

# 000 HETEROGENEOUS GRAPH TEMPORAL FUSION 001 TRANSFORMER FOR TIME SERIES FORECASTING 002 IN MULTI-DOMAIN PHYSICAL SYSTEMS 003 004 005

006 **Anonymous authors**

007 Paper under double-blind review

## 011 ABSTRACT

013 Existing Transformer-based models effectively capture multivariate dependencies,  
 014 while pre-trained large models achieve strong generalization but are often confined  
 015 to single-object or single-physics settings. Spatial-temporal approaches leverage  
 016 graph structures but fall short in modeling heterogeneous entities with diverse  
 017 inter-variable interactions, and they often lack mechanisms to enforce physical  
 018 consistency. To address these challenges, we propose the Heterogeneous Graph  
 019 Temporal Fusion Transformer (HGTFT), a pre-training and fine-tuning framework  
 020 tailored for spatially and temporally structured physical environments. HGTFT to-  
 021 kenizes observation points and generates embeddings that capture both temporal  
 022 patterns and spatial correlations, enabling the integration of heterogeneous static  
 023 and dynamic information. We further introduce optimized normalization and  
 024 physics-informed loss functions that enhance predictive accuracy while improv-  
 025 ing physical plausibility. Applied to temperature, flow, and energy-related datasets  
 026 in building environments, our approach demonstrates strong zero-shot generaliza-  
 027 tion and achieves substantial accuracy gains through few-shot fine-tuning with  
 028 domain-specific data.

## 029 1 INTRODUCTION

031 Energy is a key factor in the development of AI, while energy systems are typical multiphysics  
 032 systems involving coupled thermal, fluid, and electrical processes. More generally, multi-domain  
 033 physical systems such as power grids and building energy networks consist of heterogeneous entities  
 034 (e.g., sensors, actuators, and control devices) that interact across multiple physical fields. Accurate  
 035 forecasting in these systems is critical for efficiency, safety, and sustainability, yet remains challeng-  
 036 ing due to diverse data modalities, complex structural dependencies, and domain-specific physical  
 037 dynamics. Existing approaches fall into four categories.

038 **Physics-prioritized/analytical methods:** These use known governing equations and boundary  
 039 conditions directly. They provide strong interpretability but often struggle with complex domain  
 040 coupling or computational cost in high-dimensional/irregular settings.

042 **Physics-guided neural solvers:** Physics-Informed Neural Networks (PINNs), e.g., DeepXDE Lu  
 043 et al. (2021) and Neuromancer Drgona et al. (2023), embed PDE residuals, boundary conditions, or  
 044 conservation laws into neural networks for strong physical consistency. Yet they incur high deriva-  
 045 tive costs and are limited to continuous field simulations, not heterogeneous multi-entity systems.

046 **Purely data-driven methods:** Time-series models, e.g., LSTM and LTM (Dong et al. (2024), Liu  
 047 et al. (2024c)), capture general temporal patterns but lack physical grounding, making extrapolation  
 048 or safety-critical predictions unreliable. LLM-based time-series methods (Zhou et al. (2023), Liu  
 049 et al. (2024b)) inherit this limitation, as tokenization treats inputs as numerical patches or sequences,  
 050 ignoring spatial structure, static context, and multi-entity physical dependencies.

051 **Data-driven methods with physical constraints:** These approaches are primarily data-driven,  
 052 leveraging network architectures to encode heterogeneous information while incorporating physics  
 053 through appropriate loss functions and training pipelines. By doing so, physical consistency can  
 be learned and enforced within the model. We propose the Heterogeneous Graph Temporal Fu-

sion Transformer (HGTFT), a framework that integrates heterogeneous spatial-temporal information while maintaining consistency with underlying physical constraints. In HGTFT, each token represents a node's state at a time step, embedding both dynamic and static attributes. The encoder captures temporal dynamics and heterogeneous spatial relations, while the decoder adapts these representations to task-specific forecasting. A tailored training pipeline incorporating domain-informed loss functions and improved normalization enhances predictive accuracy without compromising physical validity. Our contributions are threefold: (1) We define heterogeneous graph forecasting in multi-domain physical systems, covering a wide range of real-world infrastructures. (2) We introduce HGTFT with tailored tokenization and embedding strategies that fully leverage graph structures, static attributes, and dynamic features. (3) We develop a physics-informed training pipeline with improved normalization, enabling HGTFT to achieve higher accuracy and stronger consistency with domain physics across benchmarks.

## 2 RELATED WORK

**Transformer for Time Series Forecasting.** The Transformer model Vaswani et al. (2017) has revolutionized time series forecasting via attention. Extensions like Informer Zhou et al. (2021) use probabilistic sparse attention, while Frozen Pretrained Transformer Zhou et al. (2023) adapts pre-trained models from other domains, linking self-attention with principal component analysis. For multivariate forecasting, Crossformer Zhang & Yan (2023) implements a two-stage attention mechanism for temporal and cross-dimensional dependencies, and Temporal Fusion Transformer (TFT) Lim et al. (2021) provides interpretable mixed-input forecasting. Recent approaches like Time-Siam Dong et al. (2024) and Timer Liu et al. (2024c) use unlabeled data for representation learning. Unified training paradigms Woo et al. (2024) allow single models to handle multiple tasks, while decoder-only models Das et al. (2023) enhance prediction efficiency. These efforts demonstrate the potential of pre-training to improve generalization and accuracy in time series forecasting.

**Spatial-Temporal Forecasting.** Graph Neural Networks (GNNs) have made strides in graph-based learning through structural and positional encoding. Approaches like LSPE Ying et al. (2021) and NodeFormer Wu et al. (2022) address scalability, while LETR Xu et al. (2021) and Molecule Attention Transformer Maziarka et al. (2020) apply Transformers to specialized tasks. For heterogeneous graphs, HDGT Jia et al. (2023) and HAN Wang et al. (2019) use hierarchical attention to capture diverse node and edge types. In spatiotemporal forecasting, DCRNN Li et al. (2017) models spatial diffusion and temporal dependencies using diffusion convolution within a recurrent framework, while STEP Shao et al. (2022b) extends this approach with a pre-training enhanced GNN for long-range temporal patterns. Spacetimeformer Grigsby et al. (2021) and heuristic graphs Shao et al. (2022a) model complex temporal-spatial sequences, while Graph Neural ODEs Poli et al. (2019) incorporate differential equations for capturing dynamic temporal dependencies. Models like STS-GCN Song et al. (2020) and STSGT Banerjee et al. (2022) combine GCNs and Transformers to model synchronous spatial-temporal dependencies, applied to traffic and pandemic forecasting. Architectures such as HGT Hu et al. (2020) and PromptST Zhang et al. (2023) leverage pretraining and adaptive tuning for heterogeneous, multi-attribute graph predictions. Similarly, UniST Yuan et al. (2024) employs prompt-based learning and extensive pre-training to enhance generalization in urban spatio-temporal prediction.

**Large Language Models for Time Series.** Large Language Models (LLMs) have been adapted for time series tasks, particularly in few-shot and zero-shot settings. TimeGPT-1 Garza et al. (2023) reprograms LLMs for time series prediction by aligning embeddings with time-domain features, while Gruver Gruver et al. (2024) demonstrates zero-shot forecasting without fine-tuning. LLM4TS Chang et al. (2024) and TIME-LLM Jin et al. (2023) optimize LLMs for time series, improving adaptability to specialized datasets and temporal patterns. TimeCMA Liu et al. (2024a) introduces cross-modality alignment to enhance temporal understanding, and TimeChat Ren et al. (2024) expands this to multimodal contexts, integrating temporal information for applications like video understanding. These studies highlight LLMs' potential as general-purpose forecasters, though challenges in temporal representation, data efficiency, and interpretability remain.

**Physics-informed methods.** Another research line integrates physical constraints into neural networks to enhance interpretability and consistency with known dynamics. Representative frameworks such as PINNs Raissi et al. (2019), DeepXDE Lu et al. (2021), and Variational PINNs Kharazmi

108 et al. (2019) enforce the governing differential equations via loss regularization. Extensions in-  
 109 cluding Neural Operators (Li et al. (2020b); Li et al. (2024)) and Fourier Neural Operators (Li  
 110 et al. (2020a)) learn mappings between function spaces for efficient PDE simulation, while hybrid  
 111 methods like Graph-based PINNs Gao et al. (2022) aims to connect continuous physics with graph  
 112 structures.

113

### 114 3 PROBLEM DEFINITION

115

116 **General Spatial-Temporal Forecasting Problem.** Spatial-temporal forecasting problems, such  
 117 as those involving traffic networks, the COVID-19 pandemic, or power grids Guo et al. (2019);  
 118 Banerjee et al. (2022); Liu et al. (2023b), can typically be formulated using a spatial network  $G =$   
 119  $(V, E, A)$ , where  $V$  is the set of node vertices,  $E$  represents the set of edges, and  $A$  is the adjacency  
 120 matrix describing relationships between nodes. The goal is often to predict future observations for  
 121 a single node type with a single relationship type. Each node entity  $v_i$  in the graph is associated  
 122 with a graph signal matrix  $X(t)_G \in \mathbb{R}^{N \times F}$ , where  $F$  is the number of features per node, and  $t$   
 123 denotes the time step.  $X(t)_G$  captures the spatial network observations at time  $t$ , with each entry  
 124  $X_{i,t}$  representing the feature vector of node  $v_i$  at time  $t$ . The task is to predict future spatial-temporal  
 125 data by learning a mapping function  $\mathcal{F}$  that maps historical series  $\{X(t - T_{\text{past}} + 1)_G, \dots, X(t)_G\}$   
 126 to future observations  $\{X(t + 1)_G, \dots, X(t + T_{\text{future}})_G\}$ , where  $T_{\text{past}}$  is the length of historical  
 127 data and  $T_{\text{future}}$  is the forecast horizon.

128

129 **Extension to Heterogeneous Graph Forecasting in Multi-Domain Physical Systems.** In contrast,  
 130 our problem involves a more complex heterogeneous graph comprising multiple node types and  
 131 relationships. Each node  $v_i$  is characterized by static attributes  $s_i$  and time-variant features, which  
 132 are further grouped into: 1) variables known for both past and future  $x_i$ , 2) variables known only for  
 133 the past  $z_i$ , and 3) the prediction variable  $y_i$ . The problem can be formulated as:

134

$$\hat{y}_{i,t+1:t+T_{\text{future}}} = \mathcal{F}(s_i, x_{i,t-T_{\text{past}}+1:t+T_{\text{future}}}, z_{i,t-T_{\text{past}}+1:t}, y_{i,t-T_{\text{past}}+1:t}, N(v_i)), \quad (1)$$

135

136

$$N(v_i) = \bigcup_{r_l \in R} N_l(v_i), \quad (2)$$

137

138

139 where  $\hat{y}_{i,t+1:t+T_{\text{future}}}$  denotes the predicted target sequence for node  $v_i$  over the future horizon  
 140  $[t + 1, \dots, t + T_{\text{future}}]$ , and  $\mathcal{F}$  is the learned forecasting function.  $N(v_i)$  aggregates neighborhood  
 141 information for node  $v_i$  across relation types  $r_l$ .

142

143 This extension is significant due to its ability to model complex multiphysics systems with diverse  
 144 node types, features, and interrelationships, prevalent in real-world applications such as nuclear re-  
 145 actors, aerospace vehicles, biomedical devices, combined heat and power systems, and smart build-  
 146 ings. These systems necessitate advanced forecasting models capable of capturing intricate inter-  
 147 dependencies and dynamic interactions across different physical domains. For illustrative examples  
 148 and a discussion on the necessity of sophisticated modeling approaches, refer to Appendix A.

149

150

### 151 4 MODEL ARCHITECTURE

152 The proposed HGTFT model, outlined in Figure 1, is designed for the previously defined problem  
 153 by aggregating multi-dimensional data across static and dynamic node features within a heteroge-  
 154 neous graph structure. Features are aligned into unified embeddings per entity and time point, and  
 155 these embeddings pass through neural layers that aggregate information across temporal and graph  
 156 dimensions, resulting in fixed-dimension representations. The representations are then forwarded to  
 157 task-specific model layer for dimension transformation tailored to each task.

158

159 **Fusion Layer.** Each node  $v_i$  is associated with static covariates  $s_i$  and time-varying features: future-  
 160 known variables  $x_{i,t}$ , past-only variables  $z_{i,t}$ , and target variable  $y_{i,t}$ . We first map all available  
 161 inputs into a shared  $d$ -dimensional latent space and fuse them using a Variable Selection Network  
 162 (VSN) inspired by TFT Lim et al. (2021). This produces a time-dependent node representation:

163

$$h_{i,t}^{\text{node}} = \text{VSN}(\text{Proj}(s_i), \text{Proj}(x_{i,t}), \text{Proj}(z_{i,t}), \text{Proj}(y_{i,t})), \quad (3)$$



Figure 1: Architecture of the proposed HGTFT. The Fusion Layer converts heterogeneous data into unified-dimensional vectors, with colored bars indicating different object types. The Temporal Layer depicts processing for a single object type, shared across all objects. The Graph Layer shows processing at one time point, replicated across all time steps.

where  $\text{Proj}(\cdot)$  denotes a linear transformation that maps each input variable to a fixed-dimensional vector, ensuring compatibility with subsequent layers.

**Temporal Layer.** To capture temporal dependencies, we employ a unified Transformer-based architecture for all temporal processing layers. Specifically, we apply Transformer encoder layer to the historical node representations across time:

$$h_{i,t}^{\text{temp}} = \text{Transformer}(\{h_{i,t-T_{\text{past}}+1}^{\text{node}}, \dots, h_{i,t}^{\text{node}}\})_t, \quad (4)$$

where the output  $h_{i,t}^{\text{temp}}$  denotes the temporally encoded representation of node  $v_i$  at time step  $t$ . To effectively capture temporal dependencies, Transformer-based temporal layers are positioned both between the fusion and graph layers, and following the graph layer. This design enables the model to capture temporal dependencies in the node representations before and after relational aggregation, facilitating deeper modeling of time-evolving dynamics across heterogeneous entities.

**Graph Layer.** We adopt a two-stage relation-aware aggregation strategy tailored for heterogeneous physical graphs. In the first stage, neighbors of the same relation type are aggregated to capture the overall influence of each relation group, avoiding unnecessary complexity in modeling individual interactions. In the second stage, a multi-head graph attention mechanism (GAT) flexibly integrates these relation-specific embeddings, assigning adaptive importance to different relation types for each node. Instead of grouping neighbors merely by node type, we explicitly distinguish edge relations and assign separate parameters per relation. This design balances simplicity and expressiveness: it sufficiently models intra-relation effects while enabling fine-grained, context-aware weighting across relations, avoiding semantic entanglement and excessive parameterization typical of more complex HGNN methods, making it particularly suited for multiphysics systems. At each time step  $t$ , the system is modeled as a heterogeneous graph  $\mathcal{G}_t = (V, E, R)$ , where each node aggregates information from its multi-relational neighbors. For each relation type  $r_\ell \in R$ , we first compute:

$$h_{i,\ell}^{\text{agg}}(t) = \frac{1}{|N_\ell(v_i)|} \sum_{v_j \in N_\ell(v_i)} \text{BiLSTM}_\ell(h_{j,t}^{\text{temp}}), \quad (5)$$

$$\alpha_\ell^k = \text{softmax} \left( \text{LeakyReLU} \left( a^{k\top} [W^k h_{i,t}^{\text{temp}} \| W^k h_{i,\ell}^{\text{agg}}(t)] \right) \right), \quad (6)$$

$$h_{i,t}^{\text{graph}} = \frac{1}{K} \sum_{k=1}^K \sum_{\ell=1}^L \alpha_\ell^k W^k h_{i,\ell}^{\text{agg}}(t), \quad (7)$$

where  $K$  is the number of attention heads and  $L = |R|$  is the number of relation types.  $W^k \in \mathbb{R}^{d' \times d}$  is the learnable projection matrix for the  $k$ -th head, and  $a^k \in \mathbb{R}^{2d'}$  is the shared attention vector for computing attention scores. This enables the model to selectively aggregate information from heterogeneous neighbor types in a multi-head attention manner.

216 **Subtask Model Layer.** To support diverse downstream forecasting objectives across heterogeneous  
 217 entities, we adopt a modular subtask modeling framework. Each subtask shares a unified decoder  
 218 architecture that transforms encoded representations into future predictions, as illustrated in Figure 9  
 219 in Appendix F.1.

220 The decoder leverages a masked multi-head attention (MHA) mechanism to align the encoded inputs  
 221  $\{h_{i,t}\}_{t=t-T_{\text{past}}+1}^{t+T_{\text{future}}}$  with their respective future time steps. The output is then passed through a task-  
 222 specific dense projection to generate the predicted dynamics  $\{\hat{y}_{i,t'}\}_{t'=t+1}^{t+T_{\text{future}}}$ :

$$225 \quad \{\hat{y}_{i,t'}\}_{t'=t+1}^{t+T_{\text{future}}} = \text{Dense}(\text{MHA}(\{h_{i,t}\}_{t=t-T_{\text{past}}+1}^{t+T_{\text{future}}})) \quad (8)$$

227 To ensure stable information flow and consistent representation, the decoder incorporates Gated  
 228 Residual Networks (GRNs), gating mechanisms, and Add & Norm layers.

229 The HGTFT framework has been validated for convergence on a simplified example in Ap-  
 230 pendix A.1.

## 232 5 MODEL TRAINING METHODOLOGY

235 To forecast spatio-temporal dynamics in multi-domain physical systems, we design a progressive  
 236 HGTFT training pipeline that integrates heterogeneous graph structure, temporal dynamics, and  
 237 physical constraints. Key components such as multi-instance normalization and physics-informed  
 238 loss terms ensure stable training and enforce physical consistency, while sequential stages of self-  
 239 supervised learning, multi-task supervision, and subtask fine-tuning progressively improve general-  
 240 ization and task-specific performance.

### 241 5.1 MULTI-INSTANCE NORMALIZATION

243 Normalization is critical for improving model stability, convergence, and generalization. However,  
 244 standard methods often fall short in our setting due to large intra-type variability (e.g., cooling loads  
 245 significantly differ by room size) resulting in suboptimal gradient updates and biased loss weighting.  
 246 To address this, we propose Multi-Instance Normalization. For each variable type  $j$  and instance  $i$ ,  
 247 we compute the time-series min and max values, then aggregate these across instances to derive the  
 248  $P_{\min}$  percentile of minima and  $P_{\max}$  percentile of maxima (e.g., 10th and 90th percentiles). These  
 249 are used as normalization bounds:

$$251 \quad \tilde{v}_{i,j}(t) = \frac{v_{i,j}(t) - P_{\min}(\{\min_t v_{i,j}(t)\}_i)}{P_{\max}(\{\max_t v_{i,j}(t)\}_i) - P_{\min}(\{\min_t v_{i,j}(t)\}_i)} \quad (9)$$

253 This method ensures consistent scaling across instances of the same object type, improving learning  
 254 dynamics and overall prediction accuracy. Further comparisons are provided in Appendix H.

### 256 5.2 SELF-SUPERVISED LEARNING

258 Training the HGTFT model requires strategies that effectively encode temporal and relational dy-  
 259 namics. Self-supervised learning (SSL) offers a scalable approach by utilizing unlabeled spatio-  
 260 temporal data via pretext tasks with pseudo-labels. Common tasks such as masked prediction and  
 261 contrastive learning have demonstrated success in both graph and time-series domains Rani et al.  
 262 (2023); Xie et al. (2022); Zhang et al. (2024). We formulate SSL as the joint optimization of the  
 263 foundation model  $f_\theta$  and auxiliary heads  $p_\phi$  on an unlabeled dataset  $D_1$ :

$$265 \quad (\theta^*, \phi^*) = \arg \min_{\theta, \phi} L_{\text{ssl}}(f_\theta, p_\phi, D_1), \quad (10)$$

267 where  $L_{\text{ssl}}$  combines two tasks to capture both temporal dependencies and structural relationships.

268 **Masked Time-Series Modeling.** Following Zerveas et al. (2021), portions of the input sequence  
 269 are masked and reconstructed using Mean Squared Error (MSE) loss.

