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Abstract

The study of online algorithms with machine-learned predictions has gained consid-
erable prominence in recent years. One of the common objectives in the design and
analysis of such algorithms is to attain (Pareto) optimal tradeoffs between the con-
sistency of the algorithm, i.e., its performance assuming perfect predictions, and its
robustness, i.e., the performance of the algorithm under adversarial predictions. In
this work, we demonstrate that this optimization criterion can be extremely brittle,
in that the performance of Pareto-optimal algorithms may degrade dramatically
even in the presence of imperceptive prediction error. To remedy this drawback,
we propose a new framework in which the smoothness in the performance of
the algorithm is enforced by means of a user-specified profile. This allows us to
regulate the performance of the algorithm as a function of the prediction error,
while simultaneously maintaining the analytical notion of consistency/robustness
tradeoffs, adapted to the profile setting. We apply this new approach to a well-
studied online problem, namely the one-way trading problem. For this problem, we
further address another limitation of the state-of-the-art Pareto-optimal algorithms,
namely the fact that they are tailored to worst-case, and extremely pessimistic
inputs. We propose a new Pareto-optimal algorithm that leverages any deviation
from the worst-case input to its benefit, and introduce a new metric that allows us
to compare any two Pareto-optimal algorithms via a dominance relation.

1 Introduction

The field of learning-augmented online algorithms has witnessed remarkable growth in recent years,
starting with the seminal works of Lykouris and Vassilvitskii [31] and Purohit et al. [36]. The
focus, in this field, is on improving the algorithmic performance by leveraging some inherently
imperfect prediction on the online input. This is in contrast to the standard framework of competitive
analysis [15], in which the algorithm has no access to any information about the future, and the
analysis is based on adversarial inputs tailored to the myopic nature of the algorithm.
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Learning-augmented online algorithms are typically analyzed with respect to three performance
metrics. The first is the consistency of the algorithm, namely its competitive ratio assuming that
the prediction is error-free. The second is the robustness, that is, the competitive ratio assuming
that the prediction is adversarial, and is thus generated by a malicious oracle. A third consideration
is the degradation of the competitive ratio as a function of the prediction error; here, the notion of
smoothness captures the requirement that the competitive ratio smoothly interpolates between the
two extremes, namely the consistency and the robustness.

As expected, not all three objectives can be simultaneously optimized. Many works have thus focused
on the trade-off between consistency and robustness. Algorithms with optimal tradeoffs are often
called Pareto-optimal since their performance lies on the Pareto front of the two extreme metrics.
Examples of problems studied in the Pareto setting include online conversion problems [38, 29],
searching for a hidden target [4], ski rental [39, 6], online covering [14] metrical task systems [17],
energy-minimization scheduling [28], scheduling [7, 5] and online state exploration [23].

Pareto-based analysis is attractive for several reasons. First, it fully characterizes the performance of
the algorithm on the extreme scenarios, with respect to the reliability of the prediction. In addition, it
provides a mathematically clean formulation of the desired objectives, which is often quite challenging
even for seemingly simple online problems. However, as we will discuss, this type of analysis may
very well suffer from brittleness, in that the performance ratio of any Pareto-optimal algorithm may
be as high as its robustness, even if the prediction is near-perfect. This has an important implication
for the algorithm designer: namely, in many realistic situations, a Pareto-optimal algorithm may
perform even worse than the best competitive algorithm with no predictions.

To illustrate this drawback, as well as our proposed methodology for counteracting it, we will use
the well-known one-way trading problem, which is one of the fundamental formulations for online
financial transactions. In this problem, a decision maker must convert a unit in a given currency,
say USD, to a different currency, say EUR, by performing exchanges over an unknown horizon.
Specifically, prior to each transaction, the algorithm is informed about the current exchange rate, and
must irrevocably exchange a fraction of its USD budget to EUR, according to the rate in question.
This problem has served as a proving ground for the competitive analysis of more involved settings
such as two-way trading and portfolio optimization; see Chapter 14 in [15] and the survey [35].
In addition, it has connections to other problems such as fractional knapsack [16] and sponsored
auctions [41]. Optimal competitive ratios, in the standard framework, were first obtained in [19].
An elegant Pareto-optimal algorithm for maximum-rate prediction was given in [38], based on the
concept of an online threshold function. However, [38] does not take into consideration the prediction
error other than at the two extreme values. In contrast, the interplay between the prediction error
across the entire spectrum and the performance of the algorithm is at the heart of our study.

