustering matrix R, then employ a
Euclidean clustering approach to obtain community assignments. Our proposed method relies on
the fact that a majority of spectral methods may be (re)formulated per the following template, a
claim we substantiate in Section 2.2 following the outline of our method in terms of said template in
Section 2.1.

Algorithm 1 Template for Spectral Community Detection in Static Networks

Input: Graph G, number kc of communities to detect, embedding dimension ke
Input: Spectral algorithm A for community detection, with clustering matrix R

1: Embedding: Embed the nodes of G into Rd as columns of some matrix M = M(R) ∈ Rd×d

2: Spatial denoising: Compress the node embeddings into a linear subspace U = ⟨U⟩ ∈ Gr(d, ke),
U ∈ St(d, ke), such that the reconstruction error ∥M −UU⊤M∥2F is minimized

3: Euclidean clustering: Follow A ’s specifications to derive community assignments from U
Output: An assignment (Z1, . . . , Zk) of G’s nodes into kc communities.
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The spectral nature of A is encoded in the subspace U ∈ Gr(d, k), as this subspace is represented by
the eigenbasis Uk ∈ St(d, k) for Mk = UkΣkV

⊤
k a rank-k approximation to M . We note, though,

that any choice of orthonormal basis U of U suffices.2 We call the matrix M a modeled clustering
matrix (MCM) of A , for its defining property is that the rank-k subspace ⟨Uk⟩ optimally modeling
its columns is provided by spectral embeddings from A .

Constructing an MCM for a given spectral method A is not difficult; indeed, Section 2.2 will show
that choosing M = I ±R/∥R∥F suffices for all spectral methods of which the authors are aware,
although other choices may yield more elegant interpretations. Finally, we remark that kc = ke for
the vast majority of algorithms. In principle they can differ, though. For example, when kc = 2 it is
common to choose ke = 1, usually because A admits some natural derivation for this special case
which exploits the algebraic structure of R in step 3 [12, 47]. It has also been argued that choosing
ke ≥ kc is superior for some A [11, 13, 55].

2.1 Proposed Method

Now assume we are given a time-varying graph {Gi}Ti=1, with the goal of recovering the true
community structure at each time step in a manner that is robust to both spatial (i.e., in the high-
dimensional embedding space Rd) and temporal noise. The linear subspace modeling of step 2 in
Algorithm 1 aims to handle the former, but a regularity constraint must be applied to the sequence
{⟨U i⟩}Ti=1 of subspaces in order to attain the latter. A natural choice is to seek a geodesic of best
fit for the data on the Grassmann manifold, either by fitting a geodesic directly through the points
{⟨U i⟩}Ti=1 or by learning a Grassmann curve whose ith sample approximates M i while obeying a
geodesic-constrained trajectory. The former may be viewed as spatial denoising followed by temporal
denoising; the latter as simultaneous spatiotemporal denoising. Our method can accommodate either
interpretation, but we will limit focus to the latter.

Geodesics on the Grassmann manifold, like lines in Euclidean space, behave as parsimonious
interpolating curves. A geodesic U : [0, 1]→ Gr(d, k) with starting point ⟨H⟩, H ∈ St(d, k), in the
direction of Y ∈ T⟨H⟩Gr(d, k), may be parameterized as [56]

U(t;H,Y ,Θ) =

=:P︷ ︸︸ ︷
[H Y ]

=:C(t)︷ ︸︸ ︷[
cos(Θt)
sin(Θt)

]
= PC(t), (1)

where Θ ∈ diag(Rk×k) consists of principal angles between geodesic endpoints.3 Our goal is to
learn geodesic parameters such that the aggregated reconstruction error

L
(
U(t;H,Y ,Θ)

)
=

T∑
i=1

∥M i −U(ti)U(ti)
⊤M i∥2F (2)

is minimized. Here, ti is the continuous time point assigned by the user to snapshot index i. For
simplicity, we always assume t1, . . . , tT are equally spaced along [0, 1]. Unlike Euclidean lines, no
closed-form solution for geodesic regression on the Grassmann manifold is known, and moreover
the objective (2) is nonconvex. Following [38], we attempt to minimize (2) via block coordinate
descent alternating between optimizing P and optimizing Θ. We include the algorithm steps here
for completeness, and their derivations may be found in [38]. We adopt this approach because it
is hyperparameter-free and each update monotonically descends (2) while converging to a global
optimum in a majority of [38]’s experiments. Additionally, the work in [57] analyzed this algorithm
and proved convergence to a stationary point.

P Update. Assume Θ is fixed along with prior iterate P (n). Then (2) is minimized by setting

P (n+1) = WV ⊤, (3)

where W and V are obtained from the singular value decomposition WΣV ⊤ of the d× 2k matrix
T∑

i=1

[
M iM

⊤
i P

(n)Di cos(Θti) M iM
⊤
i P

(n)Di sin(Θti)
]

(4)

2Technically, it is assumed here that the Euclidean clustering method of A (step 3, e.g. k-means) is invariant
under linear isometry of the input space. This is true for all spectral methods of which the authors are aware.

3That is, Θ = cos−1(S), where S is obtained via the singular value decomposition ZSQ⊤ = U(0)⊤U(1).
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Θ Update. Suppose P is fixed along with prior iterate Θ(n). In contrast to the above, when Θ is
fixed and P is to be updated, no analytic expression for a minimizer of (2) is known in this case.
However, the objective is separable in the entries θ1, . . . , θk of Θ, and they can each be iteratively
updated over M iterations as

θ
(0)
j := [Θ(n)]jj ; θ

(m+1)
j = θ

(m)
j − s(m)

T∑
i=1

ḟi,j
(
θ
(m)
j

)
, where s(m) = 1/

T∑
i=1

wfi,j

(
θ
(m)
j

)
(5)

may be interpreted as a (variable) gradient descent step size and

ḟi,j(θj) =
ti
√
(αi,j − γi,j)2 + 4β2

i,j

2
sin (2θjti − ϕi,j) ; (6)

wfi,j (θj) =
ḟi,j(θj)

− π
2ti

+
(
θj − ϕi,j+π

2ti

)
mod 2π

2ti

(7)

for

ϕi,j = arctan2

(
βi,j ,

αi,j − γi,j
2

)
βi,j = [Y ⊤M iM iH]jj (8)

αi,j = [H⊤M iM
⊤
i H]jj γi,j = [Y ⊤M iM iY ]jj . (9)

Here, arctan2(y, x) denotes the angle swept by the x-axis in R2 as it rotates counter-clockwise into
the point (x, y). We then set

Θ(n+1) = diag(θ
(M)
1 , . . . , θ

(M)
k ). (10)

Initialization. Choosing P (0) and Θ(0) amounts to choosing an initial geodesic to iteratively
optimize. This in turn amounts to choosing geodesic endpoints based on the data {M i}Ti=1. For
our problem setting, we choose the rank-k least squares-optimal subspaces approximating M1 and
MT — obtained via k-truncated singular value decompositions M1 = H1Σ1K

⊤
1 and MT =

HTΣTK
⊤
T — as said geodesic’s initial point and end point respectively. This determines the

direction Y to be FG⊤, where, writing ZSQ⊤ = H⊤
1 HT , F and G⊤ come from a singular value

decomposition (I −H1H
⊤
1 )HTQ = FDG⊤. Thus, we initialize with

P (0) :=
[
H1 FG⊤] Θ(0) := cos−1(H⊤

1 HT ). (11)

Algorithm 2 Evolving Community Detection with Grassmann Geodesics

Input: Graphs and associated snapshot times {Gi, ti}Ti=1, number kc of communities to track,
dynamic embedding dimension ke

Input: Static spectral method A admitting an MCM (i.e., A formulated as in algorithm 1)
1: Embedding: Follow A to form high-dimensional node embeddings as MCMs {M i}Ti=1
2: Spatiotemporal denoising Estimate a Gr(d, ke)-geodesic U(t;H,Y ,Θ) via the minimization

of (2) through alternating iterates (3) and (10), initialized per (11)
3: Euclidean clustering: For each snapshot index i, follow A to obtain community assignments

from low-dimensional Euclidean node embeddings derived from U(ti)
Output: Assignments (Z1 . . . , Zkc

)i of the nodes in each of {Gi}Ti=1 to communities

2.2 Instantiations

This section illustrates the generality of algorithm 1 by way of several examples, thereby providing a
collection of static community detection methods extended by algorithm template 2 to the temporal
setting. The (possibly weighted) simple network cases of spectral clustering and spectral modularity
maximization are a faithful prototype for the exploration of other techniques using our framework.
We therefore restrict present attention to these methods, with analogous discussion of other methods
deferred to Appendix A. Table 1 summarizes all static spectral methods that we analyze and evaluate.
To begin, we observe that any spectral method based on the extremal eigenvectors of a clustering
matrix R easily admits an MCM M , simply via the normalization, then shifting, of its spectrum.