270 **Masked Edge Modeling.** A subset of graph edges is masked, and the model predicts them via  
 271 Binary Cross-Entropy (BCE) loss, distinguishing true from randomly sampled negative edges.  
 272

273 To balance the tasks, we use alternating training: the two SSL tasks switch during training, starting  
 274 and ending with time-series modeling, emphasizing sequence learning while incorporating physical  
 275 relational understanding. Loss formulations and the SSL training pipeline/results are provided in  
 276 Appendix E.

### 277 5.3 MULTI-TASK SUPERVISED LEARNING

279 Building on the pre-trained model  $f_{\theta^*}$  from SSL, we design a physics-informed multi-task super-  
 280 vised learning (MTSL) framework to fine-tune parameters  $\theta^{**}$  with task-specific heads  $q_\psi$ :  
 281

$$282 \quad (\theta^{**}, \psi^*) = \arg \min_{\theta^*, \psi} L_{\text{MTSL}}(f_{\theta^*}, q_\psi, D_2, Y), \quad (11)$$

285 where  $D_2$  is the labeled spatio-temporal dataset and  $Y$  denotes the task labels. Instead of sim-  
 286 ultaneous MTS defense, which scales poorly with task count, we adopt a sequential training strategy that  
 287 optimizes tasks one-by-one, reducing memory usage and promoting convergence in imbalanced  
 288 multiphysics settings Vandenhende et al. (2021); Yu et al. (2024).

289 **Convergence Criterion.** Sequential training is considered converged when the average relative  
 290 change in task losses falls below a threshold. Formally, for task  $i$  at iteration  $k$ :

$$292 \quad \Delta L_{\text{task},i}^{(k)} = \frac{|L_{\text{task},i}^{(k)} - L_{\text{task},i}^{(k-1)}|}{L_{\text{task},i}^{(k-1)}}, \quad \Delta L_{\text{avg}}^{(k)} = \frac{1}{N} \sum_{i=1}^N \Delta L_{\text{task},i}^{(k)}, \quad (12)$$

295 where  $N$  is the number of tasks. Convergence is reached when  $\Delta L_{\text{avg}}^{(k)}$  falls below a predefined  
 296 threshold (e.g., 2%).  
 297

298 **Physics-informed Loss Design.** To embed physical consistency directly into model training, we  
 299 augment the standard MSE loss with three domain-informed components: (1) Reasonableness  
 300 Checks Score (RCS) discourages predictions that violate operational constraints or physical laws  
 301 Appendix F.4; (2) Correlation-Based Score (CRS) promotes consistency with known correlations  
 302 in multivariate time-series data Appendix F.5; (3) Frequency Domain Similarity (FDS) aligns pre-  
 303 dicted and actual spectral characteristics Appendix F.6. The total loss for each task is the weighted  
 304 sum of the four loss components, with learnable or pre-defined weights. We adopt a hard parameter  
 305 sharing scheme with a shared encoder and task-specific decoders, enabling the model to generalize  
 306 across tasks while retaining task-specific specialization. The weighting scheme and training settings  
 307 for different stages are detailed in Appendix F.7.

### 308 5.4 SUBTASK FINE-TUNING

310 The subtask fine-tuning process consists of two stages: task fine-tuning and project-specific fine-  
 311 tuning. **Task fine-tuning** adapts the pre-trained model to forecasting tasks by freezing shared en-  
 312 coder layers and updating only task-specific parameters, enhancing performance and serving as  
 313 pre-adaptation. **Project-specific fine-tuning** adapts the model to real-world scenarios with limited  
 314 labels, updating only lightweight components (e.g., dense projection) to align with new data while  
 315 retaining general representations from pretraining.

## 316 6 EXPERIMENTS

### 317 6.1 DATASETS

318 **Standard and Graph-Structured Datasets.** Common benchmarks for time-series forecasting  
 319 fall into two categories. The first includes standard datasets such as ETT, Weather, and Electric-  
 320 ity Haixu et al. (2022), which assess general temporal prediction under purely data-driven assump-  
 321 tions. The second includes graph-structured datasets such as PeMSD4, PeMSD8 Chen et al. (2001),

and COVID-19 case data Dong et al. (2020); nyt, where each node has a time series and spatial dependencies are encoded in graphs. While valuable for studying spatiotemporal correlations, these datasets do not capture the complexity of multi-domain physical systems considered in this work.

**Multi-domain physical System Datasets.** Energy and building operations provide a more representative scenario for multi-domain physics forecasting. Building systems comprise diverse components governed by distinct physical mechanisms: rotational and flow devices (pumps, compressors, valves), heat exchange units (fan coils, radiators, exchangers), transport infrastructures (pipes, ducts, tanks), and sensing/control units (thermostats, flow meters, controllers). These interact through principles of heat transfer, fluid dynamics, thermodynamics, and mass/energy conservation. The diversity and interdependence of such components make building systems a meaningful and broadly applicable testbed for multi-domain physical forecasting.

We first include the Building Time-Series (BTS) dataset, recently released at NeurIPS 2024 Prabowo et al. (2024), which contains over ten thousand time-series variables collected from three real buildings over a three-year period, covering hundreds of unique ontologies. While valuable, its scale remains limited for comprehensive pre-training. We release the Multiphysics Building System (MBS) dataset, which combines real-world and simulated building data. Further details and access to the dataset via an anonymous link are provided in Appendix B.

## 6.2 BASELINES

We compare our approach against a diverse set of baselines, encompassing traditional machine learning models, graph-based methods, and recent advancements in large pre-trained time-series models. Traditional models such as LSTM Hochreiter (1997), as well as more recent architectures like Autoformer Wu et al. (2021), forecast each variable independently without incorporating structural information. TFT Lim et al. (2021) integrates static covariates with dynamic time-series inputs for multivariate forecasting. HTGNN Fan et al. (2022) and STD-MAE Gao et al. (2023) operate on graph-structured time-series data, with heterogeneous and homogeneous structures, respectively. Recent developments in large pre-trained models have shown significant promise. TimesFM Das et al. (2023) and MOIRAI Woo et al. (2024) represent general pre-trained time-series models. LLM-based approaches, including Time-LLM Jin et al. (2023) and LLMTimed Gruver et al. (2024), leverage large language models for time-series prediction.

## 6.3 MAIN RESULTS

We first assess HGTFT on graph-structured spatiotemporal datasets, where relational information is explicit but no physical constraints are provided. This setting evaluates general forecasting ability against data-driven baselines. As shown in Table 1, HGTFT consistently ranks top-2 on PeMSD4, PeMSD8, and COVID-19, confirming its strength in capturing structured relationships. In particular, the COVID-19 dataset exhibits complex, multi-scale dynamics driven by non-stationary interventions and heterogeneous regional attributes. Unlike more stable traffic datasets, it tests a model’s ability to capture diverse entities and their interactions, where HGTFT demonstrates clear advantages. For completeness, we also evaluated HGTFT on standard time-series benchmarks (e.g., ETT) in Appendix G, which are less aligned with the problem studied here.

Table 1: Performance on spatiotemporal datasets. COVID-19 (JHU): daily infection counts from 83 Michigan counties; COVID-19 (NYT): daily death counts from 50 U.S. states. All models are trained or fine-tuned on 10% of each dataset. Best results are in **bold**, second best are underlined.

| Dataset        | Metric | LSTM   | Autoformer | TFT    | HTGNN  | STD-MAE      | TimesFM | MOIRAI | LLMTimed | Time-LLM | HGTFT (Ours) |
|----------------|--------|--------|------------|--------|--------|--------------|---------|--------|----------|----------|--------------|
| PeMSD4         | MAE    | 32.48  | 32.39      | 31.32  | 21.01  | <b>17.85</b> | 32.57   | 33.31  | 33.69    | 32.23    | <u>19.94</u> |
|                | RMSE   | 55.51  | 53.19      | 48.37  | 36.44  | <b>29.72</b> | 55.94   | 55.51  | 52.49    | 52.18    | <u>32.16</u> |
| PeMSD8         | MAE    | 24.98  | 25.56      | 24.63  | 18.22  | <b>13.67</b> | 23.93   | 24.03  | 26.68    | 27.74    | <u>16.43</u> |
|                | RMSE   | 41.71  | 41.65      | 39.74  | 27.04  | <b>22.62</b> | 42.41   | 42.49  | 43.94    | 40.01    | <u>25.08</u> |
| COVID-19 (JHU) | MAE    | 122.42 | 115.77     | 121.81 | 46.24  | 47.75        | 99.75   | 105.74 | 115.37   | 95.01    | <b>41.54</b> |
|                | RMSE   | 232.11 | 198.67     | 261.77 | 102.73 | <b>92.62</b> | 216.63  | 234.24 | 216.74   | 201.14   | <u>94.38</u> |
| COVID-19 (NYT) | MAE    | 70.59  | 62.37      | 71.36  | 31.16  | <u>26.69</u> | 57.07   | 81.05  | 72.24    | 83.17    | <b>25.69</b> |
|                | RMSE   | 139.18 | 133.35     | 158.93 | 75.98  | <u>72.98</u> | 113.45  | 134.57 | 157.31   | 146.45   | <u>65.64</u> |

We evaluate HGTFT on the open BTS dataset, which includes three anonymized buildings Prabowo et al. (2024), as a representative multi-domain physical system. Forecasting tasks use the previous 7 days (672 time steps) to predict the next day (96 time steps) at 15-minute intervals, with all metrics computed on normalized values to account for inter-variable scale differences. We follow three evaluation settings: (i) pretraining on 50 randomly selected MBS buildings, (ii) pretraining on the full MBS dataset, and (iii) direct training on 30 days of each BTS building’s data with the remaining days for evaluation. For the pretrained models, both zero-shot prediction (without BTS building-specific data) and few-shot adaptation (using 30 days of BTS data) are assessed. Settings (i) and (ii) leverage the training methodology and physics-informed losses introduced earlier. The experiments are repeated 10 times with different seeds for pretraining building selection and few-shot sampling, and results are averaged.

As shown in Table 2, HGTFT achieves strong zero-shot performance, further enhanced by few-shot adaptation. Even without pretraining and physics-informed losses, it consistently surpasses all baselines, reducing MSE by up to 38% and RCS by 25% relative to the second-best model. Physics-informed pretraining yields an order-of-magnitude improvement in RCS, demonstrating its effectiveness in enforcing physical consistency. Few-shot adaptation substantially lowers MSE, while keeping RCS only slightly higher yet still well-controlled, striking a balance between predictive accuracy and physical plausibility. Although the benefits of physics-informed pretraining are limited for purely temporal models, they extend to spatial-temporal approaches such as HTGNN and STD-MAE, highlighting the broader generalization potential of physics-aware training. The strongest gains are observed for HGTFT, reflecting its capacity to integrate heterogeneous dynamics with structured physical constraints.

Table 2: Time-series forecasting results on the BTS dataset under three settings: pretrained zero-shot, pretrained few-shot, and no pre-training. Best results are in **bold**, second-best are underlined.

| Settings                | Metric | LSTM   | Autoformer | TFT           | HTGNN         | STD-MAE       | TimesFM       | MOIRAI        | LLMTime | Time-LLM | HGTFT (Ours)  |
|-------------------------|--------|--------|------------|---------------|---------------|---------------|---------------|---------------|---------|----------|---------------|
| Zero-shot<br>(50 MBS)   | MSE    | 0.0142 | 0.0136     | 0.0105        | <u>0.0091</u> | 0.0095        | 0.0163        | 0.0159        | 0.0232  | 0.0220   | <b>0.0056</b> |
|                         | RCS    | 0.0903 | 0.0567     | 0.0321        | <u>0.0179</u> | 0.0197        | 0.0696        | 0.0507        | 0.0733  | 0.0786   | <b>0.0025</b> |
|                         | CRS    | 0.9687 | 1.0019     | 1.1071        | 0.7302        | <u>0.4494</u> | 0.8852        | 1.0398        | 1.1942  | 1.1813   | <b>0.4437</b> |
|                         | FDS    | 0.8347 | 0.9994     | 0.9747        | 1.0049        | 0.9038        | 0.8135        | <u>0.6660</u> | 1.2103  | 0.9644   | <b>0.5745</b> |
| Few-shot<br>(50 MBS)    | MSE    | 0.0082 | 0.0064     | <u>0.0062</u> | 0.0063        | 0.0070        | 0.0083        | 0.0086        | 0.0120  | 0.0139   | <b>0.0036</b> |
|                         | RCS    | 0.0750 | 0.0588     | 0.0281        | <u>0.0297</u> | 0.0277        | 0.0528        | 0.0458        | 0.0601  | 0.0556   | <b>0.0037</b> |
|                         | CRS    | 0.7878 | 0.8703     | 0.8121        | 0.6518        | <b>0.4274</b> | 0.8937        | 0.8537        | 0.8695  | 0.8809   | <u>0.5132</u> |
|                         | FDS    | 0.6062 | 0.5697     | 0.5936        | 0.5760        | 0.6780        | <u>0.4943</u> | 0.5085        | 0.7417  | 0.6437   | <b>0.4303</b> |
| Zero-shot<br>(Full MBS) | MSE    | 0.0133 | 0.0122     | 0.0107        | 0.0087        | 0.0084        | 0.0123        | 0.0179        | 0.0219  | 0.0181   | <b>0.0047</b> |
|                         | RCS    | 0.0747 | 0.0514     | 0.0326        | <u>0.0158</u> | 0.0194        | 0.0645        | 0.0517        | 0.0704  | 0.0803   | <b>0.0018</b> |
|                         | CRS    | 1.0924 | 1.1426     | 0.8729        | 0.7826        | <u>0.6086</u> | 1.0770        | 1.1654        | 1.2520  | 1.0313   | <b>0.4472</b> |
|                         | FDS    | 0.7306 | 0.8617     | 0.8825        | 0.8798        | 1.1247        | 0.8398        | <u>0.7114</u> | 1.2927  | 1.0047   | <b>0.5045</b> |
| Few-shot<br>(Full MBS)  | MSE    | 0.0073 | 0.0072     | <u>0.0056</u> | 0.0059        | 0.0065        | 0.0084        | 0.0087        | 0.0128  | 0.0112   | <b>0.0033</b> |
|                         | RCS    | 0.0744 | 0.0553     | 0.0300        | <u>0.0244</u> | 0.0291        | 0.0554        | 0.0452        | 0.0600  | 0.0571   | <b>0.0032</b> |
|                         | CRS    | 0.7383 | 0.8252     | 0.7387        | 0.6035        | 0.4107        | 0.7636        | 0.7942        | 0.8383  | 0.9016   | <b>0.4083</b> |
|                         | FDS    | 0.5419 | 0.6185     | 0.5177        | 0.5945        | 0.6603        | <b>0.4495</b> | 0.4986        | 0.7663  | 0.6331   | <u>0.4691</u> |
| No Pretrain             | MSE    | 0.0082 | 0.0075     | <u>0.0062</u> | 0.0064        | 0.0072        | 0.0092        | 0.0086        | 0.0127  | 0.0113   | <b>0.0040</b> |
|                         | RCS    | 0.0697 | 0.0537     | <u>0.0278</u> | 0.0315        | 0.0377        | 0.0560        | 0.0440        | 0.0596  | 0.0591   | <b>0.0209</b> |
|                         | CRS    | 0.7378 | 0.8103     | 0.7110        | 0.6079        | <b>0.4271</b> | 0.8108        | 0.8096        | 0.8624  | 0.8215   | <u>0.5814</u> |
|                         | FDS    | 0.6313 | 0.6399     | 0.5814        | 0.7077        | 0.6490        | <u>0.5279</u> | <b>0.4957</b> | 0.8392  | 0.6683   | 0.6255        |

#### 6.4 ABLATION STUDY

To contextualize the ablation results, we additionally include baseline models on the MBS dataset, providing a horizontal reference for interpreting the performance levels before and after ablating each component. This allows us to more clearly quantify the contribution of static–dynamic fusion, structural graph modeling, temporal modules, and the subtask layer under a consistent evaluation setup.

We then ablate major design choices of HGTFT. For static–dynamic fusion, VSNs are replaced with dense layers. For structural modeling, we remove the graph encoder or substitute GAT-based aggregation. For temporal modeling, we vary Transformer depth, place a single layer before or after the graph layer (Pre-G/Post-G), or remove it. The subtask layer is simplified by removing GRU and Add & Norm units or retaining only a dense projection. Results on MSE, RCS, CRS, and FDS are

432 reported in Table 4. Model scaling (Appendix D) further shows performance improves with size up  
 433 to 310M parameters, beyond which gains plateau, suggesting 310M as an efficient capacity balance.  
 434

436 Table 3: Average forecasting performance over 10 runs on 50 randomly selected building cases from  
 437 the MBS dataset. Best results in **bold**, second best underlined.

| Metric | LSTM   | Autoformer TFT | HTGNN  | STD-MAE | TimesFM       | MOIRAI        | LLMTime | Time-LLM | HGTFT zero-shot | HGTFT few-shot              |
|--------|--------|----------------|--------|---------|---------------|---------------|---------|----------|-----------------|-----------------------------|
| MSE    | 0.0049 | 0.0053         | 0.0044 | 0.0048  | 0.0051        | 0.0064        | 0.0072  | 0.0093   | 0.0085          | <u>0.0027</u> <b>0.0023</b> |
| RCS    | 0.0376 | 0.0298         | 0.0152 | 0.0133  | 0.0206        | 0.0287        | 0.0243  | 0.0320   | 0.0307          | <b>0.0012</b> <u>0.0029</u> |
| CRS    | 0.4763 | 0.5207         | 0.5028 | 0.3855  | <u>0.2804</u> | 0.5311        | 0.5258  | 0.5527   | 0.5694          | 0.3123 <b>0.2581</b>        |
| FDS    | 0.4382 | 0.4547         | 0.4288 | 0.4761  | 0.4930        | <u>0.3684</u> | 0.3899  | 0.5781   | 0.5139          | 0.4052 <b>0.2919</b>        |

444  
 445 Table 4: Ablation results on architecture modifications and simplifications on the MBS dataset.

| Metric | HGTFT         | Fusion: dense | Graph: removed | Graph: GAT | Temporal: removed | Temporal: Pre-G | Temporal: Post-G | Temporal: Post-G | Subtask: w/o GRU | Subtask: dense |
|--------|---------------|---------------|----------------|------------|-------------------|-----------------|------------------|------------------|------------------|----------------|
| MSE    | <b>0.0027</b> | 0.0053        | 0.0065         | 0.0032     | 0.0072            | 0.0063          | 0.0064           | 0.0048           | 0.0067           |                |
| RCS    | <b>0.0012</b> | 0.0247        | 0.0343         | 0.0037     | 0.0157            | 0.0112          | 0.0103           | 0.0136           | 0.0297           |                |
| CRS    | <b>0.3123</b> | 0.5229        | 0.3551         | 0.3377     | 0.6324            | 0.5363          | 0.5289           | 0.4622           | 0.5435           |                |
| FDS    | <b>0.4052</b> | 0.4174        | 0.4139         | 0.4158     | 0.5890            | 0.5118          | 0.5152           | 0.4961           | 0.5803           |                |

## 454 6.5 FURTHER ANALYSIS

455 To evaluate the model’s capacity to capture multiphysics interactions, Figure 2 visualizes predicted  
 456 temperature fields on a sample floor at a selected time slice. The HGTFT model using full inputs  
 457 (dynamic, static, and graph data) accurately reconstructs spatial temperature patterns. In contrast,  
 458 the variant excluding static features (e.g., zone type, orientation) and spatial adjacency yields less  
 459 coherent results, underscoring the importance of incorporating static and graph information.



470 Figure 2: Predicted temperature fields for a sample floor at a selected time slice. (a) ground truth,  
 471 (b) prediction by HGTFT using full input, and (c) prediction without static or graph information.

