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ABSTRACT

Existing Transformer-based models effectively capture multivariate dependencies,
while pre-trained large models achieve strong generalization but are often confined
to single-object or single-physics settings. Spatial-temporal approaches leverage
graph structures but fall short in modeling heterogeneous entities with diverse
inter-variable interactions, and they often lack mechanisms to enforce physical
consistency. To address these challenges, we propose the Heterogeneous Graph
Temporal Fusion Transformer (HGTFT), a pre-training and fine-tuning framework
tailored for spatially and temporally structured physical environments. HGTFT to-
kenizes observation points and generates embeddings that capture both temporal
patterns and spatial correlations, enabling the integration of heterogeneous static
and dynamic information. We further introduce optimized normalization and
physics-informed loss functions that enhance predictive accuracy while improv-
ing physical plausibility. Applied to temperature, flow, and energy-related datasets
in building environments, our approach demonstrates strong zero-shot generaliza-
tion and achieves substantial accuracy gains through few-shot fine-tuning with
domain-specific data.

1 INTRODUCTION

Energy is a key factor in the development of AI, while energy systems are typical multiphysics
systems involving coupled thermal, fluid, and electrical processes. More generally, multi-domain
physical systems such as power grids and building operations, where heterogeneous entities interact
across multiple physical fields. Accurate forecasting in such systems is critical for efficiency, safety,
and sustainability, yet remains challenging due to diverse data modalities, structural dependencies,
and domain-specific physical mechanisms. Existing approaches fall into four categories.

Physics-prioritized/analytical methods: These use known governing equations and boundary
conditions directly. They provide strong interpretability but often struggle with complex domain
coupling or computational cost in high-dimensional/irregular settings.

Physics-guided neural solvers: Physics-Informed Neural Networks (PINNs), e.g., DeepXDE Lu
et al. (2021) and Neuromancer Drgona et al. (2023), embed PDE residuals, boundary conditions, or
conservation laws into neural networks for strong physical consistency. Yet they incur high deriva-
tive costs and are limited to continuous field simulations, not heterogeneous multi-entity systems.

Purely data-driven methods: Time-series models, e.g., LSTM and LTMs (Dong et al. (2024), Liu
et al. (2024c)), capture general temporal patterns but lack physical grounding, making extrapolation
or safety-critical predictions unreliable. LLM-based time-series methods (Zhou et al. (2023), Liu
et al. (2024b)) inherit this limitation, as tokenization treats inputs as numerical patches or sequences,
ignoring spatial structure, static context, and multi-entity physical dependencies.

Data-driven methods with physical constraints: These approaches are primarily data-driven,
leveraging network architectures to encode heterogeneous information while incorporating physics
through appropriate loss functions and training pipelines. By doing so, physical consistency can
be learned and enforced within the model. We propose the Heterogeneous Graph Temporal Fu-
sion Transformer (HGTFT), a framework that integrates heterogeneous spatial-temporal informa-
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tion while maintaining consistency with underlying physical constraints. In HGTFT, each token
represents a node’s state at a time step, embedding both dynamic and static attributes. The en-
coder captures temporal dynamics and heterogeneous spatial relations, while the decoder adapts
these representations to task-specific forecasting. A tailored training pipeline incorporating domain-
informed loss functions and improved normalization enhances predictive accuracy without com-
promising physical validity. Our contributions are threefold: (1) We define heterogeneous graph
forecasting in multi-domain physical systems, covering a wide range of real-world infrastructures.
(2) We introduce HGTFT with tailored tokenization and embedding strategies that fully leverage
graph structures, static attributes, and dynamic features. (3) We develop a physics-informed training
pipeline with improved normalization, enabling HGTFT to achieve higher accuracy and stronger
consistency with domain physics across benchmarks.

2 RELATED WORK

Transformer for Time Series Forecasting. The Transformer model Vaswani et al. (2017) has rev-
olutionized time series forecasting via attention. Extensions like Informer Zhou et al. (2021) use
probabilistic sparse attention, while Frozen Pretrained Transformer Zhou et al. (2023) adapts pre-
trained models from other domains, linking self-attention with principal component analysis. For
multivariate forecasting, Crossformer Zhang & Yan (2023) implements a two-stage attention mech-
anism for temporal and cross-dimensional dependencies, and Temporal Fusion Transformer (TFT)
Lim et al. (2021) provides interpretable mixed-input forecasting. Recent approaches like Time-
Siam Dong et al. (2024) and Timer Liu et al. (2024c) use unlabeled data for representation learning.
Unified training paradigms Woo et al. (2024) allow single models to handle multiple tasks, while
decoder-only models Das et al. (2023) enhance prediction efficiency. These efforts demonstrate the
potential of pre-training to improve generalization and accuracy in time series forecasting.

Spatial-Temporal Forecasting. Graph Neural Networks (GNNs) have made strides in graph-based
learning through structural and positional encoding. Approaches like LSPE Ying et al. (2021) and
NodeFormer Wu et al. (2022) address scalability, while LETR Xu et al. (2021) and Molecule Atten-
tion Transformer Maziarka et al. (2020) apply Transformers to specialized tasks. For heterogeneous
graphs, HDGT Jia et al. (2023) and HAN Wang et al. (2019) use hierarchical attention to capture
diverse node and edge types. In spatiotemporal forecasting, Spacetimeformer Grigsby et al. (2021)
and heuristic graphs Shao et al. (2022) model complex temporal-spatial sequences, while Graph
Neural ODEs Poli et al. (2019) incorporate differential equations for capturing dynamic temporal
dependencies. Models like STSGCN Song et al. (2020) and STSGT Banerjee et al. (2022) combine
GCNs and Transformers to model synchronous spatial-temporal dependencies, applied to traffic and
pandemic forecasting. Architectures such as HGT Hu et al. (2020) and PromptST Zhang et al. (2023)
leverage pretraining and adaptive tuning for heterogeneous, multi-attribute graph predictions. Simi-
larly, UniST Yuan et al. (2024) employs prompt-based learning and extensive pre-training to enhance
generalization in urban spatio-temporal prediction.

Large Language Models for Time Series. Large Language Models (LLMs) have been adapted for
time series tasks, particularly in few-shot and zero-shot settings. TimeGPT-1 Garza et al. (2023)
reprograms LLMs for time series prediction by aligning embeddings with time-domain features,
while Gruver Gruver et al. (2024) demonstrates zero-shot forecasting without fine-tuning. LLM4TS
Chang et al. (2024) and TIME-LLM Jin et al. (2023) optimize LLMs for time series, improving
adaptability to specialized datasets and temporal patterns. TimeCMA Liu et al. (2024a) introduces
cross-modality alignment to enhance temporal understanding, and TimeChat Ren et al. (2024) ex-
pands this to multimodal contexts, integrating temporal information for applications like video un-
derstanding. These studies highlight LLMs’ potential as general-purpose forecasters, though chal-
lenges in temporal representation, data efficiency, and interpretability remain.

3 PROBLEM DEFINITION

General Spatial-Temporal Forecasting Problem. Spatial-temporal forecasting problems, such
as those involving traffic networks, the COVID-19 pandemic, or power grids Guo et al. (2019);
Banerjee et al. (2022); Liu et al. (2023b), can typically be formulated using a spatial network G =
(V,E,A), where V is the set of node vertices, E represents the set of edges, and A is the adjacency
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Figure 1: Architecture of the proposed HGTFT. The Fusion Layer converts heterogeneous data into
unified-dimensional vectors, with colored bars indicating different object types. The Temporal Layer
depicts processing for a single object, shared across all objects. The Graph Layer shows processing
at one time point, replicated across all time steps.

matrix describing relationships between nodes. The goal is often to predict future observations for
a single node type with a single relationship type. Each node entity vi in the graph is associated
with a graph signal matrix X(t)G ∈ RN×F , where F is the number of features per node, and t
denotes the time step. X(t)G captures the spatial network observations at time t, with each entry
Xi,t representing the feature vector of node vi at time t. The task is to predict future spatial-temporal
data by learning a mapping function F that maps historical series {X(t−Tpast +1)G, . . . , X(t)G}
to future observations {X(t + 1)G, . . . , X(t + Tfuture)G}, where Tpast is the length of historical
data and Tfuture is the forecast horizon.

Extension to Heterogeneous Graph Forecasting in Multi-Domain Physical Systems. In contrast,
our problem involves a more complex heterogeneous graph comprising multiple node types and
relationships. Each node vi is characterized by static attributes si and time-variant features, which
are further grouped into: 1) variables known for both past and future xi, 2) variables known only for
the past zi, and 3) the prediction variable yi. The problem can be formulated as:

ŷi,t+1:t+Tfuture
= F(si, xi,t−Tpast+1:t+Tfuture

, zi,t−Tpast+1:t, yi,t−Tpast+1:t, N(vi)), (1)

N(vi) =
⋃
rl∈R

Nl(vi), (2)

where ŷi,t+1:t+Tfuture
denotes the predicted target sequence for node vi over the future horizon

[t + 1, . . . , t + Tfuture], and F is the learned forecasting function. N(vi) aggregates neighborhood
information for node vi across relation types rl.

This extension is significant due to its ability to model complex multiphysics systems with diverse
node types, features, and interrelationships, prevalent in real-world applications such as nuclear re-
actors, aerospace vehicles, biomedical devices, combined heat and power systems, and smart build-
ings. These systems necessitate advanced forecasting models capable of capturing intricate inter-
dependencies and dynamic interactions across different physical domains. For illustrative examples
and a discussion on the necessity of sophisticated modeling approaches, refer to Appendix A.

4 MODEL ARCHITECTURE

The proposed HGTFT model, outlined in Figure 1, is designed for the previously defined problem
by aggregating multi-dimensional data across static and dynamic node features within a heteroge-
neous graph structure. Features are aligned into unified embeddings per entity and time point, and
these embeddings pass through neural layers that aggregate information across temporal and graph
dimensions, resulting in fixed-dimension representations. The representations are then forwarded to
task-specific model layer for dimension transformation tailored to each task.

Fusion Layer. Each node vi is associated with static covariates si and time-varying features: future-
known variables xi,t, past-only variables zi,t, and target variable yi,t. We first map all available
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inputs into a shared d-dimensional latent space and fuse them using a Variable Selection Network
(VSN) inspired by TFT Lim et al. (2021). This produces a time-dependent node representation:

hnodei,t = VSN
(
Proj(si), Proj(xi,t), Proj(zi,t), Proj(yi,t)

)
, (3)

where Proj(·) denotes a linear transformation that maps each input variable to a fixed-dimensional
vector, ensuring compatibility with subsequent layers.

Temporal Layer. To capture temporal dependencies, we employ a unified Transformer-based archi-
tecture for all temporal processing layers. Specifically, we apply Transformer encoder layer to the
historical node representations across time:

htemp
i,t = Transformer

(
{hnodei,t−Tpast+1, . . . , h

node
i,t }

)
t
, (4)

where the output htemp
i,t denotes the temporally encoded representation of node vi at time step t. To

effectively capture temporal dependencies, Transformer-based temporal layers are positioned both
between the fusion and graph layers, and following the graph layer. This design enables the model
to capture temporal dependencies in the node representations before and after relational aggregation,
facilitating deeper modeling of time-evolving dynamics across heterogeneous entities.