5



A Spectral Framework for Tracking Communities in Evolving Networks

Table 1: Example applications of static community detection across different network modalities,
and associated spectral methods for pursuing it. SC abbreviates spectral clustering.

Modality Example Application(s) Methods

Simple
Image segmentation [15] (Un)Normalized SC (USC)(NSC) [15, 16]
Brain connectivity [58] Spectral Modularity Maximization (SMM) [12–14]

Bethe Hessian Clustering (BHC) [17]

Signed
Time series [59] Signed Ratio SC (SRSC) [26]
Voting networks [60] Geometric Mean SC (GMSC) [25]

Signed Power Mean SC (SPMSC) [24]

Overlapping
Social networks [61] Overlapping SC (OSC) [19]
Neuronal networks [62] c-means SC (CSC) [27]

Directed
Genomics [63] Degree-Discounted SC (DDSC) [28]
Information networks [64] Bibliographic SC (BSC) [28]

Random Walk Directed SC (RWSC) [29]

Multiview
Measuring networks [65] Grassmannian Multiview SC (GMVSC) [30]
Multimedia analysis [66] Power Mean Laplacian SC (PMLSC) [24]

Cocommunity NLP [67] Spectral Coclustering (SCC) [31]

Hierarchical
Biochemical graphs [68] Hierarchical SC (HSC) [32]
Brain networks [69]

Proposition 1. Let A be a static spectral algorithm with clustering matrix R. If A clusters using
the leading (resp. trailing) eigenvectors of R, then M = I +R/∥R∥F (resp. I −R/∥R∥F) is an
MCM for A (cf. Algorithm 1).

Some alternative choices of M come with extra interpretations. See e.g. propositions 2 and 3 below.
Proposition 1 suffices to generate MCMs for all spectral methods considered in this text, though, and
will be employed by default when no alternative is specified.

Unnormalized Spectral Clustering (USC). Let A be the (possibly weighted) adjacency matrix and
D be the degree matrix of the graph G. Unnormalized spectral clustering arises from the observation
that the matrix V composed of the trailing k eigenvectors of the graph Laplacian R = L = D −A
minimizes a relaxation of the NP-Hard RatioCut objective for partitioning a graph into communities
of roughly balanced size [70], such that the k-dimensional embedding of G offered by V ⊤ unveils
clustering structure in Euclidean space discoverable by heuristics like cardinality-constrained vector
partitioning [11] or k-means [47].
Proposition 2. The matrix M = nI −L is an MCM for unnormalized spectral clustering for any
n ≥ max |λ(L)|. In particular, choosing any n ≥ 2maxi deg(i) — for example, n = 2d when G is
unweighted — yields an MCM.

A notable special case of Proposition 2 occurs when G is a graph on k disjoint cliques containing s
nodes each. In this case, the community structure of G is entirely unambiguous and M = sI −L
turns out to be precisely rank-k (Appendix A.1).

Normalized Spectral Clustering (NSC). Normalized spectral clustering arises from a modification
of the RatioCut objective wherein balance is encouraged among in-community edge densities rather
than community sizes. The new objective’s relaxation is minimized with the k smallest eigenvectors
of the normalized symmetric graph Laplacian Lsym := D−1/2LD−1/2.
Proposition 3. The normalized signless Laplacian Qsym = D−1/2QD−1/2, Q = D +A, is an
MCM for normalized spectral clustering.

The tail of Qsym’s spectrum is intimately related to anticommunity structure [71]. Proposition 3
complementarily relates the head of its spectrum to community structure.

Spectral Modularity Maximization (SMM). In many real-world networks, what matters is not
that inter-community edge density is low, but that it is lower than expected. The notion of network
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Figure 2. Comparison of median AMI ∈ [0, 1]
over time versus pin, medianed over 50 simula-
tions of the dynamic SBM (d = T = 50, k = 2,
pout = 0.2) as pswitch ranges from low to very high.
Each unit circle displays the trajectory of mod-
ularity matrix first-eigenvectors as T progresses
when pin = 0.4. For low (1a) and medium (1b)
values of pswitch, said trajectory ‘walks along’ the
unit circle, suggesting (Proposition 4) that the dy-
namics satisfy the geodesic assumption. When
pswitch is very high (1c), the trajectory ‘falls off’:
the assumption has been violated. G- resp. S-
refers to geodesic resp. static algorithm versions.

modularity proposed in [40] quantifies this. Numerous spectral approaches to approximately maxi-
mize modularity exist by clustering embeddings derived from the leading positive eigenvectors of the
modularity matrix B = A− EA [12–14].4

3 Experiments
We demonstrate the effectiveness of our method on real and synthetic evolving network data. On the
synthetic data, we relate the behavior of our method to the presence of latent geodesic structure as
graph dynamics range from smooth to jagged. We also show that the geodesic generalizations of 15
spectral methods (Table 1) via Algorithm 2 empirically outperform their static counterpart, where
the static method is applied separately at each time point. On real data, we show that the geodesic
method achieves favorable performance over a collection of popular temporal community detection
benchmarks, including when the algorithm no longer assumes a fixed number of temporally stable
latent communities. Experiments were all performed in Python on a 2019 MacBook Pro.5

Model selection and checking the geodesic assumption. Throughout this section, model selection
(i.e., choosing ke and/or kc) is performed by letting k range over successive algorithm runs and
choosing that which yields partitions of highest modularity [14]. We quantify ‘partitions of highest
modularity’ by taking the mode over k, but other summarizations such as multilayer modularity [73]
could be used as well. When kc = 2, an additional step is often available for assessing the presence
of geodesic structure. For clarity of exposition, we focus on spectral modularity maximization,
M = B = I +B/∥B∥F. When the goal is two-way clustering, it is customary to classify node ℓ

4Here, the expectation is taken with respect to the Newman-Girvan Null Model [12]: [EA]jℓ =
deg(j) deg(ℓ)/vol(A). This is standard in contemporary treatments of network science such as [72].

5Code is available at https://github.com/jacobh140/spectral-dcd.
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Figure 3. Comparison of median (over 50 simulations and 20 time steps of the appropriate SBM)
AMI/E-cS for various static spectral methods and their dynamic generalization. Each color corre-
sponds to a network modality, each line an SBM setting for that modality, and each symbol a spectral
method for detecting communities in that modality (hollow for its dynamic extension, filled for static).
By default where applicable, d = 120, k = 2, pin = 0.3, pout = 0.2, and pswitch = 10−2. Exceptions
are in the second SSBM and second DSBM parameter settings, where pin = pout to enforce clustering
based solely on edge affinity/orientation. Appendix A elaborates upon each individual column.

based on sign(uℓ), where u is the first eigenvector of B [12]. This corresponds to considering the
space Gr(1, d) in Algorithm 2 (i.e., ke = 1, kc = 2). Of course, the lines comprising Gr(1, d) are
naturally identified with pairs of antipodal points on the (d− 1)-sphere Sd−1 ⊂ Rd, and geodesics
on Sd−1 coincide with great circle arcs. The main idea, then, is that if we concatenate the respective
first eigenvectors u1, . . . ,uT of B1, . . . ,BT and their negations −u1, . . . ,−uT into a data matrix
X ∈ Rd×2T and project these columns into their 2-dimensional PCA subspace, we should see the
projections of the ui into R2 ‘walk along’ the unit circle in two mirrored trajectories if geodesic
structure is present. The following proposition makes this precise. Results can be seen in Figure 2.
Proposition 4. σ1(X) ≥ σ2(X) > σ3(X) = · · · = σmin(d,2T )(X) = 0 if and only if the first
singular subspaces of the Bi lie in the image of a curve in Gr(d, 1) that is a Riemannian geodesic.

