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Abstract

Within the graph learning community, conventional wisdom dictates that spectral1

convolutional networks may only be deployed on undirected graphs: Only there2

could the existence of a well-defined graph Fourier transform be guaranteed, so3

that information may be translated between spatial- and spectral domains. Here4

we show this traditional reliance on the graph Fourier transform to be superfluous5

and – making use of certain advanced tools from complex analysis and spectral6

theory – extend spectral convolutions to directed graphs. We provide a frequency-7

response interpretation of newly developed filters, investigate the influence of the8

basis used to express filters and discuss the interplay with characteristic operators9

on which networks are based. In order to thoroughly test the developed theory,10

we conduct experiments in real world settings, showcasing that directed spectral11

convolutional networks provide new state of the art results for heterophilic node12

classification on many datasets and – as opposed to baselines – may be rendered13

stable to resolution-scale varying topological perturbations.14

1 Introduction15

A particularly prominent line of research for graph neural networks is that of spectral convolutional16

architectures. These are among the theoretically best understood graph learning methods [34, 48, 32]17

and continue to set the state of the art on a diverse selection of tasks [6, 23, 24, 57]. Furthermore,18

spectral interpretations allow to better analyse expressivity [3], shed light on shortcomings of19

established models [43] and guide the design of novel methods [8].20

Traditionally, spectral convolutional filters are defined making use of the notion of a graph Fourier21

transform: Fixing a self-adjoint operator on an undirected N -node graph – traditionally a suitably22

normalized graph Laplacian L “ UJΛU with eigenvalues Λ “ diagpλ1, ..., λN q – a notion of Fourier23

transform is defined by projecting a given signal x onto the eigenvectors of L via x ÞÑ Ux. Since L24

is self-adjoint, the eigenvectors form a complete basis and no information is lost in the process.25

In analogy with the Euclidean convolution theorem, early spectral networks then defined convolution26

as multiplication in the "graph-Fourier domain" via x ÞÑ UJ ¨ diagpθ1, ..., θN q ¨ Ux, with learnable27

parameters tθ1, ..., θNu [9]. To avoid calculating an expensive explicit eigendecomposition U , [15]28

proposed to instead parametrize graph convolutions via x ÞÑ UJgθpΛqUx, with gθ a learnable29

scalar function applied to the eigenvalues Λ as gθpΛq “ diag pgθpλ1q, ..., gθpλN qq. This precisely30

reproduces the mathematical definition of applying a scalar function gθ to a self-adjoint operator L,31

so that choosing gθ to be a (learnable) polynomial allowed to implement filters computationally much32

more economically as gθpLq “
řK
k“1 θkL

k. Follow up works then considered the influence of the33

basis in which filters tgθu are learned [23, 35, 58] and established that such filters provide networks34

with the ability to generalize to unseen graphs [34, 49, 32].35
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Common among all these works, is the need for the underlying graph to be undirected: Only then are36

the characteristic operators self-adjoint, so that a complete set of eigenvectors exists and the graph37

Fourier transform U – used to define the filter gθpLq via x ÞÑ UgθpΛqU
Jx – is well-defined.38

Currently however, the graph learning community is endeavouring to finally also account for the39

previously neglected directionality of edges, when designing new methods [59, 47, 5, 18, 25]. Since40

characteristic operators on digraphs are generically not self-adjoint, traditional spectral approaches so41

far remained inaccessible in this undertaking. Instead, works such as [59, 25] resorted to limiting42

themselves to certain specialized operators able to preserve self-adjointness in this directed setting.43

While this approach is not without merit, the traditional adherence to the graph Fourier transform44

remains a severely limiting factor when attempting to extend spectral networks to directed graphs.45

Contributions: In this paper we argue to completely dispose with this reliance on the graph Fourier46

transform and instead take the concept of learnable functions applied to characteristic operators as47

fundamental. This conceptual shift allows us to consistently define spectral convolutional filters on48

directed graphs. We provide a corresponding frequency perspective, analyze the interplay with chosen49

characteristic operators and discuss the importance of the basis used to express these novel filters.50

The developed theory is thoroughly tested on real world data: It is found that that directed spectral51

convolutional networks provide new state of the art results for heterophilic node classification and – as52

opposed to baselines – may be rendered stable to resolution-scale varying topological perturbations.53

2 Signal processing on directed Graphs54

Weighted directed graphs: A directed graph G :“ pG, Eq is a collection of nodes G and edges55

E Ď G ˆ G for which pi, jq P E does not necessarily imply pj, iq P E . We allow nodes i P G to have56

individual node-weights µi ą 0 and generically assume edge-weights wij ě 0 not necessarily equal57

to unity or zero. In a social network, a node weight µi “ 1 might signify that a node represents a58

single user, while a weight µj ą 1 would indicate that node j represents a group of users. Similarly,59

edge weights twiju could be used to encode how many messages have been exchanged between60

nodes i and j. Importantly, since we consider directed graphs, we generically have wij ‰ wji.61

Edge weights also determine the so called reaches of a
graph, which generalize the concept of connected compo-
nents of undirected graphs [54]: A subgraph R Ď G is
called reach, if for any two vertices a, b P R there is a
directed path in R along which the (directed) edge weights
do not vanish, andR simultaneously possesses no outgoing
connections (i.e. for any c P G with c R R: wca “ 0).
For us, this concept will be important in generalizing the
notion of scale insensitive networks [33] to directed graphs
in Section 3.3 below.

Figure 1: A di-graph with reaches R1 “

t1, 2, 3u and R2 “ t3, 4, 5, 6, 2u.

62

Feature spaces: Given F -dimensional node features on a graph with N “ |G| nodes, we may63

collect individual node-feature vectors into a feature matrix X of dimension N ˆ F . Taking into64

account our node weights, we equip the space of such signals with an inner-product according65

to xX,Y y “ TrpX˚MY q “
řN
i“1

řF
j“1pXijYijqµi with M “ diag ptµiuq the diagonal matrix66

of node-weights. Here X˚ denotes the (hermitian) adjoint of X (c.f. Appendix B for a brief67

recapitulation). Associated to this inner product is the standard 2-norm }X}22 “
řN
i“1

řF
j“1 |Xij |

2µi.68

Characteristic Operators: Information about the geometry of a graph is encapsulated into the set69

of edge weights, collected into the weight matrixW . From this, the diagonal in-degree and out-degree70

matrices (Din
ii “

ř

jWij , Dout
jj “

ř

iWij) may be derived. Together with the the node-weight matrix71

M defined above, various characteristic operators capturing the underlying geometry of the graph72

may then be constructed. Relevant to us – apart from the weight matrix W – will especially be the73

(in-degree) Laplacian Lin :“M´1pDin ´W q, which is intimately related to consensus and diffusion74

on directed graphs [55]. Importantly, such characteristic operators T are generically not self-adjoint.75

Hence they do not admit a complete set of eigenvectors and their spectrum σpT q contains complex76

eigenvalues λ P C. Appendix B contains additional details on such operators, their canonical (Jordan)77

decomposition and associated generalized eigenvectors.78
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3 Spectral Convolutions on directed graphs79

Since characteristic operators on directed graphs generically do not admit a complete set of orthogonal80

eigenvectors, we cannot make use of the notion of a graph Fourier transform to consistently define81

filters of the form gθpT q. While this might initially seem to constitute an insurmountable obstacle,82

the task of defining operators of the form gpT q for a given operator T and appropriate classes of83

scalar-valued functions tgu – such that relations between the functions tgu translate into according84

relation of the operators tgpT qu – is in fact a well studied problem [20, 13]. Corresponding techniques85

typically bear the name "functional calculus" and importantly are also definable if the underlying86

operator T is not self-adjoint [14]:87

3.1 The holomorphic functional calculus88

In the undirected setting, it was possible to essentially apply arbitrary functions tgu to the characteris-89

tic operator T “ UJΛU by making use of the complete eigendecomposition as gpT q :“ UJgθpΛqU .90

However, a different approach to consistently defining the matrix gpT q – not contingent on such a91

decomposition – is available if one restricts g to be a holomorphic function: For a given subset U92

of the complex plane, these are the complex valued functions g : U Ñ C for which the complex93

derivative dgpzq{dz exists everywhere on the domain U (c.f. Appendix D for more details).94

The property of such holomorphic functions that is exploited in
order to consistently define the matrix gpT q is the fact that any
function value gpλq can be reproduced by calculating an integral of
the function g along a path Γ encircling λ (c.f. also Fig. 2) as

gpλq “ ´
1

2πi

¿

Γ

gpzq ¨ pλ´ zq´1dz. (1)
Figure 2: Cauchy Integral (1)

95

In order to define the matrix gpT q, the formal replacement λ ÞÑ T is then made on both sides of (1),96

with the path Γ now not only encircling a single value λ but all eigenvalues λ P σpT q (c.f. also Fig. 3):97

gpT q :“ ´
1

2πi

¿

Γ

gpzq ¨ pT ´ z ¨ Idq´1dz (2)

Note that pT ´ z ¨ Idq´1 – and hence the integral in (2) – is indeed
well-defined: All eigenvalues of T are assumed to lie inside the path
Γ. For any choice of integration variable z on this path Γ, the matrix
pT ´ z ¨ Idq is thus indeed invertible, since z is never an eigenvalue. Figure 3: Operator Integral (2)

98

The integral in (2) defines what is called the holomorphic functional calculus [19, 30]. Importantly,99

this holomorphic functional calculus (2) agrees with algebraic relations: Applying a polynomial100

gpλq :“
řK
k“0 akλ

k to T yields gpT q “
řK
k“0 akT

k. Similarly applying the function gpλq “ 1{λ101

yields gpT q “ T´1 provided T is invertible. Appendix E details the calculations.102

3.2 Spectral convolutional filters on directed graphs103

Since the holomorphic functional calculus is evidently no longer contingent on T being self-adjoint,104

it indeed provides an avenue to consistently define spectral convolutional filters on directed graphs.105

Parametrized spectral convolutional filters: In practice it is of course prohibitively expensive to106

continuously compute the integral (2) as the learnable function g is updated during training. Instead,107

we propose to represent a generic holomorphic function g via a set of basis functions tΨiuiPI as108

gθpzq :“
ř

iPI θi ¨Ψipzq with learnable coefficients tθiuiPI parametrizing the filter gθ.109

For the ’simpler’ basis functions tΨiuiPI , we either precompute the integral (2), or perform it110

analytically (c.f. Section 3.3 below). During training and inference the matrices ΨipT q ”111

