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Abstract—While event-based sampling allows the use of sam-
pling circuits of higher precision and lower power consumption,
it faces the difficult problem of signal reconstruction from gener-
alized nonuniform samples. An ideal solution to this problem is
to perform the pseudo-inversion of the linear operator that maps
the input signals into the sequences of samples. We show in this
article that this is possible with all time-encoding schemes based
on input integration, using the method of projection onto convex
sets (POCS). This includes multi-channel time encoding.

I. INTRODUCTION

A method of event-based sampling that is currently attract-
ing particular attention is the time encoding of integrals of a
bandlimited input x(t). This consists in detecting the instants
(tk)k∈Z at which a certain integral function of x(t) reaches a
given threshold (Z is assumed to be an index set of consecutive
integers, finite or infinite). Based on this, one is able to extract
from x(t) integral values of the type

sk :=

∫ tk

tk−1

x(t)fk(t)dt, k ∈ Z (1)

where fk(t) is some known function that may depend on
k. This applies to asynchronous Sigma-Delta modulation
(ASDM) [1], [2] where fk(t) = 1, and leaky integrate-and-fire
encoding (LIF) [3], [4] where fk(t) = eα(tk−1−t) with α ≥ 0.
The problem is to recover x(t) from (sk)k∈Z that we view as
generalized samples of x(t). For the given instants (tk)k∈Z,
(sk)k∈Z can be presented as the transformation of x(t) by the
linear operator

S : B → RZ

x 7→ (sk)k∈Z
(2)

where B designates the considered space of bandlimited sig-
nals. To encompass all situations of data acquisition, including
uniqueness of reconstruction, incomplete sampling and noisy
sampling, the ultimate solution of reconstruction is to find the
transformation of (sk)k∈Z by the pseudo-inverse of S.

As the functions of B can be equivalently described as
discrete-time signals, a basic engineering approach is to view
S as a matrix, for which pseudo-inversion is performed mostly
by algebraic manipulations [5]. However, even though Z is
always finite in practice, it is typically of prohibitive size for
algebraic inversions. The scope of this article is to consider
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numerical methods that perform the pseudo-inversion of S
in the generalized sense of linear operators. The numerical
methods considered until now for the present problem have
been mainly proposed in [1], [3] but have been limited to
sampling conditions guaranteeing S to be exactly invertible
(while not being necessary conditions for invertibility). The
method of projection onto convex sets (POCS) was more
recently considered in [6], [7] as an alternative technique
of reconstruction for the same encoding schemes. While
consisting of an iteration of similar structure, its limit was
shown to systematically reach the pseudo-inverse of S applied
to (sk)k∈Z. The connection between the POCS method and
the pseudo-inversion of a linear operator was first made in [8]
in the finite-dimensional and simpler version of Kaczmarz’s
algorithm. The goal of this article is to extend the potential
pseudo-inversion action of the POCS method to the most
general sampling scheme possible.

The basic property that was utilized in [6], [7] is that the
samples (sk)k∈Z of (1) are of the form

sk := 〈x, gk〉, k ∈ Z (3)

where 〈·, ·〉 denotes the canonical inner product of L2(R) and
(gk(t))k∈Z are orthogonal in L2(R). Indeed, these functions
are respectively supported by the intervals ([tk−1, tk))k∈Z,
which are non-overlapping. For the sake of finding the ultimate
generalizations, we revisit the techniques of [6], [7] under
the most abstract conditions of sampling. This includes the
assumption that x belongs to some general Hilbert space A that
is not necessarily separable, while (gk)k∈Z is orthogonal in a
larger Hilbert space H ⊃ A. We show the fundamental mecha-
nisms in the POCS method that lead to the pseudo-inversion of
the resulting sampling operator. As applications, we show how
the POCS iteration can be rigorously discretized even when
A does not have a countable basis (non-separable case), and
show how the elaborate multi-channel time encoding scheme
introduced in [9], [10] fits perfectly in this framework.