Synthetic. We evaluate with a dynamic model based on a setting of the dynamic stochastic block
model (dynamic SBM) studied in [51]. Initially, d nodes are divided equally among k planted
communities. At a given snapshot index i ∈ [T ], an edge is placed between each pair of intra-
community nodes resp. inter-community nodes with probability pin resp. pout. Dynamics are
introduced by stipulating that at each snapshot, any node (that has yet to switch) switches community
with probability pswitch. The performance of algorithms for simple networks, quantified using adjusted
mutual information (AMI) [74], is compared in Figure 2, which also assesses geodesic structure
(using Proposition 4) as SBM dynamics range from smooth to very jagged. Algorithms for non-
simple network modalities are evaluated using a dynamic extension of the appropriate SBM. That
includes the signed SBM (SSBM) for signed networks, mixed-membership SBM (MMSBM), directed
SBM (DSBM), multiview SBM (MVSBM), stochastic coblock model (SCBM), and hierarchical
SBM (HSBM). The definition of each modified SBM differs minutely from that of the standard
SBM outlined here and is provided in appendix A. Figure 3 shows these results: in all cases, the
communities recovered by the Grassmannian-smoothed dynamic network embeddings outperform
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Figure 4. Evaluation on the two-day elementary school face-to-face interaction network of [76].
LEFT: Included as benchmarks are the Label Smoothing (LS) approach of [78], the Smoothed
Louvain (SL) algorithm of [44], and the Graph Smoothing (SG) approach of [79]. The three geodesic
approaches uniformly outperform the benchmarks. RIGHT: The AMI difference at each time step
between Algorithm 2 (fixed kc) and its extension (Appendix C) to the variable-kc case. The data
points are scattered, with each trajectory smoothened using a third-order Savitzky-Golay filter [80] to
visually enhance any trends. The results imply that the two algorithms perform very similarly.

those from the static embeddings, sometimes dramatically. Overlapping and hierarchical community
detection algorithms are evaluated using element-centric similarity (E-cS) [75].

Real. We assess performance on the face-to-face interaction network of [76]. Over the course of two
elementary school days, 77, 602 contact events were recorded among 242 individuals (232 children
in 10 classes, and the 10 teachers of those classes). The data was segmented into 10-minute intervals,
yielding a sequence of T = 102 contact networks encoded by unweighted symmetric 232 × 232
adjacency matrices. As preprocessing, bridge edges were placed between graph components to
maintain connectedness and teachers were removed from the network. The class memberships lend
natural community structure to this evolving network, which are perfectly recovered at each time step
by geodesic spectral clustering and near-perfectly recovered by the other geodesic methods (Figure 4,
LEFT). We benchmark against the suite of popular dynamic community detection algorithms imple-
mented within the tnetwork library [77], specifically the Label Smoothing (LS) [78], Smoothed
Louvain (SL) [44], and Graph Smoothing (SG) [79] algorithms. The three geodesic approaches
each outperform the benchmarks across all time, apparently dramatically so around the 3-4h point
— presumably a lunch break — on each day. We refrain from making a claim as to whether the
mingling of classes around lunchtime is best considered as a noisy sample or as the dissolution of
the latent community structure, and we indicate our ambivalence by masking these intervals in gray.
We hypothesized that the geodesic method’s favorable performance could be attributed to it seeking
precisely kc = 10 communities at each time step while the benchmarks seek a variable number
of communities. This turned out to be largely false: it is indeed the case that when stable latent
communities are anticipated in the network dynamics, a dynamic community detection algorithm
capable of utilizing this information such as Algorithm 2 is preferred. However, (Figure 4, RIGHT)
shows that a simple extension of Algorithm 2 to the case of varying kc, based on sweeping kc to
locally maximize modularity (Appendix C), performs nearly identically to Algorithm 2.

4 Conclusion

This work presented and analyzed a Grassmann geometry-based framework for generalizing the
popular family of spectral algorithms for community detection in static networks to the time-varying
setting. Our method is broadly applicable to spectral community detection methods and has excellent
performance, as demonstrated on both synthetic and real data experiments. We note that our method
only focuses on a single approach to fitting a geodesic to data. Extensions and improvements of said
approach would induce analogous extensions and improvements here.
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A Instantiations and Evaluations of the Proposed Framework
This section provides proofs, interpretations, and experiments expounding the discussion in Sec-
tion 2.2. We begin with the straightforward proof of Proposition 1.

Proof of Proposition 1. First suppose A clusters based on the leading eigenvectors of R. Since
|λd(R)| ≤ ∥R∥F, scaling by 1/∥R∥F normalizes the spectrum of R to lie in [−1, 1]. Then the addi-
tion of I turns the matrix positive semidefinite, whence its singular vectors and leading eigenvectors
agree. Now suppose A clusters based on the trailing eigenvectors of R. Analogous to the above,
division by ∥R∥F normalizes the spectrum of R to lie in [−1, 1]. Then subtracting it from I turns
the matrix positive semidefinite, such that the top singular vectors of the matrix I −R/∥R∥F agree
with its leading eigenvectors, which in turn agree with the trailing eigenvectors of R.

We now proceed to discuss specific network modalities. The figures shown in this section are the
numerical results used to create Figure 3 in the main text.

A.1 Simple Networks

Proof of Proposition 2. Since L is symmetric, its spectrum is real — say, λ(L) ∈ [λmin, λmax] ⊂ R.
max |λ(L)| either equals |λmin| or |λmax|; the spectrum of the matrix L/max |λ(L)| therefore
lives in [−1, 1], and so we have λ(nI − L) ⊂ [0, 2] for any n ≥ max |λ(L)|. Since this matrix is
positive semidefinite, its top singular vectors and leading eigenvectors agree. Of course, its leading
eigenvectors are precisely the trailing eigenvectors of L.

For the second portion of the statement, let n ≥ 2maxi∈V deg(i). Given a node i ∈ V , notice that∑
j ̸=i

|Lij | =
∑
j ̸=i

| −Aij | = deg(i).

By the Gershgorin circle theorem ([81], Section 8.5.2), the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 of
L are located within the union of closed discs

λi ∈
d⋃

i=1

{λ ∈ R : |λ− deg(i)| ≤ deg(i)}

This implies λ(L) ⊂ [0, 2maxi∈V deg(i)] and thus λ(Ln ) ⊂ [0, 1]. By the same reasoning that
concludes the paragraph above, the result follows.

Ideal communities and subspace structure. We now elaborate on the special case of Proposition 2
alluded to in Section 2.2, wherein G consists of k cliques of s nodes each.

Permuting the node indices so that the graph Laplacian L of G is block diagonal, with each block
corresponding to a clique and identical to each other block, computing the spectrum of L amounts
to computing the spectrum corresponding to a single complete graph Ks of size s and copying that
spectrum k times. The graph Laplacian L(Ks) of Ks is

LKs
= (s− 1)I − (11⊤ − I) = sI − 11⊤,

where 1 denotes the vector of all ones. As with any graph Laplacian, the vector 1 is an eigenvector
with eigenvalue 0. Any other eigenvector v (of which there are s− 1) must be orthogonal to this one,
implying that

11⊤v = 1

∑
j

vj

 = 1 · 0 = 0.

It follows that
LKs

v = sIv − 11⊤v = sv,

i.e., v has eigenvalue s. Putting together each spectrum, we obtain

λ(L) = (

k times︷ ︸︸ ︷
0, . . . , 0,

d−k times︷ ︸︸ ︷
s, . . . , s).
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Figure 5. Representative comparison of geodesic
and static methods for dynamic community detec-
tion in simple networks, medianed over 50 sim-
ulations of the dynamic stochastic block model
from Section 3 (d = 120, T = 20, pswitch =
10−2, pin = 0.3, pout = 0.2). Error bars cor-
respond to 25th and 75th percentiles. With the
exception of spectral modularity maximization
at time i = 1, the geodesic methods each median
to recover the true community structure of each
snapshot. The methods compared are normalized
spectral clustering (NSC) [15], spectral modular-
ity maximization (SMM) [14], and Bethe Hes-
sian clustering (BHC) [17].

Then the matrix M = sI −L has spectrum

λ(M) = s− λ(L) = (

k times︷ ︸︸ ︷
s, . . . , s,

d−k times︷ ︸︸ ︷
0, . . . , 0).

The result is that the MCM M has rank-k, meaning that in this special case the seemingly high-
dimensional node embeddings it contains as columns already live in a low-dimensional latent
subspace. This lends extra intuition to the formulation of spectral clustering as a subspace estimation
problem (Algorithm 1): in the case of a graph with entirely unambiguous community structure, the
embeddings from M live in a k-dimensional subspace. We can then view small perturbations of this
ideal graph structure — the random removal of edges between intracluster nodes and placement of
edges between interclique nodes — as adding spatial noise to the original node embeddings living in
the subspace, which it is then the goal of spectral clustering to remove (Algorithm 1) via low-rank
approximation.

