
Finite-Sample Analysis of Off-Policy TD-Learning via
Generalized Bellman Operators

Zaiwei Chen
Georgia Institute of Technology

Siva Theja Maguluri
Georgia Institute of Technology

Sanjay Shakkottai
The University of Texas at Austin

Karthikeyan Shanmugam
IBM Research NY

Abstract

In TD-learning, off-policy sampling is known to be more practical than on-policy
sampling, and by decoupling learning from data collection, it enables data reuse.
It is known that policy evaluation has the interpretation of solving a generalized
Bellman equation. In this paper, we derive finite-sample bounds for any general
off-policy TD-like stochastic approximation algorithm that solves for the fixed-
point of this generalized Bellman operator. Our key step is to show that the
generalized Bellman operator is simultaneously a contraction mapping with respect
to a weighted `p-norm for each p in [1,∞), with a common contraction factor.
Off-policy TD-learning is known to suffer from high variance due to the product of
importance sampling ratios. A number of algorithms (e.g. Qπ(λ), Tree-Backup(λ),
Retrace(λ), and Q-trace) have been proposed in the literature to address this
issue. Our results immediately imply finite-sample bounds of these algorithms.
In particular, we provide first-known finite-sample guarantees for Qπ(λ), Tree-
Backup(λ), and Retrace(λ), and improve the best known bounds of Q-trace in
[19]. Moreover, we show the bias-variance trade-offs in each of these algorithms.

1 Introduction
Reinforcement learning (RL) demonstrated its success in learning effective policies for a variety of
decision making problems such as autonomous driving [25, 26], recommender systems [1, 41], and
game-related problems [23, 27, 39]. In RL, there is an important sub-problem – called the policy
evaluation problem – of estimating the expected long term reward of a given policy. Solving the
policy evaluation problem is usually an itermediate step in many existing RL algorithms to ultimately
find an optimal policy, such as approximate policy iteration and actor-critic framework.

The policy evaluation problem is usually solved with the TD-learning method [30]. A key ingredient
in TD-learning is the policy used to collect samples (called the behavior policy). Ideally, we want
to generate samples from the target policy whose value function we want to estimate, and this is
called on-policy sampling. However, in many cases such on-policy sampling is not possible due
to practical reasons [16, 40], and hence we need to work with historical data that is generated by a
possibly different policy (i.e., off-policy sampling). Although off-policy sampling is more practical
than on-policy sampling, it is more challenging to analyze and is known to have high variance
[15], which is a fundamental difficulty in off-policy learning. To overcome this difficulty, many
variants of off-policy TD-learning algorithms have been proposed in the literature, such as Qπ(λ)
[17], Tree-Backup(λ) (henceforth denoted by TB(λ)) [24], Retrace(λ) [22], and Q-trace [19], etc.

1.1 Main Contributions

In this work, we establish finite-sample bounds of a general n-step off-policy TD-learning algorithm
that also subsumes several algorithms presented in the literature. The key step is to show that such

35th Conference on Neural Information Processing Systems (NeurIPS 2021)

algorithm can be modeled as a Markovian stochastic approximation (SA) algorithm for solving a
generalized Bellman equation. We present sufficient conditions under which the generalized Bellman
operator is contractive with respect to a weighted `p-norm for every p ∈ [1,∞), with a uniform
contraction factor for all p. Our result shows that the sample complexity scales as Õ(ε−2), where ε is
the required accuracy. It also involves a factor that depends on the problem parameters, in particular,
the generalized importance sampling ratios, and explicitly demonstrates the bias-variance trade-off.

Our result immediately gives finite-sample guarantees for variants of multi-step off-policy TD-
learning algorithms including Qπ(λ), TB(λ), Retrace(λ), and Q-trace. For Qπ(λ), TB(λ), and
Retrace(λ), we establish the first-known results in the literature, while for Q-trace, we improve the
best known results in [19] in terms of the dependency on the size of the state-action space. The
weighted `p-norm contraction property with a uniform contraction factor for all p ∈ [1,∞) is crucial
for us to establish the improved sample complexity. Based on the finite-sample bounds, we show
that all four algorithms overcome the high variance issue in Vanilla off-policy TD-learning, but their
convergence rates are all affected to varying degrees.

1.2 Generalized Bellman Operator and Stochastic Approximation

In this section, we illustrate the interpretation of off-policy multi-step TD-learning as an SA algorithm
for solving a generalized Bellman equation. Consider the policy evaluation problem where the goal
is to estimate the state-action value function Qπ of a given policy π. In the simplest setting where
TD(0) with on-policy sampling is employed, it is well known that the algorithm is an SA algorithm
for solving the Bellman equationQ = Hπ(Q), whereHπ(·) is the Bellman operator. The generalized
Bellman operator B(·) we consider in this paper is defined by:

B(Q) = T (H(Q)−Q) +Q, (1)

where T (·) and H(·) are two auxiliary operators. In the special case where T (·) = I(·) and
H(·) = Hπ(·), the generalized Bellman operator B(·) reduces to the regular Bellman operatorHπ(·).
Note that any fixed point ofH(·) is also a fixed point of B(·), as long as T (·) is such that T (0) = 0.
Thus, the operatorH(·) controls the fixed-point of the generalized Bellman operator B(·), and as we
will see later, the operator T (·) can be used to control its contraction properties.

To further understand the operatorB(·), we demonstrate in the following that both on-policy n-step TD
and TD(λ) can be viewed as SA algorithms for solving the generalized Bellman equation B(Q) = Q,
with different auxiliary operators T (·) and H(·). On-policy n-step TD is designed to solve the
n-step Bellman equation Q = Hnπ(Q), which can be explicitly written as Q =

∑n−1
i=0 (γPπ)iR +

(γPπ)nQ. Here R is the reward vector, γ is the discount factor, and Pπ is the transition probability
matrix under policy π. By reverse telescoping, the n-step Bellman equation is equivalent to Q =∑n−1
i=0 (γPπ)i(R + γPπQ − Q) + Q = T (Hπ(Q) − Q) + Q, where T (Q) =

∑n−1
i=0 (γPπ)iQ.

Similarly, one can formulate the TD(λ) Bellman equation in the form of B(Q) = Q, where T (Q) =

(1− λ)
∑∞
i=0 λ

i
∑i−1
j=0(γPπ)iQ andH(·) = Hπ(·).

In these examples, the operator T (·) determines the contraction factor of B(·) by controlling the
degree of bootstrapping. In this work, we show that in addition to on-policy TD-learning, variants of
off-policy TD-learning with multi-step bootstrapping and generalized importance sampling ratios can
also be interpreted as SA algorithms for solving the generalized Bellman equation. Moreover, under
some mild conditions, we show that the generalized Bellman operator B(·) is a contraction mapping
with respect to some weighted `p-norm for any p ∈ [1,∞), with a common contraction factor. This
enables us to establish finite-sample bounds of general multi-step off-policy TD-like algorithms.

