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Abstract

Recently, there have been explorations of generalist segmentation models that can
effectively tackle a variety of image segmentation tasks within a unified in-context
learning framework. However, these methods still struggle with task ambiguity in
in-context segmentation, as not all in-context examples can accurately convey the
task information. In order to address this issue, we present SINE, a simple image
Segmentation framework utilizing in-context examples. Our approach leverages a
Transformer encoder-decoder structure, where the encoder provides high-quality
image representations, and the decoder is designed to yield multiple task-specific
output masks to eliminate task ambiguity effectively. Specifically, we introduce an
In-context Interaction module to complement in-context information and produce
correlations between the target image and the in-context example and a Matching
Transformer that uses fixed matching and a Hungarian algorithm to eliminate
differences between different tasks. In addition, we have further perfected the
current evaluation system for in-context image segmentation, aiming to facilitate
a holistic appraisal of these models. Experiments on various segmentation tasks
show the effectiveness of the proposed method.

Our code is released at: https://github.com/aim-uofa/SINE

1 Introduction

Image segmentation [65, 31, 24, 58, 46] involves localizing and organizing concepts at the pixel level.
Different definitions of concepts, such as foreground, category, and object instance, lead to different
types of segmentation tasks. Recent years, we have witnessed great progress in developing more
accurate and faster algorithms for various segmentation tasks such as semantic segmentation [35, 64,
48], instance segmentation [19, 7, 2], panoptic segmentation [24, 4, 5], foreground segmentation [52],
interactive segmentation [57, 37, 25]. Nonetheless, most existing segmentation methods are tailored
for certain tasks and cannot be applied to other tasks.

More recently, a few works [54, 56] have explored generalist segmentation models that are capable
of solving diverse and unlimited segmentation tasks via in-context learning [3]. Painter [54] performs
in-context training with masked image modeling and can achieve various tasks according to the
in-context visual prompts. SegGPT [56] focuses on visual segmentation and introduces in-context
segmentation, which unifies multiple segmentation tasks by incorporating both a target image and
an annotated reference image as input. To encourage the model to leverage contextual information,
SegGPT employs a random coloring scheme during the task completion process. However, these
models still struggle with task ambiguity in in-context segmentation.

As shown in Figure 1(a), the in-context segmentation model needs to understand the task and content
information conveyed by the in-context example and segments related concepts on the target image.
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(a) Ambiguity in traditional in-context segmentation framework. (b) An illustration of the of in-context segmentation framework of SINE.

Figure 1 — Illustration of ambiguity in traditional in-context segmentation framework and an overview of
our SINE framework.

However, not all in-context examples can convey the task information accurately. For example,
when presented with a photo of a particular individual for segmenting the target image that includes
him/her and others, which visual concepts should be segmented? Specifically, should it be limited
to the individual alone, encompass the instance segmentation of all persons, or focus on semantic
segmentation? Whether the pixels of the target image need to be segmented depends on their similarity
to the in-context example. Ambiguous in-context examples can make it difficult for traditional in-
context segmentation models to clearly define the boundaries between different tasks, resulting in
undesired outputs.

To address this issue, we present SINE, a simple image Segmentation framework via IN-context
Examples. Drawing inspiration from the segment anything model [25], which addresses point
ambiguity by generating multiple masks of different granularity, SINE predicts multiple output masks,
custom-made for tasks of varying complexity. This ranges from identical objects, instances to overall
semantic conception. SINE unifies existing segmentation tasks with various granularities, intending
to achieve a broader task generalization. SINE leverages a Transformer encoder-decoder structure.
The encoder contains a frozen pre-trained image encoder offering high-quality image representations
and an In-context Interaction module to complement in-context information and learn correlations
between the target and the reference image features. We propose a novel Matching Transformer (M-
Former) for efficient multiple-task decoding. M-Former is implemented by a dual-path Transformer.
One path is used for information interaction between object queries with image features. The second
path is employed to enhance the semantic prototypes for accurate matching. In addition, a fixed
matching and a Hungarian algorithm are used to eliminate differences between different tasks.

SINE achieves impressive performance with fewer trainable parameters compared with SegGPT.
Our qualitative results demonstrate that SINE can effectively address the problem of task ambiguity
in in-context segmentation, while SegGPT only outputs the semantic segmentation results. SINE
achieves state-of-the-art or competitive performance on existing in-context image segmentation
benchmarks [56], including few-shot semantic segmentation, video object segmentation. In addition,
we further introduce few-shot instance segmentation to the current evaluation system for facilitating
a holistic appraisal of these models. SINE provides a baseline result for in-context segmentation
models to promote the development of this field. Finally, comprehensive ablation studies verify the
effectiveness of the proposed components. Our main contributions are as follows:

* To our knowledge, our method is the first to investigate the task ambiguity of in-context
segmentation, and we present a simple but effective framework to address the issue.

* We introduce a Matching Transformer to unleash the potential of frozen pre-trained image
models on various segmentation tasks with a low training cost.

* Our comprehensive results demonstrate that SINE can address a broad range of segmentation
tasks, including few-shot semantic segmentation, few-shot instance segmentation, video
object segmentation. Ablation studies show the effectiveness of the proposed components.