II. PSEUDO-INVERSE OF SAMPLING OPERATOR

A. Abstract problem setting

We state the exact conditions under which we study the
sampling problem:
• All continuous-time signals belong to a general Hilbert

space (H, 〈·, ·〉) (that is not necessarily separable).



• The input x to be sampled belongs to a closed linear
subspace A ⊂ H.

• The kernel sampling functions form an orthogonal family
(gk)k∈Z of H.

The goal is to estimate x from the samples (sk)k∈Z of (3).

B. Normalized sampling operator

For proper analysis, it is always possible to work with an
orthonormal version of (gk)k∈Z. Indeed, (3) is equivalent to

xk = 〈x, hk〉, k ∈ Z (4)

with hk := gk/‖gk‖ and xk := sk/‖gk‖

where ‖ · ‖ is the norm induced by 〈·, ·〉. In this setting, the
sampling operator to invert takes the form

S : A → `2(Z)
x 7→

(
〈x, hk〉

)
k∈Z.

(5)

As opposed to (2), note here that the destination space of S
is more specifically the space `2(Z) of square-summable se-
quences (xk)k∈Z. By orthonormality of (hk)k∈Z and Bessel’s
inequality, not only do we have the guarantee that Sx ∈ `2(Z),
but we also have ‖Sx‖2 ≤ ‖x‖ where ‖ · ‖2 is the canonical
norm of `2(Z).

C. Pseudo-inverse S†

As mentioned in the introduction, the approach of this
paper is to estimate x from (4) by attempting an inversion of
the operator S. Specifically, we consider the Moore-Penrose
pseudo-inverse S† of S [11, §6.11]. Assuming that S has
closed range, S† is defined by

∀x ∈ `2(Z), S†x := argmin
u∈Mx

‖u‖ (6)

where Mx :=
{
u ∈ A : ‖Su− x‖2 is minimized

}
. (7)

The closed range assumption for S is necessary for Mx to
be defined. In this case, Mx is then a closed affine subspace
and hence yields a unique minimum-norm element S†x. This
assumption is satisfied by default when Z is finite, as is always
the case in practice. When Z is infinite, S has closed range if
and only if there exists α > 0 such that α‖u‖ ≤ ‖Su‖ for all
u ∈ null(S)⊥, where null(S) is the null space of S [12, §2].

III. PSEUDO-INVERSION BY MEANS OF ORTHOGONAL
PROJECTIONS

A. Orthogonal projection onto closed affine subspace

As a closed affine subspace, Mx yields an orthogonal
projection. For any closed affine subspace S, the orthogonal
projection of u ∈ H onto S is the unique element PSu of S

such that PSu−u is orthogonal to PSu−v for all v ∈ S. By the
Pythagorean theorem, one obtains that ‖PSu− v‖ < ‖u− v‖
for any v ∈ S and u /∈ S. One simultaneously concludes that
PSu is the unique element of S that minimizes the distance
‖PSu− u‖. As a result,

∀x ∈ `2(Z), S†x = PMx0. (8)

B. Case A = H

This is a trivial case which may not be realized in practice
but is pedagogical to start with. Due to the orthonormality of
(hk)k∈Z, we have the implications

u =
∑
k∈Z

xk hk ⇒ ∀k ∈ Z, 〈u, hk〉 = xk ⇒ Su = x. (9)

As a result, the minimum value of ‖Su−x‖2 in the description
of Mx is 0 since there exists u ∈ A = H such that Su = x.
Therefore,

Mx = Cx

where

Cx :=
{
u ∈ H : Su = x

}
(10)

=
{
u ∈ H : ∀k ∈ Z, 〈u, hk〉 = xk

}
.

Based on this description and the orthonormality of (hk)k∈Z,
one easily finds that

∀u ∈ H, PCxu = u+
∑
k∈Z

(
xk − 〈u, hk〉

)
hk. (11)

Hence,

∀x ∈ `2(Z), S†x = PCx0 =
∑
k∈Z

xkhk = S∗x (12)

where S∗ is the adjoint operator of S (see [13, §3.1] with
U = S∗ and hence U∗ = S).