Graph Layer. We adopt a two-stage relation-aware aggregation strategy tailored for heterogeneous
physical graphs. In the first stage, neighbors of the same relation type are aggregated to capture the
overall influence of each relation group, avoiding unnecessary complexity in modeling individual
interactions. In the second stage, a multi-head graph attention mechanism (GAT) flexibly integrates
these relation-specific embeddings, assigning adaptive importance to different relation types for each
node. Instead of grouping neighbors merely by node type, we explicitly distinguish edge relations
and assign separate parameters per relation. This design balances simplicity and expressiveness:
it sufficiently models intra-relation effects while enabling fine-grained, context-aware weighting
across relations, avoiding semantic entanglement and excessive parameterization typical of more
complex HGNN methods, making it particularly suited for multiphysics systems. At each time step
t, the system is modeled as a heterogeneous graph Gt = (V,E,R), where each node aggregates
information from its multi-relational neighbors. For each relation type rℓ ∈ R, we first compute:

haggi,ℓ (t) =
1

|Nℓ(vi)|
∑

vj∈Nℓ(vi)

BiLSTMℓ(h
temp
j,t ), (5)

αkℓ = softmax
(
LeakyReLU

(
ak⊤[W khtemp

i,t ∥W khaggi,ℓ (t)]
))

, (6)

hgraphi,t =
1

K

K∑
k=1

L∑
ℓ=1

αkℓW
khaggi,ℓ (t), (7)

whereK is the number of attention heads and L = |R| is the number of relation types. W k ∈ Rd′×d
is the learnable projection matrix for the k-th head, and ak ∈ R2d′ is the shared attention vector
for computing attention scores. This enables the model to selectively aggregate information from
heterogeneous neighbor types in a multi-head attention manner.

Subtask Model Layer. To support diverse downstream forecasting objectives across heterogeneous
entities, we adopt a modular subtask modeling framework. Each subtask shares a unified decoder
architecture that transforms encoded representations into future predictions, as illustrated in Figure 9
in Appendix F.1.

The decoder leverages a masked multi-head attention (MHA) mechanism to align the encoded inputs
{hi,t}t+Tfuture

t=t−Tpast+1 with their respective future time steps. The output is then passed through a task-

specific dense projection to generate the predicted dynamics {ŷi,t′}t+Tfuture

t′=t+1 :

{ŷi,t′}t+Tfuture

t′=t+1 = Dense(MHA({hi,t}t+Tfuture

t=t−Tpast+1)). (8)

To ensure stable information flow and consistent representation, the decoder incorporates Gated
Residual Networks (GRNs), gating mechanisms, and Add & Norm layers.

The HGTFT framework has been validated for convergence on a simplified example in Ap-
pendix A.1.

4
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5 MODEL TRAINING METHODOLOGY

To forecast spatio-temporal dynamics in multi-domain physical systems, we design a progressive
HGTFT training pipeline that integrates heterogeneous graph structure, temporal dynamics, and
physical constraints. Key components such as multi-instance normalization and physics-informed
loss terms ensure stable training and enforce physical consistency, while sequential stages of self-
supervised learning, multi-task supervision, and subtask fine-tuning progressively improve general-
ization and task-specific performance.

5.1 MULTI-INSTANCE NORMALIZATION

Normalization is critical for improving model stability, convergence, and generalization. However,
standard methods often fall short in our setting due to large intra-type variability (e.g., cooling loads
significantly differ by room size) resulting in suboptimal gradient updates and biased loss weighting.
To address this, we propose Multi-Instance Normalization. For each variable type j and instance i,
we compute the time-series min and max values, then aggregate these across instances to derive the
Pmin percentile of minima and Pmax percentile of maxima (e.g., 10th and 90th percentiles). These
are used as normalization bounds:

ṽi,j(t) =
vi,j(t)− Pmin({mint vi,j(t)}i)

Pmax({maxt vi,j(t)}i)− Pmin({mint vi,j(t)}i)
. (9)

This method ensures consistent scaling across instances of the same object type, improving learning
dynamics and overall prediction accuracy. Further comparisons are provided in Appendix H.

5.2 SELF-SUPERVISED LEARNING

Training the HGTFT model requires strategies that effectively encode temporal and relational dy-
namics. Self-supervised learning (SSL) offers a scalable approach by utilizing unlabeled spatio-
temporal data via pretext tasks with pseudo-labels. Common tasks such as masked prediction and
contrastive learning have demonstrated success in both graph and time-series domains Rani et al.
(2023); Xie et al. (2022); Zhang et al. (2024). We formulate SSL as the joint optimization of the
foundation model fθ and auxiliary heads pϕ on an unlabeled dataset D1:

(θ∗, ϕ∗) = argmin
θ,ϕ

Lssl(fθ, pϕ, D1), (10)

where Lssl combines two tasks to capture both temporal dependencies and structural relationships.

Masked Time-Series Modeling. Following Zerveas et al. (2021), portions of the input sequence
are masked and reconstructed using Mean Squared Error (MSE) loss.

Masked Edge Modeling. A subset of graph edges is masked, and the model predicts them via
Binary Cross-Entropy (BCE) loss, distinguishing true from randomly sampled negative edges.

To balance the tasks, we use alternating training: the two SSL tasks switch during training, starting
and ending with time-series modeling, emphasizing sequence learning while incorporating physical
relational understanding. Loss formulations and the SSL training pipeline/results are provided in
Appendix E.

5.3 MULTI-TASK SUPERVISED LEARNING

Building on the pre-trained model fθ∗ from SSL, we design a physics-informed multi-task super-
vised learning (MTSL) framework to fine-tune parameters θ∗∗ with task-specific heads qψ:

(θ∗∗, ψ∗) = argmin
θ∗,ψ

LMTSL(fθ∗ , qψ, D2, Y ), (11)

where D2 is the labeled spatio-temporal dataset and Y denotes the task labels. Instead of simul-
taneous MTSL, which scales poorly with task count, we adopt a sequential training strategy that

5
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optimizes tasks one-by-one, reducing memory usage and promoting convergence in imbalanced
multiphysics settings Vandenhende et al. (2021); Yu et al. (2024).

Convergence Criterion. Sequential training is considered converged when the average relative
change in task losses falls below a threshold. Formally, for task i at iteration k:

∆L
(k)
task,i =

|L(k)
task,i − L

(k−1)
task,i |

L
(k−1)
task,i

, ∆L(k)
avg =

1

N

N∑
i=1

∆L
(k)
task,i, (12)

where N is the number of tasks. Convergence is reached when ∆L
(k)
avg falls below a predefined

threshold (e.g., 2%).

Physics-informed Loss Design. To embed physical consistency directly into model training, we
augment the standard MSE loss with three domain-informed components: (1) Reasonableness
Checks Score (RCS) discourages predictions that violate operational constraints or physical laws
Appendix F.4; (2) Correlation-Based Score (CRS) promotes consistency with known correlations
in multivariate time-series data Appendix F.5; (3) Frequency Domain Similarity (FDS) aligns pre-
dicted and actual spectral characteristics Appendix F.6. The total loss for each task is the weighted
sum of the four loss components, with learnable or pre-defined weights. We adopt a hard parameter
sharing scheme with a shared encoder and task-specific decoders, enabling the model to generalize
across tasks while retaining task-specific specialization. The weighting scheme and training settings
for different stages are detailed in Appendix F.7.

5.4 SUBTASK FINE-TUNING

The subtask fine-tuning process consists of two stages: task fine-tuning and project-specific fine-
tuning. Task fine-tuning adapts the pre-trained model to forecasting tasks by freezing shared en-
coder layers and updating only task-specific parameters, enhancing performance and serving as
pre-adaptation. Project-specific fine-tuning adapts the model to real-world scenarios with limited
labels, updating only lightweight components (e.g., dense projection) to align with new data while
retaining general representations from pretraining.

6 EXPERIMENTS

6.1 DATASETS

Standard and Graph-Structured Datasets. Common benchmarks for time-series forecasting
fall into two categories. The first includes standard datasets such as ETT, Weather, and Electric-
ity Haixu et al. (2022), which assess general temporal prediction under purely data-driven assump-
tions. The second includes graph-structured datasets such as PeMSD4, PeMSD8 Chen et al. (2001),
and COVID-19 case data Dong et al. (2020); nyt, where each node has a time series and spatial
dependencies are encoded in graphs. While valuable for studying spatiotemporal correlations, these
datasets do not capture the complexity of multi-domain physical systems considered in this work.

Mult-domain physical System Datasets. Energy and building operations provide a more repre-
sentative scenario for multi-domain physics forecasting. Building systems comprise diverse compo-
nents governed by distinct physical mechanisms: rotational and flow devices (pumps, compressors,
valves), heat exchange units (fan coils, radiators, exchangers), transport infrastructures (pipes, ducts,
tanks), and sensing/control units (thermostats, flow meters, controllers). These interact through
principles of heat transfer, fluid dynamics, thermodynamics, and mass/energy conservation. The
diversity and interdependence of such components make building systems a meaningful and broadly
applicable testbed for multi-domain physical forecasting.

We first include the Building Time-Series (BTS) dataset, recently released at NeurIPS 2024 Prabowo
et al. (2024), which contains over ten thousand time-series variables collected from three real build-
ings over a three-year period, covering hundreds of unique ontologies. While valuable, its scale re-
mains limited for comprehensive pre-training. We release the Multiphysics Building System (MBS)
dataset, which combines real-world and simulated building data. Further details and access to the
dataset via an anonymous link are provided in Appendix B.
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6.2 BASELINES

We compare our approach against a diverse set of baselines, encompassing traditional machine
learning models, graph-based methods, and recent advancements in large pre-trained time-series
models. Traditional models such as LSTM Hochreiter (1997), as well as more recent architec-
tures like Autoformer Wu et al. (2021), forecast each variable independently without incorporating
structural information. TFT Lim et al. (2021) integrates static covariates with dynamic time-series
inputs for multivariate forecasting. HTGNN Fan et al. (2022) and STD-MAE Gao et al. (2023) op-
erate on graph-structured time-series data, with heterogeneous and homogeneous structures, respec-
tively. Recent developments in large pre-trained models have shown significant promise. TimesFM
Das et al. (2023) and MOIRAI Woo et al. (2024) represent general pre-trained time-series models.
LLM-based approaches, including Time-LLM Jin et al. (2023) and LLMTimed Gruver et al. (2024),
leverage large language models for time-series prediction.

6.3 MAIN RESULTS

We first assess HGTFT on graph-structured spatiotemporal datasets, where relational information is
explicit but no physical constraints are provided. This setting evaluates general forecasting ability
against data-driven baselines. As shown in Table 1, HGTFT consistently ranks top-2 on PeMSD4,
PeMSD8, and COVID-19, confirming its strength in capturing structured relationships. In particu-
lar, the COVID-19 dataset exhibits complex, multi-scale dynamics driven by non-stationary inter-
ventions and heterogeneous regional attributes. Unlike more stable traffic datasets, it tests a model’s
ability to capture diverse entities and their interactions, where HGTFT demonstrates clear advan-
tages. For completeness, we also evaluated HGTFT on standard time-series benchmarks (e.g., ETT)
in Appendix G, which are less aligned with the problem studied here.