1.1 Contribution

Our first result (Theorem 3.1) establishes the brittleness of all Pareto-optimal algorithms for one-way
trading. To remedy this undesirable situation, in Section 3 we introduce the novel concept of a
performance profile F , chosen by the end user. Informally, F maps the prediction error to an upper
bound on the desired performance ratio of the algorithm. This concept is motivated by practical
considerations in everyday applications. E.g., in financial markets, a trader may choose a customized
profile based on historical stock exchange data, and how accurate past predictions have proven.

Naturally, not every profile may be feasible, in that there may not exist an online algorithm whose
performance abides with it. Our next main result is an algorithm that decides whether a given profile
is feasible (Theorem 3.2). Note that this is an offline problem, however, our algorithm also yields an
online strategy, if F is indeed feasible. This further allows us to obtain an online algorithm that not
only abides with a feasible profile F , but also with the “best” possible profile that has a shape similar
to that of F (Remark 4.1). We formalize this intuitive notion based on the concept of the best vertical
translation of F . We thus obtain a generalization of the concept of consistency (which is brittle) to the
consistency according to profile F , which is inherently non-brittle by virtue of the profile definition.

In Section 5, we address another limitation of the known Pareto-optimal algorithms for one-way
trading. Specifically, we note that the algorithm of [38] is tailored to worst-case inputs in which
the exchange rates increase continuously until a certain point, then drop to the lowest rate. Again
from a practical standpoint, such a worst-case scenario never arises in real markets. Motivated by
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the concept of the lenient adversary of [19] (in the standard, no-prediction setting), we present and
analyze an adaptive, Pareto-optimal algorithm that leverages any deviation from the worst-case
sequence to its benefit. To formally quantify the performance gain, we introduce an additional metric
that captures the profit of the algorithm on all exchange rates that are at least as high as the predicted
maximum rate, and allows us to compare any two Pareto-optimal algorithms via a dominance relation.
Another novelty of our algorithm, in the context of the problem at hand, is that it does not require
the prediction to be given ahead of time, instead the prediction can be revealed during its execution
(Remark 5.1). This is a clearly desirable algorithmic feature, that has been achieved in other online
problems, e.g., [9].

In Section 6 we give an experimental evaluation of all our algorithms, over both real data (Bitcoin
exchange rates) and synthetic data, which validates the theoretical results and quantifies the obtained
performance improvements. We emphasize that our framework can be readily applicable to other
learning-augmented problems, in particular those which suffer from brittleness. We discuss another
well-known application from AI, namely contract scheduling [7] in Section 7.

In terms of techniques, our algorithms and analysis are based on the concept of a threshold function
which carefully guides the actions of the algorithm. While online threshold algorithms have been
used in previous studies, including one-way trading [41, 40, 38, 29], the settings we study pose novel
challenges. For the profile-based setting, the design of the function must take into consideration all
the constraints induced by the profile. To this end, we use an iterative approach that considers the
constraints incrementally, until they are all satisfied. For the adaptive setting, the threshold function
must change dynamically, according to the revealed sequence. This is unlike the standard Pareto
setting, in which a static function suffices.

While our framework is directly applicable to single-valued predictions, it can also be applied to
more complex settings in which the prediction is a vector of values. This is because the concept of
the profile still applies, since the error is defined by a distance norm between the predicted and the
actual vector.

1.2 Related Work

There has been a significant body of recent work on online algorithms with predictions, see, e.g.,
the surveys [34, 33]. Several problems have been studied in learning-augmented settings, e.g.,
paging [31, 22], metrical task systems [9, 17], rent-or buy problems [36, 6, 20, 39, 3], packing and
covering [14, 8, 21], scheduling [26, 28, 11, 32, 18, 25], matching [27, 10, 24], graph optimization [1,
2, 12, 13], and many others. This is only a partial list; for a comprehensive summary of the existing
literature, we refer the reader to the online repository [30]. As discussed earlier, many works have
focused exclusively on consistency/robustness tradeoffs, without an explicit error-based analysis,
e.g. [38, 29, 4, 39, 6, 14, 17, 28, 7, 23, 1]. Incorporating smoothness in regards to the prediction error
is a challenging task, both in terms of modeling and analysis. For instance, [13, 1] studied online
combinatorial optimization problems in which the performance of the online degrades as a function
of a distance measure between the predicted and the actual solution. Our work differs from such
studies in that the dependency on the prediction error is user specific, and can change according to
the application setting, while still maintaining the concepts of consistency and robustness.