472 To assess the impact of physics-aligned learning, Figure 3 presents model responses under low-  
 473 frequency control changes, where the number of chillers increases from 2 to 3 and then to 4.  
 474 The physics-aware HGTFT (solid lines) generates trends consistent with thermodynamic prin-  
 475 ciples: adding chillers raises chilled water flow while reducing indoor temperature and humidity. In  
 476 contrast, the MSE-only baseline (dashed lines) exhibits muted responses, with clustered curves that  
 477 fail to capture the expected physical effects. These results demonstrate that incorporating physics-  
 478 aligned supervision not only improves generalization to rare control actions but also enforces physi-  
 479 cally consistent predictions. Metric ablation further supports this conclusion: removing RCS, CRS,  
 480 or FDS degrades their corresponding scores from 0.0012 to 0.0134 (RCS), 0.312 to 0.384 (CRS),  
 481 and 0.405 to 0.423 (FDS), while leaving other metrics largely unchanged. Among them, RCS proves  
 482 to be the most influential.

483 To further validate our methodology, we conduct extensive analyses. First, we compare normaliza-  
 484 tion strategies using CV-RMSE across variable types and observe that the proposed Multi-Instance  
 485 Normalization consistently improves optimization stability and generalization over Min-Max and



Figure 3: Predicted system responses to changes in control actions (solid: multi-metric training model; dashed: MSE-only training model).

Z-Score methods (Appendix H). For self-supervised learning, we evaluate three training strategies and find that while simultaneous task training impairs forecasting quality, our alternating task training method effectively balances time-series and relational representations with lower losses (Appendix J.1). In supervised learning, sequential multi-task training yields stable convergence, and reducing either task types or data coverage leads to moderate performance drops, highlighting the importance of task and case diversity (Appendix J.2). Input/output horizon analysis reveals that longer input patches enhance short- to mid-term forecasting accuracy, demonstrating the value of extended temporal context (Appendix J.3).

## 7 CONCLUSION

This paper addresses time series forecasting in heterogeneous multi-domain physical systems, where diverse entities, relations, and variables interact under physical constraints. We introduce the HGTFT, which integrates heterogeneous tokenization, graph-temporal fusion, and physics-aligned supervision within a pre-training and fine-tuning paradigm. Experiments show that HGTFT not only achieves performance comparable to state-of-the-art models on multiple spatiotemporal benchmarks, but also delivers clear advantages in realistic multiphysics scenarios, with strong zero-shot generalization and further gains through few-shot adaptation. These results highlight HGTFT as a robust and scalable framework for forecasting in complex physical environments. Limitations and future work are discussed in Appendix K.

540 **8 ETHICS STATEMENT**  
541542 This work adheres to the ICLR Code of Ethics. The study does not involve human subjects, private  
543 data, or personally identifiable information. All datasets used are publicly available, and additional  
544 processed datasets are shared through an anonymized link in the supplementary materials to ensure  
545 fair and ethical access. The methods and results do not pose foreseeable risks of discrimination,  
546 unfair bias, or harmful applications. To the best of our knowledge, this work complies with standards  
547 of research integrity, legal requirements, and ethical scientific conduct.  
548549 **9 REPRODUCIBILITY STATEMENT**  
550551 We have made significant efforts to ensure reproducibility. The model architecture and training  
552 methodology are provided in Section 4 and Section 5 of the main text, with additional imple-  
553 mentation and reproducibility details presented in Appendix E and Appendix F. The theoretical  
554 foundations of the proposed framework are formally validated in Appendix A. The implementation  
555 code is submitted as supplementary materials with clear instructions. All primary datasets em-  
556 ployed in this study are publicly accessible. Furthermore, parts of our supplementary datasets are  
557 released through an anonymized link (<https://drive.google.com/drive/folders/1fOG6SdFXXdJ0LtaELQA6o7obRxgTBfpq?usp=sharing>) to facilitate independent vali-  
559 dation.  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593

594 REFERENCES  
595

596 Covid-19 data repository by the new york times. <https://github.com/nytimes/covid-19-data>. Accessed: 2025-04-27.

598 Soumyanil Banerjee, Ming Dong, and Weisong Shi. Spatial-temporal synchronous graph trans-  
599 former network (stsgt) for covid-19 forecasting. *Smart Health*, 26:100348, 2022.

600

601 Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Aligning pre-trained  
602 llms as data-efficient time-series forecasters. *arXiv preprint arXiv:2308.08469*, 2024.

603

604 Chao Chen, Karl F Petty, Alexander Skabardonis, Pravin P Varaiya, and Zhigang Jia. Freeway  
605 performance measurement system: mining loop detector data. In *Proceedings of the 80th Annual  
Meeting of the Transportation Research Board*. Citeseer, 2001.

606

607 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for  
608 time-series forecasting. *arXiv preprint arXiv:2310.10688*, 2023.

609

610 Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W Tsang. St-norm: Spatial and  
611 temporal normalization for multi-variate time series forecasting. In *Proceedings of the 27th ACM  
SIGKDD conference on knowledge discovery & data mining*, pp. 269–278, 2021.

612

613 US DOE. Application guide for ems energy management system–user guide, 2015.

614

615 Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-based dashboard to track  
616 covid-19 in real time. *The Lancet infectious diseases*, 20(5):533–534, 2020.

617

618 Jiaxiang Dong, Haixu Wu, Yuxuan Wang, Yunzhong Qiu, Li Zhang, Jianmin Wang, and Mingsheng  
619 Long. Timesiam: A pre-training framework for siamese time-series modeling. *arXiv preprint  
arXiv:2402.02475*, 2024.

620

621 Jan Drgona, Aaron Tuor, James Koch, Madelyn Shapiro, Bruno Jacob, and Draguna Vrabie. Neuro-  
622 MANCER: Neural Modules with Adaptive Nonlinear Constraints and Efficient Regularizations.  
623 2023. URL <https://github.com/pnnl/neuromancer>.

624

625 Yujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. Heterogeneous temporal graph neural  
626 network. In *Proceedings of the 2022 SIAM International Conference on Data Mining (SDM)*, pp.  
627 657–665. SIAM, 2022.

628

629 Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode networks  
630 for traffic flow forecasting. In *Proceedings of the 27th ACM SIGKDD conference on knowledge  
discovery & data mining*, pp. 364–373, 2021.

631

632 Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks:  
633 A unified framework for solving pde-governed forward and inverse problems. *Computer Methods  
in Applied Mechanics and Engineering*, 390:114502, 2022.

634

635 Haotian Gao, Renhe Jiang, Zheng Dong, Jinliang Deng, Yuxin Ma, and Xuan Song. Spatial-  
636 temporal-decoupled masked pre-training for spatiotemporal forecasting. *arXiv preprint  
arXiv:2312.00516*, 2023.

637

638 Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. *arXiv preprint  
arXiv:2310.03589*, 2023.

639

640 Jake Grigsby, Zhe Wang, Nam Nguyen, and Yanjun Qi. Long-range transformers for dynamic  
641 spatiotemporal forecasting. *arXiv preprint arXiv:2109.12218*, 2021.

642

643 Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot  
644 time series forecasters. *Advances in Neural Information Processing Systems*, 36, 2024.

645

646 Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-  
647 temporal graph convolutional networks for traffic flow forecasting. In *Proceedings of the AAAI  
conference on artificial intelligence*, volume 33, pp. 922–929, 2019.

648 W Haixu, X Jiehui, J Wang, and L Mingsheng. Decomposition transformers with auto-correlation  
 649 for long-term series forecasting, 2022.

650

651 Haoyu Han, Mengdi Zhang, Min Hou, Fuzheng Zhang, Zhongyuan Wang, Enhong Chen, Hongwei  
 652 Wang, Jianhui Ma, and Qi Liu. Stgcn: a spatial-temporal aware graph learning method for poi  
 653 recommendation. In *2020 IEEE International Conference on Data Mining (ICDM)*, pp. 1052–  
 654 1057. IEEE, 2020.

655 S Hochreiter. Long short-term memory. *Neural Computation MIT-Press*, 1997.

656

657 Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In  
 658 *Proceedings of the web conference 2020*, pp. 2704–2710, 2020.

659

660 Xiaosong Jia, Penghao Wu, Li Chen, Yu Liu, Hongyang Li, and Junchi Yan. Hdgt: Heteroge-  
 661 neous driving graph transformer for multi-agent trajectory prediction via scene encoding. *IEEE*  
 662 *transactions on pattern analysis and machine intelligence*, 2023.

663

664 Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-  
 665 aware dynamic long-range transformer for traffic flow prediction. In *Proceedings of the AAAI*  
 666 *conference on artificial intelligence*, volume 37, pp. 4365–4373, 2023.

667

668 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-  
 669 uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-lm: Time series forecasting by reprogramming  
 670 large language models. *arXiv preprint arXiv:2310.01728*, 2023.

671

672 Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed  
 673 neural networks for solving partial differential equations. *arXiv preprint arXiv:1912.00873*, 2019.

674

675 Shiyong Lan, Yitong Ma, Weikang Huang, Wenwu Wang, Hongyu Yang, and Pyang Li. Dstagnn:  
 676 Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In *Inter-  
 677 national conference on machine learning*, pp. 11906–11917. PMLR, 2022.

678

679 Mengzhang Li and Zhanxing Zhu. Spatial-temporal fusion graph neural networks for traffic flow  
 680 forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp.  
 681 4189–4196, 2021.

682

683 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-  
 684 work: Data-driven traffic forecasting. *arXiv preprint arXiv:1707.01926*, 2017.

685

686 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-  
 687 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential  
 688 equations. *arXiv preprint arXiv:2010.08895*, 2020a.

689

690 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-  
 691 drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-  
 692 ential equations. *arXiv preprint arXiv:2003.03485*, 2020b.

693

694 Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar  
 695 Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial  
 696 differential equations. *ACM/IMS Journal of Data Science*, 1(3):1–27, 2024.

697

698 Bryan Lim, Sercan Ö Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for  
 699 interpretable multi-horizon time series forecasting. *International Journal of Forecasting*, 37(4):  
 700 1748–1764, 2021.

701

702 Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, and Rui  
 703 Zhao. Timecma: Towards llm-empowered time series forecasting via cross-modality alignment.  
 704 *arXiv preprint arXiv:2406.01638*, 2024a.

705

706 Chenxi Liu, Sun Yang, Qianxiong Xu, Zhishuai Li, Cheng Long, Ziyue Li, and Rui Zhao. Spatial-  
 707 temporal large language model for traffic prediction. *arXiv preprint arXiv:2401.10134*, 2024b.

708

709 Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan  
 710 Song. Staformer: spatio-temporal adaptive embedding makes vanilla transformer sota for traffic  
 711 forecasting. *arXiv preprint arXiv:2308.10425*, 2023a.

702 Jiansong Liu, Yan Kang, Hao Li, Haining Wang, and Xuekun Yang. Stghtn: Spatial-temporal  
 703 gated hybrid transformer network for traffic flow forecasting. *Applied Intelligence*, 53(10):12472–  
 704 12488, 2023b.

705 Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.  
 706 Timer: Generative pre-trained transformers are large time series models. In *Forty-first Interna-*  
 707 *tional Conference on Machine Learning*, 2024c.

708 Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learn-  
 709 ing library for solving differential equations. *SIAM Review*, 63(1):208–228, 2021. doi:  
 710 10.1137/19M1274067.

711 Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanisław  
 712 Jastrzebski. Molecule attention transformer. *arXiv preprint arXiv:2002.08264*, 2020.

713 Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo  
 714 Park. Graph neural ordinary differential equations. *arXiv preprint arXiv:1911.07532*, 2019.

715 Arian Prabowo, Xiachong Lin, Imran Razzak, Hao Xue, Emily W Yap, Matthew Amos, and Flora D  
 716 Salim. Building timeseries dataset: Empowering large-scale building analytics. *Advances in*  
 717 *Neural Information Processing Systems*, 37:133180–133206, 2024.

718 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A  
 719 deep learning framework for solving forward and inverse problems involving nonlinear partial  
 720 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

721 Veenu Rani, Syed Tufael Nabi, Munish Kumar, Ajay Mittal, and Krishan Kumar. Self-supervised  
 722 learning: A succinct review. *Archives of Computational Methods in Engineering*, 30(4):2761–  
 723 2775, 2023.

724 Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive multimodal  
 725 large language model for long video understanding. In *Proceedings of the IEEE/CVF Conference*  
 726 *on Computer Vision and Pattern Recognition*, pp. 14313–14323, 2024.

727 Wei Shao, Zhiling Jin, Shuo Wang, Yufan Kang, Xiao Xiao, Hamid Menouar, Zhaofeng Zhang,  
 728 Junshan Zhang, and Flora Salim. Long-term spatio-temporal forecasting via dynamic multiple-  
 729 graph attention. *arXiv preprint arXiv:2204.11008*, 2022a.

730 Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. Pre-training enhanced spatial-temporal graph  
 731 neural network for multivariate time series forecasting. In *Proceedings of the 28th ACM SIGKDD*  
 732 *conference on knowledge discovery and data mining*, pp. 1567–1577, 2022b.

733 Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph  
 734 convolutional networks: A new framework for spatial-temporal network data forecasting. In  
 735 *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 914–921, 2020.

736 Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,  
 737 and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. *IEEE transactions*  
 738 *on pattern analysis and machine intelligence*, 44(7):3614–3633, 2021.

739 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 740 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.(nips), 2017. *arXiv preprint*  
 741 *arXiv:1706.03762*, 10:S0140525X16001837, 2017.

742 Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous  
 743 graph attention network. In *The world wide web conference*, pp. 2022–2032, 2019.

744 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.  
 745 Unified training of universal time series forecasting transformers. *arXiv preprint*  
 746 *arXiv:2402.02592*, 2024.

747 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-  
 748 formers with auto-correlation for long-term series forecasting. *Advances in neural information*  
 749 *processing systems*, 34:22419–22430, 2021.

756 Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph  
 757 structure learning transformer for node classification. *Advances in Neural Information Processing*  
 758 *Systems*, 35:27387–27401, 2022.

759

760 Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning  
 761 of graph neural networks: A unified review. *IEEE transactions on pattern analysis and machine*  
 762 *intelligence*, 45(2):2412–2429, 2022.

763 Yifan Xu, Weijian Xu, David Cheung, and Zhuowen Tu. Line segment detection using transformers  
 764 without edges. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
 765 *Recognition*, pp. 4257–4266, 2021.

766

767 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and  
 768 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in neural*  
 769 *information processing systems*, 34:28877–28888, 2021.

770 Jun Yu, Yutong Dai, Xiaokang Liu, Jin Huang, Yishan Shen, Ke Zhang, Rong Zhou, Eashan Ad-  
 771 hikarla, Wenxuan Ye, Yixin Liu, et al. Unleashing the power of multi-task learning: A com-  
 772 pre-  
 773 hensive survey spanning traditional, deep, and pretrained foundation model eras. *arXiv preprint*  
*arXiv:2404.18961*, 2024.

774

775 Yuan Yuan, Jingtao Ding, Jie Feng, Depeng Jin, and Yong Li. Unist: A prompt-empowered universal  
 776 model for urban spatio-temporal prediction. In *Proceedings of the 30th ACM SIGKDD Conference*  
 777 *on Knowledge Discovery and Data Mining*, pp. 4095–4106, 2024.

778

779 George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eick-  
 780 hoff. A transformer-based framework for multivariate time series representation learning. In  
 781 *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp.  
 2114–2124, 2021.

782

783 Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Y Zhang,  
 784 Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series anal-  
 785 ysis: Taxonomy, progress, and prospects. *IEEE Transactions on Pattern Analysis and Machine*  
*Intelligence*, 2024.

786

787 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency  
 788 for multivariate time series forecasting. In *The eleventh international conference on learning*  
*representations*, 2023.

789

790 Zijian Zhang, Xiangyu Zhao, Qidong Liu, Chunxu Zhang, Qian Ma, Wanyu Wang, Hongwei Zhao,  
 791 Yiqi Wang, and Zitao Liu. Promptst: Prompt-enhanced spatio-temporal multi-attribute predic-  
 792 tion. In *Proceedings of the 32nd ACM International Conference on Information and Knowledge*  
 793 *Management*, pp. 3195–3205, 2023.

794

795 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.  
 796 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*  
 797 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

798

799 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis  
 by pretrained lm. *Advances in neural information processing systems*, 36:43322–43355, 2023.

800

801

802

803

804

805

806

807

808

809

## 810 A DESCRIPTION OF TYPICAL PROBLEMS

812 We present two examples to highlight the significance of extending the problem within the context  
 813 of multiphysics systems (e.g., building systems). The first example involves a relatively simple  
 814 dynamic system model, which begins with the fan coil unit (FCU) in relation to the space and  
 815 cooling source. We then extend to a more complex system, which includes multiple types of objects  
 816 and relationships, with each type of object potentially having a large number of instances.

### 818 A.1 EXAMPLE 1: HEAT EXCHANGE IN FAN COIL UNIT (FCU)

820 In the FCU, heat exchange occurs between air and water, and this process can be modeled using  
 821 differential equations. Let's define the problem and derive the equations step by step.

#### 822 Problem Definition

823 The heat exchange process involves the flow of air and water through the FCU, where air absorbs  
 824 heat from the water and vice versa. The temperature dynamics for air and water are described as  
 825 follows:

826 We first describe the air temperature dynamics. The rate of change of air temperature is governed  
 827 by the following equation:

$$830 \dot{m}_{\text{air}} c_{\text{air}} \frac{dT_{\text{air}}(t)}{dt} = \dot{m}_{\text{air}} c_{\text{air}} (T_{\text{in,air}}(t) - T_{\text{out,air}}(t)) - Q_{\text{heat,air}}(t) \quad (13)$$

832 where: -  $\dot{m}_{\text{air}}$  is the mass flow rate of air (kg/s), -  $c_{\text{air}}$  is the specific heat capacity of air (J/kg·K), -  
 833  $T_{\text{in,air}}(t)$  and  $T_{\text{out,air}}(t)$  are the inlet and outlet air temperatures at time  $t$  (°C or K), -  $Q_{\text{heat,air}}(t)$  is  
 834 the heat exchanged between air and water at time  $t$  (W).

835 Next, we consider the water temperature dynamics. The change in water temperature over time can  
 836 be described as:

$$839 \dot{m}_{\text{water}} c_{\text{water}} \frac{dT_{\text{water}}(t)}{dt} = Q_{\text{heat,water}}(t) - Q_{\text{water,out}}(t) \quad (14)$$

841 where: -  $\dot{m}_{\text{water}}$  is the mass flow rate of water (kg/s), -  $c_{\text{water}}$  is the specific heat capacity of water  
 842 (J/kg·K), -  $T_{\text{water}}(t)$  is the water temperature at time  $t$  (°C or K), -  $Q_{\text{heat,water}}(t)$  is the heat ex-  
 843 changed between air and water at time  $t$  (W), -  $Q_{\text{water,out}}(t)$  is the heat lost by water to external  
 844 factors at time  $t$  (W).

845 The heat exchange between air and water is modeled by the following equation:

$$848 Q_{\text{heat,air}}(t) = Q_{\text{heat,water}}(t) = h_{\text{air-water}} A_{\text{heat}} (T_{\text{air}}(t) - T_{\text{water}}(t)) \quad (15)$$

849 where: -  $h_{\text{air-water}}$  is the heat transfer coefficient between air and water (W/m<sup>2</sup>·K), -  $A_{\text{heat}}$  is the  
 850 heat exchange area (m<sup>2</sup>), -  $T_{\text{air}}(t)$  and  $T_{\text{water}}(t)$  are the air and water temperatures at time  $t$  (K).