Table 1: Performance on spatiotemporal datasets. COVID-19 (JHU): daily infection counts from
83 Michigan counties; COVID-19 (NYT): daily death counts from 50 U.S. states. All models are
trained or fine-tuned on 10% of each dataset. Best results are in bold, second best are underlined.

Dataset Metric LSTM Autoformer TFT HTGNN STD-
MAE TimesFM MOIRAI LLMTime Time-

LLM
HGTFT
(Ours)

PeMSD4 MAE 32.48 32.39 31.32 21.01 17.85 32.57 33.31 33.69 32.23 19.94
RMSE 55.51 53.19 48.37 36.44 29.72 55.94 55.51 52.49 52.18 32.16

PeMSD8 MAE 24.98 25.56 24.63 18.22 13.67 23.93 24.03 26.68 27.74 16.43
RMSE 41.71 41.65 39.74 27.04 22.62 42.41 42.49 43.94 40.01 25.08

COVID-19
(JHU)

MAE 122.42 115.77 121.81 46.24 47.75 99.75 105.74 115.37 95.01 41.54
RMSE 232.11 198.67 261.77 102.73 92.62 216.63 234.24 216.74 201.14 94.38

COVID-19
(NYT)

MAE 70.59 62.37 71.36 31.16 26.69 57.07 81.05 72.24 83.17 25.69
RMSE 139.18 133.35 158.93 75.98 72.98 113.45 134.57 157.31 146.45 65.64

We evaluate HGTFT on the open BTS dataset, which includes three anonymized buildings Prabowo
et al. (2024), as a representative multi-domain physical system. Forecasting tasks use the previous 7
days (672 time steps) to predict the next day (96 time steps) at 15-minute intervals, with all metrics
computed on normalized values to account for inter-variable scale differences. We follow three
evaluation settings: (i) pretraining on 50 randomly selected MBS buildings, (ii) pretraining on the
full MBS dataset, and (iii) direct training on 30 days of each BTS building’s data with the remaining
days for evaluation. For the pretrained models, both zero-shot prediction (without BTS building-
specific data) and few-shot adaptation (using 30 days of BTS data) are assessed. Settings (i) and (ii)
leverage the training methodology and physics-informed losses introduced earlier. The experiments
are repeated 10 times with different seeds for pretraining building selection and few-shot sampling,
and results are averaged.

As shown in Table 2, HGTFT achieves strong zero-shot performance, further enhanced by few-
shot adaptation. Even without pretraining and physics-informed losses, it consistently surpasses
all baselines, reducing MSE by up to 38% and RCS by 25% relative to the second-best model.
Physics-informed pretraining yields an order-of-magnitude improvement in RCS, demonstrating its
effectiveness in enforcing physical consistency. Few-shot adaptation substantially lowers MSE,
while keeping RCS only slightly higher yet still well-controlled, striking a balance between predic-
tive accuracy and physical plausibility. Although the benefits of physics-informed pretraining are
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limited for purely temporal models, they extend to spatial–temporal approaches such as HTGNN
and STD-MAE, highlighting the broader generalization potential of physics-aware training. The
strongest gains are observed for HGTFT, reflecting its capacity to integrate heterogeneous dynamics
with structured physical constraints.

Table 2: Time-series forecasting results on the BTS dataset under three settings: pretrained zero-
shot, pretrained few-shot, and no pre-training. Best results are in bold, second-best are underlined.

Settings Metric LSTM Autoformer TFT HTGNN STD-
MAE TimesFM MOIRAI LLMTime Time-

LLM
HGTFT
(Ours)

Zero-shot
(50 MBS)

MSE 0.0142 0.0136 0.0105 0.0091 0.0095 0.0163 0.0159 0.0232 0.0220 0.0056
RCS 0.0903 0.0567 0.0321 0.0179 0.0197 0.0696 0.0507 0.0733 0.0786 0.0025
CRS 0.9687 1.0019 1.1071 0.7302 0.4494 0.8852 1.0398 1.1942 1.1813 0.4437
FDS 0.8347 0.9994 0.9747 1.0049 0.9038 0.8135 0.6660 1.2103 0.9644 0.5745

Few-shot
(50 MBS)

MSE 0.0082 0.0064 0.0062 0.0063 0.0070 0.0083 0.0086 0.0120 0.0139 0.0036
RCS 0.0750 0.0588 0.0281 0.0297 0.0277 0.0528 0.0458 0.0601 0.0556 0.0037
CRS 0.7878 0.8703 0.8121 0.6518 0.4274 0.8937 0.8537 0.8695 0.8809 0.5132
FDS 0.6062 0.5697 0.5936 0.5760 0.6780 0.4943 0.5085 0.7417 0.6437 0.4303

Zero-shot
(Full MBS)

MSE 0.0133 0.0122 0.0107 0.0087 0.0084 0.0123 0.0179 0.0219 0.0181 0.0047
RCS 0.0747 0.0514 0.0326 0.0158 0.0194 0.0645 0.0517 0.0704 0.0803 0.0018
CRS 1.0924 1.1426 0.8729 0.7826 0.6086 1.0770 1.1654 1.2520 1.0313 0.4472
FDS 0.7306 0.8617 0.8825 0.8798 1.1247 0.8398 0.7114 1.2927 1.0047 0.5045

Few-shot
(Full MBS)

MSE 0.0073 0.0072 0.0056 0.0059 0.0065 0.0084 0.0087 0.0128 0.0112 0.0033
RCS 0.0744 0.0553 0.0300 0.0244 0.0291 0.0554 0.0452 0.0600 0.0571 0.0032
CRS 0.7383 0.8252 0.7387 0.6035 0.4107 0.7636 0.7942 0.8383 0.9016 0.4083
FDS 0.5419 0.6185 0.5177 0.5945 0.6603 0.4495 0.4986 0.7663 0.6331 0.4691

No Pretrain

MSE 0.0082 0.0075 0.0062 0.0064 0.0072 0.0092 0.0086 0.0127 0.0113 0.0040
RCS 0.0697 0.0537 0.0278 0.0315 0.0377 0.0560 0.0440 0.0596 0.0591 0.0209
CRS 0.7378 0.8103 0.7110 0.6079 0.4271 0.8108 0.8096 0.8624 0.8215 0.5814
FDS 0.6313 0.6399 0.5814 0.7077 0.6490 0.5279 0.4957 0.8392 0.6683 0.6255

6.4 ABLATION STUDY

We conduct ablation studies to assess key HGTFT components. For static–dynamic fusion, VSNs
are replaced with dense layers. For structural modeling, we remove the graph encoder or substitute
GAT-based aggregation. For temporal modeling, we vary Transformer depth, place a single layer
before or after the graph layer (Pre-G/Post-G), or remove it. The subtask layer is simplified by
removing GRU and Add & Norm units or retaining only a dense projection. Results on MSE, RCS,
CRS, and FDS are reported in Table 3. Model scaling (Appendix D) further shows performance
improves with size up to 310M parameters, beyond which gains plateau, suggesting 310M as an
efficient capacity balance.

Table 3: Ablation results on architecture modifications and simplifications on the MBS dataset.

Metric HGTFT Fusion:
dense

Graph:
removed

Graph:
GAT

Temporal:
removed

Temporal:
Pre-G

Temporal:
Post-G

Subtask:
w/o GRU

Subtask:
dense

MSE 0.0027 0.0053 0.0065 0.0032 0.0072 0.0063 0.0064 0.0048 0.0067
RCS 0.0012 0.0247 0.0343 0.0037 0.0157 0.0112 0.0103 0.0136 0.0297
CRS 0.3123 0.5229 0.3551 0.3377 0.6324 0.5363 0.5289 0.4622 0.5435
FDS 0.4052 0.4174 0.4139 0.4158 0.5890 0.5118 0.5152 0.4961 0.5803

6.5 FURTHER ANALYSIS

To evaluate the model’s capacity to capture multiphysics interactions, Figure 2 visualizes predicted
temperature fields on a sample floor at a selected time slice. The HGTFT model using full inputs
(dynamic, static, and graph data) accurately reconstructs spatial temperature patterns. In contrast,
the variant excluding static features (e.g., zone type, orientation) and spatial adjacency yields less
coherent results, underscoring the importance of incorporating static and graph information.

To assess the impact of physics-aligned learning, Figure 3 presents model responses under low-
frequency control changes, where the number of chillers increases from 2 to 3 and then to 4.
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Figure 2: Predicted temperature fields for a sample floor at a selected time slice. (a) ground truth,
(b) prediction by HGTFT using full input, and (c) prediction without static or graph information.

The physics-aware HGTFT (solid lines) generates trends consistent with thermodynamic princi-
ples: adding chillers raises chilled water flow while reducing indoor temperature and humidity. In
contrast, the MSE-only baseline (dashed lines) exhibits muted responses, with clustered curves that
fail to capture the expected physical effects. These results demonstrate that incorporating physics-
aligned supervision not only improves generalization to rare control actions but also enforces physi-
cally consistent predictions. Metric ablation further supports this conclusion: removing RCS, CRS,
or FDS degrades their corresponding scores from 0.0012 to 0.0134 (RCS), 0.312 to 0.384 (CRS),
and 0.405 to 0.423 (FDS), while leaving other metrics largely unchanged. Among them, RCS proves
to be the most influential.
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Figure 3: Predicted system responses to changes in control actions (solid: multi-metric training
model; dashed: MSE-only training model).

To further validate our methodology, we conduct extensive analyses. First, we compare normaliza-
tion strategies using CV-RMSE across variable types and observe that the proposed Multi-Instance
Normalization consistently improves optimization stability and generalization over Min-Max and
Z-Score methods (Appendix H). For self-supervised learning, we evaluate three training strategies
and find that while simultaneous task training impairs forecasting quality, our alternating task train-
ing method effectively balances time-series and relational representations with lower losses (Ap-
pendix J.1). In supervised learning, sequential multi-task training yields stable convergence, and
reducing either task types or data coverage leads to moderate performance drops, highlighting the
importance of task and case diversity (Appendix J.2). Input/output horizon analysis reveals that
longer input patches enhance short- to mid-term forecasting accuracy, demonstrating the value of
extended temporal context (Appendix J.3).

7 CONCLUSION

This paper addresses time series forecasting in heterogeneous multi-domain physical systems, where
diverse entities, relations, and variables interact under physical constraints. We introduce the
HGTFT, which integrates heterogeneous tokenization, graph-temporal fusion, and physics-aligned
supervision within a pre-training and fine-tuning paradigm. Experiments show that HGTFT not
only achieves performance comparable to state-of-the-art models on multiple spatiotemporal bench-
marks, but also delivers clear advantages in realistic multiphysics scenarios, with strong zero-shot
generalization and further gains through few-shot adaptation. These results highlight HGTFT as a
robust and scalable framework for forecasting in complex physical environments. Limitations and
future work are discussed in Appendix K.
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We have made significant efforts to ensure reproducibility. The model architecture and training
methodology are provided in Section 4 and Section 5 of the main text, with additional imple-
mentation and reproducibility details presented in Appendix E and Appendix F. The theoretical
foundations of the proposed framework are formally validated in Appendix A. The implementation
code is submitted as supplementary materials with clear instructions. All primary datasets em-
ployed in this study are publicly accessible. Furthermore, parts of our supplementary datasets are
released through an anonymized link (https://drive.google.com/drive/folders/
1fOG6SdFXXdJ0LtaELQA6o7obRxgTBfpg?usp=sharing) to facilitate independent vali-
dation.
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A DESCRIPTION OF TYPICAL PROBLEMS

We present two examples to highlight the significance of extending the problem within the context
of multiphysics systems (e.g., building systems). The first example involves a relatively simple
dynamic system model, which begins with the fan coil unit (FCU) in relation to the space and
cooling source. We then extend to a more complex system, which includes multiple types of objects
and relationships, with each type of object potentially having a large number of instances.