Proof of Proposition 3. For a discussion on signless Laplacians, see [82]. The only property needed
here is that, like L = D −A, Q = D +A is positive semidefinite. It follows that the matrices

Lsym = D−1/2(D −A)D−1/2 and Qsym = D−1/2(D +A)D−1/2 = 2I −Lsym (12)

are each positive semidefinite. So,

λ(Lsym) ⊂ R≥0 and 2− λ(Lsym) ⊂ R≥0, (13)

which constrains λ(Lsym) to the interval [0, 2]. It follows that λ( 12Lsym) ⊂ [0, 1], and in turn that
λ(I − 1

2L
sym) ⊂ [0, 1]. In particular, I − 1

2L
sym is positive semidefinite, hence its top singular

vectors u1, . . . ,uk agree with its leading eigenvectors v1, . . . ,vk. These are precisely the k trailing
eigenvectors of 1

2L
sym, and precisely the top singular vectors of 1

2Q
sym; the result follows.

Bethe Hessian clustering. There is one additional static spectral method for clustering simple
networks whose discussion is largely omitted from the main text. Bethe Hessian clustering [17]
generalizes spectral clustering by replacing the graph Laplacian with a regularized generalization
H(r) = (r2−1)I−rA+D. We set r =

√
c, where c is the mean degree ofG, per the suggestion in

[17]. Unlike the graph Laplacian, the Bethe Hessian is not in general positive semidefinite. Like the
modularity matrix B, the most positive and most negative eigenvectors in fact each contain important
information about (anti)community structure. Here, we consider Bethe Hessian clustering (BHC) via
the trailing eigenvectors of H(r), with MCM obtained (as always when no alternative is specified)
via Proposition 1.

A.2 Signed Networks

Let G = (V,E+, E−) be a graph comprised of both positive (attractive) and negative (repulsive)
edges, such as voting networks [60] or the Pearson correlation networks ubiquitous in time series
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analysis [59]. The study of community detection in signed networks has its roots in structural
balance theory [83]; the goal is to obtain a partition under which increased positive edges exist within
communities and increased negative edges exist between communities [84].

Signed networks — algorithms and modeled clustering matrices. Two generalizations of spectral
clustering to signed networks are based on trailing eigenvectors of the signed ratio Laplacian

|D| −A, (14)

where |D| is the entrywise absolute value of D [26], and the geometric mean Laplacian [25]6

L+1/2

(L+−1/2

Q−L+−1/2

)1/2L+1/2

(15)

(or their normalized counterparts). More generally, choose p ∈ R. Set k′ := k − 1 if p ≥ 1 and
k′ = k if p < 1. The approach in [24] subsumes both of the aforementioned approaches as the special
cases p = 1 and p → 0 of applying k-means to the k′ smallest eigenvectors of the signed power
mean p-Laplacian

L(p) := Mp(L
sym+,Qsym−), (16)

where Mp(A,B) denotes the matrix power mean Mp(A,B) := (A
p+Bp

2 )1/p.7

Proposition 5. Let Uk′Σk′V ⊤
k′ be a truncated singular value decomposition of L(p) := I −

1
2Mp(L

sym+,Qsym−). Take the leading singular vectors u1, . . . ,uk′ as node embeddings. Then the
matrix serves as an MCM for the three algorithms described here.

Proof of Proposition 5. Mp(L
sym+,Qsym−) is positive semidefinite as a combination of sums, pow-

ers, and positive scalings thereof. Hence λ(Mp(L
sym+,Qsym−)) ⊂ R≥0. Also, we can bound its

leading eigenvalue as:

λ1(Mp(L
sym+,Qsym−)) =λ1

(Lsym+p

+Qsym−p

2

)1/p
 (17)

=
1

2
λ
1/p
1

(
Lsym+p

+Qsym−p
)

(18)

≤1

2
λ
1/p
1 (Lsym+p

) +
1

2
λ
1/p
1 (Qsym−p

) (19)

=
1

2
λ
p/p
1 (Lsym+) +

1

2
λ
p/p
1 (Qsym−) (20)

≤1

2
(2) +

1

2
(2) (21)

=2, (22)

where the inequality in (19) follows from Weyl’s inequality and the inequality in (21) follows
from the fact that both λ(Lsym+) ⊂ [0, 2] and λ(Qsym−) ⊂ [0, 2] (cf. Proposition 3). Hence
λ(Mp(L

sym+,Qsym−)) ⊂ R≤2. Thus λ(Mp(L
sym+,Qsym−)) ⊂ [0, 2]. Or, if p < 0 forces us to

spectrum-shift by ε > 0, [ε, 2 + ε]. In turn, λ
(
1
2Mp(L

sym+,Qsym−)
)
⊂ [0, 1]; it follows that

the matrix I − 1
2Mp(L

sym+,Qsym−) is positive semidefinite and hence its top singular vectors
and top eigenvectors agree. But its top eigenvectors are precisely the bottom eigenvectors of
1
2Mp(L

sym+,Qsym−); the result follows.

Signed networks — experiments. We evaluate on a dynamic model, given in Algorithm 3, based
on the signed stochastic block model found in [24, 84] and the standard dynamic stochastic block
model from Section 3. The results are shown in Figure 6.

6Here, the + and − exponents refer to quantities defined over the unsigned networks G+ = (V,E+) and
G− = (V,E−) respectively.

7When p < 0 the matrix power mean requires positive definite matrices; the authors address this by
considering Lsym+ + εI and Qsym− + εI for some ε > 0 as necessary.
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Algorithm 3 Dynamic Signed Stochastic Block Model (Dynamic SSBM)

Input: Probabilities pin, pout, ηin, ηout, pswitch, number k of planted communities
1: At time i = 1:
2: Partition node set (up to remainder) into k equally-sized planted communities. Let Z(ℓ) denote

the community to which node ℓ belongs.
3: For every node pair (i, j), place a positive edge (+1) between i and j with probability pin if
Z(i) = Z(j), and a negative edge (−1) with probability pout if Z(i) ̸= Z(j). Note that, unlike
the unsigned case, it is sensible to choose pin = pout.

4: Flip the sign of each placed edge according to respective probabilities ηin and ηout for ηin, ηout <
1
2 .

Commonly ηin = ηout.
5: Repeat the above for snapshot indices 2 ≤ i ≤ T . Dynamics are induced by asserting that, at a

given time step i, each node (that has not before switched) switches community with probability
pswitch, its destination chosen uniformly at random among the k − 1 options.

0 4 8 12 16 ti
0.0

1.0

A
M

I

Geodesic SR
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(a) pin > pout
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(b) pin = pout

Figure 6. Comparison of geodesic and static signed community detection methods, medianed over
50 simulations of two settings of a dynamic signed stochastic block model (d = 120, T = 20, k = 2,
pswitch = 10−2, ηin = ηout = 0.4). (6a): pin = 0.3, pout = 0.2. (6b): pin = pout = 0.3: even when
the intra- and inter-community connection probabilities are identical, the algorithms are still able
to discover community structure based solely on positive and negative edge affinities. We compare
algorithms based on the signed ratio Laplacian (SR) [26], the geometric mean Laplacian (GM) [25],
and the more general matrix power mean Laplacian (SPM) [24] with p = −2.
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A.3 Mixed-Membership Networks

Oftentimes a node belongs to more than one community, e.g., in many social [85, 86] and neuronal
[62] networks. The output of an overlapping community detection algorithm generally takes the
form of a d× k membership matrix whose jℓth element equals the estimated probability that node j
belongs to community ℓ. For the purposes of evaluation, this matrix is often thresholded into a binary
matrix whose jth row indicates the communities to which the jth node belongs.

Mixed-membership networks — algorithms and modeled clustering matrices. A simple exten-
sion of spectral clustering to the context of overlapping communities is to replace the k-means step
with a fuzzy c-means step. See [87] for a discussion on fuzzy c-means and [27] for analysis of the
‘fuzzy spectral clustering’ method it induces. Other mixed-membership spectral methods include [19],
which compute a thin spectral decomposition A = V kΛkV

⊤
k (eigenvalues in descending order), and

defines node embeddings as X = V kΛ
1/2
k . After normalization and regularization, the authors apply

k-medians clustering (as analyzed in [88]); projecting the rows of X onto the subspace spanned by
cluster centers yields a final d× k matrix representing soft cluster memberships.

Mixed-Membership Networks — Experiments. We evaluate on a dynamic model based on
the mixed-membership stochastic block model described in [89]. To understand the static mixed-
membership stochastic block model, we will provide a new interpretation of the (single-membership)
stochastic block model, and then generalize it to the mixed-membership case. Following this, we will
extend to the dynamic case.

One can view the connectivity under the version of the stochastic block model from Section 3 in
terms of the parameter matrix


pin pout . . . pout
pout pin . . . pout

...
...