2 Preliminaries

In the one-way trading problem, the input σ is a sequence of exchange rates, where pi denotes the i-th
rate in the sequence. The trader has a starting budget equal to 1. We follow the standard assumption
that pi ∈ [1,M ], where M represents an upper bound on the rates that is known in advance. Once
pi is revealed, the trader must decide the amount to be exchanged to the secondary currency, which
cannot exceed her current budget. We consider the general setting in which the horizon n is not
known ahead of time. The problem formulation also assumes that the trader is notified once the last
rate is revealed, and is thus obliged to exchange all of its remaining fund at rate pn.

An algorithm A decides the fractional exchanges upon revealing of pi, as a function of the previous
i−1 rates , i.e., the sequence σ[1, i−1]. We denote by A(σ) the profit of A on σ, i.e., the total amount
that A has produced after the last exchange. We denote by p∗σ = maxi∈[1,n] pi the maximum rate
in σ and by OPT(σ) the profit of the optimal offline strategy, hence OPT(σ) = p∗σ. The competitive
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ratio of A is thus defined as CR(A) = supσ
OPT(σ)
A(σ) . For given σ, we refer to the ratio OPT(σ)/A(σ)

as the performance ratio of A on σ. The optimal competitive ratio, denoted by r∗ is Θ(logM), and
more precisely, it is equal to the root of the equation r∗ = ln M−1

r∗−1 [19].

Given algorithm A, we denote by wA,i(σ) and sA,i(σ), the budget used by A and its accrued profit
right before pi is revealed, respectively. We refer to wA,i(σ) as the utilization of A. Formally, for
every sequence σ, and every algorithm A, we have wA,i = wAi−1

+ xi, where xi is the amount
traded on the i-th rate, that is, wA,i is the total amount exchanged up to and including the i-th request.
We also have that si =

∑i−1
j=1 pj(wj+1 − wj), with s1 = 0. For simplicity, we may omit the input σ,

or the algorithm A when it is clear from context. For example, we will denote by p∗ the maximum
rate in σ.

The above definitions assume the standard setting in which the algorithm has no information on
the input. In regards to learning-augmented settings, we consider the model of [38] in which the
algorithm has an imperfect prediction p̂ on p∗. We define formally, the consistency and the robustness
of an algorithm A as c(A) = supσ:p∗

σ=p̂
p∗
σ

A(σ) and r(A) = supσ supp̂∈[1,M ]
p∗
σ

A(σ) , respectively. An
algorithm A with prediction p̂ is Pareto-optimal if, for any given r, it has robustness at most r, and
has the smallest possible consistency, which we will denote by c(r).

Remark 2.1. It suffices to consider only sequences in which the exchange rates increase up to a
certain point, then drop to 1 [19]. Moreover, for any competitively optimal algorithm, the worst-case
inputs are such in which the exchange rates increase continuously, i.e., by infinitesimal amounts.

3 Brittleness of Pareto-Optimal Algorithms and Performance Profiles

We first define formally the concept of brittleness.

Definition 3.1. Let p̂ denote a maximum-rate prediction for p∗σ. We say that p̂ is brittle if for any
Pareto-optimal strategy A of robustness r and consistency c(r), and for every ϵ > 0, there exists σ
with |p̂− p∗σ| ≤ ϵ, for which p∗(σ)

A(σ) = r.

The definition deems a prediction to be brittle if there exist sequences for which the slightest prediction
error forces every Pareto-Optimal strategy to have a performance that is equal to its robustness.

Theorem 3.1 (Appendix A). The maximum-rate prediction is brittle for one-way trading.

Theorem 3.1 shows that Pareto-optimality is a very “fragile” metric for comparing strategies with
max-rate prediction. To remedy this drawback, we introduce the new concept of a profile.

Definition 3.2. Let P be a partition of [1,M ] to l intervals, i.e., P =
⋃l

i=1[qi, qi+1), with q1 = 1
and ql+1 = M , and let p̂ be a maximum-rate prediction. A profile function F : P → R+ is a step
function that maps each interval in P to ti ∈ R+, and which satisfies the following conditions. There
exists ı̂ ∈ [1, l] such that: (i) ti−1 ≥ ti, for all i ≤ ı̂ and ti+1 ≥ ti, for all i ≥ ı̂, and (ii) p̂ ∈ [qı̂, qı̂+1).

