DQA: An Efficient Method for Deep Quantization of
Deep Neural Network Activations

Wenhao Hu, Paul Henderson, José Cano
School of Computing Science, University of Glasgow, Scotland, UK

Abstract

Quantization of Deep Neural Network (DNN) activations is a commonly used
technique to reduce compute and memory demands during DNN inference, which
can be particularly beneficial on resource-constrained devices. To achieve high
accuracy, existing methods for quantizing activations rely on complex mathemat-
ical computations or perform extensive searches for the best hyper-parameters.
However, these expensive operations are impractical on devices with limited com-
putation capabilities, memory capacities, and energy budgets. Furthermore, many
existing methods do not focus on sub-6-bit (or deep) quantization.

To fill these gaps, in this paper we propose DQA (Deep Quantization of DNN
Activations), a new method that focuses on sub-6-bit quantization of activations
and leverages simple shifting-based operations and Huffman coding to be efficient
and achieve high accuracy. We evaluate DQA with 3, 4, and 5-bit quantization
levels and three different DNN models for two different tasks, image classification
and image segmentation, on two different datasets. DQA shows significantly
better accuracy (up to 29.28%) compared to the direct quantization method and the
state-of-the-art NoisyQuant for sub-6-bit quantization.

1 Introduction

Quantization is a popular compression technique to reduce the compute and memory demands of
Deep Neural Networks (DNNs). During inference, DNN weights are typically fixed, so they can
be quantized offline. However, activations are dynamically generated, which means that effective
quantization methods must dynamically quantize activations online.

There are many methods for quantizing activations. The most straightforward one is to directly
use the mathematical definition of quantization [5], but it provides limited accuracy. To get higher
accuracy, more sophisticated approaches are used. For example, NoisyQuant [[13]] injects noise in the
activations before quantization and removes the noise after de-quantization (the opposite operation to
quantization). However, these methods are not specifically designed for resource-constrained devices,
where the computational cost of expensive mathematical operations (e.g. matrix multiplication) or
large online search spaces is impractical. Furthermore, many of these methods do not focus on deep
quantization (e.g., quantizing to less than 6 bits), which is preferred for devices with limited memory.

To fill these gaps, in this paper we propose DQA (Deep Quantization of DNN Activations), a new
method to deeply quantize DNN activations suited for resource-constrained devices that provides
high accuracy. DQA first determines the importance of each activation channel offline using training
or calibration datasets. For important channels, DQA quantizes their values with m extra bits first and
then right-shifts the m bits to achieve the target number of bits while storing the shifting errors using
Huffman coding. Then, the shifting errors are decoded and added back to the corresponding channels
during the de-quantization phase. For unimportant channels, DQA uses a direct method to quantize
and de-quantize activations, i.e., it simply applies the mathematical definition of quantization/de-
quantization [5;[11]]. By learning important channels offline, DQA saves significant computational

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024 (MLNCP 2024).

resources during DNN inference. In addition, by using m more bits, DQA can quantize important
channels with a different number of bits (i.e., mixed-precision quantization [l [15]]), reduce the
quantization error exponentially, and efficiently shift back to the target bits without expensive
mathematical computations. It is also important to note that: i) by right-shifting, all the quantized
values can ultimately be stored using the same bit length, thus avoiding wasted storage [12]; ii) by
applying Huffman coding to the shifting errors, DQA can reduce the extra memory overhead.

We evaluated DQA with three sub-6-bit quantization levels (3, 4, and 5 bits) on two different
datasets (CIFAR-10 [[10], and CityScapes [2]]) for three different DNN models (ResNet-32 [[7], Mo-
bileNetV2 [8] and U-Net [16]) for two different tasks (image classification and image segmentation).
Overall, DQA shows significantly better accuracy (up to 29.28%) than two existing methods: direct
quantization and the state-of-the-art NoisyQuant [13].

The main contributions of this paper are as follows:

* We propose DQA, a deep (sub-6-bit) quantization method for DNN activations that is
especially relevant for resource-constrained devices. DQA deals with important activation
channels separately and leverages Huffman coding to optimize memory usage.