C. Case A  H and x ∈ ran(S)

This is for example the case assumed in the introduction
where A is a space of bandlimited signals and H = L2(R).
The condition that x belongs to ran(S), the range of S, is
satisfied by default from (4). The importance of this condition
is in the following equivalence

x ∈ ran(S) ⇔ A ∩ Cx 6= ∅. (13)

When this is realized, the minimal value of ‖Su − x‖2 with
u ∈ A in the description of (7) is then 0, which is achieved if
and only if u ∈ A ∩ Cx. This implies that

Mx = A ∩ Cx.

It then follows from (8) that

S†x = PA∩Cx0.

The projection PA∩Cx is unfortunately not explicitly acces-
sible. However, it is known from the POCS method that the
iteration of

u(n+1) = PAPCxu
(n), n ≥ 0 (14)

converges to PA∩Cxu
(0). Then, by choosing u(0) = 0, u(n)

tends to
u(∞) = S†x. (15)

From the explanations of Section III-A with v = x, a
supplementary attractive property is that ‖u(n)− x‖ strictly
decreases with n as long as u(n) /∈ A∩Cx. In other words, each
iteration of (14) contributes to estimate improvements, unless



convergence has already occurred. This time, the composed
projection PAPCx has an easy derivation. After noticing from
(14) that u(n) remains in A (including n = 0 since we choose
u(0) = 0), it is clear from (11) and (14) that

u(n+1) = u(n) +
∑
k∈Z

(
xk − 〈u(n), hk〉

)
h̃k, n ≥ 0 (16)

where
h̃k := PAhk,

D. Linear operator approach

Given that (16) is known to converge, there is another way to
see that u(n) should tend to S†x. This consists in expressing
(16) in terms of S and its adjoint S∗. A slight difficulty to
express S∗ is that the vectors (hk)k∈Z in (5) are not in the
domain A of S. This can be fixed by noting that

∀x ∈ A, 〈x, hk〉 = 〈x, h̃k〉 (17)

since h̃k− hk is orthogonal to A. Then, S and S∗ can be
presented as

S : A → `2(Z)

x 7→
(
〈x, h̃k〉

)
k∈Z

and S∗ : `2(Z) → A

(xk)k∈Z 7→
∑
k∈Z

xk h̃k

.

(18)
One then easily rewrites (16) as

u(n+1) = u(n) + S∗(x− Su(n)), n ≥ 0 (19)

where x := (xk)k∈Z. At the limit of n towards ∞, one then
finds that

S∗Su(∞) = S∗x. (20)

If S∗S is invertible, then

u(∞) = (S∗S)−1S∗x (21)

It is known that
S† = (S∗S)−1S∗ (22)

whenever S∗S is invertible [11, §6.11]. Thus, (21) leads to
(15) in this case. In fact, both (21) and (22) remain true in all
cases, provided that the inverse (S∗S)−1 is performed on the
restriction of S∗S to ran(S∗). This is justified in Appendix
A.

E. General case A  H

The result of (21) was in fact only based on the assumption
that the iteration of (19) is convergent. Until now, we have
this convergence from Section III-C when x ∈ ran(S). When
x /∈ ran(S), A ∩ Cx becomes empty according to (13), and
the convergence of (19) can no longer be justified based on
the arguments of Section III-C. We show in the present section
that the convergence is still guaranteed when x /∈ ran(S). This
is of particular interest in practice as the samples of (4) are
more generally of the form

xk := 〈x, hk〉+ εk, k ∈ Z

where (εk)k∈Z is some sequence of errors due to noise.
This may prevent x = (xk)k∈Z from remaining in ran(S).