1.3 Related Literature

The TD-learning method was first proposed in [30] for solving the policy evaluation problem. Since
then, there is an increasing interest in theoretically understanding TD-learning and its variants.

On-Policy TD-Learning. The most basic TD-learning method is the TD(0) algorithm [30]. Later it
was extended to using multi-step bootstrapping (i.e., the n-step TD-learning algorithm [11, 37, 38]),
and using eligibility trace (i.e., the TD(λ) algorithm [28, 30]). The asymptotic convergence of TD-
learning was established in [13, 18, 35]. As for finite-sample analysis, a unified Lyapunov approach is
presented in [10]. To overcome the curse of dimensionality in RL, TD-learning is usually incorporated
with function approximation in practice. In the basic setting where a linear parametric architecture is

2

used, the asymptotic convergence of TD-learning was established in [36], and finite-sample bounds
in [5, 12, 29, 34]. Very recently, the convergence and finite-sample guarantee of TD-learning with
neural network approximation were studied in [7, 8].

Off-Policy TD-Learning. In the off-policy setting, since the samples are not necessarily generated by
the target policy, usually importance sampling ratios (or “generalized” importance sampling ratios)
are introduced in the TD-learning algorithm. The resulting algorithms are Qπ(λ) [24], TB(λ) [17],
Retrace(λ) [22], and Q-trace [19] (which is an extension of V -trace [14]), etc. The asymptotic
convergence of these algorithms has been established in the papers in which they were proposed.
To the best of our knowledge, finite-sample guarantees are established only for Q-trace and V -trace
[9, 10, 19]. In the function approximation setting, TD-learning with off-policy sampling and function
approximation is a typical example of the deadly triad [31], and can be unstable [2, 31]. To achieve
convergence, one needs to significantly modify the original TD-learning algorithm, resulting in two
time-scale algorithms such as GTD [21], TDC [32], and emphatic TD [33], etc.

1.4 Preliminaries

In this section, we cover the background of RL and the TD-learning method for solving the policy
evaluation problem. The RL problem is usually modeled as a Markov decision process (MDP). In
this work, we consider an MDP with a finite set of states S , a finite set of actionsA, a set of unknown
action dependent transition probability matrices P = {Pa ∈ R|S|×|S| | a ∈ A}, an unknown reward
functionR : S ×A 7→ [0, 1], and a discount factor γ ∈ (0, 1). In order for an MDP to progress, we
must specify the policy of selecting actions based on the state of the environment. Specifically, a
policy π is a mapping from the state-space to probability distributions supported on the action space,
i.e., π : S 7→ ∆|A|. The state-action value function Qπ associated with a policy π is defined by
Qπ(s, a) = Eπ[

∑∞
k=0 γ

kR(Sk, Ak) | S0 = s,A0 = a] for all (s, a). The goal in policy evaluation
is to estimate the state-action value function Qπ for a given policy π.

Since the transition probabilities as well as the reward function are unknown, such state-action value
function cannot be directly computed. The TD-learning algorithm is designed to estimate Qπ using
the SA method. Specifically, in TD-learning, we first collect a sequence of samples {(Sk, Ak)} from
the model using some behavior policy πb. Then the value function Qπ is iteratively estimated using
the samples {(Sk, Ak)}. When πb = π, the algorithm is called on-policy TD-learning, otherwise the
algorithm is referred to as off-policy TD-learning.

2 Finite-Sample Analysis of General Off-Policy TD-Learning

In this section, we present our unified framework for finite-sample analysis of off-policy TD-learning
algorithms using generalized importance sampling ratios and multi-step bootstrapping. The proofs of
all technical results presented in this paper are provided in the Appendix.

2.1 A Generic Model for Multi-Step Off-Policy TD-Learning

Algorithm 1 presents our generic algorithm model. Due to off-policy sampling, the two functions
c, ρ : S × A 7→ R+ are introduced in Algorithm 1 to serve as generalized importance sampling
ratios in order to account for the discrepancy between the target policy π and the behavior policy
πb. We denote cmax = maxs,a c(s, a) and ρmax = maxs,a ρ(s, a). We next show how Algorithm 1
captures variants of off-policy TD-learning algorithms in the literature by using different generalized
importance sampling ratios c(·, ·) and ρ(·, ·).

Vanilla IS. When c(s, a) = ρ(s, a) = π(a|s)/πb(a|s) for all (s, a), Algorithm 1 is the standard
off-policy TD-learning with importance sampling [24]. We will refer to this algorithm as Vanilla IS.
Although Vanilla IS was shown to converge to Qπ [24], since the product of importance sampling
ratios

∏i
j=k+1

π(Aj |Sj)
πb(Aj |Sj) is not controlled in any way, it suffers the most from high variance.

The Qπ(λ) Algorithm. When c(s, a) = λ and ρ(s, a) = π(a|s)/πb(a|s), Algorithm 1 is the Qπ(λ)
algorithm [17]. The Qπ(λ) algorithm overcomes the high variance issue in Vanilla IS by introducing
the parameter λ. However, the algorithm converges only when λ is sufficiently small [22].

The TB(λ) Algorithm. When c(s, a) = λπ(a|s) and ρ(s, a) = π(a|s)/πb(a|s), we have the TB(λ)
algorithm [24]. The TB(λ) algorithm also overcomes the high variance issue in Vanilla IS and is

3

Algorithm 1 A Generic Algorithm for Multi-Step Off-Policy TD-Learning
1: Input: K, {αk}, Q0, π, πb, generalized importance sampling ratios c, ρ : S × A 7→ R+, and

sample trajectory {(Sk, Ak)}0≤k≤K+n collected under the behavior policy πb.
2: for k = 0, 1, · · · ,K − 1 do
3: αk(s, a) = αkI{(s, a) = (Sk, Ak)} for all (s, a)
4: ∆(Si, Ai, Si+1, Ai+1, Qk) = R(Si, Ai)+γρ(Si+1, Ai+1)Qk(Si+1, Ai+1)−Qk(Si, Ai) for

all i ∈ {k, k + 1, ..., k + n− 1}.
5: Qk+1(s, a) = Qk(s, a)+αk(s, a)

∑k+n−1
i=k γi−k

∏i
j=k+1 c(Sj , Aj)∆(Si, Ai, Si+1, Ai+1, Qk)

for all (s, a)
6: end for
7: Output: QK

guaranteed to converge to Qπ without needing any strong assumptions. However, as discussed in
[22], the TB(λ) algorithm lacks sample efficiency as it does not effectively use the multi-step return.

The Retrace(λ) Algorithm. When c(s, a) = λmin(1, π(a|s)/πb(a|s)) and ρ(s, a) = π(a|s)/πb(a|s),
we have the Retrace(λ) algorithm, which overcomes the high variance and converges to Qπ. The
convergence rate of Retrace(λ) is empirically observed to be better than TB(λ) in [22].