´ 1
2πi

ű

Γ
Ψipzq ¨ pT ´ z ¨ Idq´1dz are then already computed and learnable filters are given as112

113

gθpT q :“
ÿ

iPI

θi ¨ΨipT q.
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Generically, each coefficient θi may be chosen as a complex number; equivalent to two real parameters.114

If the functions tΨiuiPI are chosen such that each matrix ΨipT q contains only real entries (e.g. for Ψ a115

polynomial with real coefficients), it is possible to restrict convolutional filters to being purely real: In116

this setting, choosing the parameters tθiu to be purely real as well, leads to gθpT q “
ř

iPI θi ¨ΨipT q117

itself being a matrix that contains only real entries. In this way, complex numbers need never to118

appear within our network, if this is not desired. In Theorem 4.1 of Section 4 below, we discuss how,119

under mild and reasonable assumptions, such a complexity-reduction to using only real parameters120

can be performed without decreasing the expressive power of corresponding networks.121

Irrespective of whether real or complex weights are employed, the utilized filter bank tΨiuiPI122

determines the space of learnable functions gθ P spanptΨiuiPIq and thus contributes significantly to123

the inductive bias present in the network. It should thus be adjusted to the respective task at hand.124

The Action of Filters in the Spectral Domain: In order to determine which basis functions are125

adapted to which tasks, a "frequency-response" interpretation of spectral filters is expedient:126

In the undirected setting this proceeded by decomposing any characteristic operator T into a sum127

T “
ř

λPσpT q λ ¨ Pλ over its distinct eigenvalues. The spectral action of any function g was then128

given by gpT q “
ř

λPσpT q gpλq ¨Pλ. Here the spectral projections Pλ project each vector to the space129

spanned by the eigenvectors tviu corresponding to the eigenvalue λ (i.e. satisfying pT ´λIdqvi “ 0).130

In the directed setting, there only exists a basis of generalized eigenvectors twiuNi“1; each satisfying131

pT ´ λ ¨ Idqmwi “ 0 for some λ P σpT q and m P N (c.f. Appendix B). Denoting by Pλ the matrix132

projecting onto the space spanned by these generalized eigenvectors associated to the eigenvalue133

λ P σpT q, any operator T may be written as1 T “
ř

λPσpT q λ ¨ Pλ `
ř

λPσpT qpT ´ λ ¨ Idq ¨ Pλ. It134

can then be shown [30], that the spectral action of a given function g is given as135

gpT q “
ÿ

λPσpT q

gpλqPλ `
ÿ

λPσpT q

«

mλ´1
ÿ

n“1

gpnqpλq

n!
pT ´ λ ¨ Idqn

ff

Pλ. (3)

Here the number mλ is the algebraic multiplicity of the eigenvalue λ; i.e. the dimension of the136

associated generalized eigenspace. The notation gpnq denotes the nth complex derivative of g. The137

appearance of such derivative terms in (3) is again evidence, that we indeed needed to restrict from138

generic- to differentiable functions2 in order to sensibly define directed spectral convolutional filters.139

It is instructive to gain some intuition about the second sum on the right-hand-side of the frequency140

response (3), as it is not familiar from undirected graphs (since it vanishes if T is self-adjoint):141

As an example consider the un-weighted directed path graph on three nodes
depicted in Fig. 4 and choose as characteristic operator T the adjacency matrix
(i.e. T “W ). It is not hard to see (c.f. Appendix C for an explicit calculation)
that the only eigenvalue of W is given by λ “ 0 with algebraic multiplicity
mλ “ 3. Since spectral projections always satisfy

ř

λPσpT q Pλ “ Id (c.f.
Appendix B), and here σpW q “ t0u we thus have Pλ“0 “ Id in this case.

Figure 4: Directed
path on 3 nodes

142

Suppose now we are tasked with finding a (non-trivial) holomorphic filter gpλq such that gpT q “ 0.143

The right-hand sum in (3) implies, that beyond gp0q “ 0, also the first and second derivative of gpλq144

needs to vanish at λ “ 0 to achieve this. Hence the zero of gpλq at λ “ 0 must be at least of order145

three; or equivalently for λÑ 0 we need gpλq “ opλ3q. This behaviour is of course exactly mirrored146

in the spatial domain: As applying W simply moves information at a given node along the path,147

applying W once or twice still leaves information present. After two applications, only node 3 still148

contains information and thus applying W k precisely removes all information if and only if k ě 3.149

Without the assumption of acyclicity, the spectrum of characteristic operators of course generically150

does not consist only of the eigenvalue λ “ 0. Thus generically Pλ“0 ‰ Id and the role played by151

the operator T “W in the considerations above is instead played by its restriction pT ¨ Pλ“0q to the152

generalized eigenspace corresponding to the eigenvalue λ “ 0.153

For us, the spectral response (3) will provide guidance when designing and discussing scale-insensitive154

convolutional filters and corresponding networks on directed graphs in Sections 3.3 and 4 below.155

1Additional details on this so called Jordan Chevalley decomposition are provided in Appendix B.
2N.B.: A once-complex-differentiable function is automatically infinitely often differentiable [1].
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3.3 Explicit Filter Banks156

Having laid the theoretical foundations, we consider examples of task-adapted filter banks tΨiuiPI .157

3.3.1 Bounded Spectral Domain: Faber Polynomials158

First, let us consider spectral networks on a single graph with a fixed characteristic operator T . From159

the holomorphic functional calculus (2), we infer that convolutional filters tgpT qu are in principle160

provided by all holomorphic functions tgu defined on a domain U which contains all eigenvalues161

λ P σpT q of T . As noted above, implementing an arbitrary holomorphic g is however too costly, and162

we instead approximate g via a collection of simpler basis functions tΨiuiPI as gpλq «
ř

iPI θiΨipλq.163

In order to choose the filter bank tΨiuiPI , we thus need to answer the question of how to optimally164

approximate arbitrary holomorphic functions on a given fixed domain U . The solution to this problem165

is given in the guise of Faber polynomials [16, 12] which generalize the familiar Chebychev166

polynomials utilized in [15] to subsets U of the complex plane [17]. Faber polynomials provide167

near near mini-max polynomial approximation3 to any holomorphic function defined on a domain168

U satisfying some minimal conditions (c.f. [17] for exact details). What is more, they have already169

successfully been employed in numerically approximating matrices of the form gpT q for T not170

necessarily symmetric [41].171

While for a generic domain U Faber polynomials are impossible to compute analytically, this poses172

no limitations to us in practice: Short of a costly explicit calculation of the spectrum σpT q, the only173

information that is generically available, is that eigenvalues may be located anywhere within a circle174

of radius }T }. This circle must thus be contained in any valid domain U . Making the minimal choice175

by taking U to be exactly this circle, the nth-Faber polynomial may be analytically calculated [22]:176

Up to normalization (absorbed into the learnable parameters) it is given by the monomial λn. We177

thus take our nth basis element Ψnpλq to be given precisely by this monomial: Ψnpλq “ λn.178

In a setting where more detailed information on σpT q is available, the domain U may of course be179

adapted to reflect this. Corresponding Faber polynomials might then be pre-computed numerically.180

3.3.2 Unbounded Spectral Domain: Functions decaying at complex infinity181

In the multi-graph setting – e.g. during graph classification – we are confronted with the possibility182

that distinct graphs may describe the same underlying object [34, 39, 32]. This might for example183

occur if two distinct graphs discretize the same underlying continuous space; e.g. at different184

resolution scales. In this setting – instead of precise placements of nodes – what is actually important185

is the overall structure and geometry of the respective graphs.186

Un-normalized Laplacians provide a convenient multi-scale descriptions of such graphs, as they187

encode information corresponding to coarse geometry into small (in modulus) eigenvalues, while188

finer graph structures correspond to larger eigenvalues [11, 42]. When designing networks whose189

outputs are not overly sensitive to fine print articulations of graphs, the spectral response (3) then190

provides guidance on deteriming which holomorphic filters g are able to suppress this superfluous191

high-lying spectral information: It is sufficient that gpnqpλq{n! « 0 for |λ| " 1.192

It can be shown that no holomorphic function with such large-|λ| asymptotics defined on all of C193

exists.4 We thus make the minimal necessary change and assume g to be defined on a punctured194

domain U “ Cztyu instead. The choice of y P C is treated as a hyperparameter, which may be195

adjusted to the task at hand. Any such g may then be expanded as gpλq “
ř8

j“1 θjpλ ´ yq´j196

for some coefficients tθiu8i“1 [2]. Evaluating the defining integral (2) for the Laplacian Lin on the197

atoms Ψjpλq “ pλ´ yq
´j yields ΨjpL

inq “ prLin ´ y ¨ Ids´1qj ; as proved in Appendix E. Hence198

corresponding filters are polynomials in the resolvent RypLinq :“ rLin ´ y ¨ Ids´1 of Lin.199

Such resolvents are traditionally used as tools to compare operators with potentially divergent200

norms [52]. Recently [33] utilized them in the undirected setting to construct networks provably201

assigning similar feature-vectors to weighted graphs describing the same underlying object at different202

resolution-scales. Our approach extends these networks to the directed setting:203

3I.e. minimizing the maximal approximation error on the domain of definition U .
4This is an immediate consequence of Liouville’s theorem in complex analysis [1].
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Effective directed Limit Graphs: From a diffusion perspective, information in a graph equalizes204

much faster along edges with large weights than via weaker edges. In the limit where the edge-weights205

within certain sub-graphs tend to infinity, information within these clusters equalizes immediately206

and such sub-graphs should thus effectively behave as single nodes. Extending undirected-graph207

results [33], we here establish rigorously that this is indeed also true in the directed setting.208

Mathematically, we make our arguments precise by considering a graph G with a weight matrix209

W admitting a (disjoint) two-scale decomposition as W “ W regular ` c ¨W high (c.f. Fig. 5). As210

the larger weight scale c " 1 tends to infinity, we then establish that the resolvent RypLinq on G211

converges to the resolvent RypLinq of the Laplacian Lin on a coarse-grained limit graph G. This212

limit G arises by collapsing the reaches R of the graph Ghigh “ pG,W
highq (c.f. Fig. 5 (c)) into213

single nodes. For technical reasons, we here assume5 equal in- and out-degrees within Ghigh (i.e.214
ř

iW
high
ij “

ř

iW
high
ji ). Appendix G contains proofs corresponding to the results below.215

(a) (b) (c) (d)

Figure 5: (a) Graph G with W regular (blue) & W high (red); (b) W regular; (c) W high; (d) Limit Graph G

When defining G, directed reaches now replace the undirected components of [33]:216