1.1 Related Work

Image Segmentation Segmentation involves localizing and organizing meaningful concepts at the
pixel level. Different definitions of concepts, such as foreground, category, and object instance,
lead to different types of segmentation tasks. Specifically, semantic segmentation [65] requires



semantic classification at the pixel level, while instance segmentation [31] is to identify and localize
various object instances. Panoptic Segmentation [24] introduces a more challenging task by unifying
semantic segmentation and instance segmentation. Video object segmentation [58, 46] is to segment
an identical object throughout a video sequence. Most existing segmentation methods are tailored for
certain tasks and cannot be applied to other tasks.

Traditional segmentation methods [35, 29, 64, 48, 19, 7, 2, 24, 4, 5, 10, 66] have been designed
for identical segmentation tasks and trained on a specific dataset. These methods have limited
generalization when transferring to other datasets or tasks. To solve this challenge, we unify various
segmentation tasks into in-context segmentation [56, 34, 27, 39] and introduces a simple visual
segmentation framework via in-context examples. Prompted by a given in-context example, our
method can perform few-shot segmentation across various datasets and tasks.

In-Context Visual Learning Recently, in-context learning has been successfully used in NLP tasks
and vision-and-language tasks. Bar et al. [1] first introduced in-context learning in computer vision.
They cast the in-context learning as an image inpainting problem, where models need to fill in a hole
in a concatenated image containing several examples and a new input image. They demonstrate the
effectiveness of the strategy for foreground segmentation, single object detection, and colorization.
Painter [54] adopts masked image modeling on continuous pixels to perform in-context training with
supervised datasets, and achieves competitive results on seven vision tasks. SegGPT [56] focuses on
the segmentation task and uses random coloring scheme that forces the model to reference contextual
information to complete the assigned task. DiffewS [67] effectively leverages in-context visual
learning to unleash the potential of Stable Diffusion [49] in few-shot semantic segmentation.

Our work focuses on segmentation tasks. These aforementioned models struggle with the task
ambiguity in in-context segmentation. By contrast, our SINE can effectively address the problem
of task ambiguity in in-context segmentation by disentangling the specific task from the in-context
example and understanding the semantic concepts of the prompts to output results at different levels
of task granularity from the identical object, instance, to semantics.

2 Preliminary

In this section, we first formulate the problem setting of in-context segmentation. Then, we revisit
SegGPT, the previous in-context segmentation model.

2.1 Problem Formulation

In-context segmentation aims to identify a specific task and objects within the given in-context
example, including a reference image X, and its annotations y, = {(m?, ¢.)}/_,, and segment the
interested objects in the target image x;. m!. denotes the i-th reference mask and c!. denotes its
class label, IV denotes the number of the reference masks. The interested objects are related to the
in-context example, which can be an identical object for video object segmentation or all objects of
the same semantic concept for instance segmentation and semantic segmentation. We mainly focus
on three semantic granularities in the task ambiguity, i.e., identical object (ID), instance, and semantic.
The identical object segmentation can be seen as finer granularity instance segmentation, and instance
segmentation can be transformed into semantic segmentation by merging instance masks belonging
to the same category. Based on this relationship between these tasks, we unify them into instance
segmentation.

2.2 A Revisit of SegGPT

SegGPT [56] introduces in-context segmentation, which incorporates both the images and mask
annotations into an RGB image to convey the specific task to be performed and identify the objects
to be segmented simultaneously. SegGPT takes stitched reference and target images as input and
employs the masked image modeling algorithm [18] and smooth-£1 [15] loss to train a Vision
Transformer [8] encoder. During inference, SegGPT enables segmenting everything via an in-context
example, including a reference image and its annotation image. Given a target image, it is stitched
with the reference image and fed into SegGPT to get the corresponding in-context predictions.
Although SegGPT has achieved great success in various segmentation tasks, it faces two challenges:
1) In many cases, in-context examples may not accurately convey the task information. For example,
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Figure 2 — An overview of SINE. SINE is a Transformer encoder-decoder structure, including a frozen
pre-trained image encoder, an In-Context Interaction module, and a lightweight Matching Transformer
(M-Former) decoder. The top right corner is the self-attention mask of M-Former. The down right corner
shows the different task outputs, from identical object, instance, to semantic.

when an in-context example only consists of a single object and its annotation, the lack of additional
task-related information can lead to incorrect outputs. 2) SegGPT utilizes a single Transformer
encoder structure for both feature extraction and task-specific decoding purposes. This will introduce
complexity in the in-context segmentation process and lead to a sub-optimal solution.

Inspired by the segment anything model [25], which solves point ambiguity by outputting multiple
different granularity masks simultaneously, we focus solely on the various content of in-context
examples and endow the model with the ability to predict multiple output masks for different tasks.
In addition, we disentangle the function of the Transformer encoder within SegGPT and deploy a
Transformer encoder and decoder to perform feature extraction and task decoding, respectively.

3 Method

We present SINE, a simple image Segmentation framework via IN-context Examples. SINE can
effectively address the problem of task ambiguity in in-context segmentation by disentangling the
specific task from the in-context example and understanding the semantic concepts of the prompts to
output results at different levels of task granularity from the identical object, instance, to semantics.
‘We elaborate on our method in the following subsections.

3.1 Overview

The overview of the proposed SINE framework is depicted in Figure 2. We build SINE based on the
classic Transformer structure [53, 8] and introduce some effective designs targeted for the in-context
segmentation task, including a frozen pre-trained image encoder, an In-Context Interaction module,
and a lightweight Matching Transformer (M-Former) decoder.