* We explore the patterns of shifting errors in DQA to justify our choice of Huffman coding.

* We conduct a detailed evaluation of DQA and compare it with two existing methods, direct
quantization and NoisyQuant [13]], clearly outperforming them on accuracy.

2 Background and Related Work

Quantization is a widely used compression method to lower the precision format of parameters in
DNNs, which reduces memory storage and computational requirements [} 9]]. The initial DNN
parameters, typically using a floating-point format (e.g., 32 bits), are converted into fixed-point or
integer values that require fewer bits (e.g., 16 or 8 bits). The process normally includes clipping
and rounding operations. Clipping restricts the minimum and maximum values of the quantization,
whereas rounding approximates values to the nearest integers, which causes rounding errors that
cannot be recovered during de-quantization. De-quantization is the opposite operation of quantization
that approximately recovers the quantized values back to floating point.

Quantization methods are typically divided into uniform and non-uniform. In uniform quantization,
the quantized values are evenly spaced, while in non-uniform quantization they are not [S]. Uniform
quantization can be further divided into symmetric and asymmetric. In symmetric quantization, the
clipping range is symmetric with respect to the origin, while in asymmetric quantization it is not [3].
In this paper, we use uniform symmetric quantization due to its popularity and relatively low cost of
computation [5]], and we define the direct uniform symmetric quantization and de-quantization as the
Direct method (note that this is the same as the direct quantization method for unimportant channels
mentioned in Section|[T).

It is important to note that keeping the same bit length for the quantized values across the whole DNN
model is straightforward but can be sub-optimal for accuracy [15]. To improve this, many methods
apply mixed-precision quantization which assigns different bit lengths to different parts of a DNN
model, such as layers or channels, to satisfy their different precision sensitivities [1;/15)]. However, due
to the differences in bit length among the quantized values, mixed-precision quantization can cause
inefficiencies such as wasted storage [12]]. Our DQA method adapts mixed-precision quantization in
an effective way (see Section [3).

Furthermore, previous works on DNN quantization apply it to the model weights and/or activations.
For weights, AWQ [[L1]] checks the importance of the weight channels for each layer and scales up
important channels before quantization to reduce the rounding errors. For activations, quantization is
difficult due to its dynamic nature, i.e., the activation values are typically not known before inference.
Therefore, to achieve high accuracy, expensive mathematical operations (e.g., matrix multiplication)
or large online search spaces to find the best hyper-parameters are required by many methods. For
example, NoisyQuant [13]] injects noise, obtained by online search within the given search spaces,
to the activations before quantization and removes the noise after de-quantization. However, these
previous methods do not focus on deep quantization like sub-6-bit quantization, thus being less
suitable for resource-constrained devices.

ST - T _—
! l\1 Rank Activation Channels . C2) Quantization
W ; | o Quantize with Sferrr:;rhit
Accuracy=75% 3rd 3 : Activations Different bit Length auength
! | Activations
Accuracy=65% 4th 3 —) ;
‘ ‘ —_— -— +
y oo i
Accuracy=95% % | 1 Quantize Shifting ¢ 05 0 | 0
0 .650.5 0 shifting
Important Channels 05 0 0 05 Errors

Accuracy=85% 2nd |
4 J . I important Channels Quantized with m extra bits 0 -75.65 0

P L . '7"\ . .
O 4) De-Quantization (3) Encoding Shifting Errors
o \/
Shifting Errors
' | B Huffman Encoding
' ! 8 ——
olosloTo] : o eslonlo 010101010101010000111
@ 0 6505 0 s | — 050 005
050 005 ! | 0 .75.65 0
0 .75.65 0
. | i - Huff Encoded
Same bit Length Shifting Errors Dequantized ! ! Original — ! I"I‘Ilaenmor:'(y:a)

tized Activati P i ! " T
Quantized Activations Activations | ' Memory Requirement Requirement

Figure 1: DQA overview. (1) offline, rank the activation channels based on importance using
training/calibration data and a greedy search algorithm (green circles represent the most important
channels for which we skip quantization); (2) during inference, quantize important activation channels
with m extra bits and then right-shift them while saving the shifting errors; (3) the shifting errors
are Huffman-encoded to reduce the memory requirement; (4) de-quantize activation channels. For
important channels, decode the Huffman-encoded shifting errors and add them to the quantized
activation channel values. For non-important channels, use the direct method to de-quantize.