Definition 3.1. The node set G of G is constituted by the set of all reaches in Ghigh. Edges E of217

G are given by those elements pR,P q P G ˆ G with non-zero agglomerated edge weight WRP “218
ř

rPR

ř

pPP Wrp. Node weights in G are defined similarly by aggregating as µ
R
“
ř

rPR µr.219

To map signals between these graphs, translation operators JÓ, JÒ are needed. Let x be a scalar graph220

signal and let 1R be the vector that has 1 as entry for nodes r P R and zero otherwise. Denote by221

uR the entry of u at node R P G. The projection operator JÓ is then defined component-wise by222

evaluation at nodeR P G as pJÓxqR “ x1R, xy{µR. Interpolation is defined as JÒu “
ř

RPG uR ¨1R.223

The maps JÒ, JÓ are then extended from single features txu to feature matrices tXu via linearity.224

With these preparations, we can now rigorously establish the suspected effective behaviour of clusters:225

Theorem 3.2. In the above setting, we have }RypLinq ¨X ´ JÒRypL
inqJÓ ¨X} ÝÑ 0 as cÑ8.226

For c " 1, applying the resolvent RypLinq on G is thus essentially the same as first projecting227

to the coarse-grained graph G (where all strongly connected clusters are collapsed), applying the228

corresponding resolvent there and then interpolating back up to G. The geometric information within229

RypL
inq is thus essentially reduced to that of the coarse grained geometry within G.230

Large weights within a graph typically correspond to fine-structure articulations of its geometry:231

For graph-discretisations of continuous spaces, edge weights e.g. typically correspond to inverse232

discretization lengths (wij „ 1{dij) and strongly connected clusters describe closely co-located233

nodes. In social-networks, edge weights might encode a closeness-measure, and coarse-graining234

would correspond to considering interactions between (tightly connected) communities as opposed to235

individual users. In either case, fine print articulations are discarded when applying resolvents.236

Stability of Filters: This reduction to a limit description on G is respected by our filters tgθu:237

Theorem 3.3. In the above setting, we have }gθpLinq ¨X ´ JÒgθpL
inqJÓ ¨X} ÝÑ 0 as cÑ8.238

If the weight-scale c is very large, applying the learned filter gθpλq “
řK
i“1 θipλ´ yq

´i to a signal239

X on G as X ÞÑ gθpL
inq ¨X thus is essentially the same as first discarding fine-structure information240

by projecting X to G, applying the spectral filter gθ there and subsequently interpolating back to G.241

Information about the precise articulation of a given graph G is thus suppressed in this propagation242

scheme; it is purely determined by the graph structure of the coarse-grained description G. Theorem243

4.2 below establishes that this behaviour persists for entire (directed) spectral convolutional networks.244

5This is known as Kirchhoff’s assumption [4]; reproducing the eponymous law of electrical circuits.
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4 Spectral networks on directed graphs: HoloNets245

We now collect holomorphic filters into corresponding networks; termed HoloNets. In doing so, we246

need to account for the possibility that given edge directionalities might limit the information-flow247

facilitated by filters tgθpT qu: In the path-graph setting of Fig. 4 for example, a polynomial filter in the248

adjacency matrix would only transport information along the graph; features of earlier nodes would249

never be augmented with information about later nodes. To circumvent this, we allow for two sets of250

filters tgfwd
θ pT qu and tgbwd

θ pT˚qu based on the characteristic operator T and its adjoint T˚. Allowing251

these forward- and backward-filters to be learned in different bases tΨfwd/bwd
i uiPI fwd/bwd , we may write252

gfwd/bwd
θ pλq “

ř

iPI fwd/bwd θfwd/bwd
i Ψfwd/bwd

i pλq. With bias matrices B``1 of size N ˆ F``1 and weight253

matrices W fwd/bwd,``1
k of dimension F` ˆ F``1, our update rule is then efficiently implemented as254

X` “ ρ

˜

α
ÿ

iPI fwd

Ψfwd
i pT q ¨X`´1 ¨W fwd,`

i ` p1´ αq
ÿ

iPIbwd

Ψbwd
i pT˚q ¨X`´1 ¨W bwd,`

i `B`

¸

.

Here ρ is a point-wise non-linearity, and the parameter α P r0, 1s – learnable or tunable – is255

introduced following [47] to allow for a prejudiced weighting of the forward or backward direction.256

The generically complex weights & biases may often be restricted to R without losing expressivity:257

Theorem 4.1. Suppose for filter banks tΨfwd{fwd
i uI fwd{fwd that the matrices Ψfwd

i pT q,Ψbwd
i pT˚q contain258

only real entries. Then any HoloNet with layer-widths tF`u with complex weights & biases and a non259

linearity that acts on complex numbers componentwise as ρpa` ibq “ rρpaq ` irρpaq can be exactly260

represented by a HoloNet of widths t2 ¨ F`u utilizing rρ and employing only real weights & biases.261

This result (proved in Appendix H) establishes that for the same number of real parameters, real262

HoloNets theoretically have greater expressive power than complex ones. In our experiments in263

Section 5 below, we empirically find that complex weights do provide advantages on some graphs.264

Thus we propose to treat the choice of complex vs. real parameters as a binary hyperparameter.265

FaberNet: The first specific instantiation of HoloNets we consider, employs the Faber Polynomials266

of Section 3.3.1 for both the forward and backward filter banks. Since [47] established that considering267

edge directionality is especially beneficial on heterophilic graphs, this is also our envisioned target268

for the corresponding networks. We thus use as characteristic operator a matrix that avoids direct269

comparison of feature vectors of a node with those of immediate neighbours: We choose T “270

pDinq´
1
4 ¨W ¨ pDoutq´

1
4 since it has a zero-diagonal and its normalization performed well empirically.271

For the same reason of heterophily, we also consider the choice of whether to include the Faber272

polynomial Ψ0pλq “ 1 in our basis as a hyperparameter. As non-linearity, we choose either273

ρpa` ibq “ ReLupaq ` iReLupbq or ρpa` ibq “ |a| ` i|b|. Appendix I contains additional details.274

Dir-ResolvNet: In order to build networks that are insensitive to the fine-print articulation of275

directed graphs, we take as filter bank the functions tΨipλq “ pλ ´ yq´iuią0 evaluated on the276

Laplacian Lin for both the forward and backward direction. To account for individual node-weights277

when building up graph-level features, we use an aggregation Ω that aggregates N ˆ F -dimensional278

node-feature matrices as ΩpXqj “
řN
i“1 |Xij | ¨ µi to a graph-feature ΩpXq P RF . Graph-level279

stability under varying resolution scales is then captured by our next result:280

Theorem 4.2. Let Φ and Φ be the feature maps associated to Dir-ResolvNets with the same weights281

and biases deployed on graphs G and G as defined in Section 3.3.2. With Ω the aggregation method282

specified above and W “W regular ` c ¨W high as in Theorem 3.3, we have for cÑ8:283

}Ω pΦpXqq ´ Ω
`

ΦpJÓXq
˘

} ÝÑ 0

Appendix G contains proofs of this and additional stability results. From Theorem 4.2 we conclude284

that graph-level features generated by a Dir-ResolvNet are indeed insensitive to fine print articulations285

of weighted digraphs: As discussed in Section 3.3.2, geometric information corresponding to such286

fine details is typically encoded into strongly connected sub-graphs; with the connection strength c287

corresponding to the level of detail. However, information about the structure of these sub-graphs is288

precisely what is discarded when moving to G via JÓ. Thus the greater the level of detail within G,289

the more similar are generated feature-vectors to those of a (relatively) coarse-grained description G.290

291
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5 Experiments292

We present experiments on real-world data to evaluate the capabilities of our HoloNets numerically.293

5.1 FaberNet: Node Classification294

We first evaluate on the task of node-classification in the presence of heterophily. We consider multiple295

heterophilic graph-datasets on which we compare the performance of our FaberNet instantiation of296

the HoloNet framework against a representative array of baselines: As simple baselines we consider297

MLP and GCN [31]. H2GCN [60], GPR-GNN [10], LINKX [37], FSGNN [40], ACM-GCN [38],298

GloGNN [36] and Gradient Gating [51] constitute heterophilic state-of-the-art models. Finally state-299

of-the-art models for directed graphs are given by DiGCN [53], MagNet [59] and Dir-GNN [47].300

Appendix I contains dataset statistics as well as additional details on baselines, experimental setup301

and hyperparameters.302

Table 1: Results on real-world directed heterophilic datasets. OOM indicates out of memory.

Squirrel Chameleon Arxiv-year Snap-patents Roman-Empire
Homophily 0.223 0.235 0.221 0.218 0.05

MLP 28.77 ˘ 1.56 46.21 ˘ 2.99 36.70 ˘ 0.21 31.34 ˘ 0.05 64.94 ˘ 0.62
GCN 53.43 ˘ 2.01 64.82 ˘ 2.24 46.02 ˘ 0.26 51.02 ˘ 0.06 73.69 ˘ 0.74

H2GCN 37.90 ˘ 2.02 59.39 ˘ 1.98 49.09 ˘ 0.10 OOM 60.11 ˘ 0.52
GPR-GNN 54.35 ˘ 0.87 62.85 ˘ 2.90 45.07 ˘ 0.21 40.19 ˘ 0.03 64.85 ˘ 0.27
LINKX 61.81 ˘ 1.80 68.42 ˘ 1.38 56.00 ˘ 0.17 61.95 ˘ 0.12 37.55 ˘ 0.36
FSGNN 74.10 ˘ 1.89 78.27 ˘ 1.28 50.47 ˘ 0.21 65.07 ˘ 0.03 79.92 ˘ 0.56
ACM-GCN 67.40 ˘ 2.21 74.76 ˘ 2.20 47.37 ˘ 0.59 55.14 ˘ 0.16 69.66 ˘ 0.62
GloGNN 57.88 ˘ 1.76 71.21 ˘ 1.84 54.79 ˘ 0.25 62.09 ˘ 0.27 59.63 ˘ 0.69
Grad. Gating 64.26 ˘ 2.38 71.40 ˘ 2.38 63.30 ˘ 1.84 69.50 ˘ 0.39 82.16 ˘ 0.78

DiGCN 37.74 ˘ 1.54 52.24 ˘ 3.65 OOM OOM 52.71 ˘ 0.32
MagNet 39.01 ˘ 1.93 58.22 ˘ 2.87 60.29 ˘ 0.27 OOM 88.07 ˘ 0.27
DirGNN 75.13 ˘ 1.95 79.74 ˘ 1.40 63.97 ˘ 0.30 73.95 ˘ 0.05 91.3 ˘ 0.46