We use the frozen pre-trained image encoder to encode x,. and X;, resulting in the reference feature
F, € RO*TXW and target featureF; € RE>*7*W where H, W, and C denote the image features’
height, width and the number of channels, respectively. Inspired by the in-context learning in NLP [3],
we enable SINE to grasp the in-context correlations that coexist between the reference and the target
images. Specifically, we develop an In-Context Interaction module, a component tailored to capture

the semantic correlations between F,. and F; and outputs the enhanced target feature F, € RC>*HxW
the ID queries q;; € RYV*¢ and the semantic prototypes p,.,,, € RM*C.

SINE is built as a query-based segmentation model, following DETR [4] and Mask2Former [5].
We employ the ID queries q,, to identify and locate objects within the target image that have
identical counterparts within the reference image. Furthermore, we apply learnable instance queries
Q;,. € R5*C to identify and locate objects within the target image that share the same semantic
labels in the reference image. The M-Fomer decoder is employed to update these queries and
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Figure 3 — Illustration of the In-Context Interaction module. This module aims to complement in-context
information between reference and target. The ID and semantic tokens are extracted by the Mask Pooling.
The enhanced target feature, the ID queries, and the semantic prototypes are outputted by the In-Context
Fusion module.
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prototypes. Then, a prediction feed-forward network [4] is employed to predict ID and instance
outputs, respectively.

3.2 In-Context Interaction

The purpose of In-Context Interaction is to complement in-context information and produce correla-
tions between reference and target image features. As illustrated in Figure 3, we use a Mask Pooling
process to extract the ID and semantic tokens, represented as t;; € RV*C and t,,, € RM*®,
Specifically, we transfer m,. into ID masks m;q; € RV *H*W by assigning different ID labels for
each mask and semantic masks mg.,,, € RM*H*W by merging the masks with same category label,
where NV and M are the numbers of ID and semantic masks. Then, we use these masks to pool over
the reference feature F,. and obtain t;; and t,.,,, the pooling process similar to [14].

We introduce an In-Context Fusion module to enable the in-context correlation between the reference
and target features. The process of this module can be summarized as follows:

<qid, | J— F;> = InContextFusion (t;q, tsem, F;0), (1

where 6 is the parameters of the In-Context Fusion. The module is a Transformer block [53, 4]
including a self-attention, cross-attention, and a feed-forward network. The tokens (t;4 and t,.,,) and
target feature (F;) are fused by this shared module, where they are used as keys and values for each

other in the cross-attention, and the enhanced target feature F,, the ID queries q;, and the semantic
prototypes p..,,, can be obtained.

3.3 Matching Transformer

M-Former aims to decode the enhanced target feature into different task outputs, from identical
object, instance, to semantic, and enables comprehensive and efficient performance for in-context
segmentation. Thus, in addition to the ID queries q,,; and the semantic prototypes p,.,,, we also
incorporate a set of learnable instance queries q,,, , for predicting instances. To perform in-context
segmentation and eliminate task ambiguity effectively, the design of M-Former needs to consider
1) the semantic prototypes need to assign semantic information to the instance queries, 2) avoiding
coarse-grained semantic prototypes to contaminate fine-grained ID queries, and 3) the queries interact
with the target feature.

Encouraged by the above analyses, the M-Former is implemented by a dual-path Transformer decoder

sharing the self-attention layers. One path is utilized to interact F; and queries (q;; and q,,,,) for
extracting correlated feature with the in-context example from the target image. This path consists of
a series of self-attention, masked cross-attention [5], and feed-forward network. The second path is
employed to enhance the semantic prototypes p,.,,, for a more accurate matching. The two paths
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Figure 4 — Qualitative results of SINE. (a) Comparison between SegGPT and SINE for addressing
ambiguity in in-context segmentation. (b) Few-shot semantic segmentation. (c) Few-shot instance
segmentation. (d) Video object segmentation.

share the self-attention layers for assign semantics from p,,,,, to q;,,,- To avoid semantic prototypes
contaminating fine-grained ID queries, we apply a self-attention mask within the shared self-attention
layers as shown in at the top right corner of Figure 2. M-Former has N blocks. The process of
M-Former can be summarized as follows:

<qéd7 qins7 plsem> = MFOTm@’I'l (qzd 7q7/n,s ’psem7 el Ft) (2)

where [ denotes the layer number of M-Former and #' is the parameters of the I-th M-Former block.
Then, a prediction feed-forward network is employed to predict ID and instance outputs, respectively.