#### 852 Derivation of Differential Equations

853 Combining the heat exchange formulas with the temperature dynamics, we get a system of differen-  
 854 tial equations:

$$857 \dot{m}_{\text{air}} c_{\text{air}} \frac{dT_{\text{air}}(t)}{dt} = \dot{m}_{\text{air}} c_{\text{air}} (T_{\text{in,air}}(t) - T_{\text{out,air}}(t)) - h_{\text{air-water}} A_{\text{heat}} (T_{\text{air}}(t) - T_{\text{water}}(t)) \quad (16)$$

$$860 \dot{m}_{\text{water}} c_{\text{water}} \frac{dT_{\text{water}}(t)}{dt} = h_{\text{air-water}} A_{\text{heat}} (T_{\text{air}}(t) - T_{\text{water}}(t)) - Q_{\text{water,out}}(t) \quad (17)$$

#### 862 Introducing Temperature Difference

863 To simplify the equations, introduce the temperature difference:

864  
865  
866

$$\Delta T(t) = T_{\text{air}}(t) - T_{\text{water}}(t) \quad (18)$$

867 Thus, the air temperature and water temperature can be expressed as:

868

869  
870
$$T_{\text{air}}(t) = T_{\text{water}}(t) + \Delta T(t) \quad (19)$$

871 Substituting this into the differential equations, we get:

872 For the air temperature equation:

873  
874  
875

$$\dot{m}_{\text{air}}c_{\text{air}}\frac{dT_{\text{air}}(t)}{dt} = \dot{m}_{\text{air}}c_{\text{air}}(T_{\text{in,air}}(t) - T_{\text{out,air}}(t)) - h_{\text{air-water}}A_{\text{heat}}\Delta T(t) \quad (20)$$

876  
877 For the water temperature equation:878  
879  
880

$$\dot{m}_{\text{water}}c_{\text{water}}\frac{dT_{\text{water}}(t)}{dt} = h_{\text{air-water}}A_{\text{heat}}\Delta T(t) - Q_{\text{water,out}}(t) \quad (21)$$

881 **Analytical Solution**882 For the temperature difference equation  $\Delta T(t)$ , we obtain:883  
884  
885

$$\dot{m}_{\text{air}}c_{\text{air}}\frac{d\Delta T(t)}{dt} = \dot{m}_{\text{air}}c_{\text{air}}(T_{\text{in,air}}(t) - T_{\text{out,air}}(t)) - h_{\text{air-water}}A_{\text{heat}}\Delta T(t) \quad (22)$$

886 This is a first-order linear differential equation, which can be solved as:

887  
888  
889

$$\Delta T(t) = \frac{\dot{m}_{\text{air}}c_{\text{air}}(T_{\text{in,air}}(t) - T_{\text{out,air}}(t))}{h_{\text{air-water}}A_{\text{heat}}} \left( 1 - e^{-\frac{h_{\text{air-water}}A_{\text{heat}}}{\dot{m}_{\text{air}}c_{\text{air}}}t} \right) \quad (23)$$

890 Using the initial condition  $\Delta T_0 = T_{\text{air},0} - T_{\text{water},0}$ , we obtain:891  
892  
893

$$T_{\text{air}}(t) = T_{\text{water}}(t) + \frac{\dot{m}_{\text{air}}c_{\text{air}}(T_{\text{in,air}}(t) - T_{\text{out,air}}(t))}{h_{\text{air-water}}A_{\text{heat}}} \left( 1 - e^{-\frac{h_{\text{air-water}}A_{\text{heat}}}{\dot{m}_{\text{air}}c_{\text{air}}}t} \right) \quad (24)$$

894 The analytical solution for the water temperature is:

895  
896  
897

$$T_{\text{water}}(t) = T_{\text{water},0} + \frac{h_{\text{air-water}}A_{\text{heat}}\Delta T_0}{\dot{m}_{\text{water}}c_{\text{water}}} \left( 1 - e^{-\frac{h_{\text{air-water}}A_{\text{heat}}}{\dot{m}_{\text{water}}c_{\text{water}}}t} \right) - \frac{Q_{\text{water,out}}(t)}{\dot{m}_{\text{water}}c_{\text{water}}} \quad (25)$$

898  
899  
900**Challenges and Complexities**901 The heat lost by water,  $Q_{\text{water,out}}$ , is influenced by heat/cooling source objects, while  $T_{\text{in,air}}$  and  $T_{\text{out,air}}$  are connected to spaces. Both heat/cooling source objects and spaces have their own distinct features and dynamics. The primary challenge in modeling such a system lies in the complex coupling of air and water dynamics, as well as the interactions between multiple spaces and Fan Coil Units (FCUs). As the number of spaces and FCUs increases, the complexity of the system grows exponentially, making it increasingly difficult to derive a closed-form solution. Therefore, the ability to integrate multiple object types and relationships through neural network algorithms is a critical requirement for addressing such problems.902  
903  
904**Numerical Simulation and Prediction Using HGTFT**905  
906  
907  
908  
909  
910  
911  
912  
913914 In this study, we assign different values to the static parameters in the previously defined mathematical model and apply time-varying functions to the external variables,  $Q_{\text{water,out}}(t)$ ,  $T_{\text{in,air}}(t)$ , and  $T_{\text{out,air}}(t)$ . Through numerical simulations, a dataset is generated, which is then used to train the HGTFT-based model. The objective of this training is to predict the temperature profiles  $T_{\text{water}}(t)$  and  $T_{\text{air}}(t)$  based on the temporal variations of the external variables and the given static parameters.

918  
 919  
 920  
 921  
 922  
 923  
 924  
 925  
 926  
 927  
 928  
 929  
 930  
 931  
 932  
 933  
 934  
 935  
 936  
 937  
 938  
 939  
 940  
 941  
 942  
 943  
 944  
 945  
 946  
 947  
 948  
 949  
 950  
 951  
 952  
 953  
 954  
 955  
 956  
 957  
 958  
 959  
 960  
 961  
 962  
 963  
 964  
 965  
 966  
 967  
 968  
 969  
 970  
 971  
 972  
 973  
 974  
 975  
 976  
 977  
 978  
 979  
 980  
 981  
 982  
 983  
 984  
 985  
 986  
 987  
 988  
 989  
 990  
 991  
 992  
 993  
 994  
 995  
 996  
 997  
 998  
 999  
 1000  
 1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025  
 1026  
 1027  
 1028  
 1029  
 1030  
 1031  
 1032  
 1033  
 1034  
 1035  
 1036  
 1037  
 1038  
 1039  
 1040  
 1041  
 1042  
 1043  
 1044  
 1045  
 1046  
 1047  
 1048  
 1049  
 1050  
 1051  
 1052  
 1053  
 1054  
 1055  
 1056  
 1057  
 1058  
 1059  
 1060  
 1061  
 1062  
 1063  
 1064  
 1065  
 1066  
 1067  
 1068  
 1069  
 1070  
 1071  
 1072  
 1073  
 1074  
 1075  
 1076  
 1077  
 1078  
 1079  
 1080  
 1081  
 1082  
 1083  
 1084  
 1085  
 1086  
 1087  
 1088  
 1089  
 1090  
 1091  
 1092  
 1093  
 1094  
 1095  
 1096  
 1097  
 1098  
 1099  
 1100  
 1101  
 1102  
 1103  
 1104  
 1105  
 1106  
 1107  
 1108  
 1109  
 1110  
 1111  
 1112  
 1113  
 1114  
 1115  
 1116  
 1117  
 1118  
 1119  
 1120  
 1121  
 1122  
 1123  
 1124  
 1125  
 1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133  
 1134  
 1135  
 1136  
 1137  
 1138  
 1139  
 1140  
 1141  
 1142  
 1143  
 1144  
 1145  
 1146  
 1147  
 1148  
 1149  
 1150  
 1151  
 1152  
 1153  
 1154  
 1155  
 1156  
 1157  
 1158  
 1159  
 1160  
 1161  
 1162  
 1163  
 1164  
 1165  
 1166  
 1167  
 1168  
 1169  
 1170  
 1171  
 1172  
 1173  
 1174  
 1175  
 1176  
 1177  
 1178  
 1179  
 1180  
 1181  
 1182  
 1183  
 1184  
 1185  
 1186  
 1187  
 1188  
 1189  
 1190  
 1191  
 1192  
 1193  
 1194  
 1195  
 1196  
 1197  
 1198  
 1199  
 1200  
 1201  
 1202  
 1203  
 1204  
 1205  
 1206  
 1207  
 1208  
 1209  
 1210  
 1211  
 1212  
 1213  
 1214  
 1215  
 1216  
 1217  
 1218  
 1219  
 1220  
 1221  
 1222  
 1223  
 1224  
 1225  
 1226  
 1227  
 1228  
 1229  
 1230  
 1231  
 1232  
 1233  
 1234  
 1235  
 1236  
 1237  
 1238  
 1239  
 1240  
 1241  
 1242  
 1243  
 1244  
 1245  
 1246  
 1247  
 1248  
 1249  
 1250  
 1251  
 1252  
 1253  
 1254  
 1255  
 1256  
 1257  
 1258  
 1259  
 1260  
 1261  
 1262  
 1263  
 1264  
 1265  
 1266  
 1267  
 1268  
 1269  
 1270  
 1271  
 1272  
 1273  
 1274  
 1275  
 1276  
 1277  
 1278  
 1279  
 1280  
 1281  
 1282  
 1283  
 1284  
 1285  
 1286  
 1287  
 1288  
 1289  
 1290  
 1291  
 1292  
 1293  
 1294  
 1295  
 1296  
 1297  
 1298  
 1299  
 1300  
 1301  
 1302  
 1303  
 1304  
 1305  
 1306  
 1307  
 1308  
 1309  
 1310  
 1311  
 1312  
 1313  
 1314  
 1315  
 1316  
 1317  
 1318  
 1319  
 1320  
 1321  
 1322  
 1323  
 1324  
 1325  
 1326  
 1327  
 1328  
 1329  
 1330  
 1331  
 1332  
 1333  
 1334  
 1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349  
 1350  
 1351  
 1352  
 1353  
 1354  
 1355  
 1356  
 1357  
 1358  
 1359  
 1360  
 1361  
 1362  
 1363  
 1364  
 1365  
 1366  
 1367  
 1368  
 1369  
 1370  
 1371  
 1372  
 1373  
 1374  
 1375  
 1376  
 1377  
 1378  
 1379  
 1380  
 1381  
 1382  
 1383  
 1384  
 1385  
 1386  
 1387  
 1388  
 1389  
 1390  
 1391  
 1392  
 1393  
 1394  
 1395  
 1396  
 1397  
 1398  
 1399  
 1400  
 1401  
 1402  
 1403  
 1404  
 1405  
 1406  
 1407  
 1408  
 1409  
 1410  
 1411  
 1412  
 1413  
 1414  
 1415  
 1416  
 1417  
 1418  
 1419  
 1420  
 1421  
 1422  
 1423  
 1424  
 1425  
 1426  
 1427  
 1428  
 1429  
 1430  
 1431  
 1432  
 1433  
 1434  
 1435  
 1436  
 1437  
 1438  
 1439  
 1440  
 1441  
 1442  
 1443  
 1444  
 1445  
 1446  
 1447  
 1448  
 1449  
 1450  
 1451  
 1452  
 1453  
 1454  
 1455  
 1456  
 1457  
 1458  
 1459  
 1460  
 1461  
 1462  
 1463  
 1464  
 1465  
 1466  
 1467  
 1468  
 1469  
 1470  
 1471  
 1472  
 1473  
 1474  
 1475  
 1476  
 1477  
 1478  
 1479  
 1480  
 1481  
 1482  
 1483  
 1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493  
 1494  
 1495  
 1496  
 1497  
 1498  
 1499  
 1500  
 1501  
 1502  
 1503  
 1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511  
 1512  
 1513  
 1514  
 1515  
 1516  
 1517  
 1518  
 1519  
 1520  
 1521  
 1522  
 1523  
 1524  
 1525  
 1526  
 1527  
 1528  
 1529  
 1530  
 1531  
 1532  
 1533  
 1534  
 1535  
 1536  
 1537  
 1538  
 1539  
 1540  
 1541  
 1542  
 1543  
 1544  
 1545  
 1546  
 1547  
 1548  
 1549  
 1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565  
 1566  
 1567  
 1568  
 1569  
 1570  
 1571  
 1572  
 1573  
 1574  
 1575  
 1576  
 1577  
 1578  
 1579  
 1580  
 1581  
 1582  
 1583  
 1584  
 1585  
 1586  
 1587  
 1588  
 1589  
 1590  
 1591  
 1592  
 1593  
 1594  
 1595  
 1596  
 1597  
 1598  
 1599  
 1600  
 1601  
 1602  
 1603  
 1604  
 1605  
 1606  
 1607  
 1608  
 1609  
 1610  
 1611  
 1612  
 1613  
 1614  
 1615  
 1616  
 1617  
 1618  
 1619  
 1620  
 1621  
 1622  
 1623  
 1624  
 1625  
 1626  
 1627  
 1628  
 1629  
 1630  
 1631  
 1632  
 1633  
 1634  
 1635  
 1636  
 1637  
 1638  
 1639  
 1640  
 1641  
 1642  
 1643  
 1644  
 1645  
 1646  
 1647  
 1648  
 1649  
 1650  
 1651  
 1652  
 1653  
 1654  
 1655  
 1656  
 1657  
 1658  
 1659  
 1660  
 1661  
 1662  
 1663  
 1664  
 1665  
 1666  
 1667  
 1668  
 1669  
 1670  
 1671  
 1672  
 1673  
 1674  
 1675  
 1676  
 1677  
 1678  
 1679  
 1680  
 1681  
 1682  
 1683  
 1684  
 1685  
 1686  
 1687  
 1688  
 1689  
 1690  
 1691  
 1692  
 1693  
 1694  
 1695  
 1696  
 1697  
 1698  
 1699  
 1700  
 1701  
 1702  
 1703  
 1704  
 1705  
 1706  
 1707  
 1708  
 1709  
 1710  
 1711  
 1712  
 1713  
 1714  
 1715  
 1716  
 1717  
 1718  
 1719  
 1720  
 1721  
 1722  
 1723  
 1724  
 1725  
 1726  
 1727  
 1728  
 1729  
 1730  
 1731  
 1732  
 1733  
 1734  
 1735  
 1736  
 1737  
 1738  
 1739  
 1740  
 1741  
 1742  
 1743  
 1744  
 1745  
 1746  
 1747  
 1748  
 1749  
 1750  
 1751  
 1752  
 1753  
 1754  
 1755  
 1756  
 1757  
 1758  
 1759  
 1760  
 1761  
 1762  
 1763  
 1764  
 1765  
 1766  
 1767  
 1768  
 1769  
 1770  
 1771  
 1772  
 1773  
 1774  
 1775  
 1776  
 1777  
 1778  
 1779  
 1780  
 1781  
 1782  
 1783  
 1784  
 1785  
 1786  
 1787  
 1788  
 1789  
 1790  
 1791  
 1792  
 1793  
 1794  
 1795  
 1796  
 1797  
 1798  
 1799  
 1800  
 1801  
 1802  
 1803  
 1804  
 1805  
 1806  
 1807  
 1808  
 1809  
 1810  
 1811  
 1812  
 1813  
 1814  
 1815  
 1816  
 1817  
 1818  
 1819  
 1820  
 1821  
 1822  
 1823  
 1824  
 1825  
 1826  
 1827  
 1828  
 1829  
 1830  
 1831  
 1832  
 1833  
 1834  
 1835  
 1836  
 1837  
 1838  
 1839  
 1840  
 1841  
 1842  
 1843  
 1844  
 1845  
 1846  
 1847  
 1848  
 1849  
 1850  
 1851  
 1852  
 1853  
 1854  
 1855  
 1856  
 1857  
 1858  
 1859  
 1860  
 1861  
 1862  
 1863  
 1864  
 1865  
 1866  
 1867  
 1868  
 1869  
 1870  
 1871  
 1872  
 1873  
 1874  
 1875  
 1876  
 1877  
 1878  
 1879  
 1880  
 1881  
 1882  
 1883  
 1884  
 1885  
 1886  
 1887  
 1888  
 1889  
 1890  
 1891  
 1892  
 1893  
 1894  
 1895  
 1896  
 1897  
 1898  
 1899  
 1900  
 1901  
 1902  
 1903  
 1904  
 1905  
 1906  
 1907  
 1908  
 1909  
 1910  
 1911  
 1912  
 1913  
 1914  
 1915  
 1916  
 1917  
 1918  
 1919  
 1920  
 1921  
 1922  
 1923  
 1924  
 1925  
 1926  
 1927  
 1928  
 1929  
 1930  
 1931  
 1932  
 1933  
 1934  
 1935  
 1936  
 1937  
 1938  
 1939  
 1940  
 1941  
 1942  
 1943  
 1944  
 1945  
 1946  
 1947  
 1948  
 1949  
 1950  
 1951  
 1952  
 1953  
 1954  
 1955  
 1956  
 1957  
 1958  
 1959  
 1960  
 1961  
 1962  
 1963  
 1964  
 1965  
 1966  
 1967  
 1968  
 1969  
 1970  
 1971  
 1972  
 1973  
 1974  
 1975  
 1976  
 1977  
 1978  
 1979  
 1980  
 1981  
 1982  
 1983  
 1984  
 1985  
 1986  
 1987  
 1988  
 1989  
 1990  
 1991  
 1992  
 1993  
 1994  
 1995  
 1996  
 1997  
 1998  
 1999  
 2000  
 2001  
 2002  
 2003  
 2004  
 2005  
 2006  
 2007  
 2008  
 2009  
 2010  
 2011  
 2012  
 2013  
 2014  
 2015  
 2016  
 2017  
 2018  
 2019  
 2020  
 2021  
 2022  
 2023  
 2024  
 2025  
 2026  
 2027  
 2028  
 2029  
 2030  
 2031  
 2032  
 2033  
 2034  
 2035  
 2036  
 2037  
 2038  
 2039  
 2040  
 2041  
 2042  
 2043  
 2044  
 2045  
 2046  
 2047  
 2048  
 2049  
 2050  
 2051  
 2052  
 2053  
 2054  
 2055  
 2056  
 2057  
 2058  
 2059  
 2060  
 2061  
 2062  
 2063  
 2064  
 2065  
 2066  
 2067  
 2068  
 2069  
 2070  
 2071  
 2072  
 2073  
 2074  
 2075  
 2076  
 2077  
 2078  
 2079  
 2080  
 2081  
 2082  
 2083  
 2084  
 2085  
 2086  
 2087  
 2088  
 2089  
 2090  
 2091  
 2092  
 2093  
 2094  
 2095  
 2096  
 2097  
 2098  
 2099  
 2100  
 2101  
 2102  
 2103  
 2104  
 2105  
 2106  
 2107  
 2108  
 2109  
 2110  
 2111  
 2112  
 2113  
 2114  
 2115  
 2116  
 2117  
 2118  
 2119  
 2120  
 2121  
 2122  
 2123  
 2124  
 2125  
 2126  
 2127  
 2128  
 2129  
 2130  
 2131  
 2132  
 2133  
 2134  
 2135  
 2136  
 2137  
 2138  
 2139  
 2140  
 2141  
 2142  
 2143  
 2144  
 2145  
 2146  
 2147  
 2148  
 2149  
 2150  
 2151  
 2152  
 2153  
 2154  
 2155  
 2156  
 2157  
 2158  
 2159  
 2160  
 2161  
 2162  
 2163  
 2164  
 2165  
 2166  
 2167  
 2168  
 2169  
 2170  
 2171  
 2172  
 2173  
 2174  
 2175  
 2176  
 2177  
 2178  
 2179  
 2180  
 2181  
 2182  
 2183  
 2184  
 2185  
 2186  
 2187  
 2188  
 2189  
 2190  
 2191  
 2192  
 2193  
 2194  
 2195  
 2196  
 2197  
 2198  
 2199  
 2200  
 2201  
 2202  
 2203  
 2204  
 2205  
 2206  
 2207  
 2208  
 2209  
 2210  
 2211  
 2212  
 2213  
 2214  
 2215  
 2216  
 2217  
 2218  
 2219  
 2220  
 2221  
 2222  
 2223  
 2224  
 2225  
 2226  
 2227  
 2228  
 2229  
 2230  
 2231  
 2232  
 2233  
 2234  
 2235  
 2236  
 2237  
 2238  
 2239  
 2240  
 2241  
 2242  
 2243  
 2244  
 2245  
 2246  
 2247  
 2248  
 2249  
 2250  
 2251  
 2252  
 2253  
 2254  
 2255  
 2256  
 2257  
 2258  
 2259  
 2260  
 2261  
 2262  
 2263  
 2264  
 2265  
 2266  
 2267  
 2268  
 2269  
 2270  
 2271  
 2272  
 2273  
 2274  
 2275  
 2276  
 2277  
 2278  
 2279  
 2280  
 2281  
 2282  
 2283  
 2284  
 2285  
 2286  
 2287  
 2288  
 2289  
 2290  
 2291  
 2292  
 2293  
 2294  
 2295  
 2296  
 2297  
 2298  
 2299  
 2300  
 2301  
 2302  
 2303  
 2304  
 2305  
 2306  
 2307  
 2308  
 2309  
 2310  
 2311  
 2312  
 2313  
 2314  
 2315  
 2316  
 2317  
 2318  
 2319  
 2320  
 2321  
 2322  
 2323  
 2324  
 2325  
 2326  
 2327  
 2328  
 2329  
 2330  
 2331  
 2332  
 2333  
 2334  
 2335  
 2336  
 2337  
 2338  
 2339  
 2340  
 2341  
 2342  
 234