A.1 EXAMPLE 1: HEAT EXCHANGE IN FAN COIL UNIT (FCU)

In the FCU, heat exchange occurs between air and water, and this process can be modeled using
differential equations. Let’s define the problem and derive the equations step by step.

Problem Definition

The heat exchange process involves the flow of air and water through the FCU, where air absorbs
heat from the water and vice versa. The temperature dynamics for air and water are described as
follows:

We first describe the air temperature dynamics. The rate of change of air temperature is governed
by the following equation:

ṁaircair
dTair(t)

dt
= ṁaircair(Tin,air(t)− Tout,air(t))−Qheat,air(t) (13)

where: - ṁair is the mass flow rate of air (kg/s), - cair is the specific heat capacity of air (J/kg·K), -
Tin,air(t) and Tout,air(t) are the inlet and outlet air temperatures at time t (°C or K), - Qheat,air(t) is
the heat exchanged between air and water at time t (W).

Next, we consider the water temperature dynamics. The change in water temperature over time can
be described as:

ṁwatercwater
dTwater(t)

dt
= Qheat,water(t)−Qwater,out(t) (14)

where: - ṁwater is the mass flow rate of water (kg/s), - cwater is the specific heat capacity of water
(J/kg·K), - Twater(t) is the water temperature at time t (°C or K), - Qheat,water(t) is the heat ex-
changed between air and water at time t (W), - Qwater,out(t) is the heat lost by water to external
factors at time t (W).

The heat exchange between air and water is modeled by the following equation:

Qheat,air(t) = Qheat,water(t) = hair−waterAheat(Tair(t)− Twater(t)) (15)

where: - hair−water is the heat transfer coefficient between air and water (W/m²·K), - Aheat is the
heat exchange area (m²), - Tair(t) and Twater(t) are the air and water temperatures at time t (K).

Derivation of Differential Equations

Combining the heat exchange formulas with the temperature dynamics, we get a system of differen-
tial equations:

ṁaircair
dTair(t)

dt
= ṁaircair(Tin,air(t)− Tout,air(t))− hair−waterAheat(Tair(t)− Twater(t)) (16)

ṁwatercwater
dTwater(t)

dt
= hair−waterAheat(Tair(t)− Twater(t))−Qwater,out(t) (17)

Introducing Temperature Difference

To simplify the equations, introduce the temperature difference:
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∆T (t) = Tair(t)− Twater(t) (18)

Thus, the air temperature and water temperature can be expressed as:

Tair(t) = Twater(t) + ∆T (t) (19)

Substituting this into the differential equations, we get:

For the air temperature equation:

ṁaircair
d∆T (t)

dt
= ṁaircair(Tin,air(t)− Tout,air(t))− hair−waterAheat∆T (t) (20)

For the water temperature equation:

ṁwatercwater
dTwater(t)

dt
= hair−waterAheat∆T (t)−Qwater,out(t) (21)

Analytical Solution

For the temperature difference equation ∆T (t), we obtain:

ṁaircair
d∆T (t)

dt
= ṁaircair(Tin,air(t)− Tout,air(t))− hair−waterAheat∆T (t) (22)

This is a first-order linear differential equation, which can be solved as:

∆T (t) =
ṁaircair(Tin,air(t)− Tout,air(t))

hair−waterAheat

(
1− e

−hair−waterAheat
ṁaircair

t

)
(23)

Using the initial condition ∆T0 = Tair,0 − Twater,0, we obtain:

Tair(t) = Twater(t) +
ṁaircair(Tin,air(t)− Tout,air(t))

hair−waterAheat

(
1− e

−hair−waterAheat
ṁaircair

t

)
(24)

The analytical solution for the water temperature is:

Twater(t) = Twater,0 +
hair−waterAheat∆T0

ṁwatercwater

(
1− e

−hair−waterAheat
ṁaircair

t

)
− Qwater,out(t)

ṁwatercwater
(25)

Challenges and Complexities

The heat lost by water, Qwater,out, is influenced by heat/cooling source objects, while Tin,air and
Tout,air are connected to spaces. Both heat/cooling source objects and spaces have their own distinct
features and dynamics. The primary challenge in modeling such a system lies in the complex cou-
pling of air and water dynamics, as well as the interactions between multiple spaces and Fan Coil
Units (FCUs). As the number of spaces and FCUs increases, the complexity of the system grows
exponentially, making it increasingly difficult to derive a closed-form solution. Therefore, the ability
to integrate multiple object types and relationships through neural network algorithms is a critical
requirement for addressing such problems.

Numerical Simulation and Prediction Using HGTFT

In this study, we assign different values to the static parameters in the previously defined mathemat-
ical model and apply time-varying functions to the external variables, Qwater,out(t), Tin,air(t), and
Tout,air(t). Through numerical simulations, a dataset is generated, which is then used to train the
HGTFT-based model. The objective of this training is to predict the temperature profiles Twater(t)
and Tair(t) based on the temporal variations of the external variables and the given static parameters.
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Figure 4 illustrates a numerical simulation where time-series values are generated under the assump-
tion of sinusoidal variations for Qwater,out(t), Tin,air(t), and Tout,air(t). The figure also shows the
corresponding predictions of Twater(t) and Tair(t) obtained using the HGTFT model.
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Figure 4: Numerical simulation for Example 1 and predictions using the HGTFT model.

A.2 EXAMPLE 2: FORECASTING IN A HETEROGENEOUS MULTIPHYSICS HVAC NETWORK

This example highlights a forecasting task in a complex HVAC operation scenario involving het-
erogeneous entities with interconnected physical relationships. As shown in Table 4, the task spans
multiple object types—such as environmental sensors, thermal zones, chillers, pumps, and air-side
equipment—each with distinct static attributes and time-dependent dynamics. The temporal fore-
casting goal varies across objects, with certain variables provided as future inputs (e.g., control
signals or setpoints), while others are to be predicted. This setup reflects real-world complexity
where forecasting depends on both physical coupling (e.g., energy and fluid flow) and system con-
trol behavior.
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Table 4: An example of an HVAC operation task, covering multiple object types—such as envi-
ronment, general zone, chiller, chilled water pump (ACCCCP), cooling water pump (ACCCOP),
cooling tower (ACCCOT), fan coil unit (ACATFC), and supply air fan (ACATFU)—along with
their associated input and output variable types.

Object type Input Output

Static attribute Dynamic variable for the
past

Dynamic attribute for the
future

Dynamic attribute for the
future

Environment Outdoor temperature Outdoor temperature
GeneralZone Area, volume, orientation Indoor temperature, rela-

tive humidity
Indoor temperature, rela-
tive humidity

Chiller Rated cooling capacity,
rated power

Chilled water supply tem-
perature, chilled water re-
turn temperature, chilled
water flow rate

Chilled water supply tem-
perature, chilled water re-
turn temperature, chilled
water flow rate

ACCCCP Rated power, rated flow
rate, rated head

Operating status, operat-
ing power, flow rate

Operating status Operating power, flow
rate

ACCCOP Rated power, rated flow
rate, rated head

Operating status, operat-
ing power, flow rate

Operating status Operating power, flow
rate

ACCCOT Rated power, rated air
flow, number of fans,
design outdoor wet-bulb
temperature

Number of operating
fans, air flow rate, leaving
water temperature, water
flow rate, leaving water
temperature setpoint

Leaving water tempera-
ture Setpoint

Number of Operating
fans, air flow rate, leaving
water temperature, water
flow rate

ACATFC Rated power, rated air
flow, rated chilled water
flow rate

Supply air temperature,
return air temperature,
supply air temperature
setpoint

Supply air temperature
setpoint

Supply air temperature,
return air temperature

ACATFU Rated power, rated air
flow

Fresh air flow rate, fan
speed

Fan speed Fresh air flow rate

B MBS DATASET DETAILS

The Multi-physics Building System (MBS) dataset combines real-world and simulated building
data. A subset is publicly available at https://drive.google.com/drive/folders/
1fOG6SdFXXdJ0LtaELQA6o7obRxgTBfpg?usp=sharing. Object and relationship defini-
tions in building operation systems are based on a standardized, publicly available data dictionary
commonly used in building automation. The training dataset primarily contains HVAC-related data,
including empirical data aggregated from diverse real-world deployments and synthetic data gen-
erated via a high-fidelity simulation environment. Figure 5 shows a partial 3D visualization from
the simulation setup, illustrating mappings between equipment and spatial zones, as well as detailed
interconnections such as piping and ductwork.

B.1 REAL PROJECT DATA

We have accumulated a substantial dataset from a multitude of real-world projects, encompassing
various building subsystems such as energy management systems, security surveillance systems,
equipment and facility management systems, and building automation systems. The dataset com-
prises a total of 1045 projects, with 508 projects containing relatively comprehensive information.
The dataset contains about 5B tokens and 16B time points data.

B.2 SIMULATION DATA

Compared to real-world project data, simulations can involve a much larger number of variables,
including many that are difficult or even impossible to measure in the real world project but can be
calculated in a simulation environment. Additionally, simulations allow for the alteration of many
operating conditions, covering a much broader range of scenarios than real projects can achieve.
Given the astronomical number of possible parameter combinations, it is necessary to reduce the
number of generated simulation cases. This can be achieved by carefully selecting variable param-
eters and applying orthogonal testing to optimize the case generation process. We constructed a
massive dataset of building energy simulations using EnergyPlus DOE (2015). By systematically
varying key building parameters across 12 diverse base building models, we generated approxi-
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Figure 5: 3D illustration of a simulated building environment, showing spatial layout, service rela-
tionships between equipment and zones, and extensive duct and piping connections representing air
and water flows in HVAC systems.

mately 5,000 simulation scenario cases. Each case provides high-resolution 15-minute data for a
year, resulting in a dataset of over 80B tokens and 600B time points data.