For instance segmentation, we use the updated semantic prototypes p,.,,, as the classifier and let
Yins = 10%,s}7_1 denote the set of S instance predictions. The ground truth is denoted by y. We
use the Hungarlan loss [4, 5] to learn SINE. Specifically, we compute the assignment costs between
prediction §/,,, and ground truth 3’ for the matching problem, i.e., —p;(c’) + Lmask (M md),
where (¢, m’) is the class and mask of the ground truth object, ¢/ may be @. p;(c’) is the probability
of class ¢/ for i-th instance query, 712, . denotes its predicted mask. £y is a binary mask loss and
Dice loss [40]. The Hungarian loss is

Lptungarian Gine¥) = S [-1 NGRS Wy () 3
Hunga.l‘lall(yzns7y) Z]:l nga(])( )+ CJ;ﬁ@' mask( Zns7 ) bl ()

where o (j) denotes the resulting index of the bipartite matching. To endow SINE with the ability to
predict an identical object, we use the different cropped views of the same instance within the image
as reference-target image pairs. Lety,; = {9! d} ; denote the set of N ID predictions. Because the
relationship between reference and target IDs is fixed and can be accurately determined, we perform
fixed matching between the predictions and the ground truth. The loss can be written as

L(A.—N—l»iﬂ'L )
D YZd7Y)_Zi=1|: ngz(c)+ it mask(mldym)];

where (¢!, m?) is the ground truth class and mask, ¢ € {1, @}, ¢* = 1 denotes that an object appears
in both reference and target images simultaneously. The total loss is £ = Lpungarian + £1p. Once the
training is finished, the full capability of SINE is unleashed during inference. SINE can address the
ambiguity within the in-context examples and output predictions for different segmentation tasks.



Methods Venue COCO0-20¢ PASCAL-5¢ LVIS-92¢
one-shot  few-shot | one-shot few-shot | one-shot few-shot
specialist model
HSNet [41] ICCV’21 41.7* 50.7* 68.7* 73.8* 17.4 22.9
VAT [20] ECCV’22 42.9* 49.4* 72.4* 76.3* 18.5 22.7
FPTrans [62] NeurIPS’22 56.5* 65.5* 77.7* 83.2* - -
generalist model
Painter [54] CVPR’23 32.8 32.6 64.5 64.6 10.5 10.9
SegGPT [56] ICCV’23 56.1 67.9 83.2 89.8 18.6 25.4
PerSAM-F [63] ICLR’24 23.5 - - - 18.4 -
Matcher [34] ICLR 24 52.7 60.7 - - 33.0 40.0
SINE this work 64.5 66.1 85.4 86.2 31.2 35.5

Table 1 — Results of few-shot semantic segmentation on COCO-20°, PASCAL-5%, and LVIS-92°. Gray
indicates the model is trained by in-domain datasets. * indicates that the categories in training cover the
categories in testing within the same dataset.

4 Experiments

Training Data We train our model with a diverse set of segmentation datasets, including semantic, in-
stance, and panoptic segmentation. Specifically, we utilize three visual perception datasets: ADE20K
[65] is a popular semantic segmentation dataset, providing semantic labels for 150 categories. For
panoptic segmentation, the 150 categories can be divided into 100 “things” and 50 “stuff” categories.
It has 25K images, including 20K for training, 2K for validation, and 3K for testing. COCO [31] is a
widely-used dataset that supports object detection, instance segmentation, and panoptic segmentation.
It contains 80 “things” and 53 “stuff” categories, with 118K training and 5K validation images.
Objects365 [51] is a large-scale high-quality object detection dataset. It contains 365 categories,
638K images, and 10M bounding boxes. We extend instance segmentation annotations for Objects365
by using the Segment Anything Model [25]. We convert different data annotations into the form of
instance segmentation for unified mixed data training.

Training Details Following [34], we deploy the frozen DINOv2 (ViT-L) [44] with 304M parameters
as the image encoder and train SINE with only 19M trainable parameters. The In-Context Fusion
has one block and M-Former has six blocks. The model size of SINE is comparable with SegGPT
(307M). SINE has fewer trainable parameters, leading to more efficient training. We train SINE about
50K steps with 64 batch sizes. We use Adam [36] optimizer and employ 51 = 0.9, 52 = 0.999 for
optimization. We use a linear learning rate scheduler with a base learning rate of le—4 and a warmup
of 100 steps. The weight decay is set to 0.05. For data augmentation, we use random horizontal
flipping and the large-scale jittering (LSJ) [13] augmentation with a random scale sampled from
range 0.1 to 2.0 followed by a fixed size crop to 896 x 896. More implementation details are provided
in the Appendix B.

4.1 Qualitative Results

We demonstrate that our SINE framework can effectively address the ambiguity in the in-context
examples. As shown in Figure 4(a), it is difficult to understand which tasks should be executed via
the reference image with an annotation of a particular individual.SegGPT only outputs the semantic
segmentation result. In contrast, SINE outputs multiple outputs to avoid task ambiguity. We further
visualize the results of SINE on few-shot semantic segmentation, few-shot instance segmentation,
and video object segmentation. SINE showcases its capability to deliver highly accurate predictions
across diverse tasks while retaining exceptional flexibility in the task definition.

4.2 Few-shot Semantic Segmentation

Datasets We revisit the few-shot semantic segmentation task into two settings: in-domain (COCO-20?
[43]) and out-domain (PASCAL-5? [50], LVIS-92¢ [34]), based on whether the dataset has been seen
during training. COCO-207 divides the 80 classes of COCO into four cross-validation folds with
20 test classes and 60 training classes for each fold. Similarly, PASCAL-5 is built on PASCAL,
including four cross-validation folds. LVIS-927 is a more challenging benchmark for evaluating the
generalization of a model across datasets based on LVIS [16], including ten folds and 92 classes for
each fold. We comprehensively verify the few-shot semantic segmentation performance of SINE on
these datasets following the evaluation scheme of [41, 56, 34].
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Table 3 — Results (AP and AP50) of few-shot
object detection and instance segmentation on
COCO2VOC with K = {1, 5}.