. . .
...

pout pout . . . pin

 =: B ∈ Rk×k (23)

where each element of is a Bernoulli random variable with parameter pin or pout. Then, with Z(ℓ)
denoting the planted community of a node ℓ, the probability P(Aij = 1) of an edge between two
nodes i, j ∈ [d] is BZ(i),Z(j), which we can write as

P(Aij = 1) = BZ(i),Z(j) = ϕi,Z(i)ϕj,Z(j)BZ(i),Z(j)
=

k∑
g=1

k∑
h=1

ϕigϕjhBgh,

where ϕℓ = [0 · · · 0
gth entry︷︸︸︷

1 0 · · · 0]⊤ ∈ Rk×k indicates that node ℓ belongs to the gth planted commu-
nity with probability 1. A mixed-membership prescription then follows by allowing ϕℓ to not be an
indicator vector, but rather a normalized vector of probabilities wherein ϕℓg describes the probability
that node ℓ belongs to the gth community. We introduce simple dynamics into the model by asserting
that, at each snapshot index, a node switches with probability pswitch, with its destination chosen
uniformly at random from among all planted communities and their intersections. See Algorithm 4.

We evaluate using element-centric similarity as outlined in [75]. Although the overlapping community
detection algorithms described above output community membership probabilities for each node, the
element-centric similarity metric utilizes binary assignments. To be compatible, we threshold such
that a node is declared part of a community if it belongs to that community with probably exceeding
pthresh := 0.2. Results are in Figure 7.
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Figure 7. Comparison of geodesic and static
overlapping community detection methods
in time, medianed over 50 simulations of
a dynamic mixed-membership stochastic
block model (d = 120, k = 2, T = 20,
pswitch = 10−2, pin = 0.3, pout = 0.2). At
time i = 1, two communities are planted,
each possessing 50 ‘single-affiliated’ nodes.
The remaining 20 nodes are equally affili-
ated with each community. That is, ϕ1 =

[1 · · · 1 0.5 · · · 0.5 0 · · · 0]
⊤ and

ϕ2 = [0 · · · 0 0.5 · · · 0.5 1 · · · 1]
⊤.

Error bars correspond to 25th and 75th per-
centiles. The algorithms compared are the
overlapping spectral clustering (OSC) method of
[19] and c-means spectral clustering based on
[27].

Algorithm 4 Dynamic Mixed-Membership Stochastic Block Model

Input: Number of communities k, number of nodes d, number of time points T , parameter matrix
B, switching probability pswitch, initial mixed-membership vectors Φ ∈ Rd×k with columns
{ϕℓ}dℓ=1 ⊂ Rk

1: At time i = 1:
2: Use provided ϕℓ ∈ Rk for each node ℓ ∈ [d]

3: Sample an adjacency matrix A, P(Aij = 1) =
∑k

g=1

∑k
h=1 ϕigϕjhBgh

4: Repeat the above for 2 ≤ i ≤ T . Dynamics are induced as follows: at a given time step i,
each node switches mixed-membership vector with probability pswitch, its new vector chosen
uniformly at random from among the unique columns of Φ.

A.4 Directed Networks

A great deal of network modalities lend themselves to asymmetric representations, including many
social [90], informational [64], biological [63, 91] and neuroscientific [92] networks. We consider two
notions of ‘community’ which naturally arise in this directed network context. The first aligns with
the undirected case: a good partition divides the network into communities such that intracommunity
edge densities far exceed intercommunity edge densities. The second is especially pertinent to the
directed case, and concerns the grouping of nodes based on ‘patterns’ rather than edge density. These
include co-citation patterns (outgoing resp. incoming edges on in-community nodes are more likely
to share common targets resp. sources) and flow-based patterns (a random walker is more likely to
get ‘stuck’ in a community) [93].

Directed Networks — algorithms and modeled clustering matrices. One popular extension of
spectral methods to the directed context is based on replacement of the directed adjacency matrix A
with an appropriate symmetrization. Two such symmetrizations are evaluated in [28] in the context
of spectral clustering. The first is bibliographic symmetrization:

Abibliographic = AA⊤ +A⊤A, (24)

where the bibliographic coupling matrix AA⊤ counts the number of nodes in G to which i and j
both point [94] and the co-citation matrix A⊤A counts the number of nodes in G that point to both i
and j [95]. The second is degree-discounted symmetrization:

Adegree-discounted := D
−1/2
out AD

−1/2
in A⊤D

−1/2
out +D

−1/2
in A⊤D

−1/2
out AD

−1/2
in , (25)

which normalizes (24) to account for the heterogeneity of degree distributions found in real-world net-
works [28]. Also studied are Laplacian extensions for directed graphs, the most popular among these
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[29, 93, 96, 97] being the random walk-based directed Laplacian (RW) whose largest eigenvectors
encode graph partition structure

Θ =
1

2

(
Π1/2PΠ−1/2 +Π−1/2P⊤Π1/2

)
, (26)

where P is the transition matrix Pij =
Aij∑d

j=1 Aij
and Π = D−1

out .

We note that the aforementioned symmetrization approaches are intended to detect both density-based
and pattern-based communities, whereas the directed Laplacian-based approaches are intended only
to detect density-based communities ([93], Table 2).

Directed networks — experiments. We evaluate on following dynamic model (Algorithm 5),
based on the directed stochastic block model proposed in [98]. Results are shown in Figure 8.

Algorithm 5 Dynamic Directed Stochastic Block Model

Input: probabilities pin, pout, pswitch, matrix F ∈ [0, 1]k×k satisfying Fℓj +Fjℓ = 1 for all j, ℓ ∈ [k],
number k of planted communities

1: At time i = 1:
2: Partition node set (up to remainder) into k equally-sized planted communities. Let Z(ℓ) denote

the community to which the node ℓ belongs
3: For every node pair (i, j), place an edge between i and j with probability pin if Z(i) = Z(j)

and probability pout if Z(i) ̸= Z(j). The edge is directed from i to j with probability FZ(i),Z(j);
otherwise, it is directed from j to i.

4: Repeat the above for snapshot indices 2 ≤ i ≤ T . Dynamics are induced by asserting that, at a
given time step i, each node (that has not before switched) switches community with probability
pswitch, its destination chosen uniformly at random among the k − 1 options.

A.5 Networks with Cocommunity or Bipartite Structure

An adjacent problem to that of directed network community detection is that of co-community
detection. The general coclustering problem concerns the grouping of data according to multiple
attributes (e.g., samples and features) simultaneously. We focus on two notions of cocommunity
detection found in network analysis. The first notion applies to directed networks, where the two
attributes correspond to rows and columns of the directed adjacency matrix. The output is two network
partitions: one which clusters nodes with similar sending patterns, and another which clusters nodes
with similar receiving patterns. The second notion applies to bipartite networks, where the goal is
to cluster nodes of both types simultaneously. The output is two coindexed partitions of first-type
nodes and second-type nodes respectively. The cocommunity detection method we generalize via
Algorithm 2 applies to both notions.

Algorithms and modeled clustering matrices. We will consider the spectral coclustering method
found in [31]. A related algorithm may be found in [67]. Given a numbers ky and kz of sending
clusters and receiving clusters to detect, the method computes a k-truncated singular value decompo-
sition UΣV ⊤ of a regularized (asymmetric) graph Laplacian L, where k = min(ky, kz). U is then
used for ‘sending embeddings’, while V is used for ‘receiving embeddings’. From the perspective of
Algorithm 1, L is already in MCM form when the goal is to detect receiving clusters. When the goal
is to detect sending clusters, L⊤ has the requisite form.

Experiments. We evaluate with a dynamic model, given in Algorithm 6, based on the dynamic
stochastic coblock model from [31]. Results are given in Figure 9.

A.6 Hierarchical Networks

A great deal of real-world complex systems exhibit interesting behavior at multiple resolutions.
Examples of detecting hierarchical communities within such systems abound in neuroscience [69],
biochemistry [68], and the social sciences [99]. The output of a hierarchical community detec-
tion algorithm is a rooted tree whose vertices represent communities, edges represent parent-child
relationships, and levels represent scales of resolution.
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Figure 8. Comparison of geodesic and static methods medianed
over 50 simulations of two settings of a dynamic directed stochastic
block model, both with d = 120, T = 20, pswitch = 10−2. (8a)
k = 2 communities are planted with F = [0.5 0.4; 0.6 0.5],
pin = 0.3, pout = 0.2 in a ‘density-based’ parameter setting. (8b)

k = 3 communities are planted with F =

[
1/2 2/3 1/3
1/3 1/2 2/3
2/3 1/3 1/2

]
, pin =

pout = 0.2 in a ‘flow/pattern-based’ parameter setting [98].