The Q-trace Algorithm. When we choose c(s, a) = min(c̄, π(a|s)/πb(a|s)) and ρ(s, a) =
min(ρ̄, π(a|s)/πb(a|s)), where ρ̄ ≥ c̄, Algorithm 1 is the Q-trace algorithm [19]. The Q-trace
algorithm is an analog of the V -trace algorithm [14] in that Q-trace estimates the Q-function instead
of the V -function. The two truncation levels c̄ and ρ̄ in these algorithms separately control the
variance and the asymptotic bias in the algorithm respectively. Note that due to the truncation level ρ̄,
the algorithm no longer converges to Qπ , but to a biased limit point, denoted by Qπ,ρ [19].

From now on, we focus on studying Algorithm 1. We make the following assumption about the
behavior policy πb, which is fairly standard in off-policy TD-learning.
Assumption 2.1. The behavior policy πb satisfies πb(a|s) > 0 for all (s, a). In addition, the Markov
chain {Sk} induced by the behavior policy πb is irreducible and aperiodic.

Irreducibility and aperiodicity together imply that the Markov chain {Sk} has a unique stationary
distribution, which we denote by κS ∈ ∆|S|. Moreover, the Markov chain {Sk} mixes geometrically
fast in that there exist C > 0 and σ ∈ (0, 1) such that maxs∈S ‖P k(s, ·) − κS(·)‖TV ≤ Cσk

for all k ≥ 0, where ‖ · ‖TV is the total variation distance [20]. Let κSA ∈ ∆|S||A| be such that
κSA(s, a) = κS(s)πb(a|s) for all (s, a). Note that κSA ∈ ∆|S||A| is the stationary distribution of
the Markov chain {(Sk, Ak)} under the behavior policy πb. Let KS = diag(κS) ∈ R|S|×|S|, and
let KSA = diag(κSA) ∈ R|S||A|×|S||A|. Denote the minimal (maximal) diagonal entries of KS and
KSA by KS,min (KS,max) and KSA,min (KS,max) respectively.

2.2 Identifying the Generalized Bellman Operator

In this section, we identify the generalized Bellman equation which Algorithm 1 is trying to solve,
and also the corresponding generalized Bellman operator and its asynchronous variant. Let Tc,Hρ :

R|S||A| 7→ R|S||A| be two operators defined by

[Tc(Q)](s, a) =

n−1∑
i=0

γiEπb [
i∏

j=1

c(Sj , Aj)Q(Si, Ai) | S0 = s,A0 = a], and

[Hρ(Q)](s, a) = R(s, a) + γEπb [ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s,Ak = a]

for all (s, a). Note that the operator Tc(·) depends on the generalized importance sampling ratio
c(·, ·), while the operatorHρ(·) depends on the generalized importance sampling ratio ρ(·, ·).

With Tc(·) andHρ(·) defined above, Algorithm 1 can be viewed as an asynchronous SA algorithm
for solving the generalized Bellman equation Bc,ρ(Q) = Q, where the generalized Bellman operator
Bc,ρ(·) is defined by Bc,ρ(Q) = Tc(Hρ(Q)−Q) +Q. Since Algorithm 1 performs asynchronous
update, using the terminology in [10], we further define the asynchronous variant B̃c,ρ(·) of the
generalized Bellman operator Bc,ρ(·) by

B̃c,ρ(Q) := KSABc,ρ(Q) + (I −KSA)Q = KSATc(Hρ(Q)−Q) +Q. (2)

4

Each component of the asynchronous generalized Bellman operator B̃c,ρ(·) can be thought of as a
convex combination with identity, where the weights are the stationary probabilities of visiting state-
action pairs. This captures the fact that when performing asynchronous update, the corresponding
component is updated only when the state-action pair is visited. It is clear from its definition that
B̃c,ρ(·) has the same fixed-points as Bc,ρ(·) (provided that they exist). See [10] for a more detailed
explanation about asynchronous Bellman operators.

Under some mild conditions on the generalized importance sampling ratios c(·, ·) and ρ(·, ·), we will
show in the next section that both the asynchronous generalized Bellman operator B̃c,ρ(·) and the
operatorHρ(·) are contraction mappings. Therefore, since Tc(0) = 0, the operatorsHρ(·), Bc,ρ(·),
B̃c,ρ(·) all share the same unique fixed-point. Since the fixed-point of the operator Hρ(·) depends
only on the generalized importance sampling ratio ρ(·, ·), but not on c(·, ·), we can flexibly choose
c(·, ·) to control the variance while maintaining the fixed-point of the operator B̃c,ρ(·). As we will
see later, this is the key property used in designing variants of variance reduced n-step off-policy
TD-learning algorithms such as Qπ(λ), TB(λ), and Retrace(λ).

2.3 Establishing the Contraction Property

In this section, we study the fixed-point and the contraction property of the asynchronous gen-
eralized Bellman operator B̃c,ρ(·). We begin by introducing some notation. Let Dc, Dρ ∈
R|S||A|×|S||A| be two diagonal matrices such that Dc((s, a), (s, a)) =

∑
a′∈A πb(a

′|s)c(s, a′) and
Dρ((s, a), (s, a)) =

∑
a′∈A πb(a

′|s)ρ(s, a′) for all (s, a). We denote Dc,min (Dc,max) and Dρ,min

(Dρ,max) as the minimal (maximal) diagonal entries of the matrices Dc and Dρ respectively.

In view of the definition of B̃c,ρ(·) in Eq. (2), any fixed-point ofHρ(·) must also be a fixed-point of
B̃c,ρ(·). We first study the fixed point ofHρ(·) by establishing its contraction property.
Proposition 2.1. Suppose that Dρ,max < 1/γ. Then the operator Hρ(·) is a contraction
mapping with respect to the `∞-norm, with contraction factor γDρ,max. In this case, the
fixed-point Qπ,ρ of Hρ(·) satisfies the following two inequalities: (1) ‖Qπ − Qπ,ρ‖∞ ≤
γmaxs∈S

∑
a∈A |π(a|s)−πb(a|s)ρ(s,a)|

(1−γ)(1−γDρ,max) , and (2) ‖Qπ,ρ‖∞ ≤ 1
1−γDρ,max

.

Observe from Proposition 2.1 (1) that when ρ(s, a) = π(a|s)/πb(a|s), which is the case for Qπ(λ),
TB(λ), and Retrace(λ), the unique fixed-point Qπ,ρ is exactly the target value function Qπ. This
agrees with the definition of the operator Hρ(·) in that it reduces to the regular Bellman operator
Hπ(·) when ρ(s, a) = π(a|s)/πb(a|s) for all (s, a). If ρ(s, a) 6= π(a|s)/πb(a|s) for some (s, a),
then in general the fixed-point ofHρ(·) is different from Qπ . See Appendix A.2 for more details. In
that case, Proposition 2.1 provides an error bound on the difference between the potentially biased
limit Qπ,ρ and Qπ . Such error bound will be useful for us to study the Q-trace algorithm in Section
3. Proposition 2.1 (2) can be viewed as an analog to the inequality that ‖Qπ‖∞ ≤ 1/(1− γ) for any
policy π. SinceHρ(·) is no longer the Bellman operatorHπ(·), the corresponding upper bound on
the size of its fixed-point Qπ,ρ also changes.