Table 2 — Results (AP) of few-shot object de-
tection and instance segmentation on COCO-
NOVEL with K = {1,5}.

Results As shown in Table 1, we compare the SINE with a variety of specialist and generalist
segmentation models. For COCO-20¢ and PASCAL-5¢, because SINE is trained with all data of
COCO, we report the performance of specialist models trained on in-domain categories (marked by *)
for a fair comparison. Although SINE and SegGPT are trained on the COCO dataset, SINE achieves
significant advantages in one-shot performance with a simpler in-context learning framework on
COCO-20%. In addition, without specific training on the PASCAL dataset, SINE achieves better
performance with one-shot and comparable performance with few-shot to SegGPT on PASCAL-5°.
On the more challenging dataset LVIS-92¢, SINE outperforms Painter, SegGPT, and PerSAM-F,
demonstrating superior generalization and versatility. The performance of SINE on LVIS-92¢ is
slightly weaker compared to Matcher, which benefits from the SAM [25] pre-trained on a large-scale
segmentation dataset. SINE achieves competitive results independently, without relying on extensive
segmentation data.

Please note that SINE aims to provide insights for the research community to build a simple baseline
for in-context segmentation, instead of SOTA. Despite having been trained on 12 diverse segmentation
datasets [56], SegGPT demonstrates a limited performance when applied to LVIS-92¢. This indicates
a need for developing more effective data-centric learning approaches specifically tailored for in-
context segmentation. SINE is the first to explore the utilization of Objects365 with automatic mask
annotations. The efficient design of SINE enables the training on Objects365 at the instance level.
This enables SINE to only use 19M training parameters, making the training budget much smaller
than SegGPT (304M) or SAM (600M) in Matcher.

4.3 Few-shot Instance Segmentation

Datasets Like few-shot semantic segmentation, we evaluate the performance of SINE of few-shot
instance segmentation on both settings: in-domain on COCO-NOVEL [23] and out-domain on
COCO2VOC [9] settings. COCO-NOVEL includes 20 classes that intersect with VOC and 5k test
images. We evaluate 1-shot and 5-shot instance segmentation performance on this dataset. The
COCO2VOC dataset is used to evaluate the cross-dataset generalization ability by using reference
samples of COCO to test the VOC test set. We report the mean results of 10 groups of different
reference images generated by different random seed for both two datasets.

Results Table 2 shows the results of few-shot object detection and instance segmentation. SINE
outperforms specialist methods by a large margin at both 1-shot and 5-shot settings. For the results of
COCO2VOC in Table 3, SINE shows better generalization ability compared to specialist models.

Please note that the goal of this experiment is not to prove that SINE achieves better few-shot instance
segmentation performance compared to specialist segmentation models. The existing in-context
segmentation models, such as SegGPT, are unsuitable to perform instance segmentation. SegGPT
needs to use a sliding window to traverse all grids to predict the objects. The post-processing is
complicated and ineffective. SINE is the first in-context segmentation model that can address few-
shot instance segmentation. We hope SINE can be a baseline for in-context segmentation models to
promote the development of this field.

4.4 Video Object Segmentation

Datasets For video object segmentation (VOS), we focus on the semi-supervised setting where the
object masks of the first frame are provided, and the model is responsible for segmenting the object



DAVIS 2017 DAVIS 2016 YouTube-VOS 2018

Methods Venue J&F J F |J&F J F | G J. F. J, Fu

with video data

AGAME [22] CVPR’19 70.0 672 727 - - - 66.0 66.9 - 61.2 -
AGSS [30] ICCV’'19 674 649 699 - - - 713 713 655 752 73.1
AFB-URR [28] NeurIPS’20 | 74.6  73.0 76.1 - - - 79.6 78.8 83.1 74.1 82.6
AOT [60] NeurIPS’21 854 824 884 | 920 90.7 933|845 843 893 779 864
SWEM [32] CVPR’22 843 812 874 | 913 899 926 | 828 824 869 77.1 850
XMem [6] ECCV’22 877 840 914 | 920 90.7 932 | 86.1 851 89.8 803 89.2
without video data

Painter [54] CVPR’23 346 285 408 | 703 69.6 709 | 241 276 358 143 187
SegGPT [56] ICCV’23 756 725 786 | 837 836 838|747 751 802 674 759
SEEM [68] NeurIPS’23 | 589 55.0 628 - - - 50.0 57.2 382 613 433

DINOv [27] CVPR’24 733  71.0 757 - - - 609 653 700 523 579
PerSAM-F [63] ICLR’24 76.1 749 79.7 - - - 544 539 564 507 56.6
Matcher [34] ICLR’24 795 765 826 | 86.1 852 86.7 - - - - -

SINE this work 710 72,6 813 | 823 814 832|662 69.1 576 717 66.5

Table 4 — Results of video object segmentation on DAVIS 2017, DAVIS 2016, and YouTube-VOS 2018.
Gray indicates the model is trained on target datasets with video data. G is the average score over the
“seen” and “unseen” classes in YouTube-VOS 2018.