3 Proposed Method: DQA

We now present our proposed DQA method in detail. The main goal of DQA is to efficiently quantize
DNN activations, providing high accuracy while minimizing computation and memory requirements,
which is especially important on resource-constrained devices. Figure[I] gives an overview of DQA.
Given a target of quantization bits n:

. @ Offline, DQA uses training/calibration data to rank the activation channels (i.e., their
importance) using a greedy search algorithm that quantizes the target activations (see

Section [3.1));

* (2) During inference, DQA quantizes the important activation channels using /m extra bits
(i.e., n 4+ m bits in total) while the rest of channels are quantized using n bits. Generally, the
higher the accuracy required, the more important channels are needed (we can determine
them using a tunable pre-selected ratio of the total channels in each layer). Then DQA
right-shifts the important activation channels by m bits and saves the shifting errors. For
non-important channels, DQA uses the direct quantization method;

« (3) During inference, DQA encodes the shifting errors for important channels using Huffman
coding [17]] (see Section[3.2)), which reduces the memory requirement.

* (4) During inference, DQA de-quantizates the activation channels. For important channels,
it decodes the Huffman-encoded shifting errors and adds them to the quantized activation
channel values, thus compensating the information loss. For non-important channels, it uses
the direct method to de-quantize.

Algorithms and describe steps (2), 3) and (4) of DQA in more detail for a single layer. Note that
channels are quantized/de-quantized one by one (see lines 4 and 3 in Algorithms|[T]and [2]respectively);
se in Algorithm [T]refers to the shifting error. Also note that Important Channels (I) are obtained from
the rank of the activation channels. Finally, the shifting errors are obtained by reading the lower m
bits of each activation value before shifting. Since there are 2™ possible combinations of lower m
bits that correspond to the shifting errors, they can be converted to decimal floating point values using
a pre-computed table (which maps the lower m bits to shifting errors).

Algorithm 1 DQA Layer Quantization Algorithm 2 DQA Layer De-Quantization

1: Input: Activation Channels A, Target bits n, Ex- 1: Input: Quantized Activation Channels A,, Tar-
tra bits m, Important Channels /, Huffman En- get bits n, Encoded Shifting Errors e, Important
coder H(.) Channels I, Huffman Decoder Hg(.)

2: Output: Quantized A, Encoded Shifting Errors e 2: Output: De-Quantized A

3: e = empty 3: fora € A, do

4: fora € Ado 4 A, \maw(Aztiym-H

S ifa c I then 5: ifa € I then

. Imaz(Ajayer)|

6: An+7n - Wim—yl 6: a = An (a + Hd(e))

7: Umore = Round(x -) 7: else

8: a, se = RightShift(amore, m) 8: a=A,-a

9: e=ce|| He(se) 9: return A

10: else
1: A, = Mo Biayer)]
12: a = Round(z-)

13: return A, e

3.1 Ranking Important Activation Channels Using Greedy Search

We hypothesize that there are important activation channels that can be treated differently for
quantization, similar to how AWQ [11] processes weights. We define important activation channels as
those for which skipping quantization can yield better accuracy in DNN inference. Since activations
are dynamically generated, it would be too computationally expensive to rank activation channels
during inference. As a result, we compute the ranks offline using training/calibration data. Assuming
that both training/calibration and inference data are drawn from sufficiently similar distributions,
the ranks computed offline can be reused during inference. Therefore, we select important channels
(which are fixed and based on a tunable pre-selected ratio of the total channels in each layer) offline.
Then, the memory requirement can be accurately calculated offline before inference.