B.3 COMPARISON BETWEEN REAL PROJECT AND SIMULATION DATA

We collected both simulated and real-world data for various variables, and Figure 6 illustrates a daily
profile of chiller plant cooling power, for instance. Overall, the simulated data closely aligns with
the real-world data, demonstrating a strong consistency. Due to the ability to simulate a wider range
of operating conditions, the simulated data offers a broader coverage of scenarios. This increased
diversity in the simulated conditions allows for a more comprehensive representation of potential
system behaviors, enhancing the robustness of the model training and its ability to generalize to
different operational contexts.
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Figure 6: Comparison of a daily profile for chiller plant cooling power between real-world data and
simulated data.
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C SUPPLEMENTARY EXPLANATION OF NETWORK UNITS AND FORMULAS

C.1 GATED RESIDUAL NETWORK (GRN)

The following description of the Gated Residual Network (GRN) is primarily based on the relevant
sections from the Temporal Fusion Transformer (TFT) paper Lim et al. (2021). The GRN intro-
duces a gating mechanism via the Gated Linear Unit (GLU) to regulate the flow of information
and selectively pass only the most relevant inputs. This design is critical for handling diverse data
inputs effectively. The GRN structure is described by Equations 26-28. The primary input a and
the context input c are processed through the Exponential Linear Unit (ELU) activation function,
linear transformation, GLU, and layer normalization. Weight matrices W1, W2, W3, and biases b1,
b2 govern the transformation, providing flexibility through selective non-linear processing.

GRN(a, c) = LayerNorm(a+GLU(η1)), (26)

η1 =W1η2 + b1, (27)

η2 = ELU(W2a+W3c+ b2). (28)

The GLU is defined in Equation 29, where X is the input, W4 and W5 are learnable weights, b3
and b4 are biases, and σ is the sigmoid function. The Hadamard product ⊙ modulates the GRN’s
influence on the input a, allowing it to potentially skip processing when the GLU output approaches
zero. If no context vector is provided, c is set to zero.

GLU(X) = σ(W4X + b3)⊙ (W5X + b4). (29)

This modular structure enables the GRN to adapt flexibly to different input types and feature com-
binations, enhancing the Variable Selection Networks’ (VSNs) ability to identify and prioritize key
variables efficiently.

C.2 VARIABLE SELECTION NETWORK (VSN)

The variable selection weights α are computed to determine the contribution of each time-variant
feature xi to the aggregated embedding eagg. This is achieved through a Gated Residual Network
(GRN) and a softmax function as shown below:

α = [α1, . . . , αi, . . . , αm] = Softmax(GRN([e1, . . . , ei, . . . , em], cs)), (30)

where cs is the static covariate encoder and ei is the embedding vector of feature xi. The aggregated
entity embedding vector eagg is a weighted sum of all the m time-variant variable embeddings:

eagg =

m∑
i=1

αiGRN(ei). (31)

VSN can be also used for static feature selection, and Figure 7 presents the VSN architecture, with
using GRN.

C.3 TRANSFORMER

The self-attention mechanism in Transformer layers enhances the embeddings by considering the
relationships between all elements in the input sequence, allowing the model to capture global con-
text and complex dependencies. The mechanism works by calculating a similarity score between
each query (Q) and key (K) pair, producing attention weights that reflect the importance of each
element in relation to others. These attention weights enable each element to be influenced by other
relevant elements in the sequence, leading to a dynamic and context-aware representation.

The self-attention mechanism computes the attention weights for a given set of query, key, and value
matrices Q, K, and V as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (32)
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Figure 7: Overview of the entire workflow of the Fusion Layer, where both static and dynamic data
pass through two Variable Selection Networks (VSN) with distinct parameters. The static features
are selected by themselves, while dynamic data is filtered based on selected static covariates. The
calculation mechanism of the VSN is also depicted in the diagram.

where Q, K, and V are the query, key, and value matrices, respectively. dk is the dimensionality of
the key vectors. The term QKT

√
dk

ensures that the dot-product similarity is normalized by the square
root of the dimensionality, preventing large values that could make the softmax function too sharp.
The softmax function is applied to the similarity scores to generate a probability distribution, which
is then used to weight the values in V .

The multi-head attention mechanism allows the model to capture information from multiple repre-
sentation subspaces. Instead of computing a single attention output, multiple attention heads are
computed in parallel, and their results are concatenated and projected back to the original space.
The multi-head attention mechanism is defined as:

MultiHead(Q,K, V ) = [H1 ⊕ · · · ⊕Hh ⊕ · · · ⊕HH ]WH , (33)

where Hh represents the output of the h-th attention head, computed as:

Hh = Attention(QWQ
h ,KW

K
h , V W

V
h ), (34)

and WQ
h , WK

h , and WV
h are learned weight matrices for the query, key, and value matrices, re-

spectively, for the h-th head. The symbol ⊕ denotes concatenation, meaning the outputs from all
attention heads are concatenated into a single vector. WH is a learned weight matrix that projects
the concatenated output back into the model’s desired output dimension.

After the multi-head attention step, a feed-forward network (FFN) is applied to introduce non-
linearity. The FFN consists of two fully connected layers with a ReLU activation function applied
between them. This non-linearity enables the model to capture more complex relationships and
dependencies within the data.

Thus, the combination of self-attention and multi-head attention allows the Transformer model to
focus on different parts of the input sequence simultaneously, creating a more dynamic and con-
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textually aware representation, especially useful for tasks involving long-range dependencies and
complex sequence data.

C.4 INTRA-RELATION AGGREGATION

To preserve graph heterogeneity and enable fine-grained relation modeling, we perform relation-
specific neighborhood aggregation using distinct BiLSTM encoders for each relation type.

At time step t, the system is represented as a heterogeneous graph Gt = (V,E,R), where R denotes
the set of edge relation types. For each node vi ∈ V and relation rℓ ∈ R, we aggregate temporal
embeddings htemp

j,t from neighbors vj ∈ Nℓ(vi) using:

haggi,ℓ (t) =
1

|Nℓ(vi)|
∑

vj∈Nℓ(vi)

BiLSTMℓ(h
temp
j,t ), (35)

Unlike HetGNN, which shares encoders across neighbor types, we assign a distinct BiLSTM per
relation type rℓ, allowing the model to disentangle heterogeneous physical or logical interactions.
For example, a room might be connected to others via either airflow or control signals—relations
that are semantically different and thus require different encoding strategies.

C.5 INTER-RELATION AGGREGATION

To integrate information from multiple relation types, we adopt a multi-head attention mechanism
over the aggregated embeddings haggi,ℓ (t). For each attention head k = 1, . . . ,K, attention coeffi-
cients αkℓ are computed as:

αkℓ = softmax
(
LeakyReLU

(
ak⊤[W khtemp

i,t ∥W khaggi,ℓ (t)]
))

, (36)

where W k ∈ Rd′×d is a learnable projection matrix and ak ∈ R2d′ is a shared attention vector for
the k-th head. The final graph-based embedding for node vi is:

hgraphi,t =
1

K

K∑
k=1

L∑
ℓ=1

αkℓW
khaggi,ℓ (t), (37)

This fusion mechanism allows the model to assign adaptive weights to different relation types per
attention head, enabling robust modeling of heterogeneous dependencies. Compared to early fusion
approaches, this method provides enhanced flexibility and improved representation quality for nodes
participating in multi-relational contexts.

D MODEL VERSION COMPARISON

This section presents a systematic comparison of different model variants for time-series forecasting
in complex building operation systems. All models are trained on the MBS dataset, using the pro-
posed HGTFT architecture. The resulting pretrained model, specialized for the building domain, is
termed BOSG (Building Operation System Generator). We explore a range of model configurations
by varying embedding dimensions, network depth, and overall parameter count to analyze trade-offs
between predictive performance, model size, and training efficiency.

D.1 EMBEDDING DIMENSION ADJUSTMENT

We tested four embedding dimensions (64, 128, 256, and 512), while keeping the architecture con-
stant: one temporal layer, one graph layer, and two additional temporal layers. Results in Table 5
show that 256-d offers a strong trade-off between accuracy and efficiency. Although 512-d pro-
vides marginal MSE improvements, the parameter increase is substantial, with limited performance
benefit.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of various model configurations with different embedding dimen-
sions.

Embedding
dimension

Model size MSE RCS CRS FDS

64-d 22,241,773 0.0098 0.0168 0.434 0.491
128-d 81,437,154 0.0059 0.0045 0.396 0.448
256-d 310,800,689 0.0027 0.0012 0.312 0.405
512-d 1,173,418,849 0.0026 0.0012 0.320 0.413

D.2 MODEL LAYER ADJUSTMENT

We compared multiple network layer configurations, modifying the order and count of temporal and
graph layers (see Table 6). Results indicate that placing a temporal layer before the graph layer is
essential for capturing temporal context prior to modeling inter-object relations. Additional temporal
layers after the graph layer further improve performance, but benefits plateau beyond two layers.

Table 6: Performance comparison of various model configurations with different network layer
architectures.

Layer configuration Model size MSE RCS CRS FDS

Graph+Temporal 197,075,249 0.0068 0.0025 0.487 0.536
Temporal+Graph 197,075,249 0.0056 0.0021 0.469 0.480
Temporal+Graph×2 213,697,841 0.0053 0.0020 0.454 0.477
(Temporal+Graph)×2 270,560,561 0.0039 0.0018 0.413 0.439
(Temporal+Graph)×3 344,045,873 0.0033 0.0015 0.375 0.414
Temporal+Graph+Temporal 253,937,969 0.0037 0.0016 0.395 0.468
Temporal×2+Graph+Temporal 310,800,689 0.0036 0.0016 0.386 0.442
Temporal×2+Graph+Temporal×2 367,663,409 0.0028 0.0013 0.306 0.399
Temporal+Graph+Temporal×2 310,800,689 0.0027 0.0012 0.312 0.405
Temporal+Graph+Temporal×3 367,663,409 0.0026 0.0012 0.304 0.397

D.3 SCALING STUDY AND MODEL VARIANTS

We conducted a scaling study on the BOSG model to investigate the relationship between model size,
computation, and forecasting performance. Four BOSG configurations were trained with parameter
sizes of 20M, 80M, 310M, and 1.26B, each using 30K iterations and a fixed global batch size of 64.
All model variants adopted 8 attention heads and incorporated up/down projection layers to enhance
feature representation. Their architectural details and evaluation results are summarized in Table 7.
As model size increased, the primary forecasting metric (MSE) consistently decreased from 0.0107
to 0.0025, with notable gains up to 310M parameters. However, performance improvement between
the 310M and 1.26B models was marginal, indicating diminishing returns at larger scales.

To better understand compute-performance efficiency, we saved model checkpoints at specific
FLOPS intervals during training and plotted the resulting MSE values on a log scale. As shown
in Figure 8, training performance improved with increasing computational budget, although the
rate of improvement flattened beyond the 310M model. All experiments were conducted on a high-
performance system consisting of eight NVIDIA A800 GPUs (80GB memory each), providing 3456
tensor cores in total. This setup enabled efficient parallel training, with the largest model (1.26B)
completing 30K iterations in approximately three days. These findings provide practical guidance
for compute-optimal scaling in time-series modeling.
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Table 7: Performance comparison of BOSG model variants with varying parameter sizes and con-
figurations.