Methods Venue mloU Methods Venue PQ PQTM PQS!
specialist model specialist model

FCN [35] CVPR’15 294 PanopticFPN [24] CVPR’19 [40.8 483 294
RefineNet [29] CVPR’17 40.7 SOLOV2 [55] NeurIPS’20|42.1 49.6 30.7
DPT [48] ICCV’21 49.2 Mask2Former [S] CVPR’22 |57.8 64.2 48.1
Mask2Former [5] CVPR’22 57.7 UViM [26] NeurIPS’22|45.8 - -
generalist model generalist model

Painter [54] CVPR’23 499 Painter [54] CVPR’23 |434 - -
SegGPT [56] ICCVv’23 39.6 SegGPT [56] ICCV’23 344 - -
SINE this work 54.1 SINE this work |51.0 57.8 40.8

Table S — Transfer performance on ADE20K Table 6 — Transfer performance on COCO
semantic segmentation. panoptic segmentation.

in all subsequent frames. We evaluate SINE on three validation datasets, including DAVIS 2017 [46],
DAVIS 2016 [45], and YouTube-VOS 2018 [58]. We use the J score and the F’ score to evaluate the
performance.

Details To effectively perform SINE on the VOS task, we introduce a group of memory banks for
each object, maintaining the intermediate predictions. We determine which frame to retain in the
memory according to the classification and mask scores. Considering that objects are more likely
to resemble those in adjacent frames, we apply a time-based decay ratio to the scores, gradually
reducing its value. In addition, we store the reference image and mask in memory to solve the case
where objects vanish and reappear.

Results Table 4 compares the performance of VOS between SINE and different methods trained with
or without video data. Without video data, SINE achieves competitive performance compared with
the models trained with video data on DAVIS 2017. In addition, SINE outperforms recent generalist
segmentation methods, such as Painter, SEEM, DINOv and PerSAM-F, on YouTube-VOS 2018.
These results demonstrate that SINE has the potential to address video tasks.

4.5 Transfer Learning Experiments

We investigate the performance of SINE when transferring to common segmentation tasks, such as
ADE20K semantic segmentation and COCO panoptic segmentation. Unlike traditional pre-trained
methods, e.g., MAE [18], require to fine-tune all model parameters to downstream tasks. We verify
that our method can be efficiently transferred to these tasks via parameter efficient fine-tuning (PEFT)
methods [38]. Specifically, We deploy the popular PEFT method, LoRA [21], on the frozen image
encoder and fix the original parameters to test the transfer ability of SINE. We select rank 32 as the
default setting. We train semantic prototypes and LoRA parameters for specific segmentation tasks.

Semantic Segmentation According to Table 5, our method SINE achieves 54.1% mloU on the
ADE20K semantic segmentation benchmark, outperforming other in-context segmentation models
like SegGPT which trains a dataset-specific prompt using related dataset annotations. In addition,
with only a few trainable parameters, our method achieves better or comparable performance to
specialist segmentation models. It is worth noting that, unlike Mask2Former [5], SINE does not use
multi-scale features for better performance.



Trainine Data | LVIS92° | COCO-NOVEL | DAVIS 2017 Frames DAVIS 2017
g mean mIoU | APy, APnask J&F 1 2 4 6 8 10
COCO 244 105 114 63.2 J&F | 709 762 167 710 770 760
+ ADE20K 255 19.2 182 68.8 J 66.1 715 719 726 727 716
+ Objects365 28.3 224 21.5 77.0 F 758 81.0 814 813 813 803
(a) Ablation study of training data. (b) Effect of the number of frames for VOS.
Fusion|  Decoder | LVIS-92° | COCO-NOVEL | DAVIS 2017 Rank _ #Params(M) | mloU  mACC
’ mean mloU | APy APqsk J&F 4 0.63 49.1 63.6
Mask2Fomer | 22.2 86 99 61.1 136 é -% gg-i gg-g
5 Mask2Fomer 23.5 8.9 10.6 62.3 30 475 541 63.0
M-Former 24.4 10.5 114 63.2 64 9.48 54.4 68.8
(c) Effect of proposed components. (d) Ablation study of LoRA rank on ADE20K.

Table 7 — Ablation study. We report the mloU of foldO on LVIS-92i, APy, and AP,,,qsk Of seedO on
COCO-NOVEL, and J& F on DAVIS 2017. Pink is the default setting.

Panoptic Segmentation Table 6 shows that SINE also significantly outperforms other generalist seg-
mentation models on the COCO panoptic segmentation task, demonstrating that the proposed method
can enable the learned Transformer decoder to apply to more complicated panoptic segmentation
effectively. By fixing the overall model parameters and adding only a few of LoRA parameters, SINE
achieves competitive performance with the best specialist segmentation model, Mask2Former.

4.6 Ablation Study

As shown in Table 7, we conduct ablation experiments on LVIS-92 for few-shot semantic segmen-
tation, COCO-NOVEL dataset for few-shot instance segmentation, DAVIS 2017 for video object
segmentation, and ADE20K for the semantic segmentation task, to thoroughly validate the effective-
ness of the proposed components and the impact of training with different datasets. Unless specified,
only foldO and seedO are used for the ablation on the few-shot semantic/instance segmentation.

Effect of different training data. We train SINE on different data sources (Table 7a). We validate
that incorporating more diverse semantic segmentation data, such as ADE20K, helps improve the
model. Furthermore, we demonstrate for the first time that adding additional detection data, such as
Object365, greatly enhances the model’s in-context segmentation capability.