To calculate the rank of the activation channels, we avoid brute force and dynamic programming
approaches due to their impractical time complexity. Instead, we use greedy search that only requires
O(LN) operations, where N is the number of channels and L is the number of layers. In our
greedy search algorithm (see Algorithm [3]in Appendix), we iterate the activation channels for each
layer. In each iteration, we skip the current activation channel and only quantize the remaining
activation channels of the layer. We then run inference on evaluation data to measure the impact of
skipping the current activation channel on accuracy. The skipped activation channels that provide the
highest accuracy are considered the most important ones for that layer. From layer two onwards, we
first quantize the activation channels of the previous layers using their layer ranks to skip the most
important channel of each layer.

3.2 Quantizing Important Activation Channels

To preserve more information for the important activation channels, and thus obtain higher accuracy,
we quantize them with m extra bits, where m is less than or equal to the target number of bits
n, so that they are quantized using n + m bits. Then, we right-shift the activation values of the
important channels by m bits to reach the target bit length n. Note that this operation allows storing
all quantized values with same bit length n, which helps avoid wasted storage [[12]. Also note that
right-shifting is a computationally cheap operation [4]. Since right-shifting will lead to information
loss for the important activation values, we save the shifting errors and add them back during the
de-quantization phase to compensate the information loss.

3.2.1 Quantization Error

We now formally analyze the shifting errors for the important activation channels. We denote by 1
the important activation channels. The most straightforward quantization/de-quantization approach
for the important activation channels can be expressed as [[11]:

[maz (1))

I
Q) =Ay - Round(A—N), where Ayn = ToN-T @))

The quantization error of this method is (re is the Rounding Error):

Error:|IfQ(I)\:|IfAN~(AiN+re)\:ANore)

The average re is 0.25 [11]. With DQA, I will be quantized with m extra bits first, and then right-
shifted also with m bits. Then, the de-quantized important activation channels can be expressed as
(se is the Shifting Error):

1
QUI)=Ay- (Rz’ghtShift(Round(A)) + se) 3)
N+m
Finally, the quantization error becomes:
1 1 1
Error=1—-An-(— - (+re) —se+se)|=An-— -re (€))
2m AN+m 2m

From Equations [2]and [4] it is clear that this approach exponentially (2™) reduces the quantization
error. This is expected since we add m more bits of information.

3.2.2 Memory Overhead

DQA improves the accuracy by adding m extra bits and saving the shifting errors, which involves
some memory overhead. To reduce this overhead, we empirically explore the pattern of the shifting
errors. As an example, we study the average frequency distribution of the shifting errors (i.e., the
average value of the shifting errors frequencies calculated during inference with each batch of input
data) for ResNet-32 and the CIFAR-10 dataset with 3, 4, and 5 bits quantization and m = 3.

As we can see in Figure@], the distributions of shifting errors are not uniform. Therefore, we can use
Huffman coding [[17] to compress the errors by encoding the most frequent errors with fewer bits,
and the less frequent errors with more bits. Note that in general Huffman coding can generate shorter
encoding information compared to directly storing m bits, which justifies its use to compress shifting
errors.

Note that in our experiments in Section f] Huffman coding shows benefits in compressing the shifting
errors. Specifically, the average compression ratio (S‘Ze—é’fzzo(‘;‘fg‘;ilf—fi};lit”(‘jg(‘)ﬁg”ors) for Huffman
coding on the CIFAR-10 dataset is up to 1.12. o a

Avg. Frequencies
Avg. Frequencies
Avg. Frequencies

0.0 0.1250.25 0.375 0.5 0.625 0.75 0.875 0.0 0.1250.25 0.375 0.5 0.625 0.75 0.875 0.0 0.1250.25 0.375 0.5 0.625 0.75 0.875
Shifting Errors Shifting Errors Shifting Errors

(a) 3 bits (b) 4 bits (c) 5 bits

Figure 2: Average frequency distribution of shifting errors for ResNet-32 and CIFAR-10 with 3, 4,
and 5 bits quantization and m = 3.