FaberNet 76.71 ˘ 1.92 80.33 ˘ 1.19 64.62 ˘ 1.01 75.10 ˘ 0.03 92.24 ˘ 0.43

As can be inferred from Table 1, FaberNet sets new state of the art results on all five heterophilic303

graph datasets above; out-performing intricate undirected methods specifically designed for the304

setting of heterophily. What is more, it also significantly outperforms directed spatial methods such305

as Dir-GNN, whose results can be considered as reporting a best-of-three performance over multiple306

directed spatial methods (c.f. Appendix I or [47] for details). FaberNet also significantly out-performs307

MagNet. This method is a spectral model, which relies on the graph Fourier transform associated308

to a certain operator that is able to remain self-adjoint in the directed setting. We thus might take309

this gap in performance as further evidence of the utility of transcending the classical graph Fourier310

transform: Utilizing the holomorphic functional calculus – as opposed to the traditional graph Fourier311

transform – allows to base filters on (non-self-adjoint) operators more adapted to the respective task at312

hand. On Squirrel and Chameleon, our method performed best when using complex parameters (c.f.313

Table 7 in Appendix I). With MagNet being the only other method utilizing complex parameters, its314

performance gap to Dir-ResolvNet also implies that it is indeed the interplay of complex weights with315

judiciously chosen filter banks and characteristic operators that provides state-of-the-art performance;316

not the use of complex parameters alone.317

5.2 Dir-ResolvNet: DiGraph Regression and Scale-Insensitivity318

We test the properties of our Dir-ResolvNet HoloNet via graph regression experiments. Weighted-319

directed datasets containing both node-features and graph-level targets are currently still scarce. Hence320

we follow [33] and evaluate on the task of molecular property prediction. While neither our Dir-321

ResolvNet nor baselines of Table 1 are designed for this task, such molecular data still allows for fair322

comparisons of expressive power and stability properties of (non-specialized) graph learning methods323

[28]. We utilize the QM7 dataset [50], containing graphs of 7165 organic molecules; each containing324

hydrogen and up to seven types of heavy atoms. Prediction target is the molecular atomization energy.325

While each molecule is originally represented by its Coulomb matrix Wij “ Zi ¨ Zj{|~xi ´ ~xj |, we326
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modify these edge-weights: Between each heavy atom and all atoms outside its respective immediate327

hydrogen cloud we set Wij “ Zoutside
i ¨ pZheavy

j ´ 1q{|~xi ´ ~xj |. While the sole reason for this change328

is to make make the underlying graphs directed (enabling comparisons of directed methods), we329

might heuristically interpret it as arising from a (partial) shielding of heavy atoms by surrounding330

electrons [26].331

Digraph-Regression: Treating W as a directed weight-matrix, we evaluate Dir-ResolvNet against332

all other directed methods of Table 1. Atomic charges are used as node weights (µi “ Zi) where333

applicable and one-hot encodings of atomic charges Zi provide node-wise
input features. As evident from Table 2, our method produces significantly
lower mean-absolute-errors (MAEs) than corresponding directed baselines
(c.f. Table 1): Competitors are out-performed by a factor of two and
more. We attribute this to Dir-ResolvNets ability to discard superfluous
information; thus better representing overall molecular geometries.

Table 2: QM7[kcal/mol]

DirGNN 59.01˘2.54

MagNet 45.31˘4.24

DiGCN 39.95˘6.23

Dir-ResolvNet17.12˘0.63

334

Scale-Insensitivity: To numerically investigate the stability properties of Dir-ResolvNet that were335

Figure 6: Feature-difference for collapsed
(F ) and deformed (F ) graphs.

mathematically established in Theorems 3.3 and 4.2, we
translate [33]’s undirected setup to the directed setting:
We modify (all) molecular graphs on QM7 by deflect-
ing hydrogen atoms (H) out of equilibrium towards the
respective nearest heavy atom. This introduces a two-
scale setting as in Section 3.3.2: Edge weights between
heavy atoms remain the same, while weights between
H-atoms and closest heavy atoms increasingly diverge.
Given an original molecular graph G, the corresponding
limit G corresponds to a coarse grained description, with
heavy atoms and surrounding H-atoms aggregated into
super-nodes. Feature vectors of aggregated nodes are
now normalized bag-of-word vectors whose individual
entries encode how much total charge of a given super-
node is contributed by individual atom-types. Appendix
I provides additional details.

336

In this setting, we compare feature vectors of collapsed graphs with feature vectors of molecules337

where hydrogen atoms have been deflected but have not yet arrived at the positions of nearest heavy338

atoms. Feature vectors are generated with the previously trained networks of Table 2. As evident339

from Fig. 6, Dir-ResolvNet’s feature-vectors converge as the scale c „ }~xH ´ ~xheavy}
´1 increases;340

thus numerically verifying the scale-invariance Theorem 4.2. Feature vectors of baselines do not341

converge: These models are sensitive to changes in resolutions when generating graph-level features.342

This difference in sensitivity is also apparent in our final experiment, where collapsed molecular343

graphs tGu are treated as a model for data obtained from a resolution-limited observation process un-344

able to resolve individual H-atoms. Given models trained on directed higher resolution digraphs tGu,345

atomization energies are then to be predicted solely using coarse
grained molecular digraphs. While Dir-ResolvNet’s prediction accu-
racy remains high, performance of baselines decreases significantly if
the resolution scale is reduced during inference: While Dir-ResolvNet
out-performed baselines by a factor of two and higher before, this lead
increases to a factor of up to 240 if resolutions vary (c.f. Table 3).

Table 3: QM7coarse
[kcal/mol]

DirGNN 195.64˘2.20

MagNet 663.63˘190.358

DiGCN 6672.71˘2243.61

Dir-ResolvNet 27.34˘7.55

346

6 Conclusion347

We introduced the HoloNet framework, which allows to extend spectral networks to directed graphs.348

Key building blocks of these novel networks are newly indroduced holomorphic filters, no longer349

reliant on the graph Fourier transform. We provided a corresponding frequency perspective, inves-350

tigated optimal filter-banks and discussed the interplay of filters with characteristic operators in351

shaping inductive biases. Experiments on real world data considered two particular HoloNet instanti-352

ations: FaberNet provided new state-of-the-art results for node classification under heterophily while353

Dir-ResolvNet generated feature vectors stable to resolution-scale-varying topological perturbations.354
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A Notation528

We provide a summary of employed notational conventions:529

Table 4: Classification Accuracies on Social Network Datasets

Symbol Meaning
G a graph
G Nodes of the graph G
N number of nodes |G| in G
G Coarse grained version of graph G
µi weight of node i
M weight matrix
x¨, ¨y inner product
W (weighted) adjacency matrix
Din/out in/out-degree matrix
Lin in-degree graph Laplacian
T generic characteristic operator
T˚ hermitian adjoint of T
TJ transpose of T (used if and only if T has only real entries)
U change-of-basis matrix to a (complete) basis consisting of

eigenvectors (used in the undirected setting only)
σpT q spectrum (i.e. collection of eigenvalues) of T
λ an eigenvalue
g a holomorphic function
gpT q function g applied to operator T
Ψi an element of a filter-bank
z, y complex numbers
U subset of C
RzpL

inq the resolvent pLin ´ z ¨ Idq´1

c a weight-/resolution- scale
JÓ, JÒ projection and interpolation operator
Φ map associated to a graph convolution network
Ω graph-level aggregation mechanism
Zi atomic charge of atom corresponding to node i
~xi Cartesian position of atom corresponding to node i
ZiZj
|~xi´~xj |

Coulomb interaction between atoms i and j
|~xi ´ ~xj | Euclidean distance between xi and xj

B Operators beyond the self-adjoint setting530

Here we briefly recapitulate facts from linear algebra regarding self-adjoint and non-self-adjoint531

matrices, their spectral theory and canonical decompositions.532

Self-Adjoint Matrices: Let us begin with the familiar self adjoint matrices. Given a vector space533

V with inner product x¨, ¨yV consider a linear map T : V Ñ V . The adjoint T˚ of the map T is534

defined by the demanding that for all x, y P V we have535

xx, TyyV “ xT
˚x, yyV .

If we have V “ Cd and the inner product is simply the standard scalar product xx, yyCd “ xJy, we536

have537

T˚ “ T
J
.

Here x denotes the complex conjugate of x and AJ denotes the transpose of A.538

An eigenvector- eigenvalue pair, is a pair of a scalar λ P C and vector v P V so that539

pT ´ λ ¨ Idqv “ 0.
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It is a standard result in linear algebra (see e.g. [30]) that the spectrum σpT q of all eigenvalues λ of T540

contains only real numbers (i.e. λ P R), if T is self-adjoint. What is more, there exists a complete541

basis tviudi“1 of such eigenvectors that span all of V . These eigenvectors may be chosen to satisfy542

xvi, vjy “ δij , (4)

with the Kronecker delta δij . As a consequence of this fact, there exists a family of (so called) spectral543

projections tPλuλ that have the following properties (c.f. e.g. [52] for a proof)544

• Each Pλ is a linear map on V (Pλ : V Ñ V ).545

• For all eigenvectors v to the eigenvalue λ (i.e. v such that pT ´ λIdqv “ 0), we have546

Pλv “ v.

• Ifw is an eigenvector to a different eigenvalue µ P σpT q (i.e. w such that pT´µ ¨Idq¨w “ 0547

and µ ‰ λ), we have548

Pλw “ 0.

• Each Pλ is a projection (i.e. satisfies Pλ ¨ Pλ “ Pλ).549

• Each Pλ is self-adjoint (i.e. Pλ “ P˚λ ).550

• Each Pλ commutes with T (i.e. Pλ ¨ T “ T ¨ Pλ).551

• The family tPλuλPσpT q form a resolution of the identity:552

ÿ

λPσpT q

Pλ “ Id.

These properties together then allow us to "diagonalise" the operator T and write it as a sum over its553

eigenvalues:554

T “
ÿ

λPσpT q

λ ¨ Pλ.

Applying a generic function may then be defined as [52]555

gpT q :“
ÿ

λPσpT q

gpλq ¨ Pλ.