Algorithm 6 Dynamic Stochastic Coblock Model

Input: Number ky of sending communities, number kz of receiving communities; B ∈ Rky×kz

where Bℓℓ′ = pℓℓ′ ∈ [0, 1] represents the probability of an edge existing from a node in sending
cluster ℓ ∈ [ky] to a node in receiving cluster ℓ′ ∈ [kz]. Switching probabilities pswitch, send and
pswitch, receive.

1: If the graph is bipartite with node sets V1 and V2, declare V1 the sending node set and V2 the
receiving node set. If the graph is not bipartite, both sending and receiving node sets are the full
node set V = V1 = V2.

2: Assign each node in the sending node set V1 to one of the ky sending communities, divided
equally. Similarly, assign each node in the receiving node set to one of the kz receiving commu-
nities, divided equally.

3: For each node pair (i, j), place a (directed) edge from node i to node j with probability Byi,zj ,
where yi is the sending community of i and zj is the receiving community of j.

4: Repeat for time steps 2 ≤ i ≤ T :
5: At each time step i, for each node in V1, with probability pswitch, send, swap its sending com-

munity assignment with a randomly chosen node from a uniformly random different sending
community.

6: Similarly, for each node in V2, with probability pswitch, receive, swap its receiving community as-
signment with a randomly chosen node from a uniformly random different receiving community.

7: After community assignments are updated, regenerate all edges according to step 3.
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Figure 9. Comparison of geodesic and static versions of the spectral coclustering (SCC) method in
[31] over 50 simulations of the dynamic stochastic coblock model (d = 120, T = 20, pswitch, send =

preceive, send = 10−2, ky = kz = 3, B =

[
0.5 0.3 0.3
0.3 0.5 0.3
0.3 0.3 0.5

]
). Ribbons correspond to 25th and 75th

percentiles.

Hierarchical networks — Algorithms and modeled clustering matrices. We explore the ap-
proach to hierachical community detection described in [32], which uses Laplacian eigenvectors
to obtain the coarsest partition, then employs a degree-bucketing approach to unfold the commu-
nity hierarchy. Another spectral method for hierarchical community detection (not included in our
experiments) may be found in [100].

Hierarchical networks — experiments. Evaluation is performed on a dynamic model, given in
Algorithm 7, based on the hierarchical stochastic block model proposed in [101]. We score according
to the hierarchial normalized mutual information metric proposed in [102]. Results are found in
Figure 10.

Algorithm 7 Dynamic Hierarchical Stochastic Block Model

Input: A rooted tree on L leaves consisting ofM nodes with weights pm ∈ [0, 1],m ∈ [M ], wherein
each node corresponds to a planted community, and each level of the tree corresponds to a level
of hierarchy in the network. Note that the weight assigned to the root node coincides with pout in
the stochastic block model described in Section 3. Number T of time steps. Probability pswitch.

1: At time i = 1:
2: Assign d nodes equally (up to remainder) among the L leaves
3: For every pair of nodes i, j belonging to leaves L(i), L(j) respectively, place an edge with

probability pm, where m denotes the least common ancestor of L(i) and L(j)
4: For time steps 2 ≤ i ≤ T , repeat the above. Dynamics are induced as follows: at a given time

step i, each node (that has not before switched) switches leaf community to one of its siblings
with probability pswitch, its destination chosen uniformly at random.

A.7 Multiview Networks

In practice, one often has access to multiple graphs corresponding to the same network. Experiments
used to construct network representations of data often have many trials [65]. Or there may exist
many modes of relationship between the same set of nodes, each yielding its own ‘view’ of the
network — [103]. Like snapshot-represented dynamic networks, the underlying representation of
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Figure 10. LEFT: An example probability tree input into the dynamic hierarchical stochastic
block model. MIDDLE: An adjacency matrix, sampled from the dynamic HSBM according to this
tree. RIGHT: Comparison of geodesic and static versions of the hierarchical spectral clustering
(HSC) method in [32], medianed over 50 simulations of the dynamic HSBM (d = 120, T = 20,
pswitch = 10−2, probability tree mimicking that displayed but with values in 0.4± 0.05 to introduce
noise.) Error bars correspond to 25th and 75th percentiles.

a multiview network is generally a multiplex graph. Unlike dynamic networks, the goal is not to
detect one community partition per layer, but rather to construct a single partition of the nodes
using information from multiple layers. That said, the two problem settings can interact. For
instance, suppose the observed dynamic simple graph {Gi}Ti=1 of Section A.1 is of high temporal
resolution, in the sense that T is very large but the network evolution between adjacent snapshots
is minuscule, perhaps with the exception of some outliers of high temporal discontinuity. By
segmenting the snapshots into ‘windows’, a dynamic multiview network can be created, and applying
a dynamic multiview community detection to this network might capture a coarsened perspective on
the unfolding community structure, perhaps while ‘smoothening away’ the outliers.

Multiview networks — algorithms and modeled clustering matrices. We discuss the dynamic
generalization of two spectral methods for detecting communities in multiview networks, each based
on analyzing the spectrum of a single ‘summary Laplacian’ computed using the graph Laplacians
from the individual layer. The first approach is directly adjacent to the signed power mean Laplacian
method discussed in Section A.2, where the spectrum of the power mean of S Laplacians — one per
view of the network — is considered [104]. The second approach is based on Grassmann manifold
geometry [30]: the authors look at Laplacian spectrums layer-by-layer to obtain a collection of
subspaces {⟨U i⟩}Si=1, then solve a Riemannian optimization problem on the Grassmann manifold
for combining the ⟨U i⟩ into a single representative subspace ⟨U⟩ that is ‘close’ to each ⟨U i⟩. They
obtain from this analysis a single matrix whose spectrum aims to summarize the clustering structure
across all layers.

Multiview networks — experiments. We evaluate with a dynamic model, given in Algorithm 8,
based on a simple setting of the multiview stochastic block model analyzed in [105]. Results are
found in Figure 11.

Algorithm 8 Dynamic Multiview Stochastic Block Model

Input: Number S of views, T time points, pin, pout, pswitch
1: At time i = 1:
2: Partition node set (up to remainder) into k equally-sized planted communities. Let Z(ℓ) denote

the community to which node ℓ belongs.
3: Sample S adjacency matrices from the (static) stochastic block model described in Section 3

according to pin and pout and concatenate into an S × d× d adjacency tensor
4: Repeat the above for snapshot indices 2 ≤ i ≤ T . Dynamics are induced as follows: at a given

time step i, each node (that has not before switched) switches community with probability pswitch,
its destination chosen uniformly at random among the k − 1 options.
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Figure 11. Comparison of geodesic and static
multiview community detection methods in time,
medianed over 50 simulations of a dynamic
mixed-membership stochastic block model (d =
120, k = 2, T = 20, pswitch = 10−2, pin = 0.3,
pout = 0.2, S = 3). Error bars correspond
to 25th and 75th percentiles. The algorithms
compared are the Grassmannian multiview spec-
tral clustering (GMVSC) algorithm of [30] and
the power mean Laplacian spectral clustering
(PMLSC) method of [24] with p = 10.

A.8 Other Network Modalities

Many successful methods for community detection in principle admit generalization via Algorithm 2,
even though they are not included among our experiments. Examples include spectral methods for
hypergraph clustering [33, 106], motif-based methods [34] and higher-order, topological methods
[36, 107]. We also note that many of the non-regularized methods explored in this text have
regularized counterparts which generalize via our method to the evolving setting as well [108–111].