972  
 973 Table 5: An example of an HVAC operation task, covering multiple object types—such as environment,  
 974 general zone, chiller, chilled water pump (ACCCCP), cooling water pump (ACCCOP),  
 975 cooling tower (ACCCOT), fan coil unit (ACATFC), and supply air fan (ACATFU)—along with  
 976 their associated input and output variable types.

| 977<br>Object type | 978<br>Input                                                                                                          |                                                                                                                                                                        |                                                       | 979<br>Output                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                    | 980<br>Static attribute                                                                                               | 981<br>Dynamic variable for the<br>982 past                                                                                                                            | 983<br>Dynamic attribute for the<br>984 future        |                                                                                                                            |
| 980<br>Environment |                                                                                                                       | 981<br>Outdoor temperature                                                                                                                                             | 982<br>Outdoor temperature                            |                                                                                                                            |
| 980<br>GeneralZone | 981<br>Area, volume, orientation                                                                                      | 982<br>Indoor temperature, relative<br>983<br>humidity                                                                                                                 |                                                       | 984<br>Indoor temperature, relative<br>985<br>humidity                                                                     |
| 982<br>Chiller     | 983<br>Rated cooling capacity,<br>984<br>rated power                                                                  | 985<br>Chilled water supply tempera-<br>986<br>ture, chilled water return tempera-<br>987<br>ture, chilled water flow rate                                             |                                                       | 988<br>Chilled water supply tempera-<br>989<br>ture, chilled water return tempera-<br>990<br>ture, chilled water flow rate |
| 985<br>ACCCP       | 986<br>Rated power, rated flow<br>987<br>rate, rated head                                                             | 988<br>Operating status, operat-<br>989<br>ing power, flow rate                                                                                                        | 990<br>Operating status                               | 991<br>Operating power, flow<br>992<br>rate                                                                                |
| 986<br>ACCCOP      | 987<br>Rated power, rated flow<br>988<br>rate, rated head                                                             | 989<br>Operating status, operat-<br>990<br>ing power, flow rate                                                                                                        | 991<br>Operating status                               | 992<br>Operating power, flow<br>993<br>rate                                                                                |
| 987<br>ACCCOT      | 988<br>Rated power, rated air<br>989<br>flow, number of fans,<br>990<br>design outdoor wet-bulb<br>991<br>temperature | 992<br>Number of operating<br>993<br>fans, air flow rate, leaving<br>994<br>water temperature, water<br>995<br>flow rate, leaving water<br>996<br>temperature setpoint | 997<br>Leaving water tempera-<br>998<br>ture Setpoint | 999<br>Number of Operating<br>999<br>fans, air flow rate, leaving<br>999<br>water temperature, water<br>999<br>flow rate   |
| 989<br>ACATFC      | 990<br>Rated power, rated air<br>991<br>flow, rated chilled water<br>992<br>flow rate                                 | 993<br>Supply air temperature,<br>994<br>return air temperature,<br>995<br>supply air temperature<br>996<br>setpoint                                                   | 997<br>Supply air temperature<br>998<br>setpoint      | 999<br>Supply air temperature,<br>999<br>return air temperature                                                            |
| 990<br>ACATFU      | 991<br>Rated power, rated air<br>992<br>flow                                                                          | 993<br>Fresh air flow rate, fan<br>994<br>speed                                                                                                                        | 995<br>Fan speed                                      | 996<br>Fresh air flow rate                                                                                                 |

## 995 996 B MBS DATASET DETAILS

999 The Multi-physics Building System (MBS) dataset combines real-world and simulated building  
 1000 data. A subset is publicly available at <https://drive.google.com/drive/folders/1fOG6SdFXXdJ0Lt aELQA6o7obRwgTBfp?usp=sharing>. Object and relationship definitions  
 1001 in building operation systems are based on a standardized, publicly available data dictionary  
 1002 commonly used in building automation. The training dataset primarily contains HVAC-related data,  
 1003 including empirical data aggregated from diverse real-world deployments and synthetic data gen-  
 1004 erated via a high-fidelity simulation environment. Figure 5 shows a partial 3D visualization from  
 1005 the simulation setup, illustrating mappings between equipment and spatial zones, as well as detailed  
 1006 interconnections such as piping and ductwork.

### 1008 1009 B.1 REAL PROJECT DATA

1010 We have accumulated a substantial dataset from a multitude of real-world projects, encompassing  
 1011 various building subsystems such as energy management systems, security surveillance systems,  
 1012 equipment and facility management systems, and building automation systems. The dataset com-  
 1013 prises a total of 1045 projects, with 508 projects containing relatively comprehensive information.  
 1014 The dataset contains about 5B tokens and 16B time points data.

### 1016 1017 B.2 SIMULATION DATA

1018 Compared to real-world project data, simulations can involve a much larger number of variables,  
 1019 including many that are difficult or even impossible to measure in the real world project but can be  
 1020 calculated in a simulation environment. Additionally, simulations allow for the alteration of many  
 1021 operating conditions, covering a much broader range of scenarios than real projects can achieve.  
 1022 Given the astronomical number of possible parameter combinations, it is necessary to reduce the  
 1023 number of generated simulation cases. This can be achieved by carefully selecting variable param-  
 1024 eters and applying orthogonal testing to optimize the case generation process. We constructed a  
 1025 massive dataset of building energy simulations using EnergyPlus DOE (2015). By systematically  
 varying key building parameters across 12 diverse base building models, we generated approxi-



Figure 5: 3D illustration of a simulated building environment, showing spatial layout, service relationships between equipment and zones, and extensive duct and piping connections representing air and water flows in HVAC systems.

mately 5,000 simulation scenario cases. Each case provides high-resolution 15-minute data for a year, resulting in a dataset of over 80B tokens and 600B time points data.

### B.3 COMPARISON BETWEEN REAL PROJECT AND SIMULATION DATA

We collected both simulated and real-world data for various variables, and Figure 6 illustrates a daily profile of chiller plant cooling power, for instance. Overall, the simulated data closely aligns with the real-world data, demonstrating a strong consistency. Due to the ability to simulate a wider range of operating conditions, the simulated data offers a broader coverage of scenarios. This increased diversity in the simulated conditions allows for a more comprehensive representation of potential system behaviors, enhancing the robustness of the model training and its ability to generalize to different operational contexts.



Figure 6: Comparison of a daily profile for chiller plant cooling power between real-world data and simulated data.

1080 C SUPPLEMENTARY EXPLANATION OF NETWORK UNITS AND FORMULAS  
10811082 C.1 GATED RESIDUAL NETWORK (GRN)  
1083

1084 The following description of the Gated Residual Network (GRN) is primarily based on the relevant  
1085 sections from the Temporal Fusion Transformer (TFT) paper Lim et al. (2021). The GRN intro-  
1086 duces a gating mechanism via the Gated Linear Unit (GLU) to regulate the flow of information  
1087 and selectively pass only the most relevant inputs. This design is critical for handling diverse data  
1088 inputs effectively. The GRN structure is described by Equations 26-28. The primary input  $a$  and  
1089 the context input  $c$  are processed through the Exponential Linear Unit (ELU) activation function,  
1090 linear transformation, GLU, and layer normalization. Weight matrices  $W_1, W_2, W_3$ , and biases  $b_1,$   
1091  $b_2$  govern the transformation, providing flexibility through selective non-linear processing.

1092 
$$\text{GRN}(a, c) = \text{LayerNorm}(a + \text{GLU}(\eta_1)), \quad (26)$$
  
1093

1094 
$$\eta_1 = W_1 \eta_2 + b_1, \quad (27)$$
  
1095

1096 
$$\eta_2 = \text{ELU}(W_2 a + W_3 c + b_2). \quad (28)$$

1097 The GLU is defined in Equation 29, where  $X$  is the input,  $W_4$  and  $W_5$  are learnable weights,  $b_3$   
1098 and  $b_4$  are biases, and  $\sigma$  is the sigmoid function. The Hadamard product  $\odot$  modulates the GRN's  
1099 influence on the input  $a$ , allowing it to potentially skip processing when the GLU output approaches  
1100 zero. If no context vector is provided,  $c$  is set to zero.

1101 
$$\text{GLU}(X) = \sigma(W_4 X + b_3) \odot (W_5 X + b_4). \quad (29)$$

1102 This modular structure enables the GRN to adapt flexibly to different input types and feature com-  
1103 binations, enhancing the Variable Selection Networks' (VSNs) ability to identify and prioritize key  
1104 variables efficiently.

1106 C.2 VARIABLE SELECTION NETWORK (VSN)  
1107

1108 The variable selection weights  $\alpha$  are computed to determine the contribution of each time-variant  
1109 feature  $x_i$  to the aggregated embedding  $e^{\text{agg}}$ . This is achieved through a Gated Residual Network  
1110 (GRN) and a softmax function as shown below:

1111 
$$\alpha = [\alpha_1, \dots, \alpha_i, \dots, \alpha_m] = \text{Softmax}(\text{GRN}([e_1, \dots, e_i, \dots, e_m], c_s)), \quad (30)$$
  
1112

1113 where  $c_s$  is the static covariate encoder and  $e_i$  is the embedding vector of feature  $x_i$ . The aggregated  
1114 entity embedding vector  $e^{\text{agg}}$  is a weighted sum of all the  $m$  time-variant variable embeddings:

1115 
$$e^{\text{agg}} = \sum_{i=1}^m \alpha_i \text{GRN}(e_i). \quad (31)$$
  
1116  
1117

1118 VSN can be also used for static feature selection, and Figure 7 presents the VSN architecture, with  
1119 using GRN.

1121 C.3 TRANSFORMER  
1122

1123 The self-attention mechanism in Transformer layers enhances the embeddings by considering the  
1124 relationships between all elements in the input sequence, allowing the model to capture global con-  
1125 text and complex dependencies. The mechanism works by calculating a similarity score between  
1126 each query ( $Q$ ) and key ( $K$ ) pair, producing attention weights that reflect the importance of each  
1127 element in relation to others. These attention weights enable each element to be influenced by other  
1128 relevant elements in the sequence, leading to a dynamic and context-aware representation.

1129 The self-attention mechanism computes the attention weights for a given set of query, key, and value  
1130 matrices  $Q, K$ , and  $V$  as follows:

1132 
$$\text{Attention}(Q, K, V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_k}} \right) V, \quad (32)$$
  
1133



Figure 7: Overview of the entire workflow of the Fusion Layer, where both static and dynamic data pass through two Variable Selection Networks (VSN) with distinct parameters. The static features are selected by themselves, while dynamic data is filtered based on selected static covariates. The calculation mechanism of the VSN is also depicted in the diagram.

where  $Q$ ,  $K$ , and  $V$  are the query, key, and value matrices, respectively.  $d_k$  is the dimensionality of the key vectors. The term  $\frac{QK^T}{\sqrt{d_k}}$  ensures that the dot-product similarity is normalized by the square root of the dimensionality, preventing large values that could make the softmax function too sharp. The softmax function is applied to the similarity scores to generate a probability distribution, which is then used to weight the values in  $V$ .

The multi-head attention mechanism allows the model to capture information from multiple representation subspaces. Instead of computing a single attention output, multiple attention heads are computed in parallel, and their results are concatenated and projected back to the original space. The multi-head attention mechanism is defined as:

$$\text{MultiHead}(Q, K, V) = [H_1 \oplus \dots \oplus H_h \oplus \dots \oplus H_H]W_H, \quad (33)$$

where  $H_h$  represents the output of the  $h$ -th attention head, computed as:

$$H_h = \text{Attention}(QW_h^Q, KW_h^K, VW_h^V), \quad (34)$$

and  $W_h^Q$ ,  $W_h^K$ , and  $W_h^V$  are learned weight matrices for the query, key, and value matrices, respectively, for the  $h$ -th head. The symbol  $\oplus$  denotes concatenation, meaning the outputs from all attention heads are concatenated into a single vector.  $W_H$  is a learned weight matrix that projects the concatenated output back into the model's desired output dimension.

After the multi-head attention step, a feed-forward network (FFN) is applied to introduce non-linearity. The FFN consists of two fully connected layers with a ReLU activation function applied between them. This non-linearity enables the model to capture more complex relationships and dependencies within the data.

Thus, the combination of self-attention and multi-head attention allows the Transformer model to focus on different parts of the input sequence simultaneously, creating a more dynamic and con-

1188 textually aware representation, especially useful for tasks involving long-range dependencies and  
 1189 complex sequence data.  
 1190

#### 1191 C.4 INTRA-RELATION AGGREGATION 1192

1193 To preserve graph heterogeneity and enable fine-grained relation modeling, we perform relation-  
 1194 specific neighborhood aggregation using distinct BiLSTM encoders for each relation type.  
 1195

1196 At time step  $t$ , the system is represented as a heterogeneous graph  $\mathcal{G}_t = (V, E, R)$ , where  $R$  denotes  
 1197 the set of edge relation types. For each node  $v_i \in V$  and relation  $r_\ell \in R$ , we aggregate temporal  
 1198 embeddings  $h_{j,t}^{\text{temp}}$  from neighbors  $v_j \in N_\ell(v_i)$  using:  
 1199

$$1200 h_{i,\ell}^{\text{agg}}(t) = \frac{1}{|N_\ell(v_i)|} \sum_{v_j \in N_\ell(v_i)} \text{BiLSTM}_\ell(h_{j,t}^{\text{temp}}), \quad (35)$$

1201 Unlike HetGNN, which shares encoders across neighbor types, we assign a distinct BiLSTM per  
 1202 relation type  $r_\ell$ , allowing the model to disentangle heterogeneous physical or logical interactions.  
 1203 For example, a room might be connected to others via either airflow or control signals—relations  
 1204 that are semantically different and thus require different encoding strategies.  
 1205

#### 1206 C.5 INTER-RELATION AGGREGATION 1207

1208 To integrate information from multiple relation types, we adopt a multi-head attention mechanism  
 1209 over the aggregated embeddings  $h_{i,\ell}^{\text{agg}}(t)$ . For each attention head  $k = 1, \dots, K$ , attention coeffi-  
 1210 cients  $\alpha_\ell^k$  are computed as:  
 1211

$$1212 \alpha_\ell^k = \text{softmax} \left( \text{LeakyReLU} \left( a^{k\top} [W^k h_{i,t}^{\text{temp}} \| W^k h_{i,\ell}^{\text{agg}}(t)] \right) \right), \quad (36)$$

1213 where  $W^k \in \mathbb{R}^{d' \times d}$  is a learnable projection matrix and  $a^k \in \mathbb{R}^{2d'}$  is a shared attention vector for  
 1214 the  $k$ -th head. The final graph-based embedding for node  $v_i$  is:  
 1215

$$1216 h_{i,t}^{\text{graph}} = \frac{1}{K} \sum_{k=1}^K \sum_{\ell=1}^L \alpha_\ell^k W^k h_{i,\ell}^{\text{agg}}(t), \quad (37)$$

1217 This fusion mechanism allows the model to assign adaptive weights to different relation types per  
 1218 attention head, enabling robust modeling of heterogeneous dependencies. Compared to early fusion  
 1219 approaches, this method provides enhanced flexibility and improved representation quality for nodes  
 1220 participating in multi-relational contexts.  
 1221

## 1222 D MODEL VERSION COMPARISON 1223

1224 This section presents a systematic comparison of different model variants for time-series forecasting  
 1225 in complex building operation systems. All models are trained on the MBS dataset, using the pro-  
 1226 posed HGTFT architecture. The resulting pretrained model, specialized for the building domain, is  
 1227 termed BOSG (Building Operation System Generator). We explore a range of model configurations  
 1228 by varying embedding dimensions, network depth, and overall parameter count to analyze trade-offs  
 1229 between predictive performance, model size, and training efficiency.  
 1230

### 1231 D.1 EMBEDDING DIMENSION ADJUSTMENT 1232

1233 We tested four embedding dimensions (64, 128, 256, and 512), while keeping the architecture con-  
 1234 stant: one temporal layer, one graph layer, and two additional temporal layers. Results in Table 6  
 1235 show that 256-d offers a strong trade-off between accuracy and efficiency. Although 512-d pro-  
 1236 vides marginal MSE improvements, the parameter increase is substantial, with limited performance  
 1237 benefit.  
 1238

1242  
 1243 Table 6: Performance comparison of various model configurations with different embedding dimen-  
 1244 sions.

| 1245 Embedding<br>1246 dimension | 1247 Model size | 1248 MSE      | 1249 RCS      | 1250 CRS     | 1251 FDS     |
|----------------------------------|-----------------|---------------|---------------|--------------|--------------|
| 64-d                             | 22,241,773      | 0.0098        | 0.0168        | 0.434        | 0.491        |
| 128-d                            | 81,437,154      | 0.0059        | 0.0045        | 0.396        | 0.448        |
| 256-d                            | 310,800,689     | 0.0027        | <b>0.0012</b> | <b>0.312</b> | <b>0.405</b> |
| 512-d                            | 1,173,418,849   | <b>0.0026</b> | <b>0.0012</b> | 0.320        | 0.413        |

1252  
 1253 D.2 MODEL LAYER ADJUSTMENT

1254  
 1255 We compared multiple network layer configurations, modifying the order and count of temporal and  
 1256 graph layers (see Table 7). Results indicate that placing a temporal layer before the graph layer is  
 1257 essential for capturing temporal context prior to modeling inter-object relations. Additional temporal  
 1258 layers after the graph layer further improve performance, but benefits plateau beyond two layers.

1260  
 1261 Table 7: Performance comparison of various model configurations with different network layer  
 1262 architectures.

| 1263 Layer configuration                       | 1264 Model size | 1265 MSE      | 1266 RCS      | 1267 CRS     | 1268 FDS     |
|------------------------------------------------|-----------------|---------------|---------------|--------------|--------------|
| Graph+Temporal                                 | 197,075,249     | 0.0068        | 0.0025        | 0.487        | 0.536        |
| Temporal+Graph                                 | 197,075,249     | 0.0056        | 0.0021        | 0.469        | 0.480        |
| Temporal+Graph $\times 2$                      | 213,697,841     | 0.0053        | 0.0020        | 0.454        | 0.477        |
| (Temporal+Graph) $\times 2$                    | 270,560,561     | 0.0039        | 0.0018        | 0.413        | 0.439        |
| (Temporal+Graph) $\times 3$                    | 344,045,873     | 0.0033        | 0.0015        | 0.375        | 0.414        |
| Temporal+Graph+Temporal                        | 253,937,969     | 0.0037        | 0.0016        | 0.395        | 0.468        |
| Temporal $\times 2$ +Graph+Temporal            | 310,800,689     | 0.0036        | 0.0016        | 0.386        | 0.442        |
| Temporal $\times 2$ +Graph+Temporal $\times 2$ | 367,663,409     | 0.0028        | 0.0013        | 0.306        | 0.399        |
| Temporal+Graph+Temporal $\times 2$             | 310,800,689     | 0.0027        | <b>0.0012</b> | 0.312        | 0.405        |
| Temporal+Graph+Temporal $\times 3$             | 367,663,409     | <b>0.0026</b> | <b>0.0012</b> | <b>0.304</b> | <b>0.397</b> |

1275  
 1276 D.3 SCALING STUDY AND MODEL VARIANTS

1277  
 1278 We conducted a scaling study on the BOSG model to investigate the relationship between model size,  
 1279 computation, and forecasting performance. Four BOSG configurations were trained with parameter  
 1280 sizes of 20M, 80M, 310M, and 1.26B, each using 30K iterations and a fixed global batch size of 64.  
 1281 All model variants adopted 8 attention heads and incorporated up/down projection layers to enhance  
 1282 feature representation. Their architectural details and evaluation results are summarized in Table 8.  
 1283 As model size increased, the primary forecasting metric (MSE) consistently decreased from 0.0107  
 1284 to 0.0025, with notable gains up to 310M parameters. However, performance improvement between  
 1285 the 310M and 1.26B models was marginal, indicating diminishing returns at larger scales.