Non self-adjoint operators: If the operator T is no longer self adjoint, eigenvalues no longer need556

to be in real, but are generically complex (i.e. λ P C). Furthermore, while there still exist eigenvectors557

these no longer need to form a basis of the space V . What instead becomes important in this setting,558

are so called generalized eigenveectors. A generalized eigenvector w associated to the eigenvalue λ559

is a vector for which we have560

pT ´ λ ¨ Idqn ¨ w “ 0

for some power n P N. Clearly each actual eigenvector is also a generalized eigenvector (simply for561

n “ 1). What can be shown [30] is that there is a basis of V consisting purely of generalized eigen-562

vectors (each associated to some eigenvalue λ). These now however need no longer be orthogonal563

(i.e. they need not satisfy (4)).564

There then exists a family of spectral projections tPλuλ that have the following modified set of565

properties (c.f. e.g. [30] for a proof)566

• Each Pλ is a linear map on V (Pλ : V Ñ V ).567

• For all generalized eigenvectors w to the eigenvalue λ (i.e. w such that pT ´ λIdqn ¨w “ 0568

for some n P N), we have569

Pλw “ w.

• If w is a generalized eigenvector to a different eigenvalue µ P σpT q (i.e. w such that570

pT ´ µ ¨ Idqm ¨ w “ 0 for some m P N and µ ‰ λ), we have571

Pλw “ 0.

• Each Pλ is a projection (i.e. satisfies Pλ ¨ Pλ “ Pλ).572
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• Each Pλ commutes with T (i.e. Pλ ¨ T “ T ¨ Pλ).573

• The family tPλuλPσpT q form a resolution of the identity:574

ÿ

λPσpT q

Pλ “ Id.

Using these facts, we may thus decompose each operator T into a sum as575

T “
ÿ

λPσpT q

λ ¨ Pλ `
ÿ

λPσpT q

pT ´ λ ¨ Idq ¨ Pλ. (5)

This sum decomposition is referred to as Jordan-Chevalley decomposition. Importantly, for each576

λ P σpT q there is a corresponding natural numbermλ P N referred to the algebraic multiplicity of the577

eigenvalue λ. This number mλ counts, how many generalized eigenvectors twλi u
mλ
i“1 are associated578

to the generalized eigenvalue λ. These generalized eigenvectors can be chosen such that579

pT ´ λ ¨ Idq ¨ wλi “ pT ´ λ ¨ Idq ¨ Pλ ¨ w
λ
i “ wλi`1,

if i ď mλ ´ 1. For the case i ě mλ we have580

pT ´ λ ¨ Idq ¨ wλmλ “ 0.

In total, this implies the nilpotency-relation581

pT ´ λ ¨ Idqmλ ¨ Pλ “ rpT ´ λ ¨ Idq ¨ Pλs
mλ “ 0.

C Spectrum of adjacency of three-node directed path graph:582

The adjacency matrix associated to the graph depicted in Figure 4 is given by583

W “

˜

0 0 0
1 0 0
0 1 0

¸

.

Denote by ei the ith canonical basis vector. Then584

W ¨ e1 “ e2, W ¨ e2 “ e3, W ¨ e3 “ 0.

Clearly e3 is an eigenvalue to the eigenvalue λ “ 0, so that 0 P σpW q. Suppose there exists an585

eigenvector v associated to a different eigenvalue µ ‰ 0:586

W ¨ v “ µ ¨ v.

Then we have587

W 3 ¨ v “ µ3 ¨ v

Since te1, e2, 23u clearly is a basis, there are numbers a, b, c so that588

v “ ae1 ` be2 ` ce3.

But then589

µ3 ¨ v “W 3 ¨ v “ aW 3 ¨ e1 ` bW
3 ¨ e2 ` cW

3 ¨ e3 “ a ¨ 0` b ¨ 0` c ¨ 0.

Thus we have µ “ 0 and hence zero is indeed the only eigenvalue.590

D Complex Differentiability591

Complete introductions into this subject may be found in [1] or [2].592

For a complex valued function f : CÑ C of a single complex variable, the derivative of f at a point593

z0 P C in its domain of definition is defined as the limit594

f 1pz0q :“ lim
zÑz0

fpzq ´ fpz0q

z ´ z0
.
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For this limit to exist, it needs to be independent of the ’direction’ in which z approaches z0, which is595

a stronger requirement than being real-differentiable.596

A function is called holomorphic on an open set U if it is complex differentiable at every point in U .597

The value gpλq of any such function g at λ may be reproduced as598

gpλq “ ´
1

2πi

¿

S

gpzq

λ´ z
dz (6)

for any circle S Ď C encircling λ so that S is completely contained within U and may be contracted599

to a point without leaving U . This equation is referred to as Cauchy’s integral formula [2].600

In fact, the integration contour need not be a circle S, but may be the boundary of any so called601

Cauchy domain containing λ:602

Definition D.1. A subset D of the complex plane C is called a Cauchy domain if D is open, has a603

finite number of components (the closure of two of which are disjoint) and the boundary of BD of D604

is composed of a finite number of closed rectifiable Jordan curves, no two of which intersect.605

Integrating around any such boundary then reproduces the value of g at λ.606

E Additional Details on the Holomorphic Functional Calculus607

Fundamental Definition: In order to define the matrix gpT q, the formal replacement λ ÞÑ T is608

made on both sides of the Cauchy formula (6), with the path Γ now not only encircling a single value609

λ but all eigenvalues λ P σpT q (c.f. also Fig. 7):610

gpT q :“ ´
1

2πi

¿

Γ

gpzq ¨ pT ´ z ¨ Idq´1dz (7)

The integral is well defined since all eigenvalues of T are assumed to
lie inside the path Γ. For any choice of integration variable z on this
path Γ, the matrix pT ´ z ¨ Idq is thus indeed invertible, since z is
never an eigenvalue. Figure 7: Operator Integral (7)

611

This integral is also known as Dunford-Taylor integral, and the holomorphic functional calculus is612

also sometimes called Riesz–Dunford functional calculus [30, 46]. As with the scalar valued integral613

(6), it can be shown that the precise path Γ is not important, as long as it encircles all eigenvalues614

counter-clockwise and is contractable to a single point within the domain of definition U for the615

function g.616

Spectral characterization of the Holomorphic Functional Calculus: As stated in Section 3.2,617

the operator gpT qmay also be characterized spectrally. Writing T “
ř

λPσpT q λ ¨Pλ`
ř

λPσpT qpT ´618

λ ¨ Idq ¨ Pλ as in (5), it can then be shown [30], that the spectral action of a given function g is given619

as620

gpT q “
ÿ

λPσpT q

gpλqPλ `
ÿ

λPσpT q

«

mλ´1
ÿ

n“1

gpnqpλq

n!
pT ´ λ ¨ Idqn

ff

Pλ. (8)

A proof of this can be found in Chapter 1 of [30].621

One of the strong properties of complex differentiability previously alluded to is, that as soon as622

a function is complex-differentiable once, it is already complex differentiable infinitely often [2].623

Hence the nth-derivative in (8) does indeed exist.624

With the preparations of Appendix B, we can interpret the sum625

S “
ÿ

λPσpT q

«

mλ´1
ÿ

n“1

gpnqpλq

n!
pT ´ λ ¨ Idqn

ff

Pλ (9)

further:626
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We first note, that summing up to n ě mλ would not make sense, since the nilpotency relation627

pT ´ λ ¨ Idqmλ ¨ Pλ “ rpT ´ λ ¨ Idq ¨ Pλs
mλ “ 0.

tells us that any such term would be zero.628

Furthermore, the factor pT ´ λ ¨ Idqk can be considered to be a "ladder operator" acting on a629

basis twλi uu
mλ
i“1 of generalized eigenvectors spanning the generalized eigenspace associated to the630

eigenvalue λ: It acts as631

pT ´ λ ¨ Idq ¨ Pλ ¨ w
λ
i “ wλi`1,

as discussed in Appendix B.632

The values gpnqpλq in (9) can then be interpreting as weighing the individual "permutations" pT ´ λ ¨633

IdqnPλ of basis elements in the generalized eigenspace associated to the eigenvalue λ.634

Finally we note that the spectrum of the new operator gpT q is given as635

σpgpT qq “ gpσpT qq :“ tgpλq : λ P σpT qu.

This is known as the "Spectral Mapping Theorem" [30].636

Compatibility with Algebraic relations Here we prove compatibility of the holomorphic func-637

tional calculus with algebraic relations. For ease in writing, we will use the notation638

pz ¨ Id´ T q´1 ”
1

z ´ T

below639

Let us begin with monomials:640

Lemma E.1. Applying the function gpλq “ λk to T yields T k.641

Proof. We want to prove that642

1

2πi

¿

Γ

zk

z ´ T
dz “ T k

To this end, we use the Neumann series characterisation of the resolvent [52]643

pz ´ T q´1 “
1

z

8
ÿ

n“0

ˆ

T

z

˙n

,

which is valid for |z| ą }T }. Substituting with gpλq “ λk yields644

gpT q “
1

2πi

¿

Γ

˜

8
ÿ

n“0

Tn

zn`1´k

¸

dz

which we may rewrite as645

8
ÿ

n“0

¨

˝

1

2πi

¿

Γ

dz

zn`1´k

˛

‚“

8
ÿ

n“0

Tn ¨ δnk “ T k

Here we used the relation (c.f. e.g. [2])646

1

2πi

¿

Γ

dz

zn`1´k
“ δnk.

647

Next we prove that the holomorphic functional calculus is also consistent with inversion:648
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Lemma E.2. If y is not an eigenvalue of T , applying the function gpλq “
´

1
λ´y

¯k

to T yields649

gpT q “ rpT ´ y ¨ Idq´1sk.

For ease in notation we will write rpT ´ y ¨ Idq´1sk ” pT ´ y ¨ Idq´k.650

Proof. What want to prove, is thus the equality651

py ¨ Id´ T q´k :“
1

2πi

¿

Γ

py ´ zq´k ¨ pzId´ T q´1dz,

We first note that for the resolvent RypT q “ pT ´ y ¨ Idq´1 we may write652

RxpT q “
8
ÿ

n“0

px´ yqnp´1qnRyptq
n`1

for |x´ y| ď }RypT q} using standard results in matrix analysis (namely the ’Neumann Characterisa-653

tion of the Resolvent’ which is obtained by repeated application of a resolvent identity; c.f. [46] or654

[52] for more details). We thus find655

1

2πi

¿

Γ

ˆ

1

y ´ z

˙k
1

zId´ T
dz “

1

2πi

¿

Γ

ˆ

1

y ´ z

˙k 8
ÿ

n“0

py ´ zqnRypT q
n`1.

Using the fact that656

1

2πi

¿

Γ

pz ´ yqn´k´1dz “ δnk

then yields the claim.657

F Proof of Theorem 3.2658

To increase readability, we here use the notation659

∆ ” Lin.