However, let x̄ be the orthogonal projection of x onto ran(S)
in the sense of the inner product of `2(Z). By construction

x̄− x ∈ ran(S)⊥ = null(S∗)

where null(S∗) designates the null space of S∗ and the identity
is a standard result of bounded operators in Hilbert spaces [11,
§6.6]. As a result,

S∗x = S∗x̄.

Thus, (19) can be equivalently written with x̄ in place of x.
This alone proves that (19) is convergent. Hence, (15) remains
valid. But we propose here to prove (15) directly from the
definition of S† in (6) without the knowledge of (22).

Proposition 3.1: The iteration of (19) starting from u(0) = 0
converges to u(∞) = S†x for any given x ∈ `2(Z).

Proof: Replacing x by x̄ ∈ ran(S) in (19), we know from
Section III-C and (8) that u(n) tends to u(∞) = S†x̄ = PMx̄0.
For any u ∈ A, Su−x̄ is in ran(S) and is therefore orthogonal
to x̄ − x. Then, by the Pythagorean theorem, ‖Su − x̄‖22 +
‖x̄ − x‖22 = ‖Su − x‖22, which implies that ‖Su − x̄‖2 is
then minimized in terms of u ∈ A if and only if ‖Su − x‖2
is minimized. This proves that Mx̄ = Mx. Hence, u(∞) =
PMx0 = S†x.

IV. DISCRETE-TIME IMPLEMENTATION OF ITERATION

A. General derivation

We show that (19) can be implemented by means of
discrete-time iteration even when A does not have a countable
basis (case of non-separable space). As noted in Section III-D
and seen in (19), u(n) remains in the range of S∗ with the
initial iterate u(0) = 0. So, for any n ≥ 0, we have

u(n) = S∗c(n) (23)

for some c(n) ∈ `2(Z). Then (19) is equivalent to

u(n+1) = S∗c(n) + S∗
(
x− SS∗c(n)

)
and hence to

S∗c(n+1) = S∗
(
c(n) − SS∗c(n) + x

)
. (24)

This relation is guaranteed by recursively constructing c(n) as

c(n+1) = c(n) − SS∗c(n) + x. (25)

Starting from u(0) = 0, suppose that u(m) is the targeted
estimate. Instead of iterating (19) m times, one can then
alternatively iterate (25) m times starting from c(0) = 0, and
apply (23) only once at n = m. The outstanding advantage of
this procedure is that (25) is a pure discrete-time operation as
c(n) ∈ `2(Z). In it, SS∗ is a linear operator of `2(Z) and can
be presented as the square matrix of coefficients

SS∗ =
[
〈h̃k′ , hk〉

]
(k,k′)∈Z2

where 〈h̃k′ , hk〉 =
〈g̃k′ , gk〉
‖gk′‖‖gk‖

.

In practice, the values of ‖gk‖ and 〈g̃k′ , gk〉 are to be prede-
termined before the iteration.



B. Application
For illustration, we give the values of ‖gk‖ and 〈g̃k′ , gk〉

that were derived in [7] in the case of LIF. We recall from the
introduction that, in this case, gk(t) is equal to eα(tk−1−t) in
[tk−1, tk) and 0 outside. Assuming bandlimited functions of
Nyquist period 1 and defining Tk′,k := tk′− tk, it was found
that

‖gk‖2 = 1
2α

(
1− e−2αTk,k−1

)
〈g̃k′ , gk〉 = e−αTk,k−1

(
f(Tk′,k−1)− e−αTk′,k′−1f(Tk′−1,k−1)

)
−
(
f(Tk′,k)− e−αTk′,k′−1f(Tk′−1,k)

)
(26)

where f(t) := 1
α

t∫
0

sinh(α(t−s)) sin(πs)/(πs) ds.

The values of f(t) can be precalculated at a high enough dis-
crete resolution of t, and stored in a lookup table. Then ‖gk‖,
‖gk′‖ and 〈g̃k′ , gk〉 are just functions of tk, tk−1, tk′ , tk′−1.
The case of ASDM was derived in [6] and is simply obtained
here by taking the limit of α towards 0.