B Proof of Proposition 4

Suppose σ1 ≥ σ2 > σ3 = · · · = σm = 0, so that X = a1σ1b
⊤
1 + a2σ2b

⊤
2 and ⟨X⟩ =

span(a1,a2) = U , where U is a 2-plane in Rd containing the origin. It follows that for each
column c of X we have

c ∈ Sd−1 ∩ U ,
so that c belongs to a great circle arc in Sd−1. Hence the columns of X each live on the trace of a
geodesic γ : [0, 1]→ Sd−1. It suffices, then, to show that φ ◦ γ is a geodesic on the real projective
space Gr(1, d), where φ : Sd−1 → Gr(1, d) is given by φ(w) := ⟨w⟩.
To this end, let the Lie group Z/2Z = {1,−1} act on Sd−1 by (left) multiplication. The orbits
of this action induce an equivalence relation ([37], Definition 9.13) whose associated projection
π : Sd−1 → Sd−1/(Z/2Z) sends w ∈ Sd−1 to [w] = {w,−w}. This action is clearly smooth, free,
and — since Z/2Z is compact as a finite topological group — it is proper ([112], Corollary 21.6). It
is a local isometry as well; checking this amounts to verifying ([37], Theorem 9.38) that the antipodal
map f : Sd−1 → Sd−1, w 7→ −w satisfies, for all w ∈ Sd−1 and x1,x2 ∈ Tw(Sd−1),

⟨df(w)[x1], df(w)[x2]⟩f(w) = ⟨x1,x2⟩w.
Because df(w) = −idSd−1 , we can rewrite the desired assertion as

⟨−x1,−x2⟩−w = ⟨x1,x2⟩−w = ⟨x1,x2⟩w;

since the Riemannian metric on Sd−1 is inherited from the Euclidean inner product on Rd, and the
latter is invariant under orthogonal transformations, the equation holds. π is a therefore a Riemannian
covering map ([113], Theorem 23.18), and hence ([113], Proposition 18.6) it projects and lifts
geodesics to geodesics.

Moreover, recall that the canonical geodesic distance between two points on the Grassmannian is
∥Θ∥2, where Θ ∈ Rk consists of principal angles between the subspaces [56]. It follows immediately
that the (clearly well-defined) diffeomorphism ψ : Sd−1/(Z/2Z)→ Gr(1, d) mapping [w] to ⟨w⟩
preserves geodesic distances.

Thus, φ factors as ψ ◦ π, where ψ and π each preserve geodesics. It follows that

{φ(±v(1)
1 ), . . . , φ(±v(d)

1 )} = {⟨±v(1)
1 ⟩, . . . , ⟨±v

(d)
1 ⟩}
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belongs to the trace of a Grassmann geodesic, as claimed.

Conversely, suppose the first singular subspaces ⟨v(1)
1 ⟩, . . . , ⟨v

(T )
1 ⟩ lie on the trace of a geodesic

δ : [0, 1]→ Gr(1, d). Since ψ is a diffeomorphism that preserves geodesic distances, ψ−1 is as well.
Additionally, π lifts geodesics to geodesics as a Riemannian covering map. By lifting δ through ψ
and π to geodesics on Sd−1, we can realize each of the ±v(i)

1 as living on the trace of a geodesic
on Sd−1, i.e., as living in the intersection of Sd−1 with a 2-dimensional linear subspace U . Hence
σ3 = · · · = σm = 0.

Remark. In spectral clustering when kc = 2, one also clusters based on the signs of an eigenvector’s
entries [47]. However, the most extremal eigenvector is the vector of all ones not interesting (indeed,
it corresponds to the partition trivially minimizing the cut size objective by placing all nodes into one
cluster[12]); instead, the second extremal eigenvector û is used. All of the discussions phrased here
in terms of spectral modularity maximization carry through for spectral clustering provided that one
works with û instead of the most extremal eigenvector u.

C Extension to Time-Varying kc

This section elaborates upon the straightforward extension, mentioned in Section 3, of Algorithm 2
to the case where the number of latent communities kc varies in time. The approach described is
applicable to any network modality for which an unsupervised benefit function (e.g. modularity or an
extension of it) has been studied.

Section C.1 will motivate our extension. Section C.2 will provide an explicit algorithm for it, modeled
off of Algorithm 2, together with empirical results. While the approach taken has some theoretical
motivation, it is nevertheless a heuristic, and Section C.3 gives potential alternative heuristics and
future directions toward a more principled approach.

C.1 Motivation

Static spectral methods for community detection generally require the number kc of desired commu-
nities, the embedding dimension ke, or both of these values to be specified in advance. The temporal
setting amplifies this drawback, since in certain contexts the number of latent communities may
earnestly change in time, as a result e.g. of merging or splitting [5]. This section justifies an extension
of Algorithm 2 that is capable of automatically detecting a variable number of communities at each
time step.

Our approach is motivated by the observation that, upon writing the RatioCut objective function for
unnormalized spectral clustering in terms of spectrum λ1(M), . . . , λd(M) of the MCM M = nI −
L (Proposition 2), the problem of minimizing RatioCut becomes equivalent to a flavor of max-sum
vector partitioning applied to d-dimensional spectral embeddings. If we use k-dimensional spectral
embeddings instead, the vector partitioning problem is approximately equivalent to RatioCut, with
error proportional to the energy lost by discarding λk+1(M), . . . , λd(M). We use this observation
to argue that, although letting the spectral embedding dimension ke equal the desired number of
communities kc is conventional and effective for spectral partitioning, if ke exceeds kc by a small-
to-moderate amount8 then we should still expect good performance (since Euclidean clustering
with a larger ke is theoretically optimizing a function closer to the true RatioCut objective). The
consequence is that, by choosing ke in Algorithm 2 to be an upper bound for the estimated number
kc,i of latent communities at any time step i, we are permitted to vary kc = kc(t) freely as a
function of time without penalty. The task then becomes deciding how to automatically choose each
kc,i = kc(ti); we provide one approach but note that unexplored alternatives may do better (appendix
C.3).

Minimal graph cuts and maximal vector partitions. The present discussion uses (unnormalized)
spectral clustering as a prototypical example, but the argument we offer has analogues in (at least)
the contexts of spectral modularity maximization [13] and size-contrained graph partitioning [11].
Said analogues have motivated broader efforts to better understand how large ke should be compared
to kc in general spectral settings [55].

8Not by too much, however, in light of noise considerations and dimensionality curses.
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Recall the definition of the cut size objective for evaluating a partition (Z1, . . . , Zkc) of a simple
graph G with adjacency matrix A into kc communities:

Cut(Z1, . . . , Zkc
) :=

1

2

k∑
i=1

W (Zi, V \ Zi), where W (Z,Z ′) :=
∑

z∈Z,z′∈Z′

Azz′ , (27)

and the RatioCut objective [114] whose relaxation yields (unnormalized) spectral clustering:

RatioCut(Z1, . . . , Zkc
) :=

kc∑
i=1

Cut(Zi, V \ Zi)

|Zi|
. (28)

Defining S to be the d× k community matrix Sij =
1Z(i)=Z(j)√

|Zj |
, it can be shown [47] that RatioCut

may be rewritten
RatioCut(Z1, . . . , Zk) = Tr(S⊤LS), (29)

where L = D −A is the unnormalized graph Laplacian of G and Z(ℓ) denotes the community to
which node ℓ belongs. With the MCM M = nI −L defined as in Proposition 2, we can rewrite this
as

RatioCut(Z1, ..., Zk) = nTr(STS)− Tr(STMS) = nk − Tr(STMS). (30)
In particular, choosing (Z1, . . . , Zkc

) minimizing RatioCut is equivalent to choosing (Z1, . . . , Zkc
)

maximizing Tr(S⊤MS).

Take a spectral decomposition M = V ΛV ⊤, with the entries of Λ positioned in descending order,
and define N := V Λ1/2. The ℓth row rℓ of N equals the ℓth Euclidean node embedding derived by
unnormalized spectral clustering when appropriately truncated, up to scalings from Λ1/2.9 We can
rewrite our objective in terms of these node embeddings:

Tr(S⊤MS) = Tr(STN NTS) =

k∑
j=1

1

|Zj |

∥∥∥∥∥∥
∑
ℓ∈Zj

rℓ

∥∥∥∥∥∥
2

2

. (31)

In this light, we see that minimizing RatioCut is equivalent to a flavor of max-sum vector partitioning
applied to d-dimensional node embeddings derived from the leading eigenvectors of M . Exactly
solving max-sum vector partitioning problems is extremely expensive [13]; as such, various heuristics
have been proposed [11, 13, 115], including ones that are nearly equivalent to k-means [13]. Truncat-
ing to kc ≤ p ≤ d rows of N yields a max-sum vector partitioning problem in Rp whose objective
approximates the RatioCut objective. When p = kc we recover an algorithm very similar to spectral
clustering. When p = d we are optimizing the RatioCut objective exactly rather than a low-rank
approximation to it — if doing so were computationally feasible, this would theoretically give the
best results. So choosing an embedding dimension p = ke exceeding the number of desired clusters
kc is, in principle, an advantage rather than a detriment. In practice, due e.g. to noise considerations,
dimensionality curses, and other challenges to which Euclidean clustering heuristics are generally
susceptible in high-dimensional space, it is not recommended to let ke be arbitrarily high relative to
kc.

We can utilize these ideas towards extending Algorithm 2 in the following manner. By definition,
ke must be fixed over time in Algorithm 2. However, nothing prevents kc = kc,i = kc(ti) from
varying based on i ∈ [T ], and — based on the discussion above — this should not incur any penalty
compared to if we had chosen ke = kc,i from the start, so long as kc,i ≤ ke and there exists earnest
kc-way community structure at time i.