In this section, we then prove Theorem 3.2. For convenience, we first restate the result – together660

with the definitions leading up to it – again:661

Definition F.1. Denote by G the set of reaches in Ghigh. We give this set a graph structure as follows:662

Let R and P be elements of G (i.e. reaches in Ghigh). We define the real number663

WRP “
ÿ

rPR

ÿ

pPP

Wrp,

with r and p nodes in the original graph G. We define the set of edges E on G as664

E “ tpR,P q P G ˆ G : WRP ą 0u

and assign WRP as weight to such edges. Node weights of limit nodes are defined similarly as665

aggregated weights of all nodes r (in G) contained in the reach R as666

µ
R
“

ÿ

rPR

µr.

In order to translate signals between the original graph G and the limit description G, we need667

translation operators mapping signals from one graph to the other:668
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Definition F.2. Denote by 1R the vector that has 1 as entries on nodes r belonging to the connected669

(in Ghign) component R and has entry zero for all nodes not in R. We define the down-projection670

operator JÓ component-wise via evaluating at node R in G as671

pJÓxqR “ x1R, xy{µR.

The upsampling operator JÒ is defined as672

JÒu “
ÿ

R

uR ¨ 1R; (10)

where uR is a scalar value (the component entry of u at R P G) and the sum is taken over all reaches673

in Ghigh.674

The result we then have to prove is the following:675

Theorem F.3. We have Rzp∆q Ñ JÒRzp∆qJ
Ó as the weight scale c increases. Explicitly,676

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

›Ñ 0 as c ÝÑ 8

holds.677

The proof closely follows that of the corresponding result in [33].678

Proof. We will split the proof of this result into multiple steps. For z ă 0 Let us denote by679

Rzp∆q “ p∆´ zIdq´1,

Rzp∆highq “ p∆high ´ zIdq
´1

Rzp∆regularq “ p∆regular ´ zIdq
´1

the resolvents corresponding to ∆, ∆high and ∆regular respectively.680

Our first goal is establishing that we may write681

Rzp∆q “ rId`Rzp∆highq∆regulars
´1
¨Rzp∆highq

This will follow as a consequence of what is called the second resolvent formula [52]:682

"Given operators A,B, we may write683

RzpA`Bq ´RzpAq “ ´RzpAqBRzpA`Bq.”

In our case, this translates to684

Rzp∆q ´Rzp∆highq “ ´Rzp∆highq∆regularRzp∆q

or equivalently685

rId`Rzp∆highq∆regularsRzp∆q “ Rzp∆highq.

Multiplying with rId`Rzp∆highq∆regulars
´1 from the left then yields686

Rzp∆q “ rId`Rzp∆highq∆regulars
´1
¨Rzp∆highq

as desired.687

Hence we need to establish that rId`Rzp∆highq∆regulars is invertible for z ă 0.688

689

To establish a contradiction, assume it is not invertible. Then there is a signal x such that690

rId`Rzp∆highq∆regularsx “ 0.

Multiplying with p∆high ´ zIdq from the left yields691

p∆high `∆regular ´ zIdqx “ 0

which is precisely to say that692

p∆´ zIdqx “ 0
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But since ∆ is a graph Laplacian, it only has eigenvalues with non-negative real part [54]. Hence we693

have reached our contradiction and established694

Rzp∆q “ rId`Rzp∆highq∆regulars
´1
Rzp∆highq.

695

Our next step is to establish that696

Rzp∆highq Ñ
P high

0

´z
,

where P high
0 is the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue697

λ0p∆highq “ 0 of ∆high.698

Indeed, using the spectral characterization of the holomorphic functional calculus, we may write699

gp∆highq “
ÿ

λPσp∆highq

gpλqPλ `
ÿ

λPσp∆highq

«

mλ´1
ÿ

n“1

gpnqpλq

n!
p∆high ´ λ ¨ Idq

n

ff

Pλ.

with700

gpλq “
1

λ´ z
.

Scaling the operator ∆high as701

∆high ÞÝÑ c ¨∆high

also scales all corresponding eigenvalues λ as λ ÞÑ c ¨ λ, while leaving the spectral projections Pλ702

invariant [30]. Thus taking the limit cÑ8 we indeed find703

lim
cÑ8

gpc ¨∆highq “
P high

0

´z
.

Our next task is to use this result in order to show that the difference704

I :“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆regular

ff´1
P high

0

´z
´ rId`Rzp∆highq∆regulars

´1
Rzp∆highq

›

›

›

›

›

›

goes to zero as cÑ8.705

To this end we first note that the relation706

rA`B ´ zIds´1 “ rId`RzpAqBs
´1RzpAq

provided to us by the second resolvent formula, implies707

rId`RzpAqBs
´1 “ Id´BrA`B ´ zIds´1.

Thus we have708

›

›

›
rId`Rzp∆highq∆regulars

´1
›

›

›
ď 1` }∆regular} ¨ }Rzp∆q}

ď 1`
}∆regular}

|z|
.

With this, we have709
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›

›

›

›

›

›

«

Id`
P high

0

´z
∆regular

ff´1

¨
P high

0

´z
´Rzp∆q

›

›

›

›

›

›

“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆regular

ff´1

¨
P high

0

´z
´ rId`Rzp∆highq∆regulars

´1
¨Rzp∆highq

›

›

›

›

›

›

ď

›

›

›

›

›

P high
0

´z

›

›

›

›

›

¨

›

›

›

›

›

›

«

Id`
P high

0

´z
∆regular

ff´1

´ rId`Rzp∆highq∆regulars
´1

›

›

›

›

›

›

`

›

›

›

›

›

P high
0

´z
´Rzp∆highq

›

›

›

›

›

¨

›

›

›
rId`Rzp∆highq∆regulars

´1
›

›

›

ď
1

|z|

›

›

›

›

›

›

«

Id`
P high

0

´z
∆regular

ff´1

´ rId`Rzp∆highq∆regulars
´1

›

›

›

›

›

›

` ε

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. [27],710

Section 5.8. "Condition numbers: inverses and linear systems"):711

712

Given square matrices A,B,C with C “ B ´A and }A´1C} ă 1, we have713

}A´1 ´B´1} ď
}A´1} ¨ }A´1C}

1´ }A´1C}
.

In our case, this yields (together with }P high
0 } “ 1) that714

›

›

›

›

”

Id` P high
0 {p´zq ¨∆regular

ı´1

´ rId`Rzp∆highq∆regulars
´1

›

›

›

›

ď
p1` }∆regular}{|z|q

2
¨ }∆regular} ¨ }

P high
0

´z ´Rzp∆highq}

1´ p1` }∆regular}{|z|q ¨ }∆regular} ¨ }
P high

0

´z ´Rzp∆highq}

For c sufficiently large, we have715

} ´ P high
0 {z ´Rzp∆highq} ď

1

2 p1` }∆regular}{|z|q

so that we may estimate716

›

›

›

›

›

›

«

Id`∆regular
P high

0

´z

ff´1

´ rId`∆regularRzp∆highqs
´1

›

›

›

›

›

›

ď2 ¨ p1` }∆regular}q ¨ }
P high

0

´z
´Rzp∆highq}

Ñ0

Thus we have now established717
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

Id`
P high

0

´z
∆regular

ff´1

¨
P high

0

´z
´Rzp∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÑ 0.

718

Hence we are done with the proof, as soon as we can establish719

”

´zId` P high
0 ∆regular

ı´1

P high
0 “ JÒRzp∆qJ

Ó,
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with JÒ,∆, JÓ as defined above. To this end, we first note that since the left-kernel and right-kernel720

of ∆high are the same (since in-degrees are the same as out degrees), we have721

JÒ ¨ JÓ “ P high
0 (11)

and722

JÓ ¨ JÒ “ IdG. (12)

Indeed,the relation (11) follows from the fact that the eigenspace corresponding to the eignvalue zero723

is spanned by the vectors t1RuR, with tRu the reaches of Ghigh (c.f. [54]). Equation (12) follows724

from the fact that725

x1R,1Ry “ µ
R
.

With this we have726

”

Id` P high
0 ∆regular

ı´1

P high
0 “

“

Id` JÒJÓ∆regular
‰´1

JÒJÓ.

To proceed, set727

x :“ F Óx

and728

X “

”

P high
0 ∆regular ´ zId

ı´1

P high
0 x.

Then729
”

P high
0 ∆regular ´ zId

ı

X “ P high
0 x

and hence X P RanpP high
0 q. Thus we have730

JÒJÓp∆regular ´ zIdqJ
ÒJÓX “ JÒJÓx.

Multiplying with JÓ from the left yields731

JÓp∆regular ´ zIdqJ
ÒJÓX “ JÓx.

Thus we have732

pJÓ∆regularJ
Ò ´ zIdqJÒJÓX “ JÓx.

This – in turn – implies733

JÒJÓX “
“

JÓ∆regularJ
Ò ´ zId

‰´1
JÓx.

Using734

P high
0 X “ X ,

we then have735

X “ JÒ
“

JÓ∆regularJ
Ò ´ zId

‰´1
JÓx.

We have thus concluded the proof if we can prove that JÓ∆regularJ
Ò is the Laplacian corresponding736

to the graph G defined in Definition F.1. But this is a straightforward calculation.737

As a corollary, we find738

Corollary F.4. We have739

Rzp∆q
k Ñ JÒRkp∆qJÓ

Proof. This follows directly from the fact that740

JÓJÒ “ IdG.

741

This thus establishes Theorem 3.3.742
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G Stability under Scale Variations743

Here we provide details on the scale-invariance results discussed in Section 4; most notably Theorem744

4.2.745

In preparation, we will first need to prove a lemma relating powers of resolvents on the original graph746

G and its limit-description G:747

Lemma G.1. Let Rz :“ p∆´ zIdq´1 and Rz :“ p∆´ zIdq´1. For any natural number k, we have748

749

}JÒRkzJ
Ó ´Rkz} ď k ¨Ak´1}JÒRzJ

Ó ´Rz}

for750

}Rzp∆q}, }Rzp∆q} ď A

Proof. We note that for arbitrary matrices T, rT , we have751

rT k ´ T k “ rT k´1p rT ´ T q ` p rT k´1 ´ T k´1qT

“ rT k´1p rT ´ T q ` rT k´2p rT ´ T qT ` p rT k´2 ´ T k´2qT 2.