Note that Proposition 2.1 guarantees the existence and uniqueness of the fixed-point of the operator
Hρ(·), hence also ensures the existence of fixed-points of the asynchronous generalized Bellman
operator B̃c,ρ(·). To further guarantee the uniqueness of the fixed-point of B̃c,ρ(·), we establish its
contraction property. We begin with the following definition.
Definition 2.1. Let {µi}1≤i≤d be such that µi > 0 for all i. Then for any x ∈ Rd, the weighted
`p-norm (p ∈ [1,∞)) of x with weights {µi} is defined by ‖x‖µ,p = (

∑
i µi|xi|p)1/p.

We next establish the contraction property of the operator B̃c,ρ(·) in the following theorem. Let
ω = KSA,minf(γDc,min)(1 − γDρ,max), where the function f : R 7→ R is defined by f(x) = n

when x = 1, and f(x) = 1−xn
1−x when x 6= 1.

Theorem 2.1. Suppose c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then we have the
following results: (1) For any θ ∈ (0, 1), there exists a weight vector µ ∈ ∆|S||A| satisfying
µ(s, a) ≥ ω(1−θ)

(1−θω)|S||A| for all (s, a) such that the operator B̃c,ρ(·) is a contraction mapping with

respect to ‖ · ‖µ,p for any p ∈ [1,∞), with contraction factor γc = (1−ω)1−1/p(1− θω)1/p, (2) The
operator B̃c,ρ(·) is a contraction mapping with respect to ‖ · ‖∞, with contraction factor γc = 1− ω.

5

Consider Theorem 2.1 (1). Observe that we can further upper bound γc = (1− ω)1−1/p(1− θω)1/p

by 1 − θω, which is independent of p and is the uniform contraction factor we are going to use.
Theorem 2.1 (2) can be viewed as an extension of Theorem 2.1 because limp→∞ ‖x‖µ,p = ‖x‖∞ for
any x ∈ Rd and weight vector µ, and limp→∞(1− ω)1−1/p(1− θω)1/p = 1− ω.

Theorem 2.1 is the key result for our finite-sample analysis, and we present its proof in the next
section. The weighted `p-norm (especially the weighted `2-norm) contraction property we established
for the operator B̃c,ρ(·) has a far-reaching impact even beyond the finite-sample analysis of tabular
RL in this paper. Specifically, recall that the key property used for establishing the convergence and
finite-sample bound of on-policy TD-learning with linear function approximation in the seminal
work [36] is that the corresponding Bellman operator is a contraction mapping not only with respect
to the `∞-norm, but also with respect to a weighted `2-norm. We establish the same property in
the off-policy setting, and hence lay down the foundation for extending our results to the function
approximation setting. This is an immediate future research direction.

2.4 Proof of Theorem 2.1

We begin by explicitly computing the asynchronous generalized Bellman operator B̃c,ρ(·). Let πc
and πρ be two policies defined by πc(a|s) = πb(a|s)c(s,a)

Dc((s,a),(s,a)) and πρ(a|s) = πb(a|s)ρ(s,a)
Dρ((s,a),(s,a)) for all

(s, a). Let R ∈ R|S||A| be the reward vector defined by R(s, a) = R(s, a) for all (s, a). For any
policy π′, let Pπ′ be the transition probability matrix of the Markov chain {(Sk, Ak)} under π′, i.e.,
Pπ′((s, a), (s′, a′)) = Pa(s, s′)π′(a′|s′) for all state-action pairs (s, a) and (s′, a′).

Proposition 2.2. The operator B̃c,ρ(·) is explicitly given by B̃c,ρ(Q) = AQ + b, where A =

I −KSA
∑n−1
i=0 (γPπcDc)

i(I − γPπρDρ) and b = KSA
∑n−1
i=0 (γPπcDc)

iR.

In light of Proposition 2.2, to prove Theorem 2.1, it is enough to study the matrix A. To proceed, we
require the following definition.
Definition 2.2. Given β ∈ [0, 1], a matrix M ∈ Rd×d is called a substochastic matrix with modulus
β if and only if Mij ≥ 0 for all i, j and

∑
jMij ≤ 1− β for all i.

Remark. Note that for any non-negative matrix M , we have ‖M‖∞ = maxi
∑
jMij . Therefore, a

matrix M being a substochastic matrix with modulus β automatically implies that ‖M‖∞ ≤ 1− β.

We next show in the following two propositions that (1) the matrix A given in Proposition 2.2 is
a substochastic matrix with modulus ω, and (2) for any substochastic matrix M with a positive
modulus, there exist weights {µi} such that the induced matrix norm ‖M‖µ,p is strictly less than 1.
These two results together immediately imply Theorem 2.1.
Proposition 2.3. Suppose that c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then the matrix
A given in Proposition 2.2 is a substochastic matrix with modulus ω.

The condition c(s, a) ≤ ρ(s, a) ensures that the matrixA is non-negative, and the conditionDρ,max <
1/γ ensures that the each row of the matrix A sums up to at most 1 − ω. Together they imply the
substochasticity of A. The modulus ω is an important parameter for our finite-sample analysis. In
view of Theorem 2.1, we see that large modulus gives smaller (or better) contraction factor of B̃c,ρ(·).

Proposition 2.4. For any substochastic matrix M ∈ Rd×d with a positive modulus β ∈ (0, 1), for
any θ ∈ (0, 1), there exists a weight vector µ ∈ ∆d satisfying µi ≥ β(1−θ)

(1−θβ)d for all i such that

‖M‖µ,p ≤ (1− β)1−1/p(1− θβ)1/p for any p ∈ [1,∞). Furthermore, if M is irreducible 1, then
we can choose θ = 1.

The result of Proposition 2.4 further implies ‖M‖µ,p ≤ 1− θβ, which is independent of the choice
of p. This implies that B̃c,ρ(·) is a uniform contraction mapping with respect to ‖ · ‖µ,p for all p ≥ 1.
In general, for different p and p′, an operator being a ‖ · ‖p-norm contraction does not imply being a
‖ · ‖p′ -norm contraction. The reason that we have such a strong uniform contractive result is that the
operator B̃c,ρ(·) has a linear structure, and involves a substochastic matrix.

Note that Proposition 2.4 introduces the tunable parameter θ. It is clear that large θ gives better
contraction factor of B̃c,ρ(·) but worse lower bound on the entries of the weight vector µ. In

1A non-negative matrix is irreducible if and only if its associated graph is strongly connected [4].