4 Evaluation

4.1 Experimental Setup

For image classification, we use ResNet-32 [[7]] and MobileNetV2 [[8] on the CIFAR-10 dataset [10].
For image segmentation, we use U-Net [[16] on the CityScapes [2] dataset. Note that ResNet-32 and
MobileNetV?2 store the activations of the shortcut connections, whereas U-Net stores the activations
of encoder layers. The three DNN models are typical examples where activations need to be i) stored
for a relatively long term and ii) compressed to have a manageable peak memory usage.

Table 1: Accuracy (Acc) results for the three DNN models under study.

(a) Classification: ResNet-32 (b) Classification: MobileNetV2 (c) Segmentation: U-Net
Original Acc: 92.49% Original Acc: 91.42% Original Acc: 92.5%
Method Bits Acc (%) Method Bits Acc (%) Method Bits Acc (%)
Direct 3 52.85 Direct 3 82.75 Direct 3 84.41
NoisyQuant 3 71.22 NoisyQuant 3 87.67 NoisyQuant 3 92.16
DQA(m =3) 3 82.13 DQA(m = 3) 3 88.63 DQA(m =3) 3 90.38
Direct 4 87.74 Direct 4 90.01 Direct 4 91.54
NoisyQuant 4 89.66 NoisyQuant 4 90.56 NoisyQuant 4 91.13
DQA(m = 3) 4 90.55 DQA(m = 3) 4 90.84 DQA(m = 3) 4 92.03
Direct 5 91.33 Direct 5 91.19 Direct 5 91.48
NoisyQuant 5 91.86 NoisyQuant 5 91.33 NoisyQuant 5 91.41
DQA(m = 3) 5 92.12 DQA(m = 3) 5 91.28 DQA(m = 3) 5 91.46

Since DQA is designed for deep quantization of DNN activations, we set the target quantization
levels to 3, 4, and 5 bits; note that m = 3 in all cases to simplify the evaluation (we leave as future
work the exploration of different values of m for different quantization levels).

We implement our experiments using PyTorch [14]] and run them on an Nvidia RTX 3090 GPU, as
the main goal of this work is to evaluate accuracy (we leave as future work the exploration of more
resource-constrained devices). Every experiment is run 5 times for each quantization level, and we
take the average value in each case.

For each DNN model, we created a rank table (which maps the name and activation channel ranks of
each layer) for each run of the experiments with a random subset of the training data using greedy
search (see Section[3.1)). The size of the random training data subset for creating each rank map is
5000 for image classification and 50 for image segmentation. We select important channels with
ratios of 40% for image classification and 50% for image segmentation, for all channels in all layers.
The batch size is 128 for image classification and 4 for image segmentation in all corresponding
experiments, including the direct quantization method and NoisyQuant.

4.2 Results

We compare DQA with two methods i) direct quantization (defined in Section[2) and the state-of-
the-art NoisyQuant [13]]. Even though NoisyQuant was designed for Vision Transformers [3], our
experiments show that it also works well for other types of DNNs. Note that all experiments only
quantize activations, i.e., without considering weights.

Table |1 shows the accuracy results for the three DNN models under study. Overall, DQA works
better for classification tasks than segmentation task. More specifically, for image classification
models DQA achieves up to 29.28% higher accuracy than the direct method and NoisyQuant, where
ResNet-32 always obtains higher differences than MobileNetV2. We also see that the lower the
quantization bits, the more accuracy advantages DQA can provide. For U-Net (image segmentation),
we observe that DQA provides higher accuracy (up to 0.9%) than the direct method and NoisyQuant
when quantizing with 4 bits, and similar accuracy when quantizing with 5 bits. For 3 bits, DQA
improves over direct quantization but NoisyQuant provides the best accuracy value.