Iterating this, using the fact that }Rzp∆q} stays bounded as cÑ8, since752

}Rzp∆q} Ñ }JÒRzp∆qJ
Ó} ď A

for some constant A together with }JÒ}, }JÓ} ď 1 and753

JÒRkzJ
Ó “

`

JÒRzJ
Ó
˘k

(which holds since JÓJÒ “ IdG) then yields the claim.754

755

Hence let us now prove a node-level stability result:756

Theorem G.2. Let ΦL and ΦL be the maps associated to Dir-ResolvNets with the same learned757

weight matrices and biases but deployed on graphs G and G as defined in Section 3.3.2. We have758

}ΦLpXq´J
ÒΦLpJ

ÓXq}2 ď pC1pW , Aq ¨ }X}2 ` C2pW ,B, Aqq ¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› (13)

with A a constant such that759

}Rzp∆q}, }Rzp∆q} ď A.

Proof. Let us define760

X :“ JÓX.

Let us further use the notation Rz :“ p∆´ zIdq´1 and Rz :“ p∆´ zIdq´1.761

Denote by X` and rX` the (hidden) feature matrices generated in layer ` for networks based on762

resolvents Rz and Rz respectively: I.e. we have763

X` “ ρ

˜

K
ÿ

k“1

RkzX
`´1Wk `B

`

¸

and764

rX` “ ρ

˜

K
ÿ

k“1

Rkz
rX`´1Wk `B

`

¸

.

Here, since bias terms are proportional to constant vectors on the graphs, we have765

JÓB “ B

and766

JÒB “ B (14)
for bias matrices B and B in networks deployed on G and G respectively.767
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We then have768

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}

“}XL ´ JÒ rXL}

“

›

›

›

›

›

ρ

˜

K
ÿ

k“1

RkzX
L´1WL

k `B
L

¸

´ JÒρ

˜

K
ÿ

k“1

Rkz
rXL´1WL

k `B
L

¸›

›

›

›

›

“

›

›

›

›

›

ρ

˜

K
ÿ

k“1

RkzX
L´1WL

k `B
L

¸

´ ρ

˜

K
ÿ

k“1

JÒRkz
rXL´1WL

k `B
L

¸›

›

›

›

›

.

Here we used the fact that since ρp¨q maps positive entries to positive entries and acts pointwise, it769

commutes with JÒ. We also made use of (14).770

Using the fact that ρp¨q is Lipschitz-continuous with Lipschitz constant D “ 1, we can establish771

}ΦLpXq ´ J
ÒΦLpJ

ÓXq} ď

›

›

›

›

›

K
ÿ

k“1

RkzX
L´1WL

k ´

K
ÿ

k“1

JÒRkz
rXL´1WL

k

›

›

›

›

›

.

Using the fact that JÓJÒ “ IdG, we have772

}ΦLpXq ´ J
ÒΦLpJ

ÓXq} ď

›

›

›

›

›

K
ÿ

k“1

RkzX
L´1WL

k ´

K
ÿ

k“1

pJÒRkzJ
ÓqJÒ rXL´1WL

k

›

›

›

›

›

.

From this, we find (using }JÒ}, }JÓ} ď 1 ), that773

}XL ´ JÒ rXL}

ď

›

›

›

›

›

K
ÿ

k“0

RkzX
L´1WL

k ´

K
ÿ

k“1

pJÒRkzJ
ÓqJÒ rXL´1WL

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ pJ
ÒRkzJ

ÓqqXL´1WL
k

›

›

›

›

›

`

K
ÿ

k“1

}JÒRzJ
Ó} ¨ }JÒ rXL´1 ´XL´1} ¨ }WL

k }

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ pJ
ÒRkzJ

ÓqqXL´1WL
k

›

›

›

›

›

` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}

ď

K
ÿ

k“1

›

›

›
Rkz ´ pJ

ÒRkzJ
Óq

›

›

›
¨
›

›XL´1
›

› ¨
›

›WL
k

›

›` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}

Applying Lemma G.1 yields774

}XL ´ JÒ rXL}

ď

˜

K
ÿ

k“1

pk ¨Ak´1q
›

›WL
k

›

›

¸

¨
›

›Rz ´ pJ
ÒRzJ

Óq
›

› ¨
›

›XL´1
›

›` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}.

Similarly, one may establish that we have775

}XL} ď CpAq ¨

˜

}BL} `
L
ÿ

m“0

˜

m
ź

j“0

}W L´1´k}z

¸

}BL´1´k} `

˜

L
ź

`“1

}W `}z

¸

¨ }X}

¸

. (15)

Hence the summand on the left-hand-side can be bounded in terms of a polynomial in singular values776

of bias- and weight matrices, as well as }X}, A and most importantly the factor }Rz ´ pJÒRzJ
Óq}777

25



which tends to zero.778

For the summand on the right-hand-side, we can iterate the above procedure (aggregating terms like779

(15) multiplied by }Rz ´ pJÒRzJ
Óq}) until reaching the last layer L “ 1. There we observe780

}X1 ´ JÒ rX1}

“

›

›

›

›

›

ρ

˜

K
ÿ

k“1

RkzXW
1
k `B

1

¸

´ JÒρ

˜

K
ÿ

k“1

RkzJ
ÓXW 1

k `B
1

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

RkzXW
1
k ´

K
ÿ

k“1

JÒRkzJ
ÓXW 1

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ J
ÒRkzJ

ÓqXW 1
k

›

›

›

›

›

ď

˜

K
ÿ

k“1

pk ¨Ak´1q
›

›W 1
k

›

›

¸

¨
›

›Rz ´ pJ
ÒRzJ

Óq
›

› ¨ }X}

The last step is only possible because we let the sums over powers of resolvents start at a “ 1 as781

opposed to a “ 0. In the latter case, there would have remained a term }X ´ JÒJÓX}, which would782

not decay as cÑ8.783

Aggregating terms, we build up the polynomial stability constants of (13) layer by layer, and complete784

the proof.785

786

Next we transfer the previous result to the graph level setting:787

Theorem G.3. Denote by Ω the aggregation method introduced in Section 4. With µpGq “
řN
i“1 µi788

the total weight of the graph G, we have in the setting of Theorem G.2, that789

}Ω pΦLpXqq ´ Ω
`

ΦLpJ
ÓXq

˘

}2

ď
a

µpGq ¨ pC1pW , Aq ¨ }X}2 ` C2pW ,B, Aqq ¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› .

Proof. Let us first recall that our aggregation scheme Ω mapped a feature matrix X P RNˆF to a790

graph-level feature vector ΩpXq P RF defined component-wise as791

ΩpXqj “
N
ÿ

i“1

|Xij | ¨ µi.

In light of Theorem G.2, we are done with the proof, once we have established that792

}Ω pΦLpXqq ´ Ω
`

ΦLpJ
ÓXq

˘

}2 ď
a

µpGq ¨ }ΦLpXq ´ J
ÒΦLpJ

ÓXq}2.

To this end, we first note that793

ΩpJÒXq “ ΩpXq.

Indeed, this follows from the fact that given a reach R in Ghigh, the map JÒ assigns the same feature794

vector to each node r P R Ď G (c.f. (10)), together with the fact that795

µ
R
“

ÿ

rPR

µr.

Thus we have796

}Ω pΦLpXqq ´ Ω
`

ΦLpJ
ÓXq

˘

}2 “ }Ω pΦLpXqq ´ Ω
`

JÒΦLpJ
ÓXq

˘

}2.

Next let us simplify notation and write797

A “ ΦLpXq

and798

B “ JÒΦLpJ
ÓXq
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with A,B P RNˆF . We note:799

}Ω pΦLpXqq ´ Ω
`

JÒΦLpJ
ÓXq

˘

}22 “

F
ÿ

j“1

˜

N
ÿ

i“1

p|Aij | ´ |Bij |q ¨ µi

¸2

.

By means of the Cauchy-Schwarz inequality together with the inverse triangle-inequality, we have800

F
ÿ

j“1

˜

N
ÿ

i“1

p|Aij | ´ |Bij |q ¨ µi

¸2

ď

F
ÿ

j“1

«˜

N
ÿ

i“1

|Aij ´ Bij |2 ¨ µi

¸

¨

˜

N
ÿ

i“1

µi

¸ff

“

F
ÿ

j“1

˜

N
ÿ

i“1

|Aij ´ Bij |2 ¨ µi

¸

¨ µpGq.

Since we have801

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}22 “
F
ÿ

j“1

˜

N
ÿ

i“1

|Aij ´ Bij |2 ¨ µi

¸

,

the claim is established.802

H Proof of Theorem 4.1803

Here we prove Theorem 4.1, which we restate here for convenience:804

Theorem H.1. Suppose for filter banks tΨfwd{fwd
i uI fwd{fwd that the matrices Ψfwd

i pT q,Ψbwd
i pT˚q con-805

tain only real entries. Then any HoloNet with layer-widths tF`u with complex weights & biases and806

a non linearity that acts on complex numbers componentwise as ρpa` ibq “ rρpaq ` irρpaq can be807

exactly represented by a HoloNet of widths t2 ¨ F`u utilizing rρ and employing only real weights &808

biases.809

Proof. It suffices to prove, that in this setting the update rule810

X` “ ρ

˜

α
ÿ

iPI

Ψfwd
i pT q ¨X`´1 ¨W fwd,`

i ` p1´ αq
ÿ

iPI

Ψbwd
i pT˚q ¨X`´1 ¨W bwd,`

i `B`

¸

.

can be replaced by purely real weights and biases. For simplicity in notation, let us assume α “ 1;811

the general case follows analogously but with more cluttered notation.812

Let us write X “ Xreal ` iXimag, W “ Wreal ` iWimag, B “ Breal ` iBimag. Then we have813

with tΨfwd
i pT quiPI purely real, that814

X` “ ρ

˜

ÿ

iPI

Ψfwd
i pT q ¨X`´1 ¨W fwd,`

i `B`

¸

“ ρ

˜

ÿ

iPI

Ψfwd
i pT q ¨ pX`´1

realW
fwd,`
real,i ´X

`´1
imagW

fwd,`
imag,iq `B

`
real

`i

«

ÿ

iPI

Ψfwd
i pT q ¨ pX`´1

realW
fwd,`
imag,i `X

`´1
imagW

fwd,`
real,iq `B

`
imag

ff¸

“ rρ

˜

ÿ

iPI

Ψfwd
i pT q ¨ pX`´1

realW
fwd,`
real,i ´X

`´1
imagW

fwd,`
imag,iq `B

`
real

¸

` irρ

˜

ÿ

iPI

Ψfwd
i pT q ¨ pX`´1

realW
fwd,`
imag,i `X

`´1
imagW

fwd,`
real,iq `B

`
imag

¸

The result then immediately follows after using the canonical isomorphism between Cd and R2d as815

X` –

ˆ

X`
real

X`
imag

˙

“ rρ

»

–

¨

˝

ř

iPI

Ψfwd
i pT q ¨ pX`´1

realW
fwd,`
real,i ´X

`´1
imagW

fwd,`
imag,iq `B

`
real

ř

iPI

Ψfwd
i pT q ¨ pX`´1

realW
fwd,`
imag,i `X

`´1
imagW

fwd,`
real,iq `B

`
imag

˛

‚

fi

fl . (16)
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The above layer update816
ˆ

X`´1
real

X`´1
imag

˙

p16q
ÞÝÑ

ˆ

X`
real

X`
imag

˙

can then clearly be realised by a real network as described in Theorem 4.1.817

818

I Additional Details on Experiments:819

I.1 FaberNet: Node Classification820

Datasets: We evaluate on the task of node classification on several directed benchmark datasets with821

high homophily: Chameleon & Squirrel [44], Arxiv-Year [29], Snap-Patents [37] and Roman-Empire822

[45]. These datasets are highly heterophilic (edge homophily smaller than 0.25).823

Table 5: Node Classification Datasets: Statistics

DATASET # NODES # EDGES # FEAT. # C UNID. EDGES EDGE HOM.