6

general, when M is not irreducible, we cannot hope to choose a weight vector µ ∈ ∆d with
positive components and obtain ‖M‖µ,p ≤ 1 − ω. To see this, consider the example where M =
(1−ω)[0,0, · · · ,1], which is clearly a substochastic matrix with modulus ω, but is not an irreducible
matrix. For any weight vector µ ∈ ∆d, we have ‖M‖µ,p = (1 − ω) maxx∈Rd:‖x‖µ,p=1 |xd| =

(1− ω)/µ
1/p
d > 1− ω. However, by choosing µd close to unity, we can get ‖M‖µ,p arbitrarily close

to 1− ω. This is analogous to choosing θ close to one in Proposition 2.4. Since Proposition 2.4 is the
major result for proving Theorem 2.1, we provide its proof sketch in Section 4.

2.5 Finite-Sample Convergence Guarantees

In light of Theorem 2.1, Algorithm 1 is a Markovian SA algorithm for solving a fixed-point equation
B̃c,ρ(Q) = Q, where the fixed-point operator B̃c,ρ(·) is a contraction mapping. Therefore, to
establish the finite-sample bounds, we use a Lyapunov drift argument where we choose W (Q) =
‖Q−Qπ,ρ‖2µ,p as the Lyapunov function. This leads to a finite-sample bound on E[‖Qk−Qπ,ρ‖2µ,p].
However, since µ is unknown, to make the finite-sample bound independent of µ, we use the lower
bound on the components of µ provided in Theorem 2.1, and also tune the parameters p and θ to
obtain a finite-sample bound on E[‖Qk − Qπ,ρ‖2∞]. The fact that we have a uniform contraction
factor 1− θω (cf. Theorem 2.1) plays an important role in such tuning process.

To present the results, we need to introduce more notation. For any δ > 0, define tδ(MCS) as
the mixing time of the Markov chain {Sk} (induced by πb) with precision δ, i.e., tδ(MCS) =
min{k ≥ 0 : maxs∈S ‖P k(s, ·) − κS(·)‖TV ≤ δ}. Under Assumption 2.1, one can easily verify
that tδ(MCS) ≤ L(log(1/δ) + 1) for some constant L > 0, which depends only on C and δ. Let
τδ,n = tδ(MCS) + n+ 1. The parameters c1, c2 and c3 used in stating the following theorem are
numerical constants, and will be explicitly given in the Appendix. For ease of exposition, we here
only present the finite-sample bound for using constant stepsize.
Theorem 2.2. Consider {Qk} of Algorithm 1. Suppose that: (1) Assumptions 2.1 is satisfied, (2)
c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ, and (3) the constant stepsize α is chosen such
that ατα,n ≤ c1ω

log(2|S||A|/ω)f(γcmax)2(γρmax+1)2 . Then we have for all k ≥ τα,n:

E[‖Qk−Qπ,ρ‖2∞]≤ζ1
(

1−ωα
2

)k−τα,n
+ ζ2

f(γcmax)2(γρmax + 1)2 log(2|S||A|/ω)

ω
ατα,n, (3)

where ζ1 = c2(‖Q0 −Qπ,ρ‖∞ + ‖Q0‖∞ + 1)2, and ζ2 = c3(3‖Qπ,ρ‖∞ + 1)2.

Theorem 2.2 enables one to design a wide class of off-policy TD variants with provable finite-sample
guarantees by choosing appropriate generalized importance sampling ratios c(·, ·) and ρ(·, ·). The
first term on the RHS of Eq. (3) is usually called the bias in SA literature [6], and it goes to zero at a
geometric rate. The second term on the RHS of Eq. (3) stands for the variance in the iterates, and it is
a constant proportional to ατα,n. To see more explicitly the bias-variance trade-off, we derive the
sample complexity of Algorithm 1 in the following.
Corollary 2.2.1. For an accuracy ε > 0, to obtain E[‖Qk −Qπ,ρ‖∞] ≤ ε, the sample complexity is

O
(

log2(1/ε)

ε2

)
︸ ︷︷ ︸

T1

Õ
(

1

ω2

)
︸ ︷︷ ︸

T2

Õ
(
nf(γcmax)2(γρmax + 1)2

(1− γDρ,max)2

)
︸ ︷︷ ︸

T3

. (4)

In Corollary 2.2.1, the Õ(ε−2) dependence on the accuracy is the same as n-step TD-learning in the
on-policy setting [10], and is in general not improvable. The term T2 can be equivalently written
as Õ(1/(1 − Contraction factor)2), hence capturing the impact from the contraction factor. This
agrees with our intuition that smaller contraction factor leads to better sample complexity. The
term T3 arises because of the variance term on the RHS of Eq. (3). The linear dependence on n is
due to using n-step bootstrapping. By optimizing the sample complexity in terms of n, we have
noptimal ∼ 1/ log(1/(γDc,min)). This is analogous to the optimal n in the on-policy setting, which is
1/ log(1/γ) [10]. The additional Dc,min factor arises because of using off-policy learning. The rest
of parameters in T3 are determined by the choice of the generalized importance sampling ratios c(·, ·)
and ρ(·, ·). It is clear that smaller cmax and ρmax lead to smaller variance. As we will see later, this is
the reason for the variance reduction of various off-policy TD-learning algorithms in the literature. In
light of the previous analysis, the bias-variance trade-off in general off-policy multi-step TD-learning
algorithm 1 is intuitively of the form Õ

(
Variance

(1− Contraction factor)2

)
.

7

3 Application to Various Off-Policy TD-Learning Algorithms
In this section, we apply Theorem 2.2 to various off-policy n-step TD-learning algorithms in
the literature. We begin by introducing some notation. Let πmax (πmin) and πb,max (πb,min) be
the maximal (minimal) entry of the target policy π and the behavior policy πb respectively. Let
rmax = maxs,a(π(a|s)/πb(a|s)) (rmin = mins,a(π(a|s)/πb(a|s))) be the maximum (minimum)
ratio between π and πb. We will overload the notation of ζ1 and ζ2 from Theorem 2.2. Note that
Qπ,ρ = Qπ in Qπ(λ), TB(λ), and Retrace(λ), but Qπ,ρ 6= Qπ in Q-trace.

3.1 Finite-Sample Analysis of Vanilla IS

We first present the sample complexity bound of the Vanilla IS algorithm, where c(s, a) = ρ(s, a) =
π(a|s)/πb(a|s) for all (s, a).
Theorem 3.1. Consider Algorithm 1 with Vanilla IS update, where we note that cmax = ρmax = rmax,
Dc = Dρ = I , and ω = KSA,min(1 − γn). Suppose that Assumption 2.1 is satisfied. Then, to

achieve ε-accuracy, the sample complexity is O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
n((γrmax)n+1)2

(1−γ)2

)
.