V. APPLICATION TO MULTI-CHANNEL
INTEGRATION-BASED TIME ENCODING

To illustrate the power of our general constructions, we
apply it in this section on the elaborate multi-channel time
encoding system introduced in [9] and represented in Fig. 1.

A. Problem description and resolution
We present the problem of [9] with some adaptation to be

aligned with our formalism. The input that is time-encoded is
an M -channel signal

x(t) =
(
xi(t)

)
1≤i≤M = (x1(t), · · ·, xM (t)), t ∈ R.

For each i = 1, · · ·,M , xi(t) is fed into an ASDM which
outputs a sequence of impulses at instants (tij)j∈Zi . The
integral values

si,j :=

∫ tij

tij−1

xi(t) dt, j ∈ Zi (27)

can then extracted from these instants using the ASDM
encoding equations presented in [1]. It is assumed that x(t)
is of the form

x(t) = Ay(t)

where A is a full rank M×N matrix with N ≤ M ,
y(t) = (y1(t), · · ·, yN (t)) ∈ BN and B is a space of
bandlimited signals. The problem of [9] is to reconstruct
x(t) from the sample values (si,j)(i,j)∈Z with Z := {(i, j) :
1 ≤ i ≤ M and j ∈ Zi}, provided a sufficiently high
density of samples. Starting from u(0)(t) = 0, this is achieved
numerically in [9] by iterating

u(n+1)(t) = P3P2P1u
(n)(t), n ≥ 0 (28)

where for any u(t) =
(
u1(t), · · ·, uM (t)

)
∈ (L2(R))M ,

P1u(t) :=
(
ui(t) +

∑
j∈Zi

si,j − 〈ui, gij〉
tij − tij−1

gij(t)
)
1≤i≤M

,

P2u(t) := AA+u(t), P3u(t) :=
(
PBu

i(t)
)
1≤i≤M ,

x1(t) ASDM

x2(t)

x3(t)

xM (t)

(t1j )j∈Z1

(t2j )j∈Z2

(t3j )j∈Z3

(tMj )j∈ZM

y1(t)

y2(t)

yM (t)

a1,1

a2,1
a
3,1

a
M

,1

ASDM

ASDM

ASDM

Fig. 1. Multi-channel time-encoding system from [9], [10].

gij(t) is the indicator function of the time interval [tij−1, t
i
j),

〈·, ·〉 is the inner product of L2(R), and A+ = (A>A)−1A>

is the matrix pseudo-inverse of A.

B. Formalization

To bring this problem back to our framework, the above
descriptions can be formalized as follows. In the Hilbert space
H := (L2(R))M , the input x(t) belongs to the subspace

A :=
{
u(t) ∈ BM : ∀t ∈ R, u(t) ∈ ran(A)

}
.

The inner product of H is naturally defined by〈
u(t),v(t)

〉
:=
∑M
i=1

〈
ui(t), vi(t)

〉
, u,v ∈ H

where 〈·, ·〉 in the right hand side is the inner product of L2(R).
As si,j from (27) is equal to 〈xi(t), gij(t)〉, it can be presented
as

si,j =
〈
x(t), gij(t)e

i
〉

where ei is the ith coordinate vector of RM . By normalization,
this is equivalent to

xi,j =
〈
x(t),hi,j(t)

〉
with hi,j(t) := gij(t)e

i/‖gij‖ and xi,j := si,j/‖gij‖.

The family (hi,j)(i,j)∈Z is easily seen to be orthonormal in H.
The POCS method resulting from Section III-C then consists
in iterating

u(n+1)(t) = PAPCxu
(n)(t), n ≥ 0 (29)

where Cx :=
{
u ∈ H : ∀(i, j) ∈ Z, 〈u,hi,j〉 = xi,j

}
.

It can be verified that the two iterations of (28) and (29) are
the same. More specifically, P3P2 = PA and P1 = PCx .