CHAMELEON 2,277 36,101 2,325 5 85.01% 0.235
SQUIRREL 5,201 217,073 2,089 5 90.60% 0.223
ARXIV-YEAR 169,343 1,166,243 128 40 99.27% 0.221
SNAP-PATENTS 2,923,922 13,975,791 269 5 99.98% 0.218
ROMAN-EMPIRE 22,662 44,363 300 18 65.24% 0.050

Experimental Setup All experiments are conducted on a machine with NVIDIA A4000 GPU with824

16GB of memory, safe for experiments on snap-patents which have been performed on a machine825

with one NVIDIA Quadro RTX 8000 with 48GB of memory. We closely follow the experimental826

setup of [47]. In all experiments, we use the Adam optimizer and train the model for 10000 epochs,827

using early stopping on the validation accuracy with a patience of 200 for all datasets apart from828

Chameleon and Squirrel, for which we use a patience of 400. For OGBN-Arxiv we use the fixed split829

provided by OGB [29], for Chameleon and Squirrel we use the fixed GEOM-GCN splits [44], for830

Arxiv-Year and Snap-Patents we use the splits provided in [37], while for Roman-Empire we use the831

splits from [45].832

Baselines Results: Results for MLP, GCN, H2GCN, GPR-GNN and LINKX were taken from833

(author?). Results for Gradient Gating are taken from their paper [51]. Results for GloGNN are834

taken from their paper [36]. Results on Roman-Empire are taken from [45] for GCN, H2GCN,835

GPR-GNN, FSGNN and GloGNN and from [47] for MLP, LINKX, ACM-GCN and Gradient Gating.836

Results for FSGNN are taken from [40] for Actor, Squirrel and Chameleon, and from [47] for results837

on Arxiv-year and Snap-Patents. Results for DiGCN, MagNet are taken from [47]. Results for838

DirGNN were obtained via a re-implementation; using the official codebase and hyperparamters839

specified in [47]. Note that – as detailed in [47] – the reported results for DirGNN correspond to a840

best-of-three report over directed version of GCN [31], GAT [56] and Sage [21].841

Hyperparameters: Following the setup of [47], our search space for generic hyperparameters842

is given by varying the learning rate lr P t0.01, 0.005, 0.001, , 0.0005u, the hidden dimension843

over F P t32, 64, 128, 256, 512u, ne number of layers over L P t2, 3, 4, 5, 6u, jumping knowledge844

connections over jk P tmax, cat, noneu layer-wise normalization in norm P tTrue, Falseu,845

patience as patience P t200, 400u and dropout as p P t0, 0.2, 0.4, 0.6, 0.8, 1u.846

In practice we take the parameters of Table 6 as frozen and given by [47]. We then optimize over the847

custom hyperparameters pertaining to our method. To this end, we vary the maximal order of our848

Faber polynomials tΨiu
K
i“0,1 as K P t1, 2, 3, 4, 5u. Note that we also discount higher order terms849

with a regularization „ 1{2i, as this improved results experimentally. We thus have Ψk “ λk{2k.850

The type of weights & bisases is varied over parameters P tR,Cu. The non-linearity is varied over851

t| ¨ |C,ReLuu, with |a ` ib|C “ |a| ` i|b|. The parameter α is varied as α P t0, 0.5, 1u as in [47].852

The zero-order Faber polynomial Ψ0pλq “ 1 is either included or discarded, as discussed in Section 4853
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Table 6: Selected Generic Hyperparameters

DATASET lr L PATIENCE F NORM P JK

CHAMELEON 0.005 5 400 128 TRUE 0 CAT
SQUIRREL 0.01 4 400 128 TRUE 0 MAX
ARXIV-YEAR 0.005 6 200 256 FALSE 0 CAT
SNAP-PATENTS 0.01 5 200 32 TRUE 0 MAX
ROMAN-EMPIRE 0.01 5 200 256 FALSE 0.2 CAT

and weight decay parameters for real- and imaginary weights are varied over λreal, λimag P t0, 0.1, 1u.854

Final selected hyperparameters are listed in Table 7.855

Table 7: Selected Custom Hyperparameters

DATASET K PARAMETERS NON.-LIN. α Ψ0 λREAL λIMAG

CHAMELEON 4 C | ¨ |C 0 NO 1 0
SQUIRREL 5 C | ¨ |C 0 NO 0.1 0.1
ARXIV-YEAR 2 R RELU 0.5 NO 0.1 N.A.
SNAP-PATENTS 2 R RELU 0.5 NO 0.1 N.A.
ROMAN-EMPIRE 1 R RELU 0.5 YES 0.1 N.A.

I.2 Dir-ResolvNet: Digraph Regression and Scale Insensitivity856

Dataset: The dataset we consider is the QM7 dataset, introduced in [7, 50]. This dataset contains857

descriptions of 7165 organic molecules, each with up to seven heavy atoms, with all non-hydrogen858

atoms being considered heavy. In the dataset, a given molecule is represented by its Coulomb matrix859

W , whose off-diagonal elements860

Wij “
ZiZj

|~xi ´ ~xj |
(17)

correspond to the Coulomb-repulsion between atoms i and j. We discard diagonal entries of Coulomb861

matrices; which would encode a polynomial fit of atomic energies to nuclear charge [50].862

To each molecule an atomization energy - calculated via density functional theory - is associated. The863

objective is to predict this quantity. The performance metric is mean absolute error. Numerically,864

atomization energies are negative numbers in the range ´600 to ´2200. The associated unit is865

rkcal/mols.866

For each atom in any given molecular graph, the individual Cartesian coordinates ~xi and the atomic867

charge Zi are also accessible individually.868

In order to induce directedness, we modify the Coulomb weights (17): Weights only from heavy869

atoms to atoms outside this heavy atom’s respective immediate hydrogen cloud are modified as870

Wij :“
Zoutside
i ¨ pZheavy

j ´ 1q

|~xi ´ ~xj |
. (18)

The immediate hydrogen cloud of a given heavy atom, we take to encompass precisely those hydrogen871

atoms for which this heavy atom is the closest among all other heavy atoms.872

This specific choice (18) is made in preparation for the scale insensitivity experiments: The theory873

developed in Section 3.3.2 applies to those graphs, where strongly connected subgraphs contain only874

nodes for which the in-degree equals the out-degree (where only strong weights are considered when875

calculating the respective degrees). The choice (18) facilitates this, as hydrogen-hydrogen weights876

and weights between hydrogen and respective closest heavy atom remain symmetric.877

Experimental Setup: We shuffle the dataset and randomly select 1500 molecules for testing. We878

then train on the remaining graphs. We run experiments for 5 different random random seeds and879

report mean and standard deviation.880
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All considered convolutional layers (i.e. for Dir-ResolvNet and baselines) are incorporated into a881

two layer deep and fully connected graph convolutional architecture. In each hidden layer, we set the882

width (i.e. the hidden feature dimension) to883

F1 “ F2 “ 64.

For all baselines, the standard mean-aggregation scheme is employed after the graph-convolutional884

layers to generate graph level features. Finally, predictions are generated via an MLP.885

For Dir-ResolvNet, we take α “ 1, use real weights and biases and set z “ ´1. These choices are886

made for simplicity. Resolvents are thus given as887

R´1p∆q “ p∆` Idq´1.

As aggregation for our model, we employ the graph level feature aggregation scheme Ω introduced888

before Theorem 4.2 in Section 4. Node weights set to atomic charges of individual atoms. Predictions889

are then generated via a final MLP with the same specifications as the one used for baselines.890

Scale Insensitivity We then modify (all) molecular graphs in QM7 by deflecting hydrogen atoms891

(H) out of their equilibrium positions towards the respective nearest heavy atom. This is possible892

since the QM7 dataset also contains the Cartesian coordinates of individual atoms.893

This introduces a two-scale setting precisely as discussed in section 3.3.2: Edge weights between894

heavy atoms remain the same, while Coulomb repulsions between H-atoms and respective nearest895

heavy atom increasingly diverge; as is evident from (17).896

Given an original molecular graph G with node weights µi “ Zi, the corresponding limit graph897

G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are898

aggregated into single super-nodes in the sense of Section 3.3.2.899

Mathematically, G is obtained by removing all nodes corresponding to H-atoms fromG, while adding900

the corresponding charges ZH “ 1 to the node-weights of the respective nearest heavy atom. Charges901

in (18) are modified similarly to generate the weight matrix W .902

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of903

methane – consisting of one carbon atom with charge ZC “ 6 and four hydrogen atoms of charges904

ZH “ 1 – the corresponding node-feature-matrix is e.g. given as905

X “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‚

with the non-zero entry in the first row being in the 6th column, in order to encode the charge ZC “ 6906

for carbon.907

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring908

H-atoms jointly.909

As discussed in Section 3.3.2, node feature matrices are translated as X “ JÓX . Applying JÓ to910

one-hot encoded atomic charges yields (normalized) bag-of-word embeddings on G: Individual911

entries of feature vectors encode how much of the total charge of the super-node is contributed by912

individual atom-types. In the example of methane, the limit graph G consists of a single node with913

node-weight914

µ “ 6` 1` 1` 1` 1 “ 10.

The feature matrix915

X “ JÓX

is a single row-vector given as916

X “

ˆ

4

10
, 0, ¨ ¨ ¨ , 0,

6

10
, 0, ¨ ¨ ¨

˙

.
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