In the special case where π = πb (i.e., on-policy n-step TD), the sample complexity bound reduces
to Õ

(
n log2(1/ε)

ε2K2
SA,min(1−γn)2(1−γ)2

)
, which is comparable to the results in [10]. See Appendix C.2 for

more details. In the off-policy setting, note that the factor ((γrmax)n + 1)2 appears in the sample
complexity. When γrmax > 1 (which can usually happen), the sample complexity bound involves an
exponential factor (γrmax)n. The reason is that the product of importance sampling ratios c(·, ·) are
not at all controlled by any means in Vanilla IS. Therefore, the variance can be very large. On the
other hand, since the importance sampling ratios are not modified, Vanilla IS effectively uses the full
n-step return. As a result, the parameter ω = KSA,min(1− γn) within Vanilla IS is the largest (best)
among all the algorithms we study.

3.1.1 Finite-Sample Analysis of Qπ(λ)

In this section, we present the sample complexity of the Qπ(λ) algorithm, where c(s, a) = λ and
ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).
Theorem 3.2. Consider Algorithm 1 with Qπ(λ) update, where we note that cmax = λ,
ρmax = rmax, Dc = λI , Dρ = I , and w = KSA,minf(γλ)(1 − γ). Suppose that Assump-
tion 2.1 is satisfied, and λ ≤ rmin. Then, to achieve ε-accuracy, the sample complexity is
O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γλ)2(γrmax+1)2

(1−γ)2

)
.

To see how Qπ(λ) overcomes the high variance issue in Vanilla IS, observe that since γλ ≤ γrmin ≤
γ < 1, we have f2(γλ) ≤ 1/(1− γλ)2. Therefore, by replacing c(s, a) = π(a|s)/πb(a|s) in Vanilla
IS with a properly chosen constant λ, Qπ(λ) algorithm successfully avoids an exponential large
factor in the sample complexity. However, choosing a small λ to control the variance has a side effect
on the contraction factor. Intuitively, when λ is small, Qπ(λ) does not effectively use the n-step
return. Hence the parameter ω in Qπ(λ) is less (worse) than the one in Vanilla IS.

3.1.2 Finite-Sample Analysis of TB(λ)

In this section, we present the sample complexity of the TB(λ) algorithm, where c(s, a) = λπ(a|s)
and ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).
Theorem 3.3. Consider Algorithm 1 with TB(λ) update, where we note that cmax = λπmax,
ρmax = rmax,Dc(s, a) = λ

∑
a πb(a|s)π(a|s),Dρ(s, a) = 1, and ω = KSA,minf(γDc,min)(1−γ).

Suppose that Assumption 2.1 is satisfied, and λ ≤ 1/πb,max. Then, to achieve ε-accuracy, the sample

complexity is O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γλπmax)2(γrmax+1)2

(1−γ)2

)
.

Suppose we further choose λ < 1/(γπmax), the TB(λ) algorithm also overcomes the high variance
issue in Vanilla IS because f(γλπmax) ≤ 1/(1− γλπmax), which does not involve any exponential
large factor. When compared to Qπ(λ), an advantage of TB(λ) is that the constraint on λ is much
relaxed. However, the same side effect on the contraction factor is also present here. To see this, since
Dc,min = λmins,a

∑
a πb(a|s)π(a|s) ≤ 1, the TB(λ) algorithm does not effectively use the n-step

return, hence the parameter ω in TB(λ) is less (worse) than the one in Vanilla IS.

8

3.1.3 Finite-Sample Analysis of Retrace(λ)

In this section, we present the sample complexity of the Retrace(λ) algorithm, where c(s, a) =
λmin(1, π(a|s)/πb(a|s)) and ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).
Theorem 3.4. Consider Algorithm 1 with Retrace(λ) update, where we note that cmax = λ, ρmax =
rmax, Dc(s, a) = λ

∑
a min(πb(a|s), π(a|s)), Dρ(s, a) = 1, and ω = KSA,minf(γDc,min)(1− γ).

Suppose that Assumption 2.1 is satisfied, and λ ≤ 1. Then, to achieve ε-accuracy, the sample
complexity is O

(
log2(1/ε)

ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γλ)2(γrmax+1)2

(1−γ)2

)
.

The Retrace(λ) algorithm overcomes the high variance issue in Vanilla IS by truncating the importance
sampling ratio at 1, which prevents an exponential large factor in the variance term. In addition, it
does not require choosing λ to be extremely small as required in Qπ(λ). As for the compromise in
the contraction factor, note that min(1, π(a|s)/πb(a|s)) ≥ π(a|s), which implies that Dc(s, a) (and
hence Dc,min) is larger in the Retrace(λ) algorithm than the TB(λ) algorithm. As a result, Retrace(λ)
does not truncate the n-step return as heavy as TB(λ), and hence the parameter ω is larger (better) in
Retrace(λ) than in TB(λ).

3.1.4 Finite-Sample Analysis of Q-Trace
Lastly, we present the sample complexity of the Q-trace algorithm, where c(s, a) =
min(c̄, π(a|s)/πb(a|s)) and ρ(s, a) = min(ρ̄, π(a|s)/πb(a|s)) for all (s, a).
Theorem 3.5. Consider Algorithm 1 with Q-trace update, where we note that cmax = c̄,
ρmax = ρ̄, Dc(s, a) =

∑
a min(c̄πb(a|s), π(a|s)), Dρ(s, a) =

∑
a min(ρ̄πb(a|s), π(a|s)), and

ω = KSA,minf(γDc,min)(1− γDρ,max). Suppose that Assumption 2.1 is satisfied, and c̄ ≤ ρ̄. Then,

to achieve ε-accuracy, the sample complexity is O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γc̄)2(γρ̄+1)2

(1−γDρ,max)2

)
.

To avoid an exponential large variance, in view of the term f(γc̄) in our bound, we need to choose
c̄ ≤ 1/γ. The major difference between Q-trace and Retrace(λ) is that the importance sampling ratio
ρ(·, ·) inside the temporal difference (line 4 of Algorithm 1) also involves a truncation. As shown
in Section 2.3, due to introducing the truncation level ρ̄, the algorithm converges to a biased limit
Qπ,ρ instead of Qπ . Such truncation bias can be controlled using Proposition 2.1. These observations
agree with the results [19], where the finite-sample bounds of Q-trace were first established.

Compared to [19], we have an improved sample complexity. Specifically, the result in [19] implies
a sample complexity of Õ(log2(1/ε)nf(γc̄)2(γρ̄+1)2

ε2ω3(1−γDρ,max)2), which has an additional factor of ω−1. Since

ω−1 ∝ K−1
SA,min ≥ |S||A|, our result improves the dependency on the size of the state-action space

by a factor of at least |S||A| compared to [19]. Similarly, since the V -trace algorithm [14] is an
analog of the Q-trace algorithm, we can also improve the sample complexity for V -trace in [10].