The profile function allows the end user to impose a requirement on the performance of the algorithm,
as expressed in the following definition.

Definition 3.3. We say that an online strategy A respects a given profile F :
⋃l

i=1[qi, qi+1)→ R+

if for all input sequences σ for which p∗σ ∈ [qi, qi+1), it holds that OPT(σ)
A(σ) ≤ F ([qi, qi+1)).

Informally, a profile F reflects a desired worst-case performance of an algorithm, assuming that
the actual but unknown maximum rate in the input sequence is in the interval [qi, qi+1). Thus, the
profile represents the desired upper bound on the performance of an algorithm, as a function of
the prediction error. Unlike Pareto-optimality, which only cares about performance at extremes,
the relation between performance and prediction error becomes now definable across the entire
spectrum of error. The definition also reflects the expectation that the algorithm performs best when
the prediction is error-free, and its performance degrades monotonically as a function of the error.

We illustrate the above concepts using the profile depicted in Figure 1a. Here, the profile consists of
l = 6 intervals, where the first 3 intervals correspond to the decreasing part of the profile and the
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(a) A profile function F with six intervals.
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Figure 1: Illustration of profile functions.

last 4 to the increasing part of the profile. Note that the interval [q3, q4) contains the prediction p̂ and
belongs in both the decreasing and the increasing parts. Note also that the profile allows to define an
asymmetric dependency on the prediction error. This is a very useful property in applications such
as one-way trading. For example, a trader may want to be more cautious if the market will perform
worse in the future, than better in the future, relative to what has been predicted.

Figure 1b depicts a different profile in which the performance ratio must be at most t1, for any error,
unless the prediction is error-free, in which case the performance ratio has to be at most t2 < t1.
Such a profile yields Pareto-optimality, if t1 = r and t2 = c(r).

We are interested in profiles F that are feasible, in the sense there exists an online algorithm that
respects F . The following is one of our main results, whose proof will follow from Theorem 4.1 and
Corollary 4.1, as we will show in Section 4.
Theorem 3.2. Given a profile F defined over l intervals, there exists an algorithm for deciding
whether F is feasible that runs in time O(l). Furthermore, if F is feasible, there exists an online
algorithm that respects F .

Given our algorithm that decides the feasibility of a profile, we can also answer a more general
question. Suppose that F is infeasible, but we would like, nevertheless, to be able to respect a profile
F ′ that is “similar” to F . Conversely, if F is feasible, then we know we can likely do even better, for
example, we would like to follow a profile F ′ that is similar to F , but maps some intervals to smaller
ratios. The following definition formalizes this intuitive objective.
Definition 3.4. Let F : P → R+ denote a profile. Given a ∈ R+, we define the extension Ga

of F as the vertical transformation of F , in which, for every interval [qi, qi+1) ∈ P it holds that
Ga([qi, qi+1)) = a · F ([qi, qi+1)).

We can generalize the concepts of consistency and robustness relative to a profile F as follows,
recalling that p̂ ∈ [qı̂, qı̂+1).
Definition 3.5. Given a profile F for a prediction p̂, and a robustness r, we say that algorithm A is
r-robust and c-consistent according to F , if there exists an extension Ga of F for which: (i) for every
interval, we have Ga([qi, qi+1)) ≤ r; (ii) Ga([qı̂, qı̂+1)) ≤ c; and (iii) A respects Ga.
Remark 3.1. The smoothness of a profile is related to the number of intervals, l. The larger the l, the
smoother the performance of an algorithm which respects the profile.

4 Profile-Based Algorithms

In this section, we present an algorithm which decides whether a given profile F is feasible or not.
Note that this is an offline, decision problem, which we will denote by FEASIBLE(F ). In addition, if
F is feasible, we also provide an online algorithm that respects F .