Version Params Embedding Layer configuration MSE RCS CRS FDS

20M 19,164,316 64-d Graph+Temporal 0.0107 0.0184 0.496 0.519
80M 77,202,922 128-d Temporal+Graph+Temporal 0.0073 0.0055 0.435 0.481
310M 310,800,689 256-d Temporal+Graph+Temporal×2 0.0027 0.0012 0.312 0.405
1.26B 1,258,271,153 512-d Temporal+Graph+Temporal×3 0.0025 0.0012 0.307 0.416

10¹ 10¹ 10² 10²¹
FLOPS(log. scale)

0.00

0.05

0.10

0.15

0.20

0.25
M

SE
20M
80M

310M
1.26B

Figure 8: Training MSE vs. FLOPS (log scale) for different BOSG model sizes (20M, 80M, 310M,
1.26B) on the SSL masked time-series modeling task.

E SELF-SUPERVISED LEARNING

E.1 LOSS FUNCTION DETAILS FOR SELF-SUPERVISED LEARNING

The following describes the loss functions employed in our self-supervised learning (SSL) tasks,
aimed at ensuring clarity and reproducibility. For masked time-series modeling, the reconstruction
error is quantified using the Mean Squared Error (MSE) as follows:

MSE =
1

N

N∑
i=1

 1

Fi

Fi∑
f=1

 1

Mi,f

Mi,f∑
t=1

(yi,f (t)− ŷi,f (t))
2

 , (38)

where N represents the number of nodes, Fi denotes the number of features for the i-th node, and
Mi,f is the number of masked time points for each feature.

For the graph-based task, the Binary Cross-Entropy (BCE) loss function is utilized to evaluate the
classification accuracy of edge predictions, defined as:

BCE = − 1

Nr

Nr∑
i=1

(ri log(r̂i) + (1− ri) log(1− r̂i)) , (39)

where Nr represents the number of samples, r̂i is the predicted relation, and ri denotes the true
relation value.

E.2 MODEL TRAINING EXPERIMENTS FOR SELF-SUPERVISED RELATIONSHIP LEARNING
TASK

We conducted experiments for self-supervised relationship learning task with the HGTFT model
to identify which network layers are essential to update and which can remain fixed. Additionally,
we evaluated the prediction results when the parameters of the task-specific linear transformation
layer were either initialized randomly without updates or jointly updated alongside HGTFT. Fur-
ther, we examined the effect of initializing HGTFT parameters either randomly or using pre-trained
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weights from a masked time-series modeling task. The results of these validation experiments are
summarized in Table 8.

Table 8: Experimental results of masked edge modeling for various model update approaches.
Case No. HGTFT update layer Task NW Initialization loss (BCE)

Case 1 node, temporal, graph Update Random 0.34
Case 2 temporal, graph Update Random 0.35
Case 3 graph Update Random 0.42
Case 4 temporal, graph w/o update Random 0.35
Case 5 temporal, graph w/o update Masked time-series modeling 0.28

The experimental results revealed that updating the network layers responsible for the temporal and
graph embeddings is crucial for task performance. Additionally, reusing the pre-trained parame-
ters from the masked time-series modeling task provided a significant improvement over random
initialization. Interestingly, the task-specific linear output layer primarily acted as a dimensionality
transformation and had minimal impact on the prediction results. Based on these observations, we
determined that the optimal approach involves initializing the base HGTFT model parameters from
the trained masked time-series modeling task, updating only the temporal and graph embeddings,
and leaving the task-specific linear output layer randomly initialized and fixed during training.

E.3 TRAINING PIPELINE FOR SELF-SUPERVISED LEARNING

In our self-supervised learning approach, we prioritized the masked time-series modeling task as
the primary objective, with the masked edge modeling task as a secondary target. The goal was to
minimize the loss of the masked edge modeling task while ensuring that the loss of the masked time-
series modeling task increased by no more than 10% from its optimal value. A series of sequential
training experiments were conducted to achieve this balance, and the results are summarized in
Table 9.

Table 9: Experiment results for the self-supervised learning pipeline.

Step No. Masked time-series modeling Masked edge modeling

Task on/off Starting loss Ending loss Task on/off Starting loss Ending loss

Step 1 On 1.8421 0.0027 Off N/A 0.6942
Step 2 Off 0.0027 0.6439 On 0.6942 0.2885
Step 3 On 0.6439 0.0028 Off 0.2885 0.4526
Step 4 Off 0.0028 0.2781 On 0.4526 0.2640
Step 5 On 0.2781 0.0026 Off 0.2640 0.3304
Step 6 Off 0.0026 0.2673 On 0.3304 0.2595
Step 7 On 0.2673 0.0026 Off 0.2595 0.3184

Through a total of seven rounds of alternating training between the two tasks, we observe a consistent
decrease in the loss for the masked time-series modeling task before each training session, with little
change in the loss after training. In contrast, for the masked edge modeling task, the loss values
showed noticeable reductions both before and after training in each round. Notably, the final round
of training for the masked time-series modeling task had minimal impact on the graph relationship
prediction, suggesting that the model had converged and further training on this task no longer
significantly affected the performance of the masked edge modeling task.

F SUPERVISED LEARNING

F.1 SUPERVISED LEARNING SUBTASK MODEL

Each subtask shares a unified decoder structure (see Figure 9), where masked attention connects
historical embeddings to future targets. GRN blocks and lightweight dense projections are included
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Figure 9: Model structure for a typical prediction subtask with two fine-tuning phases.

for stable adaptation. Fine-tuning is performed in two stages: task-level tuning updates only task-
specific parameters, while project-level tuning adjusts the dense head to align with limited real-world
data, preserving general representations learned during pretraining.

F.2 SUPERVISED LEARNING TRAINING TASK

Forecasting tasks in multiphysics systems exhibit substantial diversity due to the heterogeneity of
entities, variable types, and interaction structures. To capture this complexity, we construct a suite
of supervised learning tasks based on scenario-specific interaction topologies. Each scenario is rep-
resented as a heterogeneous graph comprising distinct physical entities (e.g., thermal zones, fluid
circulation units, environmental sensors) and their relationships, as illustrated in Figure 10 for sce-
nario 3.3.

Beyond structural diversity, variations in variable availability across entities further contribute to task
differentiation. We first define original tasks by selecting strongly correlated entities and predicting
all of their dynamic variables for future time points. Derived tasks are then generated by selectively
masking or revealing subsets of variables in the future, simulating diverse observability conditions.
An example of such task construction is provided in Table 4.

F.3 MEAN SQUARE ERROR FOR SUPERVISED LEARNING

The accuracy loss, denoted as LMSE, is quantified using the Mean Squared Error (MSE) across all
entities for each task, as formally defined below:

LMSE =
1

N

N∑
i=1

(yi(t, Tfuture)− ŷi(t, Tfuture))
2
, (40)

where N represents the number of entities, which may vary across different tasks. The terms
yi(t, Tfuture) and ŷi(t, Tfuture) refer to the true and predicted values, respectively, for the time period
from t+ 1 to t+ Tfuture, corresponding to all dynamic prediction features of the i-th entity. For the
sake of brevity and clarity, the feature dimension is omitted from the formula.

F.4 REASONABLENESS CHECKS SCORE

In complex physical systems, time series predictions must not only achieve numerical accuracy but
also respect fundamental physical laws and operational constraints. We propose the Reasonable-
ness Checks Score (RCS) as an auxiliary evaluation metric to quantify the degree to which predicted
values conform to domain-specific physical expectations. Rather than being limited to any partic-
ular field, the RCS framework is designed to be modular and extensible, supporting multi-domain
constraints across various physical and engineered systems.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Task Object Containment relationship Link relationship

Figure 10: Topology of tasks and entity types in a building multiphysics system. Each scenario
defines a specific combination of interconnected entities, identified by a unique scenario ID. High-
lighted example 3.3 includes Environment, General Zone, Chiller, Chilled/ Cooling Water Pumps
(ACCCCP/ACCCOP), Cooling Tower (ACCCOT), Fan Coil Unit (ACATFC), and Supply Air Fan
(ACATFU).

To structure this assessment, we categorize reasonableness checks into four generalized dimensions:

1. Physical State Bounds: Core physical quantities (e.g., temperature, pressure, flow rate,
power) should remain within known feasible or safe ranges, derived from empirical knowl-
edge or physical laws.

2. Energy and Resource Balance: Energy usage, mass flow, or material consumption should
be consistent with input-output relationships and operational schedules. Sudden discon-
tinuities or unrealistic surges may indicate violations of conservation principles or faulty
control.

3. System Operating Constraints: Devices or subsystems should operate in valid configura-
tions, respecting timing constraints, activation conditions, and logical dependencies (e.g.,
cooling should not activate when the system is already below the lower threshold).

4. Inter-Component Consistency: Multiple subsystems interacting within the same envi-
ronment should exhibit consistent behavior. For example, responses to a shared external
stimulus should not contradict each other or physical causality.

Each reasonableness check can be modeled as a differentiable function that penalizes violations of
soft physical constraints. The total RCS loss is defined as:

LRCS =

K∑
k=1

gk (ŷk(t, Tfuture)) , (41)

where gk(·) denotes the k-th check function applied to the predicted output ŷk(t, Tfuture), and K is
the total number of checks relevant to the task.

Example 1: Bounded Range Check. For a physical variable ŷ(t) constrained within a range
[ymin, ymax], the penalty term can be formulated as:

grange(ŷ(t)) = λ ·
[
max (0, ŷ(t)− ymax)

2
+max (0, ymin − ŷ(t))

2
]
, (42)
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where λ is a weighting coefficient controlling the penalty strength at each time point t.

Example 2: Energy Conservation Check. In multi-physical systems, the principle of energy con-
servation often serves as a key constraint. For instance, in a thermal process involving heat exchange,
the heat entering a system at time t should approximately equal the sum of the heat leaving the sys-
tem and the internal losses, i.e., Qin(t) ≈ Qout(t) +Qloss(t). To enforce this physical constraint on
predicted outputs, we define the energy conservation check function as:

genergy(t) = γ ·
(
Q̂in(t)− Q̂out(t)−Qloss(t)

)2

, (43)

where Q̂in(t) and Q̂out(t) denote the predicted input and output energy at time t, and Qloss(t)
is a predefined (or estimated) time-dependent loss term. The scalar γ controls the importance of
this check. This function penalizes deviations from the expected energy balance at each timestep,
thereby promoting physically consistent predictions.

F.5 CORRELATION-BASED SCORE

The Correlation-Based Score (CBS) evaluates the statistical correlation between predicted and true
values in time-series forecasting by computing the Pearson correlation coefficients for both predicted
and true values, determining the deviation between these correlations for each variable pair, and then
calculating the loss as the Mean Squared Error (MSE) of these deviations.

The formula for the CBS loss Lcorr is given by:

LCBS =
1

L

L∑
l=1

(
|ρ(ŷi, ŷj)− ρ(yi, yj)|2

)
, (44)

Where L is the number of variable pairs in the prediction task. ρ(ŷi, ŷj) is the Pearson correlation
coefficient between the predicted values ŷi and ŷj , and ρ(yi, yj) is the Pearson correlation coefficient
between the true values yi and yj .

F.6 FREQUENCY DOMAIN SIMILARITY

To calculate the similarity between two time-series datasets in the frequency domain, we can use the
Fourier Transform to convert both datasets from the time domain to the frequency domain and then
compare their frequency components. The steps are stated as following:

1. Fourier Transform: Apply the Fourier Transform to each time series to obtain the am-
plitude and phase spectra. Let AX(f) and θX(f) be the amplitude and phase of the first
time-series data across frequencies f . Similarly, AY (f) and θY (f) represent the amplitude
and phase of the second time series.