In addition to analyzing existing algorithms, observe that our results, especially Theorem 2.2, provide
sufficient conditions under which Algorithm 1 has provable finite-sample guarantees, and hence
enable us to design new algorithms. As an example, in light of the Retrace(λ) algorithm and the Q-
trace algorithm, one can take advantage of both algorithms to let c(s, a) = λc min(c̄, π(a|s)/πb(a|s))
and ρ(s, a) = λρ min(ρ̄, π(a|s)/πb(a|s)), where λc, λρ, c̄, and ρ̄ are tunable parameters. As long as
λcc̄ ≤ λρρ̄ < 1/γ, Theorem 2.2 is applicable and hence finite-sample convergence is guaranteed. To
avoid an exponentially large variance, we choose λcc̄ ≤ 1/γ so that there are no exponentially large
terms in the term T3 of sample complexity bound. After that, we can tune the rest of the parameters
to further optimize the performance of the algorithm.

Sample Complexity Comparison. Now that we have derived the sample complexity bounds of
various off-policy n-step TD-learning algorithms, we summarize them in the following table. For
ease of exposition, we omit the common factor log2(1/ε)/(ε2K2

SA,min) when presenting the sample
complexity, and use a ∧ b (a ∨ b) to denote the minimum (maximum) of two real numbers a and b.

In view of Table 1, when rmax < 1/γ, which indicates that the target policy π and the behavior
policy πb are relatively close to each other, Vanilla IS has the best performance since it has the best
contraction factor, and the cumulative product of the generalized importance sampling ratios does
not result in exponentially large variance. When rmax > 1/γ, then Vanilla IS can potentially have
exponentially large variance, while other four algorithms do not. In this case, among Qπ(λ), TB(λ),
and Retrace(λ), Qπ(λ) has the best sample complexity bound. However, we need to point out that

9

Table 1: Summary of the Sample Complexity Bounds

Algorithm c(s, a) ρ(s, a) Requirements Sample Complexity

Vanilla IS π(a|s)
πb(a|s)

π(a|s)
πb(a|s) None Õ

(
(γrmax)n+1)2

(1−γn)2(1−γ)2

)
Qπ(λ) λ π(a|s)

πb(a|s) λ≤rmin Õ
(

(γrmax+1)2

(1−γ)4

)
TB(λ) λπ(a|s) π(a|s)

πb(a|s) λ< 1
(πb,max∨γπmax) Õ

(
f(γλπmax)2(γrmax+1)2

f(γDc,min)2(1−γ)4

)
Retrace(λ) λ[1∧ π(a|s)

πb(a|s)] π(a|s)
πb(a|s) λ≤1 Õ

(
f(γλ)2(γrmax+1)2

f(γDc,min)2(1−γ)4

)
Q-trace c̄∧ π(a|s)

πb(a|s) ρ̄∧ π(a|s)
πb(a|s) c̄≤ ρ̄, c̄< 1

γ Õ
(

f(γc̄)2(γρ̄+1)2

f(γDc,min)2(1−γDρ,max)4

)

the requirement λ ≤ rmin for Qπ(λ) is most restrictive, and the algorithm can easily diverge when
this requirement is not satisfied, as evidenced by the numerical experiments presented in [22]. As
for the Q-trace algorithm, although rigorously speaking it is not directly comparable with the other
algorithms as it converges to a biased limit point, it is clear that using truncated importance sampling
ratio for ρ(·, ·) can further reduce the sample complexity.

We want to mention that our comparison is based on the upper bounds we derived for the sample
complexity, which may not be tight. To complete the story, one should also derive lower bounds
on the sample complexity, which is an interesting future direction. Nevertheless, our comparison
provides insight into the behavior of off-policy n-step TD-learning algorithms,

4 Proof sketch of Proposition 2.4
The idea is to construct a stochastic matrix M ′′ such that: (1) M ′′ dominates M in the sense that
M ′′ij ≥Mij for all i, j, and (2) the Markov chain associated with M ′′ is irreducible, hence admits a
unique stationary distribution µ > 0. Using µ as weights and we have the desired result. The detailed
analysis is presented in Appendix A.5. We here present the construction of the stochastic matrix M ′′.

First of all, consider the special case where M itself is irreducible. Then we first scale up M by a
factor of 1/(1− ω) to obtain M ′ = M

1−ω , which is clearly a substochastic matrix, with modulus zero.
Hence there exists a stochastic matrix M ′′ that dominates M ′ (and also M). Moreover, since M ′′ is
also irreducible, its associated Markov chain has a unique stationary distribution µ. This is equivalent
to choosing θ = 1 in Proposition 2.4. In fact, the matrix M being irreducible is only a sufficient
condition to choose θ = 1. What we need is the existence of a strictly positive stationary distribution
of the stochastic matrix M ′′, which is guaranteed when M ′′ does not have transient states.

Now consider the general case where M is not necessarily irreducible. We construct the intermediate
matrix M ′ by performing a convex combination of the matrix M

1−ω and the uniform stochastic matrix
E
d , where E is the all one matrix, with weight 1−ω

1−θω . Specifically, for any θ ∈ (0, 1), we define

M ′ =
(

1−ω
1−θω

)
M

1−ω +
(

1− 1−ω
1−θω

)
E
d . Note that M ′ is a non-negative matrix. In addition, since

M ′1 ≤ 1−ω
1−θω1 +

(
1− 1−ω

1−θω

)
1 = 1, where 1 is the all one vector, the matrix M ′ is a substochatic

matrix with modulus zero, and is also irreducible because all its entries are strictly positive. Therefore,
there exists a stochastic matrix M ′′ such that M ′′ ≥ M ′. In addition, since M ′′ also has strictly
positive entries, the Markov chain associated withM ′′ is irreducible, hence admits a unique stationary
distribution µ ∈ ∆d. By our construction, we can show a lower bound on the components of the
stationary distribution µ.

5 Conclusion
In this work, we establish finite-sample guarantees of general n-step off-policy TD-learning algo-
rithms. The key in our approach is to identify a generalized Bellman operator and establish its
contraction property with respect to a weighted `p-norm for each p ∈ [1,∞), with a uniform contrac-
tion factor. Our results are used to derive finite-sample guarantees of variants of n-step off-policy
TD-learning algorithms in the literature. Specifically, for Qπ(λ), TB(λ), and Retrace(λ), we provide
the first-known results, and for Q-trace, we improve the result in [19]. The finite-sample bounds we
establish also provide insights about the trade-offs between the bias and the variance.

10

Acknowledgements

This work was partially supported by ONR Grant N00014-19-1-2566, NSF Grants 1910112, 2019844,
NSF Grant CCF-1740776, and an award from Raytheon Technologies. Maguluri acknowledges seed
funding from Georgia Institute of Technology.

References
[1] Aggarwal, C. C. et al. (2016). Recommender systems, volume 1. Springer.

[2] Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pages 30–37. Elsevier.

[3] Beck, A. (2017). First-order methods in optimization, volume 25. SIAM.

[4] Berman, A. and Plemmons, R. J. (1994). Nonnegative matrices in the mathematical sciences.
SIAM.

[5] Bhandari, J., Russo, D., and Singal, R. (2018). A finite time analysis of temporal difference
learning with linear function approximation. In Conference On Learning Theory, pages 1691–
1692.