Ablation study of proposed components. Table 7c shows the impact of the proposed components
and all experiments only use COCO as training data. The proposed In-Context Fusion module leads to
improvements in mean mloU, AP and J& F'. Further enhancements are observed across all evaluation
metrics when the M-Former is used. This demonstrates the effectiveness of the proposed components
in improving the model’s performance for various segmentation tasks.

Varying the number of frames Table 7b demonstrates a gradual improvement in the overall segmen-
tation quality as the number of frames increases from 1 to 6. Overall, using a moderate number of
frames, such as 6 or 8, achieves optimal VOS performance on the DAVIS 2017 dataset.

Varying the LoRA rank Table 7d demonstrates the effect of the LoRA rank on transfer performance.
When the LoRA is 32, SINE achieves acceptable performance with few trainable parameters. Further
increasing the rank to 64 only leads to a marginal improvement. Considering the trade-off between
performance and the number of trainable parameters, we select rank 32 as the default setting.

5 Discussion and Conclusion

Conclusion In this work, we point out the task ambiguity in in-context segmentation for the first
time and present SINE, which simultaneously predicts multiple task-specific masks to address this
problem. Leveraging the efficient design, SINE can utilize few trainable parameters to exhibit strong
segmentation abilities.We hope SINE can promote the development of in-context segmentation.
Limitation and more Discussions are provided in Appendix A.
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Appendix

A Discussions and Limitation

Comparison to SegGPT Both SINE and SegGPT are in-context segmentation models. SINE’s
flexibility is comparable to SegGPT for various segmentation tasks. SINE can handle instance
segmentation, which fails in SegGPT. SegGPT cannot deal with task ambiguity. The pixel output of
SegGPT is not the final result and necessitates complex post-processing that converts the RGB output
to mask. SINE avert this problem by predicting the mask directly. Stitching reference and target in
SegGPT limits its capacity to process high-resolution images. SINE does not have this problem.

Comparison to SAM SINE and SAM offer different paths to the segmentation foundation model.
SAM provides semantic-free promptable segmentation, while SINE handles semantic in-context
segmentation. With different emphases, SINE and SAM can complement each other. Take auto-
labeling as an example. SAM labels objects (e.g., a dog) in the first image. SINE could use that
image as an in-context example to label subsequent images to reduce costs.

Limitation As the first work to study ambiguity in in-context segmentation, SINE focuses on resolving
ambiguities among ID, instance, and semantic segmentation tasks (as these are more important and
commonly used). More complex ambiguities, such as full objects and parts, spatial position, category,
and color, can be addressed by incorporating multimodal in-context examples (e.g., image and text).
In addition, SINE has a performance gap compared with SegGPT in video segmentation. We think
the reason behind this performance gap is that SegGPT trains all model parameters (300M), while
SINE uses a simpler in-context fusion module and fewer learnable parameters (19M), limiting its
ability to handle inter-frame relations in complex videos. Although SINE currently has limitations in
learning complex inter-frame relationships in videos, we believe that by designing a more suitable
In-Context Interaction module, the current paradigm holds greater potential for solving in-context
segmentation tasks.

Broader Impacts Our Method is built upon open-source foundation models, significantly reducing
carbon emissions. We do not foresee any obvious undesirable ethical or social impacts now.

B Implementation Details

Training Details. We train our model with diverse segmentation datasets, including semantic,
instance, and panoptic. The sampling weight for each dataset is 0.14 (COCO panoptic), 0.14
(ADE20K panoptic), 0.18 (COCO instance), and 0.54 (Objects365 instance). SINE uses two kinds of
in-context pairs, selecting two images including the same category objects as the in-context pair or
using two transformed views of the same image as the in-context pair. The probability is 0.5 for both
in-context pairs.

Vision foundation models [18, 47, 44, 33] have demonstrated amazing visual representation capa-
bilities, encouraging us to explore their performance in a wider range of applications. We deploy
the frozen DINOv2 (ViT-L) [44] with 304M parameters as the Transformer encoder of SINE and
train the In-Context Fusion module and the lightweight Transformer decoder with only 19M trainable
parameters. The decoder contains six M-Former blocks. The model size of SINE is comparable
with SegGPT (307M). SINE has fewer trainable parameters, leading to more efficient training. We
randomly initialize the trainable parameters and train SINE about 50K steps with 64 batch sizes.
We use Adam [36] optimizer and employ 51 = 0.9, B2 = 0.999 for optimization. We use a linear
learning rate scheduler with a base learning rate of 1e—4 and a warmup of 100 steps. The weight
decay is set to 0.05. For data augmentation, we use random horizontal flipping and the large-scale
jittering (LSJ) [13] augmentation with a random scale sampled from range 0.1 to 2.0 followed by a
fixed size crop to 896 x 896. Our model is trained for 5 days by using 8 NVIDIA V100 GPUs.

Evaluation. The in-context examples are from the support samples for few-shot semantic segmenta-
tion, the training set for few-shot instance segmentation, and the first video frame for video object
segmentation. The semantic prototypes can be seen as the classifier. The post-processing is similar
to Mask2Former [5], but we use the predictions of the ID queries for VOS and the predictions of
instance queries for instance segmentation, respectively.
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C Additional Results

C.1 Comparison of SINE and SegGPT without Objects365.

Table 8 compares the one-shot semantic segmentation results of training SINE using only ADE20K
and COCO with SegGPT. SINE outperforms SegGPT on three benchmarks. Notably, SINE achieves
10% higher mloU than SegGPT on LVIS-92i, indicating stronger class generalization capability in
real-world image segmentation compared to SegGPT.