2. Amplitude Cosine Similarity: Define the cosine similarity for the amplitude spectra of
the two time-series datasets as follows:

Samp =

∑N
f=1AX(f) ·AY (f)√∑N

f=1AX(f)2 ·
√∑N

f=1AY (f)
2

(45)

where N is the number of frequency components. This metric evaluates the similarity in
amplitude between the two datasets.

3. Phase Cosine Similarity: Define the cosine similarity for the phase spectra by converting
the phase angles into their respective sine and cosine components:

Sphase =

∑N
f=1 (cos(θX(f)) · cos(θY (f)) + sin(θX(f)) · sin(θY (f)))√∑N

f=1 (cos(θX(f))2 + sin(θX(f))2) ·
√∑N

f=1 (cos(θY (f))
2 + sin(θY (f))2)

(46)
This metric evaluates the alignment of phase angles between the two time series.
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Table 10: Supervised learning pipeline with loss weights.
Stage No. Foundation model update Task model update Learning rate a1 a2 a3 a4

Stage 1 N Y 0.1 1 0 0 0
Stage 2 Y Y 0.01 0.5 0.1 0.2 0.2
Stage 3 Y N 0.005 0.7 0.1 0.1 0.1
Stage 4 Y N 0.003 0.7 0.3 0 0
Stage 5 Y N 0.001 0.5 0.5 0 0

4. Combined Frequency Domain Similarity: Finally, define the combined frequency do-
main similarity Sfreq using a weighted sum of the amplitude and phase similarities:

Sfreq = αSamp + βSphase (47)

where α and β are weights that can be adjusted based on the relative importance of ampli-
tude and phase similarity. This combined metric Sfreq captures both amplitude and phase
alignment, offering a comprehensive measure of similarity between the two time-series
datasets in the frequency domain. The loss for Frequency Domain Similarity (FDS), LFDS,
is 1− Sfreq.

F.7 SUPERVISED LEARNING PIPELINE

The supervised learning pipeline is organized into five stages to enhance the foundation model’s
ability to aggregate and represent information, building on the self-supervised phase and improving
its applicability to generalizable time-series prediction tasks. The primary objective is to enhance
the adaptability and representational capacity of the foundation model, rather than focusing solely
on maximizing accuracy for individual time-series subtasks. Each stage refines a specific aspect of
the model, as summarized in Table 10. The total loss for task i is computed as

Ltask,i = a1LMSE + a2LRCS + a3LCRS + a4LFDS, (48)

where a1, a2, a3, a4 denote the respective weights of each loss component.

In Stage 1, the parameters of the foundation model, initialized from the self-supervised phase, are
frozen, with only the task-specific parameters being updated. This allows the model to quickly adapt
to a reasonable accuracy range, using a learning rate of 0.1, while prioritizing the MSE loss function.

In Stage 2, both the foundation model and task-specific models are jointly trained, with the learn-
ing rate gradually decaying from 0.1 to 0.01. This stage aims to improve prediction accuracy and
gradually bring it closer to optimal performance. The loss weights are adjusted to strike a balanced
consideration of the different loss functions.

In Stages 3, 4, and 5, the task-specific parameters are frozen, and the foundation model is further
refined to enhance generalization capability. The learning rate is progressively reduced to 0.005,
0.003, and 0.001, respectively. During these stages, the loss weights are adjusted to refine model
performance. In Stage 3, the focus is on improving accuracy with minimal adjustments to the con-
sistency and rationality losses. In Stages 4 and 5, the loss weights are updated to place greater
emphasis on LRCS, promoting improved rationality and domain-specific reasoning.

Data is allocated across the five stages following a 1:3:4:1:1 ratio. The majority of the data is
utilized during the second and third stages for joint training and generalization, while the final stages
concentrate on fine-tuning the foundation model for improved rationality and consistency.

G BASELINE METHODS SELECTION

To evaluate the performance of HGTFT across zero-shot and few-shot forecasting tasks, we compare
it against diverse baselines, including classic models (No LMs), time-series large models (Time
LMs), and large language model-based methods (LLMs). These methods differ in how they handle
input modalities such as time-series (TS), static metadata (Static), and graph structure (Graph), as
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detailed in Table 11. For each method, we selected the most capable open-source version available
to ensure a fair comparison.

Below, we provide an overview of the selected baseline methods and their respective adaptations to
our setting:

• LSTM and Autoformer: Forecast each variable independently, without incorporating
static or relational information. Their outputs are aggregated through post-processing to
construct full multivariate predictions.

• TFT: Combines multivariate time-series data with static features to perform object-level
forecasting. It supports variable selection and interpretable attention mechanisms but does
not model inter-object dependencies.

• HTGNN: Utilizes graph-structured time-series inputs, leveraging the relationships between
objects to perform dynamic variable forecasting in a heterogeneous setting.

• STD-MAE: Utilizes graph-structured time-series inputs in a homogeneous setting, where
the system is decomposed into multiple homogeneous subgraphs. Each subgraph is mod-
eled independently to capture localized spatial-temporal patterns, and the predictions are
subsequently aggregated to form the overall system-level forecast.

• TimesFM and MOIRAI: Encode each object type’s time-series data sequentially, forecast-
ing each variable independently. These models do not utilize static or graph information;
instead, multivariate predictions are obtained by batching univariate forecasts.

• LLMTime and Time-LLM: Process multiple object instances simultaneously using only
time-series data. These LLM-based models do not account for static metadata or inter-
instance relationships, but benefit from large-scale pretraining and context-aware genera-
tion.

Table 11: Baseline methods summary.
Method Input Type Category Model Version

LSTM TS No LM —
Autoformer TS No LM —
TFT TS, Static No LM —
HTGNN TS, Graph No LM —
STD-MAE TS, Graph No LM —
TimesFM TS Time LM 200M
MOIRAI TS Time LM 1.1-R-large
LLMTime TS LLM LLaMA-2 70B
Time-LLM TS LLM LLaMA 7B

In recent years, there has been a large number of work focusing on spatial-temporal forecasting
in relatively simple settings involving homogeneous object types and graph structures. Although
these works differ from the problem definition and setting in our study, we include several widely
recognized spatial-temporal forecasting algorithms from the past 4 years for a more comprehensive
comparison. We evaluate their performance on four standard datasets: PEMS04, PEMS08, COVID-
19 (JHU), and COVID-19 (NYT). As shown in Table 12, while recent methods continue to make
marginal improvements in these benchmarks, the performance gap is narrowing. This highlights a
critical limitation: the lack of methods and datasets capable of handling more complex scenarios.
Addressing this gap is the primary motivation of our work.

We also evaluate our method and selected baselines on commonly used standard time-series datasets,
including ETT, Weather, Electricity, Traffic and ILI. Although these datasets are primarily bench-
marks for purely data-driven forecasting and are not the main focus of our study, our method
achieves performance comparable to state-of-the-art models (Table 13).

H NORMALIZATION METHODS

To evaluate the effectiveness of different normalization methods, using MSE directly on normalized
data is not appropriate, as each method applies a unique scaling to the variables, which would
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Table 12: Performance comparison on PEMS04, PEMS08, COVID-19 (JHU), COVID-19 (NYT)
datasets. Best results are in bold, second best are underlined.

Model PEMS04 PEMS08 COVID-19 (JHU) COVID-19 (NYT)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM Hochreiter (1997) 32.48 ± 0.38 55.51 ± 0.74 24.98 ± 0.38 41.71 ± 0.43 122.42 ± 1.41 232.11 ± 3.51 70.59 ± 0.85 139.18 ± 1.71
Autoformer Wu et al. (2021) 32.39 ± 0.43 53.19 ± 0.75 25.56 ± 0.34 41.65 ± 0.44 115.77 ± 1.08 198.67 ± 2.48 62.37 ± 0.76 133.35 ± 1.68
TFT Lim et al. (2021) 31.32 ± 0.35 48.37 ± 0.67 24.63 ± 0.36 39.74 ± 0.42 121.81 ± 1.43 261.77 ± 3.20 71.36 ± 0.84 158.93 ± 2.30
STformer Grigsby et al. (2021) 31.69 ± 0.48 55.70 ± 0.71 24.91 ± 0.44 43.23 ± 0.59 72.42 ± 0.90 166.86 ± 2.13 49.63 ± 0.64 123.01 ± 1.51
TimesFM Das et al. (2023) 32.57 ± 0.43 55.94 ± 0.68 23.93 ± 0.38 42.41 ± 0.56 99.75 ± 1.10 216.63 ± 2.99 57.07 ± 0.72 113.45 ± 1.62
MOIRAI Woo et al. (2024) 33.31 ± 0.45 55.51 ± 0.72 24.03 ± 0.32 42.49 ± 0.56 105.74 ± 1.26 234.24 ± 2.70 81.05 ± 0.96 134.57 ± 1.94
LLMTime Gruver et al. (2024) 33.69 ± 0.52 52.49 ± 0.76 26.68 ± 0.40 43.94 ± 0.44 115.37 ± 1.22 216.74 ± 2.71 72.24 ± 0.90 157.31 ± 1.87
Time-LLM Jin et al. (2023) 32.23 ± 0.40 52.18 ± 0.67 27.74 ± 0.48 40.01 ± 0.44 95.01 ± 1.13 201.14 ± 2.68 83.17 ± 1.01 146.45 ± 2.02
ASTGCN Guo et al. (2019) 23.46 ± 0.27 34.88 ± 0.59 17.91 ± 0.31 28.80 ± 0.47 58.10 ± 0.61 109.14 ± 1.91 33.71 ± 0.48 93.55 ± 1.37
STGCN Han et al. (2020) 21.72 ± 0.34 34.61 ± 0.57 18.73 ± 0.35 28.05 ± 0.50 52.94 ± 0.63 110.63 ± 1.68 37.25 ± 0.44 88.62 ± 1.27
STSGCN Song et al. (2020) 21.26 ± 0.28 34.42 ± 0.50 17.86 ± 0.32 27.45 ± 0.45 53.19 ± 0.55 111.51 ± 1.65 34.58 ± 0.46 89.42 ± 1.31
STFGNN Li & Zhu (2021) 19.24 ± 0.25 31.18 ± 0.55 16.76 ± 0.29 25.74 ± 0.44 51.45 ± 0.56 101.48 ± 1.72 33.00 ± 0.48 82.17 ± 1.38
STGODE Fang et al. (2021) 21.63 ± 0.31 33.30 ± 0.49 16.14 ± 0.31 25.46 ± 0.45 56.84 ± 0.66 106.01 ± 1.66 32.09 ± 0.44 81.72 ± 1.33
STNorm Deng et al. (2021) 19.07 ± 0.28 31.91 ± 0.52 15.05 ± 0.27 25.64 ± 0.41 46.68 ± 0.53 99.34 ± 1.58 30.59 ± 0.40 80.32 ± 1.21
DSTAGNN Lan et al. (2022) 19.87 ± 0.33 30.80 ± 0.53 15.95 ± 0.32 24.53 ± 0.38 50.45 ± 0.57 100.51 ± 1.57 31.49 ± 0.46 76.50 ± 1.31
HTGNN Fan et al. (2022) 21.01 ± 0.37 36.44 ± 0.56 18.22 ± 0.38 27.04 ± 0.48 46.24 ± 0.51 102.73 ± 1.56 31.16 ± 0.49 75.98 ± 1.29
PDFormer Jiang et al. (2023) 18.60 ± 0.29 29.94 ± 0.51 12.82 ± 0.26 22.62 ± 0.35 46.57 ± 0.58 93.48 ± 1.21 28.69 ± 0.44 71.70 ± 1.12
STAEformer Liu et al. (2023a) 18.62 ± 0.30 29.65 ± 0.44 12.97 ± 0.26 24.21 ± 0.35 47.58 ± 0.59 96.87 ± 1.34 24.62 ± 0.41 77.43 ± 1.30
STD-MAE Gao et al. (2023) 17.85 ± 0.27 29.72 ± 0.44 13.67 ± 0.28 22.62 ± 0.36 47.75 ± 0.60 92.62 ± 1.27 26.69 ± 0.45 72.98 ± 1.21

HGTFT (Ours) 19.94 ± 0.34 32.16 ± 0.54 16.43 ± 0.34 25.08 ± 0.41 41.54 ± 0.44 94.38 ± 1.20 25.69 ± 0.42 65.64 ± 1.04

Table 13: Performance on standard time-series forecasting. ETT results are averaged over four
subsets: ETTh1, ETTh2, ETTm1, and ETTm2. All models are trained or fine-tuned on 10% of each
dataset. Best results are in bold, second best are underlined.