1286  
 1287 To better understand compute-performance efficiency, we saved model checkpoints at specific  
 1288 FLOPS intervals during training and plotted the resulting MSE values on a log scale. As shown  
 1289 in Figure 8, training performance improved with increasing computational budget, although the  
 1290 rate of improvement flattened beyond the 310M model. All experiments were conducted on a high-  
 1291 performance system consisting of eight NVIDIA A800 GPUs (80GB memory each), providing 3456  
 1292 tensor cores in total. This setup enabled efficient parallel training, with the largest model (1.26B)  
 1293 completing 30K iterations in approximately three days. These findings provide practical guidance  
 1294 for compute-optimal scaling in time-series modeling.

1296

1297 Table 8: Performance comparison of BOSG model variants with varying parameter sizes and con-  
1298 figurations.

| 1299 Version | 1300 Params   | 1301 Embedding | 1302 Layer configuration           | 1303 | MSE           | RCS           | CRS          | FDS          |
|--------------|---------------|----------------|------------------------------------|------|---------------|---------------|--------------|--------------|
| 20M          | 19,164,316    | 64-d           | Graph+Temporal                     |      | 0.0107        | 0.0184        | 0.496        | 0.519        |
| 80M          | 77,202,922    | 128-d          | Temporal+Graph+Temporal            |      | 0.0073        | 0.0055        | 0.435        | 0.481        |
| 310M         | 310,800,689   | 256-d          | Temporal+Graph+Temporal $\times 2$ |      | 0.0027        | <b>0.0012</b> | 0.312        | <b>0.405</b> |
| 1.26B        | 1,258,271,153 | 512-d          | Temporal+Graph+Temporal $\times 3$ |      | <b>0.0025</b> | <b>0.0012</b> | <b>0.307</b> | 0.416        |

1304  
1305 Figure 8: Training MSE vs. FLOPS (log scale) for different BOSG model sizes (20M, 80M, 310M,  
1306 1.26B) on the SSL masked time-series modeling task.  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
13151316  
1317 

## E SELF-SUPERVISED LEARNING

1318 

### E.1 LOSS FUNCTION DETAILS FOR SELF-SUPERVISED LEARNING

1319  
1320 The following describes the loss functions employed in our self-supervised learning (SSL) tasks,  
1321 aimed at ensuring clarity and reproducibility. For masked time-series modeling, the reconstruction  
1322 error is quantified using the Mean Squared Error (MSE) as follows:  
1323

1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349

where  $N$  represents the number of nodes,  $F_i$  denotes the number of features for the  $i$ -th node, and  $M_{i,f}$  is the number of masked time points for each feature.

For the graph-based task, the Binary Cross-Entropy (BCE) loss function is utilized to evaluate the classification accuracy of edge predictions, defined as:

$$\text{BCE} = -\frac{1}{N_r} \sum_{i=1}^{N_r} (r_i \log(\hat{r}_i) + (1 - r_i) \log(1 - \hat{r}_i)), \quad (39)$$

where  $N_r$  represents the number of samples,  $\hat{r}_i$  is the predicted relation, and  $r_i$  denotes the true relation value.

### E.2 MODEL TRAINING EXPERIMENTS FOR SELF-SUPERVISED RELATIONSHIP LEARNING TASK

We conducted experiments for self-supervised relationship learning task with the HGTFT model to identify which network layers are essential to update and which can remain fixed. Additionally, we evaluated the prediction results when the parameters of the task-specific linear transformation layer were either initialized randomly without updates or jointly updated alongside HGTFT. Further, we examined the effect of initializing HGTFT parameters either randomly or using pre-trained

weights from a masked time-series modeling task. The results of these validation experiments are summarized in Table 9.

Table 9: Experimental results of masked edge modeling for various model update approaches.

| Case No. | HGTFT update layer    | Task NW    | Initialization              | loss (BCE)  |
|----------|-----------------------|------------|-----------------------------|-------------|
| Case 1   | node, temporal, graph | Update     | Random                      | 0.34        |
| Case 2   | temporal, graph       | Update     | Random                      | 0.35        |
| Case 3   | graph                 | Update     | Random                      | 0.42        |
| Case 4   | temporal, graph       | w/o update | Random                      | 0.35        |
| Case 5   | temporal, graph       | w/o update | Masked time-series modeling | <b>0.28</b> |

The experimental results revealed that updating the network layers responsible for the temporal and graph embeddings is crucial for task performance. Additionally, reusing the pre-trained parameters from the masked time-series modeling task provided a significant improvement over random initialization. Interestingly, the task-specific linear output layer primarily acted as a dimensionality transformation and had minimal impact on the prediction results. Based on these observations, we determined that the optimal approach involves initializing the base HGTFT model parameters from the trained masked time-series modeling task, updating only the temporal and graph embeddings, and leaving the task-specific linear output layer randomly initialized and fixed during training.

### E.3 TRAINING PIPELINE FOR SELF-SUPERVISED LEARNING

In our self-supervised learning approach, we prioritized the masked time-series modeling task as the primary objective, with the masked edge modeling task as a secondary target. The goal was to minimize the loss of the masked edge modeling task while ensuring that the loss of the masked time-series modeling task increased by no more than 10% from its optimal value. A series of sequential training experiments were conducted to achieve this balance, and the results are summarized in Table 10.

Table 10: Experiment results for the self-supervised learning pipeline.

| Step No. | Masked time-series modeling |               |             | Masked edge modeling |               |             |
|----------|-----------------------------|---------------|-------------|----------------------|---------------|-------------|
|          | Task on/off                 | Starting loss | Ending loss | Task on/off          | Starting loss | Ending loss |
| Step 1   | On                          | 1.8421        | 0.0027      | Off                  | N/A           | 0.6942      |
| Step 2   | Off                         | 0.0027        | 0.6439      | On                   | 0.6942        | 0.2885      |
| Step 3   | On                          | 0.6439        | 0.0028      | Off                  | 0.2885        | 0.4526      |
| Step 4   | Off                         | 0.0028        | 0.2781      | On                   | 0.4526        | 0.2640      |
| Step 5   | On                          | 0.2781        | 0.0026      | Off                  | 0.2640        | 0.3304      |
| Step 6   | Off                         | 0.0026        | 0.2673      | On                   | 0.3304        | 0.2595      |
| Step 7   | On                          | 0.2673        | 0.0026      | Off                  | 0.2595        | 0.3184      |

Through a total of seven rounds of alternating training between the two tasks, we observe a consistent decrease in the loss for the masked time-series modeling task before each training session, with little change in the loss after training. In contrast, for the masked edge modeling task, the loss values showed noticeable reductions both before and after training in each round. Notably, the final round of training for the masked time-series modeling task had minimal impact on the graph relationship prediction, suggesting that the model had converged and further training on this task no longer significantly affected the performance of the masked edge modeling task.

## F SUPERVISED LEARNING

### F.1 SUPERVISED LEARNING SUBTASK MODEL

Each subtask shares a unified decoder structure (see Figure 9), where masked attention connects historical embeddings to future targets. GRN blocks and lightweight dense projections are included



Figure 9: Model structure for a typical prediction subtask with two fine-tuning phases.

for stable adaptation. Fine-tuning is performed in two stages: task-level tuning updates only task-specific parameters, while project-level tuning adjusts the dense head to align with limited real-world data, preserving general representations learned during pretraining.

## F.2 SUPERVISED LEARNING TRAINING TASK

Forecasting tasks in multiphysics systems exhibit substantial diversity due to the heterogeneity of entities, variable types, and interaction structures. To capture this complexity, we construct a suite of supervised learning tasks based on scenario-specific interaction topologies. Each scenario is represented as a heterogeneous graph comprising distinct physical entities (e.g., thermal zones, fluid circulation units, environmental sensors) and their relationships, as illustrated in Figure 10 for scenario 3.3.

Beyond structural diversity, variations in variable availability across entities further contribute to task differentiation. We first define original tasks by selecting strongly correlated entities and predicting all of their dynamic variables for future time points. Derived tasks are then generated by selectively masking or revealing subsets of variables in the future, simulating diverse observability conditions. An example of such task construction is provided in Table 5.

## F.3 MEAN SQUARE ERROR FOR SUPERVISED LEARNING

The accuracy loss, denoted as  $L_{\text{MSE}}$ , is quantified using the Mean Squared Error (MSE) across all entities for each task, as formally defined below:

$$L_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^N (y_i(t, T_{\text{future}}) - \hat{y}_i(t, T_{\text{future}}))^2, \quad (40)$$

where  $N$  represents the number of entities, which may vary across different tasks. The terms  $y_i(t, T_{\text{future}})$  and  $\hat{y}_i(t, T_{\text{future}})$  refer to the true and predicted values, respectively, for the time period from  $t + 1$  to  $t + T_{\text{future}}$ , corresponding to all dynamic prediction features of the  $i$ -th entity. For the sake of brevity and clarity, the feature dimension is omitted from the formula.

## F.4 REASONABILITY CHECKS SCORE

In complex physical systems, time series predictions must not only achieve numerical accuracy but also respect fundamental physical laws and operational constraints. We propose the *Reasonability Checks Score* (RCS) as an auxiliary evaluation metric to quantify the degree to which predicted values conform to domain-specific physical expectations. Rather than being limited to any particular field, the RCS framework is designed to be modular and extensible, supporting multi-domain constraints across various physical and engineered systems.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477



Figure 10: Topology of tasks and entity types in a building multiphysics system. Each scenario defines a specific combination of interconnected entities, identified by a unique scenario ID. Highlighted example 3.3 includes Environment, General Zone, Chiller, Chilled/ Cooling Water Pumps (ACCCCP/ACCCOP), Cooling Tower (ACCCOT), Fan Coil Unit (ACATFC), and Supply Air Fan (ACATFU).

To structure this assessment, we categorize reasonableness checks into four generalized dimensions:

1. **Physical State Bounds:** Core physical quantities (e.g., temperature, pressure, flow rate, power) should remain within known feasible or safe ranges, derived from empirical knowledge or physical laws.
2. **Energy and Resource Balance:** Energy usage, mass flow, or material consumption should be consistent with input-output relationships and operational schedules. Sudden discontinuities or unrealistic surges may indicate violations of conservation principles or faulty control.
3. **System Operating Constraints:** Devices or subsystems should operate in valid configurations, respecting timing constraints, activation conditions, and logical dependencies (e.g., cooling should not activate when the system is already below the lower threshold).
4. **Inter-Component Consistency:** Multiple subsystems interacting within the same environment should exhibit consistent behavior. For example, responses to a shared external stimulus should not contradict each other or physical causality.

Each reasonableness check can be modeled as a differentiable function that penalizes violations of soft physical constraints. The total RCS loss is defined as:

$$L_{\text{RCS}} = \sum_{k=1}^K g_k(\hat{y}_k(t, T_{\text{future}})), \quad (41)$$

where  $g_k(\cdot)$  denotes the  $k$ -th check function applied to the predicted output  $\hat{y}_k(t, T_{\text{future}})$ , and  $K$  is the total number of checks relevant to the task.

**Example 1: Bounded Range Check.** For a physical variable  $\hat{y}(t)$  constrained within a range  $[y_{\min}, y_{\max}]$ , the penalty term can be formulated as:

$$g_{\text{range}}(\hat{y}(t)) = \lambda \cdot \left[ \max(0, \hat{y}(t) - y_{\max})^2 + \max(0, y_{\min} - \hat{y}(t))^2 \right], \quad (42)$$

1512 where  $\lambda$  is a weighting coefficient controlling the penalty strength at each time point  $t$ .  
 1513

1514 **Example 2: Energy Conservation Check.** In multi-physical systems, the principle of energy con-  
 1515 servation often serves as a key constraint. For instance, in a thermal process involving heat exchange,  
 1516 the heat entering a system at time  $t$  should approximately equal the sum of the heat leaving the sys-  
 1517 tem and the internal losses, i.e.,  $Q_{\text{in}}(t) \approx Q_{\text{out}}(t) + Q_{\text{loss}}(t)$ . To enforce this physical constraint on  
 1518 predicted outputs, we define the energy conservation check function as:  
 1519

$$1520 \quad g_{\text{energy}}(t) = \gamma \cdot \left( \hat{Q}_{\text{in}}(t) - \hat{Q}_{\text{out}}(t) - Q_{\text{loss}}(t) \right)^2, \quad (43)$$

1522 where  $\hat{Q}_{\text{in}}(t)$  and  $\hat{Q}_{\text{out}}(t)$  denote the predicted input and output energy at time  $t$ , and  $Q_{\text{loss}}(t)$   
 1523 is a predefined (or estimated) time-dependent loss term. The scalar  $\gamma$  controls the importance of  
 1524 this check. This function penalizes deviations from the expected energy balance at each timestep,  
 1525 thereby promoting physically consistent predictions.  
 1526

## 1527 F.5 CORRELATION-BASED SCORE

1529 The Correlation-Based Score (CBS) evaluates the statistical correlation between predicted and true  
 1530 values in time-series forecasting by computing the Pearson correlation coefficients for both predicted  
 1531 and true values, determining the deviation between these correlations for each variable pair, and then  
 1532 calculating the loss as the Mean Squared Error (MSE) of these deviations.

1533 The formula for the CBS loss  $L_{\text{corr}}$  is given by:  
 1534

$$1535 \quad L_{\text{CBS}} = \frac{1}{L} \sum_{l=1}^L \left( |\rho(\hat{y}_i, \hat{y}_j) - \rho(y_i, y_j)|^2 \right), \quad (44)$$

1538 Where  $L$  is the number of variable pairs in the prediction task.  $\rho(\hat{y}_i, \hat{y}_j)$  is the Pearson correlation  
 1539 coefficient between the predicted values  $\hat{y}_i$  and  $\hat{y}_j$ , and  $\rho(y_i, y_j)$  is the Pearson correlation coefficient  
 1540 between the true values  $y_i$  and  $y_j$ .  
 1541

## 1542 F.6 FREQUENCY DOMAIN SIMILARITY

1544 To calculate the similarity between two time-series datasets in the frequency domain, we can use the  
 1545 Fourier Transform to convert both datasets from the time domain to the frequency domain and then  
 1546 compare their frequency components. The steps are stated as following:  
 1547

- 1548 **Fourier Transform:** Apply the Fourier Transform to each time series to obtain the am-  
 1549 plitude and phase spectra. Let  $A_X(f)$  and  $\theta_X(f)$  be the amplitude and phase of the first  
 1550 time-series data across frequencies  $f$ . Similarly,  $A_Y(f)$  and  $\theta_Y(f)$  represent the amplitude  
 1551 and phase of the second time series.
- 1552 **Amplitude Cosine Similarity:** Define the cosine similarity for the amplitude spectra of  
 1553 the two time-series datasets as follows:

$$1554 \quad S_{\text{amp}} = \frac{\sum_{f=1}^N A_X(f) \cdot A_Y(f)}{\sqrt{\sum_{f=1}^N A_X(f)^2} \cdot \sqrt{\sum_{f=1}^N A_Y(f)^2}} \quad (45)$$

1557 where  $N$  is the number of frequency components. This metric evaluates the similarity in  
 1558 amplitude between the two datasets.  
 1559

- 1560 **Phase Cosine Similarity:** Define the cosine similarity for the phase spectra by converting  
 1561 the phase angles into their respective sine and cosine components:  
 1562

$$1563 \quad S_{\text{phase}} = \frac{\sum_{f=1}^N (\cos(\theta_X(f)) \cdot \cos(\theta_Y(f)) + \sin(\theta_X(f)) \cdot \sin(\theta_Y(f)))}{\sqrt{\sum_{f=1}^N (\cos(\theta_X(f))^2 + \sin(\theta_X(f))^2)} \cdot \sqrt{\sum_{f=1}^N (\cos(\theta_Y(f))^2 + \sin(\theta_Y(f))^2)}} \quad (46)$$

1564 This metric evaluates the alignment of phase angles between the two time series.  
 1565

1566

1567

Table 11: Supervised learning pipeline with loss weights.

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

4. **Combined Frequency Domain Similarity:** Finally, define the combined frequency domain similarity  $S_{\text{freq}}$  using a weighted sum of the amplitude and phase similarities:

$$S_{\text{freq}} = \alpha S_{\text{amp}} + \beta S_{\text{phase}} \quad (47)$$

where  $\alpha$  and  $\beta$  are weights that can be adjusted based on the relative importance of amplitude and phase similarity. This combined metric  $S_{\text{freq}}$  captures both amplitude and phase alignment, offering a comprehensive measure of similarity between the two time-series datasets in the frequency domain. The loss for Frequency Domain Similarity (FDS),  $L_{\text{FDS}}$ , is  $1 - S_{\text{freq}}$ .

1585

1586

## F.7 SUPERVISED LEARNING PIPELINE

1587

1588

1589

1590

1591

1592

1593

1594

1595

$$L_{\text{task},i} = a_1 L_{\text{MSE}} + a_2 L_{\text{RCS}} + a_3 L_{\text{CRS}} + a_4 L_{\text{FDS}}, \quad (48)$$

1596

where  $a_1, a_2, a_3, a_4$  denote the respective weights of each loss component.

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

In Stage 1, the parameters of the foundation model, initialized from the self-supervised phase, are frozen, with only the task-specific parameters being updated. This allows the model to quickly adapt to a reasonable accuracy range, using a learning rate of 0.1, while prioritizing the MSE loss function.

1616

1617

1618

1619

In Stage 2, both the foundation model and task-specific models are jointly trained, with the learning rate gradually decaying from 0.1 to 0.01. This stage aims to improve prediction accuracy and gradually bring it closer to optimal performance. The loss weights are adjusted to strike a balanced consideration of the different loss functions.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

In Stages 3, 4, and 5, the task-specific parameters are frozen, and the foundation model is further refined to enhance generalization capability. The learning rate is progressively reduced to 0.005, 0.003, and 0.001, respectively. During these stages, the loss weights are adjusted to refine model performance. In Stage 3, the focus is on improving accuracy with minimal adjustments to the consistency and rationality losses. In Stages 4 and 5, the loss weights are updated to place greater emphasis on  $L_{\text{RCS}}$ , promoting improved rationality and domain-specific reasoning.

1636

1637

1638

1639

1640

1641

1642

1643

1644

## G BASELINE METHODS SELECTION

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

To evaluate the performance of HGTFT across zero-shot and few-shot forecasting tasks, we compare it against diverse baselines, including classic models (No LMs), time-series large models (Time LMs), and large language model-based methods (LLMs). These methods differ in how they handle input modalities such as time-series (TS), static metadata (Static), and graph structure (Graph), as

1620 detailed in Table 12. For each method, we selected the most capable open-source version available  
 1621 to ensure a fair comparison.  
 1622

1623 Below, we provide an overview of the selected baseline methods and their respective adaptations to  
 1624 our setting:

- 1625 • **LSTM** and **Autoformer**: Forecast each variable independently, without incorporating  
 1626 static or relational information. Their outputs are aggregated through post-processing to  
 1627 construct full multivariate predictions.
- 1628 • **TFT**: Combines multivariate time-series data with static features to perform object-level  
 1629 forecasting. It supports variable selection and interpretable attention mechanisms but does  
 1630 not model inter-object dependencies.
- 1631 • **HTGNN**: Utilizes graph-structured time-series inputs, leveraging the relationships between  
 1632 objects to perform dynamic variable forecasting in a heterogeneous setting.
- 1633 • **STD-MAE**: Utilizes graph-structured time-series inputs in a homogeneous setting, where  
 1634 the system is decomposed into multiple homogeneous subgraphs. Each subgraph is mod-  
 1635 eled independently to capture localized spatial-temporal patterns, and the predictions are  
 1636 subsequently aggregated to form the overall system-level forecast.
- 1637 • **TimesFM** and **MOIRAI**: Encode each object type’s time-series data sequentially, forecast-  
 1638 ing each variable independently. These models do not utilize static or graph information;  
 1639 instead, multivariate predictions are obtained by batching univariate forecasts.
- 1640 • **LLMTime** and **Time-LLM**: Process multiple object instances simultaneously using only  
 1641 time-series data. These LLM-based models do not account for static metadata or inter-  
 1642 instance relationships, but benefit from large-scale pretraining and context-aware genera-  
 1643 tion.