Methods COCO-20° PASCAL-5" LVIS-92°
SegGPT 56.1 83.2 18.6
SINE 67.1 86.3 28.8

Table 8 — Comparison of SINE and SegGPT without Objects365.

C.2 Impact of Different Backbones.

We select DINOv2-S, DINOv2-B, DINOv2-L, and CLIP-L [47] to explore the impact of different
backbones. The conclusions are as follows: 1) DINOV2 is better than CLIP. DINOv2 achieves
better performance than CLIP because it has general matching capabilities at both image and patch
levels, allowing it to better understand complex contextual information between images. In contrast,
CLIP captures image-text similarity, making it difficult to capture relationships between images,
leading to poorer performance. 2) Larger DINOv2 model performs better: larger DINOv2 models
have stronger representation capabilities, making it easier to capture contextual relationships, thus
improving performance. This also indicates that SINE is scalable with the enhanced capabilities of
the encoder.

Methods | Backbone | COCO-20° PASCAL-5° LVIS-92°
SegGPT - 56.1 83.2 8.6
DINOV2-S 56.8 81.4 26.7
DINOv2-B 61.7 84.1 29.5
SINE | 1y INOv2-L 64.5 85.4 312
CLIP-L 34.8 57.3 16.1

Table 9 — Impact of Different Backbones.

C.3 Generalization of SINE on One-shot Part Segmentation.

As shown in Fig. 5, SINE can perform part segmentation like SegGPT when including PACO as
training data. We evaluate SINE for one-shot part segmentation on PASCAL-Part [42] following
Matcher [34] for the data pre-processing and evaluation. Compared with SegGPT [56], SINE achieves
competitive performance.

Methods animals indoor person vehicles mean
SegGPT 22.8 50.9 313 38.0 35.8
SINE 22.7 61.8 21.7 38.5 36.2

Table 10 — Results of one-shot part segmentation on PASCAL-Part.

C.4 Generalizability of SINE beyond Semantically Similar Objects.

Fig. 6 shows SINE’s capability in handling complex interaction relationships. In Fig. 6(a), the
reference consists of multiple images, each containing different objects (box, cup, keyboard, mouse).
When using these as in-context examples, SINE can segment one or more semantically different
objects on a desk. In Fig. 6(b), with a reference containing only one object, the in-context example
cannot represent complex interactions, and thus no segmentation result is provided. In Fig. 6(c),
replacing multiple single-object images with a single image containing multiple objects yields the
same effective results.
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C.5 Visualizations

Fig. 7 shows further visual comparisons. For video tasks, SINE reduces tracking failures from
intersections, viewpoint changes, and occlusions. SINE addresses task ambiguity, preventing errors
in semantic segmentation where SegGPT fails, as shown in the second set of comparison results in
Fig. 7(a). In real-world image segmentation, SINE exhibits better class generalization than SegGPT,
matching the LVIS-92i comparison in Table 1. SINE can effectively alleviate the prompt ambiguity
and produce more accurate segmentation results. We provide more visualizations for example-
based semantic segmentation in Fig. 8, example-based instance segmentation in Fig. 9, video object
segmentation in Fig. 10, semantic segmentation on ADE20K, and panoptic segmentation on COCO
in Figure 11.

reference GT SINE SegGPT reference GT SINE SegGPT

(blue mask) (red mask) (green mask)  (purple mask)  (blue mask) (red mask) (green mask)  (purple mask)
(a) Successful cases for SINE and SegGPT. (b) Cases of failures for SegGPT.

Figure 5 — Visualization of part segmentation.

reterence

reference reference target

reference target target reference target target

Figure 6 — Generalizability of SINE beyond semantically similar objects. (a) and (c) SINE can recognize
and segment another object when given successive images (or one image) including different objects. (b)
SINE cannot output masks when given one reference image with a different object.
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reference GT 7 SINE 7 SegGPT
(blue mask) (red mask) (green mask)  (purple mask)

(a) Video segmentation (b) Image segmentation

Figure 7 — Visualization comparisons between SINE and SegGPT on video and image tasks. For video
task, SINE can effectively alleviate the tracking failure issues caused by crossing, perspective changes,
occlusion, etc. In real-world image segmentation, SINE has a stronger category generalization capability
compared to SegGPT and can effectively alleviate the ambiguity problem.

reference GT predicti GT prediction reference GT prediction

Figure 8 — Visualization of example-based semantic segmentation.
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reference predictions

Figure 9 — Visualization of example-based instance segmentation.

Figure 10 — Visualization of video object segmentation.
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a) ADE20K Semantic Segmentation

(b) COCO Panoptic Segmentatlon

Figure 11 — Visualization of semantic segmentation on ADE20K, and panoptic segmentation on COCO.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: In the abstract and the end of the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the limitation part of the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The dataset, model, and training procedures are clearly described in this paper
and we will release our code upon acceptance.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: Our work is based on the open-source code. The dataset, model, and training
procedures are clearly described in this paper and we will release our code upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly described the training and evaluation details in the experiments
setting section and in the implementation details of the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because it would be too computationally expensive
and we do not have enough computer sources.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the implementation details of the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In the discussions of the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the things in this paper are credited and are the license and terms of use
explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We do not release new assets now.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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