C. Convergence of POCS method

We thus know that, regardless of the sampling condition,
u(n)(t) from (28) tends to S†(xi,j)(i,j)∈Z where S is the
operator

S : A → `2(Z)
x 7→

(
〈x,hi,j〉

)
(i,j)∈Z.

Beyond the condition of perfect reconstruction in [9], [10], this
convergence includes the situations of insufficient sampling
and/or sampling with noise.



D. Discrete-time implementation of iteration

Another consequence is the reduction of (28) to the discrete-
time iteration of (25). In it, the operator SS∗ is the matrix of
coefficients 〈h̃i′,j′ ,hi,j〉, where h̃i′,j′ := PAhi′,j′ . It can be
shown that

〈h̃i′,j′ ,hi,j〉 =
〈g̃i′j′ , gij〉
‖gi′j′‖‖gij‖

pii′

where g̃i
′

j′ = PBg
i′

j′ and (pii′)i,i′ are the entries of the matrix
P = AA+. While ‖gij‖2 = tij− tij−1, 〈g̃i′j′ , gij〉 can be derived
in a way similar to (26) with α = 0, which gives〈
g̃i
′

j′ , g
i
j

〉
= f(T i

′,i
j′,j−1)− f(T

i′,i
j′−1,j−1)− f(T

i′,i
j′,j) + f(T i

′,i
j′−1,j)

where T i
′,i
j′,j := ti

′

j′ − tij and f(t) :=
t∫
0

(t−s) sin(πs)/(πs) ds.

VI. CONCLUSION

In the most general form of sampling, uniform or not,
the samples of an input can be viewed as its inner prod-
ucts with known kernel functions. So, globally, they are the
transformation of the input by a known linear operator S. An
ultimate solution to signal reconstruction is then to find the
pseudo-inverse of S applied to the samples, as this covers
all encoding situations, including perfect reconstruction, in-
sufficient sampling and/or noisy sampling. Given the signal
processing context of virtually infinite inputs, pseudo-inversion
cannot be performed algebraically and is accessible only by
numerical methods. The present article shows that this pseudo-
inversion is systematically achievable by the method of POCS
whenever the sampling kernel functions are orthogonal in
a Hilbert space that may be larger than that of the input.
This covers for example the currently trendy time encoding
of bandlimited signals based on integration, including multi-
channel encoding. But the abstract assumptions made in this
paper gives the most general framework where this action of
the POCS method remains operational, for the exploration
of future sampling schemes. Besides covering all sampling
situations, the POCS iteration has an intrinsic and rigorous
discrete-time implementation, solely based on the sampling
nature of the encoding. This does not involve any pre-existing
discrete expansion of the continuous-time input signals, such
as the Shannon sampling expansion of bandlimited signals for
example, and thus allows input spaces with no countable bases
(case of non-separable Hilbert spaces).

APPENDIX

A. Explicit expression of S†

The goal of this appendix is to justify the general validity
of (21) and (22) when S∗S in these expressions is restricted to
ran(S∗) before inversion. The invertibility of this restriction
simply follows from the bijectivity of S between ran(S∗)
and ran(S), which implies by similarity the bijectivity of S∗

between ran(S) and ran(S∗). The former result is based on
the following properties: (i) ran(S∗) is closed since ran(S)
is assumed to be closed (see Lemma 2.5.2 of [13]); (ii) the

closure of ran(S∗) is equal to null(S)⊥ (see Theorem 3 of
[11, §6.6]); (iii) S is a bijection between null(S)⊥ and ran(S)
(see the proof of Lemma 2.5.1 in [13]). In this circumstance,
(22) follows from the known result that ran(S†) = null(S)⊥

(see (2.10) in [13]), which is equal to ran(S∗). Finally,
u(∞) ∈ ran(S∗) as u(n) can be seen from (16) to remain in
ran(S∗) given that u(0) = 0. This justifies (21).
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