Automatically choosing the number of communities. How should kc,i be chosen? The easiest
approach would be to evaluate some unsupervised partition score (e.g., modularity or the appropriate
extension to other network modalities) with respect to different choices of kc,i and choose the
maximizer. Of course, evolving community detection algorithms are in part motivated by the premise
that the ‘correct’ community partition at a given time step may not always be the one maximizing the
static modularity (e.g., due to measurement noise or stability considerations [5, 8]). We therefore

9In fact, some versions of spectral clustering use N directly [19].
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recommend incorporating some temporal awareness into the heuristic by filtering the scores for
dynamic regularity, and reiterate our suggestion from Section 3 to initialize the Euclidean clustering
heuristic of A with clusters found at the previous time step. This is the approach taken in the
following algorithm; potential alternatives are mentioned in Section C.3.

C.2 Algorithm and Evaluation

Informed by the previous discussion (appendix C.1), we provide an extension of Algorithm 2 to the
case where the true number of communities earnestly varies over time, e.g., due to communities
merging or splitting.

Algorithm 9 Evolving Community Detection with Grassmann Geodesics — Variable kc

Input: Graphs and associated snapshot times {Gi, ti}Ti=1
Input: Estimates kmin and kmax of the minimum and maximum number of communities present at

any time step
Input: Static spectral method A admitting an MCM (i.e., A formulated as in Algorithm 1)
Input: Unsupervised network partition benefit function (e.g., modularity for simple networks)

1: Apply steps 1 and 2 of algorithm 2 to fit a geodesic, using ke := kmax as the embedding dimension
2: Instantiate H ∈ R(kmax−kmin+1)×T

3: for k in [kmin, kmax] ∩ Z do
4: for i ∈ [T ] do
5: Euclidean clustering: apply the Euclidean clustering heuristic of A (e.g., k-means) at

snapshot i, storing the modularity Q achieved by the resulting partition as Hki ← Q. Recom-
mended: initialize with results from time i− 1 if applicable.

6: end for
7: Filtering: Optionally, smoothen over the row Hk,: (our experiments convolve with a 1D

Gaussian filter; median filtering is another straightforward option.)
8: end for
9: for i ∈ [T ] do

10: Define kc,i to be the choice of k corresponding to the maximum element of the vector H :,i

11: end for
Output: Partitions (Z1, . . . , Zkc,i

)i, i ∈ [T ], of each Gi into communities

Implementing Algorithm 9 requires a benefit function suitable for the network modality. We remark
that, at minimum, an extension of modularity exists in the literature for all network modalities
considered in this text (signed [116]; overlapping [117]; directed [118]; multiview [73]; cocommunity
[119]; hierarchical [120]). We also remark that, unless kmax is quite large, it generally suffices to fix
kmin = 2 if no preferred choice is known. In practice, therefore, kmax is usually the only required
parameter. All experiments in this paper use the default kmin = 2.

Figure 12 shows representative results of Algorithm 9 on a synthetic benchmark generated according
to the methodology in [121], wherein eight planted communities gradually merge into six over
time. The extension of geodesic normalized spectral clustering to case of time-varying kc via
Algorithm 9 uniformly outperforms the benchmarks; indeed, it is the only method to recover the
planted community structure at every snapshot.

Evaluation on the temporal college football network. Figure 13 shows the results of Algorithm 9
applied to a temporal network inspired by the the popular American college football network of
[122], where an edge is placed between two football teams whenever a game is played between
them over a ten-year span (2009-2019).10 The ground truth community structure is provided by
conference alignment, as in [122]. The community structure evolves as teams change their conference
membership over time. The raw data is obtained via the API offered in [123], then segmented into
one snapshot per month of each football season (September 2009, October 2009, November 2009,
September 2010. . . ) to obtain a time series of T = 33 networks containing d = 118 nodes each.

10The full dataset is available at https://github.com/jacobh140/century-of-college-football.
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Figure 12. Evaluation of Algorithm 9 on an evolving community detection benchmark generated
using the tnetwork library [77] via the methodology from [121]. Initially, 8 communities are present
in the data. Over the course of T = 211 snapshots, two pairs of communities merge, such that
ultimately six communities remain. The other four communities remain stable throughout. LEFT:
A longitudinal plot of the planted community structure over time. The red community gradually
merges into the light green community, and the light blue community gradually merges into the dark
blue community. Note that the benchmark, by convention, does not treat nodes as belonging to any
community at all when they are transitioning; this is indicated in gray. RIGHT: AMI comparison
over time for geodesic normalized spectral clustering (G-NSC, extended to detect varying kc via
Algorithm 9 with kmin = 2, kmax = 10) versus the Label Smoothing (LS) approach of [78],
the Smoothed Louvain (SL) algorithm of [44], and the Graph Smoothing (SG) approach of [79].
We remove from consideration the nodes currently lacking a true community membership when
computing AMI at a given time step.
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Figure 13. Evaluation of Algorithm 9 on a monthly
extension of the college football network of [122].
Geodesic normalized spectral clustering (G-NSC,
extended to detect varying kc via Algorithm 9
with kmin = 2, kmax = 10) is compared against
the Label Smoothing (LS) approach of [78], the
Smoothed Louvain (SL) algorithm of [44], and the
Graph Smoothing (SG) approach of [79], consis-
tently outperforming the benchmarks over time.

A comparison of results can be seen in Figure 13. Geodesic normalized spectral clustering largely
outperforms the benchmarks across time. We remark that the periodicity in some of the benchmarks’
performance may be attributed to the fact that the density of in-conference games played is lower in
September than in October and November.

C.3 Alternative Methods and Future Interest

The heuristic offered by Algorithm 9, though empirically effective and simple to implement, is
nevertheless one of many options for extending Algorithm 2 to the setting where the number of
communities changes over time. One alternative to the ‘benefit function + sweep kc’ approach
detailed previously would be to employ one of many methods for automated model selection in
k-means if applicable, using e.g. the GAP statistic [124] or silhouette scores [125, 126] either
as a benefit function for Algorithm 9 or standalone, or using X-means [127]. We also note that
the geodesic generalization of hierarchical community detection described in Section A.6, put in
conjunction with Algorithm 9 by using the latter to estimate the size of the initial partition, yields a
dynamic algorithm for detecting hierarchical communities that is hyperparameter-free. It is of future
interest to seek a variant of Algorithm 2 which circumvents the requirement of a temporally fixed
embedding dimension ke altogether.

D Remarks on Scaling
The worst case per-iteration time complexity of the geodesic-fitting step in Algorithm 2 and Algo-
rithm 9 is O(Td2ke), where ke is the embedding dimension. The other potentially expensive step
is the multiple applications of a Euclidean clustering heuristic. In the case of k-means, various
techniques have been devised to increase efficiency [128–130], though none of our experiments make
use of these.

In this section, we assess the scaling of Algorithm 9 with respect to d and T on the dynamic stochastic
block model introduced in Section 3. We implement Algorithm 9 for normalized spectral clustering
in Python on a 2019 MacBook Pro (2.3 GHz 8-Core Intel Core i9 Processor, 16GB RAM), using
sparse matrices and the k-means++ implementation found in scikit-learn. The other algorithms
are compared using their implementations in the tnetwork Python library. We find that, for the
parameter settings, hardware, and implementations considered, the geodesic recovered or nearly
recovered the true community structure, outperforming the benchmarks while running about an order
of magnitude (10.47x on average) faster.

33



A Spectral Framework for Tracking Communities in Evolving Networks

d T GNSC LS SL SG
103 102 1.0± 0.0 (36s) 0.65± 0.32 (481s) 0.86± 0.02 (144s) 0.80± 0.03 (349s)
103 103 1.0± 0.0 (387s) 0.65± 0.33 (5893s) 0.87± 0.02 (2172s) 0.79± 0.01 (5445s)
104 102 0.99± 5× 10−5 (641s) N/A 0.71± 0.11 (7266s) N/A

Table 2: Comparison of mean AMI and empirical runtime on the dynamic stochastic block model
(pout = 200d−1, pin = 300d−1, pswitch = (10T )−1, k = 5) as size and longitude vary. The methods
compared are geodesic normalized spectral clustering (G-NSC, ours), label smoothing (LS, [78]),
smoothed Louvain (SL, [44]), and smoothed graph (SG, [79]), as in Section 3. A ‘N/A’ designation
is given wherever a method timed out during a simulation.
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