Dataset Metric LSTM Autoformer TFT HTGNN STD-
MAE TimesFM MOIRAI LLMTime Time-

LLM
HGTFT
(Ours)

ETT MSE 0.589 0.465 0.400 0.455 0.480 0.421 0.391 0.575 0.408 0.425
MAE 0.597 0.459 0.412 0.484 0.534 0.437 0.404 0.577 0.428 0.441

Weather MSE 0.332 0.338 0.292 0.335 0.393 0.299 0.259 0.345 0.237 0.299
MAE 0.363 0.382 0.311 0.366 0.383 0.321 0.287 0.412 0.264 0.334

Electricity MSE 0.268 0.227 0.239 0.263 0.257 0.245 0.192 0.276 0.163 0.219
MAE 0.365 0.338 0.318 0.358 0.394 0.330 0.295 0.390 0.264 0.317

Traffic MSE 0.804 0.628 0.646 0.552 0.596 0.521 0.620 0.813 0.383 0.481
MAE 0.509 0.379 0.398 0.389 0.433 0.344 0.336 0.498 0.264 0.350

ILI MSE 4.753 3.125 3.343 4.365 3.894 2.435 1.573 2.868 1.437 2.432
MAE 1.580 1.168 1.281 1.550 1.489 1.021 0.935 1.047 0.805 1.077

make MSE comparisons unfair. Instead, we reverse-normalize the variables before calculating the
evaluation metrics to ensure a fair comparison of methods. However, the diverse ranges of the
original variables after reverse normalization pose challenges in balancing weights across variables.
To address this, we focus on key variables from the training tasks and compute statistical metrics
for each individually. Their CV-RMSE values are listed in Table 14. As shown, the ”Multi-Instance
Normalization” method achieves more balanced prediction performance across various variables
compared to the other methods.

I TIME SERIES FORECASTING VISUALIZATION

To facilitate a qualitative analysis of the zero-shot and few-shot prediction results based on the
BOSG-310M, we present time-series prediction plots for several key variables. The plots illustrate
the forecasting performance of the proposed model on three critical objects: room, fan coil unit
(FCU), and chiller system, under both zero-shot and fine-tuned conditions.

As shown in Figures 11 to 13, the zero-shot predictions capture the overall trends and patterns for
each variable, although the accuracy of the predictions varies across different variables. While the
model is able to predict the general shape of the curves, the degree of precision differs, reflecting
the inherent challenges of making predictions without prior task-specific fine-tuning. In addition,
we present the results of predictions following fine-tuning with one month of data. The improve-
ments are evident, with significantly enhanced accuracy across all variables, particularly in capturing
short-term dynamics. However, it is important to note that fine-tuning with a relatively short period
of data, although it improves predictions for recent time period and conditions similar to those seen
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Figure 11: Visualization of time-series forecasting for key variables of a room object, predicting the
next 7 days based on the past 7 days. Predictions include zero-shot and few-shot (with one month
of fine-tuning data).
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Figure 12: Visualization of time-series forecasting for key variables of a fan coil unit object, pre-
dicting the next 7 days based on the past 7 days. Predictions include zero-shot and few-shot (with
one month of fine-tuning data).
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Figure 13: Visualization of time-series forecasting for key variables of a chiller system object, pre-
dicting the next 7 days based on the past 7 days. Predictions include zero-shot and few-shot (with
one month of fine-tuning data).
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Figure 14: Curves for one day of three related object instances: Room, Fan Coil Unit, and Chiller
System, along with their zero-shot prediction results. The left column shows three key variables
for the Room object, the middle column for the Fan Coil Unit, and the right column for the Chiller
System.
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Figure 15: Comparison of three SSL training strategies: separate training, simultaneous training, and
alternating training. Task 1 (masked time-series modeling) uses MSE loss, while Task 2 (masked
edge modeling) uses BCE loss.
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Figure 16: Performance comparison of the BOSG-310M model under three settings: full training,
half the number of training cases, and half the number of tasks. Evaluation is based on multiple
metrics.
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Figure 17: Prediction accuracy for daily rolling forecasts over a 7-day horizon. Each line represents
a different input patch length, ranging from 1 to 7 days.
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Table 14: Comparison of average relative errors among various normalization methods. The average
error is calculated using the difference between the maximum and minimum values of the actual data
for each instance variable as the base for CV-RMSE computation, excluding outlier instances such as
devices that have been continuously inactive. The average CV-RMSE is computed for all instances
of the same variable type.

Object Type Typical Variable Normalization Method

Min-Max Z-score Multi-Instance

Room Indoor Temperature 2.1% 2.0% 2.9%
CO2 2.4% 2.5% 2.6%

Chiller Chilled Water Supply Temperature 7.9% 8.1% 6.8%
Chilled Water Return Temperature 16.3% 14.6% 11.2%
Chilled Water Flow Rate 45.6% 33.9% 16.8%

Chilled Water Pump Operating Power 34.6% 33.7% 13.6%
Flow Rate 39.9% 38.2% 12.8%

Cooling Water Pump Operating Power 42.5% 42.6% 15.7%
Flow Rate 45.5% 48.4% 16.1%

Cooling Tower Leaving Tower Water Temperature 23.0% 24.3% 7.6%
Water Flow Rate 35.3% 33.8% 15.5%

Fan Coil Unit Supply Air Temperature 9.8% 9.2% 8.3%
Return Air Temperature 5.7% 6.1% 3.6%

Supply Air Fan Fresh Air Flow Rate 41.1% 40.7% 21.3%

in the fine-tuning phase, may deteriorate predictions for longer time horizons or when faced with
highly divergent operational scenarios. To investigate this, we also tested fine-tuning with longer
data windows (three months and six months), and found that, overall, predictions for extended time-
frames benefited from the use of larger fine-tuning datasets. This suggests that a more extended
fine-tuning period helps to mitigate overfitting and ensures better generalization for long-term pre-
dictions. However, a key challenge remains: how to fine-tune effectively with limited data while
avoiding overfitting and preserving our foundation model’s ability to learn the underlying physical
dynamics. This continues to be an area of significant research interest.

We present daily profile curves for multiple dynamic variables of three different types of objects,
along with their zero-shot prediction results. In Figure 14, we observe that the temporal relation-
ships between the associated objects are effectively captured. In particular, the predictions for the
chiller system and FCU demonstrate that the forecasted surge in cooling power for the Chiller Sys-
tem at time point 42 closely aligns with the predicted supply air temperature of the FCU at the same
time. Similarly, the slight decrease in the room’s indoor temperature at time point 66 is well-aligned
with the small increase in the electricity power consumption of the FCU. In some instances, these
temporal relationships are even more pronounced in the predicted data than in the actual observa-
tions, highlighting the model’s capability to effectively capture interdependencies across various
components in the system.

J ADDITIONAL RESULTS

J.1 SELF-SUPERVISED LEARNING COMPARISON.

We investigate the interaction between two self-supervised learning (SSL) tasks: masked time-series
modeling and masked edge prediction. Figure 15 compares three SSL training strategies: (1) training
each task independently, (2) simultaneous multi-task training, and (3) our proposed alternating task
training. Results show that while simultaneous training impairs the performance of the time-series
task, the alternating training method maintains low loss for both tasks, offering a better trade-off
between sequence forecasting and structural relation modeling.
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J.2 IMPACT OF TASK DIVERSITY AND DATA QUANTITY.

Leveraging SSL-pretrained weights, we adopt a sequential multi-task learning framework where
downstream tasks are optimized one after another. During training, the average task loss consis-
tently decreases across rounds, and the rate of change stabilizes, indicating convergence under the
serialized learning schedule. We further conduct ablation studies by halving the number of training
tasks and the number of training cases, respectively. As shown in Figure 16, both reductions lead
to moderate performance degradation, highlighting the importance of maintaining sufficient task
diversity and data coverage for robust generalization.

J.3 EFFECT OF INPUT PATCH LENGTH AND FORECASTING HORIZON.

We evaluate the model’s performance across different input and output durations, ranging from 1
to 7 days. Figure 17 presents the results of daily rolling forecasts, where the x-axis denotes the
target prediction day and the y-axis represents the corresponding MSE. Each curve corresponds to
a different input patch length. The results demonstrate that longer input sequences generally yield
improved accuracy, particularly for longer forecasting horizons.

K LIMITATIONS AND FUTURE WORK

Despite the promising results, this work still faces several limitations and open challenges:

1. Generality across physical domains: Our experiments focus on building operation sys-
tems as representative multiphysics environments, capturing rich interactions among ther-
mal, hydraulic, and control processes. Future work can extend validation to other complex
physical systems (e.g., energy grids or manufacturing processes) to further establish and
demonstrate the generality of the proposed framework.

2. Dataset coverage: Public datasets for multiphysics forecasting remain limited. While our
MBS dataset is larger and more comprehensive than prior resources, expanding it to include
additional object types, physical processes, and control scenarios would further enhance its
representativeness and support broader evaluation, fostering community progress.

3. Few-shot adaptation: While few-shot finetuning yields clear benefits under short horizons
or near-distribution conditions, its performance can degrade when forecasting over longer
horizons or under substantial distributional shifts. Developing selective adaptation strate-
gies that automatically identify which parameters or modules to adapt will be crucial for
improving robustness in such settings.

Addressing these challenges will strengthen the robustness, flexibility, and scalability of multi-
physics forecasting, paving the way for broader deployment in real-world complex physical systems.

L LLM USAGE

Large language models (LLMs) were used solely for grammar correction and stylistic refinement
of the manuscript. They did not contribute to research ideation, model design, data analysis, or
experimental results. The authors take full responsibility for the scientific content of the paper.
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