1645 Table 12: Baseline methods summary.

| 1647 Method     | 1648 Input Type | 1649 Category | 1650 Model Version |
|-----------------|-----------------|---------------|--------------------|
| 1648 LSTM       | 1649 TS         | 1650 No LM    | 1651 —             |
| 1649 Autoformer | 1650 TS         | 1651 No LM    | 1652 —             |
| 1650 TFT        | 1651 TS, Static | 1652 No LM    | 1653 —             |
| 1651 HTGNN      | 1652 TS, Graph  | 1653 No LM    | 1654 —             |
| 1652 STD-MAE    | 1653 TS, Graph  | 1654 No LM    | 1655 —             |
| 1653 TimesFM    | 1654 TS         | 1655 Time LM  | 1656 200M          |
| 1654 MOIRAI     | 1655 TS         | 1656 Time LM  | 1657 1.1-R-large   |
| 1655 LLMTime    | 1656 TS         | 1657 LLM      | 1658 LLaMA-2 70B   |
| 1656 Time-LLM   | 1657 TS         | 1658 LLM      | 1659 LLaMA 7B      |

1656 In recent years, there has been a large number of work focusing on spatial-temporal forecasting  
 1657 in relatively simple settings involving homogeneous object types and graph structures. Although  
 1658 these works differ from the problem definition and setting in our study, we include several widely  
 1659 recognized spatial-temporal forecasting algorithms from the past 4 years for a more comprehensive  
 1660 comparison. We evaluate their performance on four standard datasets: PEMS04, PEMS08, COVID-  
 1661 19 (JHU), and COVID-19 (NYT). As shown in Table 13, while recent methods continue to make  
 1662 marginal improvements in these benchmarks, the performance gap is narrowing. This highlights a  
 1663 critical limitation: the lack of methods and datasets capable of handling more complex scenarios.  
 1664 Addressing this gap is the primary motivation of our work.

1665 We also evaluate our method and selected baselines on commonly used standard time-series datasets,  
 1666 including ETT, Weather, Electricity, Traffic and ILI. Although these datasets are primarily bench-  
 1667 marks for purely data-driven forecasting and are not the main focus of our study, our method  
 1668 achieves performance comparable to state-of-the-art models (Table 14).

## 1670 H NORMALIZATION METHODS

1671 To evaluate the effectiveness of different normalization methods, using MSE directly on normalized  
 1672 data is not appropriate, as each method applies a unique scaling to the variables, which would

1674

1675 Table 13: Performance comparison on PEMS04, PEMS08, COVID-19 (JHU), COVID-19 (NYT)  
1676 datasets. Best results are in **bold**, second best are underlined.

| Model                          | PEMS04                             |                                    |                                    |                                    | PEMS08                             |                                    |                                    |                                    | COVID-19 (JHU) |      | COVID-19 (NYT) |      |
|--------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------|------|----------------|------|
|                                | MAE                                | RMSE                               | MAE                                | RMSE                               | MAE                                | RMSE                               | MAE                                | RMSE                               | MAE            | RMSE | MAE            | RMSE |
| LSTM Hochreiter (1997)         | 32.48 $\pm$ 0.38                   | 55.51 $\pm$ 0.74                   | 24.98 $\pm$ 0.38                   | 41.71 $\pm$ 0.43                   | 122.42 $\pm$ 1.41                  | 232.11 $\pm$ 3.51                  | 70.59 $\pm$ 0.85                   | 139.18 $\pm$ 1.71                  |                |      |                |      |
| Autoformer Wu et al. (2021)    | 32.39 $\pm$ 0.43                   | 53.19 $\pm$ 0.75                   | 25.56 $\pm$ 0.34                   | 41.65 $\pm$ 0.44                   | 115.77 $\pm$ 1.08                  | 198.67 $\pm$ 2.48                  | 62.37 $\pm$ 0.76                   | 133.35 $\pm$ 1.68                  |                |      |                |      |
| TFT Lim et al. (2021)          | 31.32 $\pm$ 0.35                   | 48.37 $\pm$ 0.67                   | 24.63 $\pm$ 0.36                   | 39.74 $\pm$ 0.42                   | 121.81 $\pm$ 1.43                  | 261.77 $\pm$ 3.20                  | 71.36 $\pm$ 0.84                   | 158.93 $\pm$ 2.30                  |                |      |                |      |
| STformer Grigsby et al. (2021) | 31.69 $\pm$ 0.48                   | 55.70 $\pm$ 0.71                   | 24.91 $\pm$ 0.44                   | 43.23 $\pm$ 0.59                   | 72.42 $\pm$ 0.90                   | 166.86 $\pm$ 2.13                  | 49.63 $\pm$ 0.64                   | 123.01 $\pm$ 1.51                  |                |      |                |      |
| TimesFM Das et al. (2023)      | 32.57 $\pm$ 0.43                   | 55.94 $\pm$ 0.68                   | 23.93 $\pm$ 0.38                   | 42.41 $\pm$ 0.56                   | 99.75 $\pm$ 1.10                   | 216.63 $\pm$ 2.99                  | 57.07 $\pm$ 0.72                   | 113.45 $\pm$ 1.62                  |                |      |                |      |
| MOIRAI Woo et al. (2024)       | 33.31 $\pm$ 0.45                   | 55.51 $\pm$ 0.72                   | 24.03 $\pm$ 0.32                   | 42.49 $\pm$ 0.56                   | 105.74 $\pm$ 1.26                  | 234.24 $\pm$ 2.70                  | 81.05 $\pm$ 0.96                   | 134.57 $\pm$ 1.94                  |                |      |                |      |
| LLMTime Grudev et al. (2024)   | 33.69 $\pm$ 0.52                   | 52.49 $\pm$ 0.76                   | 26.68 $\pm$ 0.40                   | 43.94 $\pm$ 0.44                   | 115.37 $\pm$ 1.22                  | 216.74 $\pm$ 2.71                  | 72.24 $\pm$ 0.90                   | 157.31 $\pm$ 1.87                  |                |      |                |      |
| Time-LLM Jin et al. (2023)     | 32.23 $\pm$ 0.40                   | 52.18 $\pm$ 0.67                   | 27.74 $\pm$ 0.48                   | 40.01 $\pm$ 0.44                   | 95.01 $\pm$ 1.13                   | 201.14 $\pm$ 2.68                  | 83.17 $\pm$ 1.01                   | 146.45 $\pm$ 2.02                  |                |      |                |      |
| ASTGCN Guo et al. (2019)       | 23.46 $\pm$ 0.27                   | 34.88 $\pm$ 0.59                   | 17.91 $\pm$ 0.31                   | 28.80 $\pm$ 0.47                   | 58.10 $\pm$ 0.61                   | 109.14 $\pm$ 1.91                  | 33.71 $\pm$ 0.48                   | 93.55 $\pm$ 1.37                   |                |      |                |      |
| STGCN Han et al. (2020)        | 21.72 $\pm$ 0.34                   | 34.61 $\pm$ 0.57                   | 18.73 $\pm$ 0.35                   | 28.05 $\pm$ 0.50                   | 52.94 $\pm$ 0.63                   | 110.63 $\pm$ 1.68                  | 37.25 $\pm$ 0.44                   | 88.62 $\pm$ 1.27                   |                |      |                |      |
| STGCN Song et al. (2020)       | 21.26 $\pm$ 0.28                   | 34.42 $\pm$ 0.50                   | 17.88 $\pm$ 0.32                   | 27.45 $\pm$ 0.45                   | 53.19 $\pm$ 0.55                   | 111.51 $\pm$ 1.65                  | 34.58 $\pm$ 0.46                   | 89.42 $\pm$ 1.31                   |                |      |                |      |
| STFGNN Li & Zhu (2021)         | 19.24 $\pm$ 0.25                   | 31.18 $\pm$ 0.55                   | 16.76 $\pm$ 0.29                   | 25.74 $\pm$ 0.44                   | 51.45 $\pm$ 0.56                   | 101.48 $\pm$ 1.72                  | 33.00 $\pm$ 0.48                   | 82.17 $\pm$ 1.38                   |                |      |                |      |
| STGODE Fang et al. (2021)      | 21.63 $\pm$ 0.31                   | 33.30 $\pm$ 0.49                   | 16.14 $\pm$ 0.31                   | 25.46 $\pm$ 0.45                   | 56.84 $\pm$ 0.66                   | 106.01 $\pm$ 1.66                  | 32.09 $\pm$ 0.44                   | 81.72 $\pm$ 1.33                   |                |      |                |      |
| STNorm Deng et al. (2021)      | 19.07 $\pm$ 0.28                   | 31.91 $\pm$ 0.52                   | 15.05 $\pm$ 0.27                   | 25.64 $\pm$ 0.41                   | 46.68 $\pm$ 0.53                   | 99.34 $\pm$ 1.58                   | 30.59 $\pm$ 0.40                   | 80.32 $\pm$ 1.21                   |                |      |                |      |
| DSTAGNN Lan et al. (2022)      | 19.87 $\pm$ 0.33                   | 30.80 $\pm$ 0.53                   | 15.93 $\pm$ 0.32                   | 24.53 $\pm$ 0.38                   | 50.45 $\pm$ 0.57                   | 100.51 $\pm$ 1.57                  | 31.49 $\pm$ 0.46                   | 76.50 $\pm$ 1.31                   |                |      |                |      |
| HTGNN Fan et al. (2022)        | 21.01 $\pm$ 0.37                   | 36.44 $\pm$ 0.56                   | 18.22 $\pm$ 0.38                   | 27.04 $\pm$ 0.48                   | 46.24 $\pm$ 0.51                   | 102.73 $\pm$ 1.56                  | 31.16 $\pm$ 0.49                   | 75.98 $\pm$ 1.29                   |                |      |                |      |
| PDFformer Jiang et al. (2023)  | 18.60 $\pm$ 0.29                   | 29.94 $\pm$ 0.51                   | <b>12.82 <math>\pm</math> 0.26</b> | <u>22.62 <math>\pm</math> 0.35</u> | 46.57 $\pm$ 0.58                   | 93.48 $\pm$ 1.21                   | 28.69 $\pm$ 0.44                   | 71.70 $\pm$ 1.12                   |                |      |                |      |
| STAformer Liu et al. (2023a)   | 18.62 $\pm$ 0.30                   | <b>29.65 <math>\pm</math> 0.44</b> | 12.97 $\pm$ 0.26                   | 24.21 $\pm$ 0.35                   | 47.58 $\pm$ 0.59                   | 96.87 $\pm$ 1.34                   | <b>24.62 <math>\pm</math> 0.41</b> | <u>77.43 <math>\pm</math> 1.30</u> |                |      |                |      |
| STD-MAE Gao et al. (2023)      | <b>17.85 <math>\pm</math> 0.27</b> | <u>29.72 <math>\pm</math> 0.44</u> | 13.67 $\pm$ 0.28                   | <b>22.62 <math>\pm</math> 0.36</b> | 47.75 $\pm$ 0.60                   | <b>92.62 <math>\pm</math> 1.27</b> | 26.69 $\pm$ 0.45                   | 72.98 $\pm$ 1.21                   |                |      |                |      |
| <b>HGTFT (Ours)</b>            | 19.94 $\pm$ 0.34                   | 32.16 $\pm$ 0.54                   | 16.43 $\pm$ 0.34                   | 25.08 $\pm$ 0.41                   | <b>41.54 <math>\pm</math> 0.44</b> | 94.38 $\pm$ 1.20                   | <u>25.69 <math>\pm</math> 0.42</u> | <b>65.64 <math>\pm</math> 1.04</b> |                |      |                |      |

1690

1691

1692 Table 14: Performance on standard time-series forecasting. ETT results are averaged over four  
1693 subsets: ETT1, ETT2, ETTm1, and ETTm2. All models are trained or fine-tuned on 10% of each  
1694 dataset. Best results are in **bold**, second best are underlined.

| Dataset     | Metric | LSTM  | Autoformer | TFT          | HTGNN | STD-MAE | TimesFM | MOIRAI       | LLMTime | Time-LLM     | HGTFT (Ours) |
|-------------|--------|-------|------------|--------------|-------|---------|---------|--------------|---------|--------------|--------------|
| ETT         | MSE    | 0.589 | 0.465      | <u>0.400</u> | 0.455 | 0.480   | 0.421   | <b>0.391</b> | 0.575   | 0.408        | 0.425        |
|             | MAE    | 0.597 | 0.459      | <u>0.412</u> | 0.484 | 0.534   | 0.437   | <b>0.404</b> | 0.577   | 0.428        | 0.441        |
| Weather     | MSE    | 0.332 | 0.338      | 0.292        | 0.335 | 0.393   | 0.299   | <u>0.259</u> | 0.345   | <b>0.237</b> | 0.299        |
|             | MAE    | 0.363 | 0.382      | 0.311        | 0.366 | 0.383   | 0.321   | <u>0.287</u> | 0.412   | <b>0.264</b> | 0.334        |
| Electricity | MSE    | 0.268 | 0.227      | 0.239        | 0.263 | 0.257   | 0.245   | <u>0.192</u> | 0.276   | <b>0.163</b> | 0.219        |
|             | MAE    | 0.365 | 0.338      | 0.318        | 0.358 | 0.394   | 0.330   | <u>0.295</u> | 0.390   | <b>0.264</b> | 0.317        |
| Traffic     | MSE    | 0.804 | 0.628      | 0.646        | 0.552 | 0.596   | 0.521   | 0.620        | 0.813   | <b>0.383</b> | 0.481        |
|             | MAE    | 0.509 | 0.379      | 0.398        | 0.389 | 0.433   | 0.344   | <u>0.336</u> | 0.498   | <b>0.264</b> | 0.350        |
| ILI         | MSE    | 4.753 | 3.125      | 3.343        | 4.365 | 3.894   | 2.435   | <u>1.573</u> | 2.868   | <b>1.437</b> | 2.432        |
|             | MAE    | 1.580 | 1.168      | 1.281        | 1.550 | 1.489   | 1.021   | <u>0.935</u> | 1.047   | <b>0.805</b> | 1.077        |

1705

1706

1707 make MSE comparisons unfair. Instead, we reverse-normalize the variables before calculating the  
1708 evaluation metrics to ensure a fair comparison of methods. However, the diverse ranges of the  
1709 original variables after reverse normalization pose challenges in balancing weights across variables.  
1710 To address this, we focus on key variables from the training tasks and compute statistical metrics  
1711 for each individually. Their CV-RMSE values are listed in Table 15. As shown, the "Multi-Instance  
1712 Normalization" method achieves more balanced prediction performance across various variables  
1713 compared to the other methods.

1714

1715 

## I TIME SERIES FORECASTING VISUALIZATION

1716

1717 To facilitate a qualitative analysis of the zero-shot and few-shot prediction results based on the  
1718 BOSG-310M, we present time-series prediction plots for several key variables. The plots illustrate  
1719 the forecasting performance of the proposed model on three critical objects: room, fan coil unit  
1720 (FCU), and chiller system, under both zero-shot and fine-tuned conditions.

1721

1722 As shown in Figures 11 to 13, the zero-shot predictions capture the overall trends and patterns for  
1723 each variable, although the accuracy of the predictions varies across different variables. While the  
1724 model is able to predict the general shape of the curves, the degree of precision differs, reflecting  
1725 the inherent challenges of making predictions without prior task-specific fine-tuning. In addition,  
1726 we present the results of predictions following fine-tuning with one month of data. The improve-  
1727 ments are evident, with significantly enhanced accuracy across all variables, particularly in capturing  
1728 short-term dynamics. However, it is important to note that fine-tuning with a relatively short period  
1729 of data, although it improves predictions for recent time period and conditions similar to those seen



Figure 11: Visualization of time-series forecasting for key variables of a room object, predicting the next 7 days based on the past 7 days. Predictions include zero-shot and few-shot (with one month of fine-tuning data).



Figure 12: Visualization of time-series forecasting for key variables of a fan coil unit object, predicting the next 7 days based on the past 7 days. Predictions include zero-shot and few-shot (with one month of fine-tuning data).





Figure 15: Comparison of three SSL training strategies: separate training, simultaneous training, and alternating training. Task 1 (masked time-series modeling) uses MSE loss, while Task 2 (masked edge modeling) uses BCE loss.



Figure 16: Performance comparison of the BOSG-310M model under three settings: full training, half the number of training cases, and half the number of tasks. Evaluation is based on multiple metrics.



Figure 17: Prediction accuracy for daily rolling forecasts over a 7-day horizon. Each line represents a different input patch length, ranging from 1 to 7 days.

1890  
 1891 Table 15: Comparison of average relative errors among various normalization methods. The average  
 1892 error is calculated using the difference between the maximum and minimum values of the actual data  
 1893 for each instance variable as the base for CV-RMSE computation, excluding outlier instances such as  
 1894 devices that have been continuously inactive. The average CV-RMSE is computed for all instances  
 1895 of the same variable type.

| Object Type        | Typical Variable                 | Normalization Method |             |                |
|--------------------|----------------------------------|----------------------|-------------|----------------|
|                    |                                  | Min-Max              | Z-score     | Multi-Instance |
| Room               | Indoor Temperature               | 2.1%                 | <b>2.0%</b> | 2.9%           |
|                    | CO <sub>2</sub>                  | <b>2.4%</b>          | 2.5%        | 2.6%           |
| Chiller            | Chilled Water Supply Temperature | 7.9%                 | 8.1%        | <b>6.8%</b>    |
|                    | Chilled Water Return Temperature | 16.3%                | 14.6%       | <b>11.2%</b>   |
|                    | Chilled Water Flow Rate          | 45.6%                | 33.9%       | <b>16.8%</b>   |
| Chilled Water Pump | Operating Power                  | 34.6%                | 33.7%       | <b>13.6%</b>   |
|                    | Flow Rate                        | 39.9%                | 38.2%       | <b>12.8%</b>   |
| Cooling Water Pump | Operating Power                  | 42.5%                | 42.6%       | <b>15.7%</b>   |
|                    | Flow Rate                        | 45.5%                | 48.4%       | <b>16.1%</b>   |
| Cooling Tower      | Leaving Tower Water Temperature  | 23.0%                | 24.3%       | <b>7.6%</b>    |
|                    | Water Flow Rate                  | 35.3%                | 33.8%       | <b>15.5%</b>   |
| Fan Coil Unit      | Supply Air Temperature           | 9.8%                 | 9.2%        | <b>8.3%</b>    |
|                    | Return Air Temperature           | 5.7%                 | 6.1%        | <b>3.6%</b>    |
| Supply Air Fan     | Fresh Air Flow Rate              | 41.1%                | 40.7%       | <b>21.3%</b>   |

1913  
 1914  
 1915 in the fine-tuning phase, may deteriorate predictions for longer time horizons or when faced with  
 1916 highly divergent operational scenarios. To investigate this, we also tested fine-tuning with longer  
 1917 data windows (three months and six months), and found that, overall, predictions for extended time-  
 1918 frames benefited from the use of larger fine-tuning datasets. This suggests that a more extended  
 1919 fine-tuning period helps to mitigate overfitting and ensures better generalization for long-term pre-  
 1920 dictions. However, a key challenge remains: how to fine-tune effectively with limited data while  
 1921 avoiding overfitting and preserving our foundation model’s ability to learn the underlying physical  
 1922 dynamics. This continues to be an area of significant research interest.

1923 We present daily profile curves for multiple dynamic variables of three different types of objects,  
 1924 along with their zero-shot prediction results. In Figure 14, we observe that the temporal relation-  
 1925 ships between the associated objects are effectively captured. In particular, the predictions for the  
 1926 chiller system and FCU demonstrate that the forecasted surge in cooling power for the Chiller Sys-  
 1927 tem at time point 42 closely aligns with the predicted supply air temperature of the FCU at the same  
 1928 time. Similarly, the slight decrease in the room’s indoor temperature at time point 66 is well-aligned  
 1929 with the small increase in the electricity power consumption of the FCU. In some instances, these  
 1930 temporal relationships are even more pronounced in the predicted data than in the actual observa-  
 1931 tions, highlighting the model’s capability to effectively capture interdependencies across various  
 1932 components in the system.