[6] Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311.

[7] Cai, Q., Yang, Z., Lee, J. D., and Wang, Z. (2019). Neural temporal-difference learning converges
to global optima. Advances in Neural Information Processing Systems, 32.

[8] Cayci, S., Satpathi, S., He, N., and Srikant, R. (2021). Sample Complexity and Overparameteri-
zation Bounds for Projection-Free Neural TD Learning. Preprint arXiv:2103.01391.

[9] Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam, K. (2020). Finite-Sample Analysis
of Contractive Stochastic Approximation Using Smooth Convex Envelopes. Advances in Neural
Information Processing Systems, 33.

[10] Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam, K. (2021). A Lyapunov theory
for finite-sample guarantees of asynchronous Q-learning and TD-learning variants. Preprint
arXiv:2102.01567.

[11] Cichosz, P. and Mulawka, J. J. (1995). Fast and efficient reinforcement learning with truncated
temporal differences. In Machine Learning Proceedings 1995, pages 99–107. Elsevier.

[12] Dalal, G., Szörényi, B., Thoppe, G., and Mannor, S. (2018). Finite Sample Analyses for TD (0)
With Function Approximation. In Thirty-Second AAAI Conference on Artificial Intelligence.

[13] Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine learning, 8(3-4):341–362.

[14] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V.,
Harley, T., Dunning, I., et al. (2018). IMPALA: Scalable Distributed Deep-RL with Importance
Weighted Actor-Learner Architectures. In International Conference on Machine Learning, pages
1407–1416.

[15] Glynn, P. W. and Iglehart, D. L. (1989). Importance sampling for stochastic simulations.
Management science, 35(11):1367–1392.

[16] Gottesman, O., Futoma, J., Liu, Y., Parbhoo, S., Celi, L., Brunskill, E., and Doshi-Velez, F.
(2020). Interpretable off-policy evaluation in reinforcement learning by highlighting influential
transitions. In International Conference on Machine Learning, pages 3658–3667. PMLR.

[17] Harutyunyan, A., Bellemare, M. G., Stepleton, T., and Munos, R. (2016). Q(λ) with Off-
Policy Corrections. In International Conference on Algorithmic Learning Theory, pages 305–320.
Springer.

11

[18] Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative dynamic
programming algorithms. In Advances in neural information processing systems, pages 703–710.

[19] Khodadadian, S., Chen, Z., and Maguluri, S. T. (2021). Finite-Sample Analysis of Off-Policy
Natural Actor-Critic Algorithm. The 38th International Conference on Machine Learning.

[20] Levin, D. A. and Peres, Y. (2017). Markov chains and mixing times, volume 107. American
Mathematical Soc.

[21] Maei, H. R. (2011). Gradient temporal-difference learning algorithms. University of Alberta.

[22] Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. G. (2016). Safe and efficient
off-policy reinforcement learning. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 1054–1062.

[23] Nowé, A., Vrancx, P., and De Hauwere, Y.-M. (2012). Game theory and multi-agent reinforce-
ment learning. In Reinforcement Learning, pages 441–470. Springer.

[24] Precup, D., Sutton, R. S., and Singh, S. P. (2000). Eligibility Traces for Off-Policy Policy
Evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning,
pages 759–766.

[25] Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2017). Deep reinforcement learning
framework for autonomous driving. Electronic Imaging, 2017(19):70–76.

[26] Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2016). Safe, multi-agent, reinforcement
learning for autonomous driving. Preprint arXiv:1610.03295.

[27] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge.
Nature, 550(7676):354.

[28] Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994). Learning without state-estimation in
partially observable Markovian decision processes. In Machine Learning Proceedings 1994, pages
284–292. Elsevier.

[29] Srikant, R. and Ying, L. (2019). Finite-time error bounds for linear stochastic approximation
and TD learning. In Conference on Learning Theory, pages 2803–2830.

[30] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44.

[31] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

[32] Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and Wiewiora,
E. (2009). Fast gradient-descent methods for temporal-difference learning with linear function
approximation. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 993–1000.

[33] Sutton, R. S., Mahmood, A. R., and White, M. (2016). An emphatic approach to the problem of
off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):2603–
2631.

[34] Thoppe, G. and Borkar, V. (2019). A concentration bound for stochastic approximation via
Alekseev’s formula. Stochastic Systems, 9(1):1–26.

[35] Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine
learning, 16(3):185–202.

[36] Tsitsiklis, J. N. and Van Roy, B. (1997). Analysis of temporal-difference learning with function
approximation. In Advances in neural information processing systems, pages 1075–1081.

[37] Van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S. (2016).
True online temporal-difference learning. The Journal of Machine Learning Research, 17(1):5057–
5096.

12

[38] Watkins, C. J. C. H. (1989). Learning from delayed rewards. King’s College, Cambridge United
Kingdom.

[39] Zhang, Q., Guan, Y., and Tsiotras, P. (2020). Learning Nash Equilibria in Zero-Sum Stochastic
Games via Entropy-Regularized Policy Approximation. Preprint arXiv:2009.00162.

[40] Zhao, Y., Zeng, D., Socinski, M. A., and Kosorok, M. R. (2011). Reinforcement learning
strategies for clinical trials in nonsmall cell lung cancer. Biometrics, 67(4):1422–1433.

[41] Zou, L., Xia, L., Ding, Z., Song, J., Liu, W., and Yin, D. (2019). Reinforcement learning to
optimize long-term user engagement in recommender systems. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2810–2818.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are presented in

the Appendix based on the order they appear in the paper.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

	Introduction
	Main Contributions
	Generalized Bellman Operator and Stochastic Approximation
	Related Literature
	Preliminaries

	Finite-Sample Analysis of General Off-Policy TD-Learning
	A Generic Model for Multi-Step Off-Policy TD-Learning
	Identifying the Generalized Bellman Operator
	Establishing the Contraction Property
	Proof of Theorem 2.1
	Finite-Sample Convergence Guarantees

	Application to Various Off-Policy TD-Learning Algorithms
	Finite-Sample Analysis of Vanilla IS
	Finite-Sample Analysis of Q()
	Finite-Sample Analysis of TB()
	Finite-Sample Analysis of Retrace()
	Finite-Sample Analysis of Q-Trace

	Proof sketch of Proposition 2.4
	Conclusion
	Technical Details in Section 2
	Proof of Proposition 2.1
	On the Fixed-Point of the Operator H()
	Proof of Proposition 2.2
	Proof of Proposition 2.3
	Proof of Proposition 2.4
	Proof of Theorem 2.2
	Proof of Theorem A.1
	Proof of Proposition A.1

	Connection to Linear SA Involving a Hurwitz Matrix
	Technical Details in Section 3
	Proof of Theorem 3.1
	Comparison to the n-Step TD-Learning Results in chen2021lyapunov
	Proof of Theorems 3.2 to 3.5
	Computing the Sample Complexity of Q-Trace from chen2021finite