5 Conclusion

In this paper we proposed DQA, an efficient method that applies deep quantization (with less
than 6 bits) to DNN activations and provides high accuracy while being suitable for resource-
constrained devices. We evaluate DQA on three DNN models for both image classification and image
segmentation tasks, showing up to 29.28% accuracy improvement compared to direct quantization
and the state-of-the-art NoisyQuant. As future work, we plan to co-design new versions of DQA
and hardware accelerators [6], which will also allow us to evaluate the system performance (such
inference latency) on resource-constrained devices, thus further exploiting the benefits of DQA.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Chen, Z., Xie, B., Li, J., Shen, C.: Channel-wise mixed-precision quantization for large language
models. arXiv preprint arXiv:2410.13056 (2024)

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth,
S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16
words: Transformers for image recognition at scale. In: International Conference on Learning
Representations (2021)

Elhoushi, M., Chen, Z., Shafiq, F., Tian, Y.H., Li, J.Y.: Deepshift: Towards multiplication-less
neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 2359-2368 (2021)

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantization
methods for efficient neural network inference. In: Low-Power Computer Vision, pp. 291-326.
Chapman and Hall/CRC (2022)

Gibson, P., Cano, J., Crowley, E.J., Storkey, A., O’Boyle, M.: DLAS: A Conceptual Model
for Across-Stack Deep Learning Acceleration. ACM Transactions on Architecture and Code
Optimization (TACO) (2024)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770-778 (2016)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv:1704.04861 (Apr 2017)

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D.:
Quantization and training of neural networks for efficient integer-arithmetic-only inference. In:

Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). pp.
2704-2713 (2018)

Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. TR (2009)

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.M., Wang, W.C., Xiao, G., Dang, X., Gan, C., Han,
S.: Awq: Activation-aware weight quantization for on-device llm compression and acceleration.
In: Gibbons, P., Pekhimenko, G., Sa, C.D. (eds.) Proceedings of Machine Learning and Systems.
vol. 6, pp. 87-100 (2024)

Liu, R., Wei, C., Yang, Y., Wang, W., Yuan, B., Yang, H., Liu, Y.: A dynamic execution neural
network processor for fine-grained mixed-precision model training based on online quantization
sensitivity analysis. IEEE Journal of Solid-State Circuits 59(9), 3082-3093 (2024)

Liu, Y., Yang, H., Dong, Z., Keutzer, K., Du, L., Zhang, S.: Noisyquant: Noisy bias-enhanced
post-training activation quantization for vision transformers. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 20321-20330 (2023)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: an imperative style,
high-performance deep learning library. In: NeurIPS (2019)

Rakka, M., Fouda, M.E., Khargonekar, P., Kurdahi, F.: Mixed-precision neural networks: A
survey. arXiv preprint arXiv:2208.06064 (2022)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: Medical image computing and computer-assisted intervention-MICCAI 2015:
18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.
pp- 234-241. Springer (2015)

Van Leeuwen, J.: On the construction of huffman trees. In: ICALP. pp. 382-410 (1976)

Appendix

Algorithm 3 Ranking Important Activation Channels Using Greedy Search

1: Input: Model M, Training or Calibration Dataset D

2: Output: All ranks of activation channels R

3 R={}

4: P={} //Most important activation channels of previous layers

5

: for

PR

9:
10:
11:
12:
13:
14:
15:

16:
17:
18:

19: return R

layer € M do // In forward direction
rank = {}
highest_accuracy = 0
most_important_channel = none
for channel € layer.activation_channels do
/I 1Q) quantizes activations of previous layers and activations of current layer
accuracy = IQ(M, layer, channel, P, D)
rank = rank U (channel, accuracy)
if accuracy > highest_accuracy then
highest_accuracy = accuracy
most_important_channel = channel
Pllayer] = most_important_channel
rank = sort(rank) /I sort by accuracy
Rllayer] = rank

	Introduction
	Background and Related Work
	Proposed Method: DQA
	Ranking Important Activation Channels Using Greedy Search
	Quantizing Important Activation Channels
	Quantization Error
	Memory Overhead

	Evaluation
	Experimental Setup
	Results

	Conclusion