## J ADDITIONAL RESULTS

### J.1 SELF-SUPERVISED LEARNING COMPARISON.

1939 We investigate the interaction between two self-supervised learning (SSL) tasks: masked time-series  
 1940 modeling and masked edge prediction. Figure 15 compares three SSL training strategies: (1) training  
 1941 each task independently, (2) simultaneous multi-task training, and (3) our proposed alternating task  
 1942 training. Results show that while simultaneous training impairs the performance of the time-series  
 1943 task, the alternating training method maintains low loss for both tasks, offering a better trade-off  
 between sequence forecasting and structural relation modeling.

1944

1945 Table 16: Time-series forecasting results on the Hydronic Domain dataset under three settings:  
1946 pretrained zero-shot, pretrained few-shot, and no pre-training. Best results are in **bold**, second-best  
1947 are underlined.

| Settings    | Metric | LSTM   | Autoformer | TFT           | HTGNN         | STD-MAE       | TimesFM       | MOIRAI        | LLMTime | Time-LLM | HGTFT (Ours)  |
|-------------|--------|--------|------------|---------------|---------------|---------------|---------------|---------------|---------|----------|---------------|
| Zero-shot   | MSE    | 0.0066 | 0.0063     | 0.0046        | 0.0039        | 0.0038        | 0.0078        | 0.0073        | 0.0109  | 0.0093   | <b>0.0024</b> |
|             | RCS    | 0.0458 | 0.0260     | 0.0148        | <u>0.0084</u> | 0.0096        | 0.0315        | 0.0241        | 0.0346  | 0.0381   | <b>0.0013</b> |
|             | CRS    | 0.4812 | 0.5126     | 0.5457        | <u>0.3328</u> | <b>0.1949</b> | 0.3789        | 0.4730        | 0.6334  | 0.5462   | <u>0.2239</u> |
|             | FDS    | 0.4089 | 0.4989     | 0.5130        | 0.4619        | 0.4296        | <u>0.3334</u> | 0.3428        | 0.5223  | 0.4384   | <b>0.2922</b> |
| Few-shot    | MSE    | 0.0041 | 0.0035     | 0.0039        | 0.0032        | <u>0.0030</u> | 0.0036        | 0.0042        | 0.0062  | 0.0065   | <b>0.0017</b> |
|             | RCS    | 0.0344 | 0.0285     | 0.0136        | 0.0157        | <u>0.0120</u> | 0.0252        | 0.0195        | 0.0282  | 0.0285   | <b>0.0018</b> |
|             | CRS    | 0.3453 | 0.3587     | 0.3428        | 0.3079        | <u>0.2340</u> | 0.4287        | 0.3710        | 0.4202  | 0.3988   | <b>0.2280</b> |
|             | FDS    | 0.2643 | 0.2736     | 0.2916        | 0.2966        | 0.2960        | <u>0.2176</u> | 0.2499        | 0.3465  | 0.3052   | <b>0.1967</b> |
| No Pretrain | MSE    | 0.0035 | 0.0039     | <u>0.0031</u> | 0.0036        | 0.0035        | 0.0043        | 0.0039        | 0.0062  | 0.0050   | <b>0.0019</b> |
|             | RCS    | 0.0326 | 0.0275     | <u>0.0130</u> | 0.0157        | 0.0190        | 0.0262        | 0.0197        | 0.0257  | 0.0264   | <b>0.0090</b> |
|             | CRS    | 0.3429 | 0.3486     | 0.3489        | 0.3069        | <u>0.2361</u> | 0.3648        | 0.3993        | 0.3957  | 0.3641   | <b>0.2322</b> |
|             | FDS    | 0.2928 | 0.3307     | 0.2556        | 0.3377        | 0.3092        | <u>0.2493</u> | <b>0.2310</b> | 0.4098  | 0.3020   | 0.2716        |

1959

1960 Table 17: Time-series forecasting results on the Airflow / HVAC Domain dataset under  
1961 three settings: pretrained zero-shot, pretrained few-shot, and no pre-training. Best results are in  
1962 **bold**, second-best are underlined.

| Settings    | Metric | LSTM   | Autoformer | TFT           | HTGNN         | STD-MAE       | TimesFM       | MOIRAI        | LLMTime | Time-LLM | HGTFT (Ours)  |
|-------------|--------|--------|------------|---------------|---------------|---------------|---------------|---------------|---------|----------|---------------|
| Zero-shot   | MSE    | 0.0054 | 0.0051     | 0.0038        | <u>0.0033</u> | 0.0035        | 0.0069        | 0.0060        | 0.0092  | 0.0079   | <b>0.0022</b> |
|             | RCS    | 0.0386 | 0.0227     | 0.0120        | <u>0.0074</u> | 0.0084        | 0.0278        | 0.0216        | 0.0306  | 0.0327   | <b>0.0010</b> |
|             | CRS    | 0.4028 | 0.4567     | 0.4422        | 0.2953        | <u>0.1870</u> | 0.3401        | 0.4071        | 0.5263  | 0.4750   | <b>0.1825</b> |
|             | FDS    | 0.3542 | 0.4452     | 0.4207        | 0.4023        | 0.3598        | 0.3084        | <u>0.2545</u> | 0.4547  | 0.3935   | <b>0.2499</b> |
| Few-shot    | MSE    | 0.0036 | 0.0026     | 0.0025        | 0.0028        | <u>0.0024</u> | 0.0029        | 0.0035        | 0.0051  | 0.0058   | <b>0.0015</b> |
|             | RCS    | 0.0283 | 0.0242     | 0.0112        | 0.0132        | <u>0.0098</u> | 0.0208        | 0.0168        | 0.0250  | 0.0235   | <b>0.0016</b> |
|             | CRS    | 0.2845 | 0.2987     | 0.2792        | 0.2579        | <u>0.2035</u> | 0.3656        | 0.3076        | 0.3395  | 0.3366   | <b>0.1992</b> |
|             | FDS    | 0.2170 | 0.2288     | 0.2376        | 0.2632        | 0.2480        | <u>0.1941</u> | 0.2055        | 0.3048  | 0.2593   | <b>0.1599</b> |
| No Pretrain | MSE    | 0.0030 | 0.0033     | <u>0.0025</u> | 0.0029        | 0.0029        | 0.0036        | 0.0034        | 0.0051  | 0.0044   | <b>0.0018</b> |
|             | RCS    | 0.0263 | 0.0235     | <u>0.0116</u> | 0.0136        | 0.0162        | 0.0231        | 0.0158        | 0.0231  | 0.0213   | <b>0.0081</b> |
|             | CRS    | 0.2900 | 0.2797     | 0.3093        | 0.2711        | <u>0.2180</u> | 0.3053        | 0.3300        | 0.3403  | 0.3143   | <b>0.2029</b> |
|             | FDS    | 0.2479 | 0.2646     | <u>0.2288</u> | 0.2772        | 0.2534        | 0.2335        | 0.2446        | 0.3467  | 0.2692   | <b>0.2278</b> |

1975

## 1976 J.2 IMPACT OF TASK DIVERSITY AND DATA QUANTITY.

1977

1978 Leveraging SSL-pretrained weights, we adopt a sequential multi-task learning framework where  
 1979 downstream tasks are optimized one after another. During training, the average task loss consis-  
 1980 tently decreases across rounds, and the rate of change stabilizes, indicating convergence under the  
 1981 serialized learning schedule. We further conduct ablation studies by halving the number of training  
 1982 tasks and the number of training cases, respectively. As shown in Figure 16, both reductions lead  
 1983 to moderate performance degradation, highlighting the importance of maintaining sufficient task  
 1984 diversity and data coverage for robust generalization.

1985

## 1986 J.3 EFFECT OF INPUT PATCH LENGTH AND FORECASTING HORIZON.

1987

1988 We evaluate the model’s performance across different input and output durations, ranging from 1  
 1989 to 7 days. Figure 17 presents the results of daily rolling forecasts, where the x-axis denotes the  
 1990 target prediction day and the y-axis represents the corresponding MSE. Each curve corresponds to  
 1991 a different input patch length. The results demonstrate that longer input sequences generally yield  
 1992 improved accuracy, particularly for longer forecasting horizons.

1993

1994 J.4 MULTIPHYSICS DECOMPOSITION OF BUILDING SYSTEMS AND CROSS-DOMAIN  
1995 FORECASTING RESULTS

1996

1997 Although our experiments are conducted in the building domain, this environment is inherently  
 1998 multiphysics, consisting of several interacting sub-domains. A modern building comprises numer-  
 1999 ous subsystems, each governed by distinct physical principles and involving heterogeneous object

1998

1999 Table 18: Time-series forecasting results on the Thermal Envelope Domain dataset under three  
2000 settings: pretrained zero-shot, pretrained few-shot, and no pre-training. Best results are in **bold**,  
2001 second-best are underlined.

| Settings    | Metric | LSTM   | Autoformer    | TFT           | HTGNN         | STD-MAE       | TimesFM       | MOIRAI        | LLMTime | Time-LLM | HGTFT (Ours)  |
|-------------|--------|--------|---------------|---------------|---------------|---------------|---------------|---------------|---------|----------|---------------|
| Zero-shot   | MSE    | 0.0125 | 0.0115        | 0.0085        | <u>0.0076</u> | 0.0078        | 0.0133        | 0.0130        | 0.0197  | 0.0186   | <b>0.0047</b> |
|             | RCS    | 0.0766 | 0.0495        | 0.0260        | <u>0.0147</u> | 0.0165        | 0.0616        | 0.0441        | 0.0603  | 0.0641   | <b>0.0022</b> |
|             | CRS    | 0.8594 | 0.8815        | 0.9421        | <u>0.6541</u> | <b>0.3721</b> | 0.7361        | 0.9285        | 1.0628  | 1.0600   | <u>0.3925</u> |
|             | FDS    | 0.7280 | 0.8681        | 0.8573        | 0.8716        | 0.7755        | 0.7171        | <u>0.5979</u> | 1.0270  | 0.7797   | <b>0.4871</b> |
| Few-shot    | MSE    | 0.0071 | <u>0.0053</u> | 0.0055        | 0.0056        | 0.0057        | 0.0070        | 0.0072        | 0.0104  | 0.0112   | <b>0.0029</b> |
|             | RCS    | 0.0656 | 0.0520        | 0.0251        | 0.0264        | <u>0.0237</u> | 0.0465        | 0.0367        | 0.0535  | 0.0482   | <b>0.0030</b> |
|             | CRS    | 0.6572 | 0.7032        | 0.6572        | 0.5697        | <b>0.3595</b> | 0.7748        | 0.7198        | 0.7372  | 0.7755   | <u>0.4398</u> |
|             | FDS    | 0.5228 | 0.5040        | 0.4999        | 0.5026        | 0.5515        | 0.4346        | 0.4334        | 0.6498  | 0.5284   | <b>0.3595</b> |
| No Pretrain | MSE    | 0.0069 | 0.0066        | <u>0.0054</u> | 0.0055        | 0.0059        | 0.0079        | 0.0074        | 0.0112  | 0.0091   | <b>0.0033</b> |
|             | RCS    | 0.0600 | 0.0476        | <u>0.0246</u> | 0.0282        | 0.0320        | 0.0501        | 0.0369        | 0.0491  | 0.0491   | <b>0.0181</b> |
|             | CRS    | 0.6514 | 0.6875        | 0.5858        | 0.5388        | <u>0.4794</u> | 0.6665        | 0.6798        | 0.7483  | 0.6874   | <b>0.4525</b> |
|             | FDS    | 0.5668 | 0.5731        | 0.5054        | 0.6219        | 0.5356        | <u>0.4585</u> | <b>0.4299</b> | 0.7306  | 0.5622   | 0.5195        |

2013

2014 Table 19: Time-series forecasting results on the Refrigeration / Plant Domain dataset under three  
2015 settings: pretrained zero-shot, pretrained few-shot, and no pre-training. Best results are in **bold**,  
2016 second-best are underlined.

| Settings    | Metric | LSTM   | Autoformer | TFT           | HTGNN         | STD-MAE       | TimesFM       | MOIRAI        | LLMTime | Time-LLM | HGTFT (Ours)  |
|-------------|--------|--------|------------|---------------|---------------|---------------|---------------|---------------|---------|----------|---------------|
| Zero-shot   | MSE    | 0.0102 | 0.0103     | 0.0074        | <u>0.0067</u> | 0.0075        | 0.0129        | 0.0126        | 0.0166  | 0.0163   | <b>0.0041</b> |
|             | RCS    | 0.0638 | 0.0448     | 0.0240        | <u>0.0133</u> | 0.0142        | 0.0551        | 0.0392        | 0.0537  | 0.0627   | <b>0.0020</b> |
|             | CRS    | 0.7575 | 0.7447     | 0.8515        | 0.5506        | <u>0.3466</u> | 0.6324        | 0.7807        | 0.9340  | 0.9009   | <u>0.3393</u> |
|             | FDS    | 0.6069 | 0.7913     | 0.7669        | 0.7728        | 0.6959        | 0.6359        | <u>0.5280</u> | 0.9461  | 0.7022   | <b>0.4505</b> |
| Few-shot    | MSE    | 0.0058 | 0.0047     | <u>0.0044</u> | 0.0047        | 0.0054        | 0.0062        | 0.0068        | 0.0084  | 0.0104   | <b>0.0027</b> |
|             | RCS    | 0.0560 | 0.0470     | <u>0.0212</u> | 0.0224        | 0.0199        | 0.0407        | 0.0337        | 0.0437  | 0.0407   | <b>0.0026</b> |
|             | CRS    | 0.6011 | 0.6550     | 0.6379        | 0.4607        | <b>0.3331</b> | 0.7084        | 0.6494        | 0.6822  | 0.6688   | <u>0.3730</u> |
|             | FDS    | 0.4422 | 0.4004     | 0.4726        | 0.4111        | 0.4893        | 0.3848        | <u>0.3806</u> | 0.5345  | 0.4996   | <b>0.3027</b> |
| No Pretrain | MSE    | 0.0065 | 0.0057     | <u>0.0045</u> | 0.0050        | 0.0056        | 0.0069        | 0.0061        | 0.0094  | 0.0082   | <b>0.0031</b> |
|             | RCS    | 0.0556 | 0.0402     | <u>0.0219</u> | 0.0239        | 0.0273        | 0.0417        | 0.0313        | 0.0465  | 0.0433   | <b>0.0148</b> |
|             | CRS    | 0.5184 | 0.5905     | 0.5669        | <u>0.4500</u> | <b>0.3206</b> | 0.6289        | 0.6133        | 0.6671  | 0.6154   | 0.4650        |
|             | FDS    | 0.4610 | 0.4556     | 0.4504        | 0.5027        | 0.4599        | <u>0.4176</u> | 0.4249        | 0.6336  | 0.4770   | <b>0.4002</b> |

2028

2029 types. For clarity, we decompose the building system into four canonical sub-domains, as commonly  
2030 recognized in building science and HVAC engineering.

2032

1. **Hydronic Domain Representative objects:** pumps, valves, tanks, hydronic loops, and water distribution networks  
**Governing physics:** fluid dynamics, mass conservation, hydraulic balance
2. **Airflow / HVAC Domain Representative objects:** fans, ducts, dampers, variable air volume (VAV) components, heat exchangers  
**Governing physics:** airflow mechanics, convective heat transfer, pressure–flow coupling
3. **Thermal Envelope Domain Representative objects:** walls, windows, shading devices, indoor zones, outdoor environment  
**Governing physics:** conduction, radiation, heat storage, thermodynamic balance
4. **Refrigeration / Plant Domain Representative objects:** chillers, compressors, cooling towers, condensers, evaporators  
**Governing physics:** vapor compression cycles, phase-change thermodynamics, energy balance

2047 These sub-domains collectively span multiple physical fields—including heat transfer, fluid flow,  
2048 thermodynamics, mechanical work, and cyber–physical control—and exhibit cross-physics and  
2049 cross-entity couplings. Demonstrating consistent forecasting performance across these heterogeneous  
2050 components provides evidence that our framework is not restricted to a single physical mechanism  
2051 but instead supports general **multi-entity, multi-variable forecasting with heterogeneous interactions**.

To further illustrate the generality of our approach, Tables 16 to 19 present the forecasting results across the four canonical sub-domains. The tables report evaluation metrics under three settings: **no pre-training**, **zero-shot performance**, and **few-shot fine-tuning**. This experiment follows a setup similar to that of Table 2 in the main text; however, it is conducted on the MBS dataset—using 50 randomly sampled buildings for testing—because the BTS dataset does not provide full or consistent coverage of all four sub-domains.

### J.5 PERFORMANCE GAINS UNDER FIXED CAPACITY: JUSTIFYING MODEL COMPLEXITY

To assess when a complex architecture like HGTFT is justified compared to simpler models such as LSTM, we conduct two sets of comparative experiments:

1. **Scenario 1: Single-variable prediction** We use a univariate time-series forecasting dataset (ETT) to evaluate performance when only a single object type is involved.
2. **Scenario 2: Multi-object prediction** We construct a multi-object scenario containing two object types, each with three information channels (two dynamic variables and one static feature), to evaluate the benefits of HGTFT in capturing cross-entity interactions.

Table 20 and Table 21 present the corresponding forecasting results for the two scenarios. This experimental setup allows us to characterize practical trade-offs: while HGTFT and LSTM perform comparably in the single-object scenario with limited interactions, HGTFT demonstrates clear advantages in the multi-object setting, benefiting from its graph–temporal fusion and ability to model heterogeneous interactions. These results highlight the regimes where a more complex architecture is warranted, and when simpler models suffice.

Table 20: Comparison of HGTFT and LSTM under different model sizes (Scenario 1). FLOPS are reported in GFLOPS ( $10^9$  FLOPS).

| Parameters | Embedding Dim | HGTFT GFLOPS | HGTFT MSE | LSTM GFLOPS | LSTM MSE |
|------------|---------------|--------------|-----------|-------------|----------|
| 0.8M       | 64            | 2,108        | 0.683     | 3,494       | 0.694    |
| 3M         | 128           | 16,369       | 0.521     | 13,753      | 0.607    |
| 10M        | 256           | 128,965      | 0.413     | 54,561      | 0.593    |

Table 21: Comparison of HGTFT and LSTM under different model sizes (Scenario 2). FLOPS are reported in GFLOPS ( $10^9$  FLOPS).

| Parameters | Embedding Dim | HGTFT GFLOPS | HGTFT MSE | LSTM GFLOPS | LSTM MSE |
|------------|---------------|--------------|-----------|-------------|----------|
| 1.5M       | 64            | 4,217        | 0.0097    | 6,989       | 0.0162   |
| 6M         | 128           | 32,738       | 0.0056    | 27,505      | 0.0149   |
| 20M        | 256           | 257,930      | 0.0025    | 109,121     | 0.0144   |

## K LIMITATIONS AND FUTURE WORK

Despite the promising results, this work still faces several limitations and open challenges:

1. **Generality across physical domains:** Our experiments focus on building operation systems as representative multiphysics environments, capturing rich interactions among thermal, hydraulic, and control processes. Future work can extend validation to other complex physical systems (e.g., energy grids or manufacturing processes) to further establish and demonstrate the generality of the proposed framework.
2. **Dataset coverage:** Public datasets for multiphysics forecasting remain limited. While our MBS dataset is larger and more comprehensive than prior resources, expanding it to include additional object types, physical processes, and control scenarios would further enhance its representativeness and support broader evaluation, fostering community progress.

2106  
2107  
2108  
2109  
2110  
2111  
3. **Few-shot adaptation:** While few-shot finetuning yields clear benefits under short horizons  
2107 or near-distribution conditions, its performance can degrade when forecasting over longer  
2108 horizons or under substantial distributional shifts. Developing selective adaptation strate-  
2109 gies that automatically identify which parameters or modules to adapt will be crucial for  
2110 improving robustness in such settings.

2111  
2112 Addressing these challenges will strengthen the robustness, flexibility, and scalability of multi-  
2113 physics forecasting, paving the way for broader deployment in real-world complex physical systems.

## 2114 L LLM USAGE

2115  
2116 Large language models (LLMs) were used solely for grammar correction and stylistic refinement  
2117 of the manuscript. They did not contribute to research ideation, model design, data analysis, or  
2118 experimental results. The authors take full responsibility for the scientific content of the paper.