Our algorithms are inspired by the class of threshold algorithms (OTA), introduced in [41]. In these
algorithms, a threshold function Φ guides the decision about the amount to be exchanged when a
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Algorithm 1 Algorithm PROFILE for FEASIBLE (F); also an online strategy if F is feasible

Input: F : P =
⋃l

i=1[qi, qi+1)→ R+. Denote F ([qi, qi+1)) by ti.
1: w1 ← 0, s← 0
2: for i ∈ 1, . . . , l do
3: ρi ← ti · (s+ 1− wi)
4: if ρi ≥ qi then
5: wi+1 ← 1

ti
· ln

(
qi+1−1
ρi−1

)
+ wi

6: Φi(w)←
{
Φi−1(w) if w ∈ [1, wi)

(ρi − 1) · eti·(w−wi) + 1 if w ∈ [wi, wi+1)

7: s← s+
∫ wi+1

wi
Φi(t) dt

8: else
9: w′

i ←
qi−ti·(si−wiqi+1)

tj ·(qi−1)

10: s′ ← s+ qi · (w′
i − wi)

11: wi+1 ← 1
ti
· ln

(
qi+1−1

ti·(s′+1−w′
i)−1

)
+ w′

i

12: Φi(w)←
{
Φi−1(w) if w ∈ [1, wi)

(ti · (s′ + 1− w′
i)− 1) · eti·(w−w′

i) + 1 if w ∈ [w′
i, wi+1)

13: wi ← w′
i

14: s← s′ +
∫ wi+1

wi
Φi(t) dt

15: if wl+1 > 1 then return F is infeasible else return F is feasible and output Φl

new rate is revealed. Specifically, Φ maps utilization to reservation rates. Here, a utilization value
w ∈ [0, 1] represents the fractional amount exchanged so far by the online algorithm, whereas the
reservation rate, ρ, is the minimum rate in [1,M ] at which the algorithm will make an exchange. At
each point a new rate pi is revealed, the algorithm updates its utilization by setting wi+1 = Φ−1(pi),
if pi > Φ(wi), otherwise wi+1 = wi. In both cases, it exchanges an amount equal to wi+1 − wi at
rate pi. The function Φ must be increasing, and its codomain must include [1,M ].

The main challenge posed in our setting is to guarantee the varying performance ratios globally, i.e.,
for all intervals and not just locally for a given interval. Thus, we need a global approach that takes
into account the entirety of the profile, and in particular the transitions between consecutive intervals.
We will thus design a function Φ so as to satisfy l set of constraints, where each set of constraints
applies to a specific interval. Define s̃i =

∫ wi

0
Φ(u)du, with s̃1 = 0. We seek a function Φ and

values 0 = w1 ≤ . . . ≤ wl+1 ≤ 1 such that the following constraints are satisfied for all i ∈ [1, l].

[β] ∀β ∈ [wi, wi+1) :
Φ(β)

s̃i +
∫ β

wi
Φ(t) dt+ 1− β

≤ ti.

[wi+1] Φ(wi+1) = qi+1.

[u] wi ≤ wi+1 ≤ 1.

Constraint [β] expresses the requirement on the performance ratio F ([qi, qi+1)) that is imposed by
the profile. Note that here s̃i is the minimum profit of an OTA at the point it reaches utilization wi.
This follows from Remark 2.1. Constraint [wi+1] allows us to obtain the partition of the utilization
levels induced by the profile. Moreover, such a constraint is needed for constraint [β] to correctly
represent the performance ratio indicated by the profile. Constraint [u] establishes that the utilization
levels defined are increasing and that they do not exceed the unit budget available to the algorithm.
The following lemma follows straightforwardly from the above discussion.
Lemma 4.1. F is feasible if and only if there exist Φ and w1, . . . , wl+1 that satisfy the above sets of
constraints, for all i ∈ [1, l].

Algorithm 1, which we call PROFILE, shows how to obtain the threshold function Φ, along with the
utilization values w1, . . . wl+1, assuming that F is feasible. This is formally stated in Theorem 4.1.
We emphasize that the theorem proves an even stronger statement; namely, if F is not feasible, then
PROFILE correctly outputs its infeasibility. That is, the algorithm fully solves FEASIBLE(F ).
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Theorem 4.1 (Appendix B). A profile F admits an online strategy which respects F if and only if
PROFILE terminates with a value wl+1 ≤ 1.

Furthermore, if F is feasible, then PROFILE directly provides an online algorithm that respects F :
Corollary 4.1. If F is feasible, then the threshold function Φl returned by PROFILE defines an OTA
which respects F .
Remark 4.1. For a profile F , we can use binary search in combination with PROFILE, in order to
find the minimum a ∈ R+, such that Ga extends F and Ga is feasible, according to Definition 3.4.

We give some intuition about PROFILE, and how we obtain Φ, and the values wi, for all i. The
algorithm computes Φ incrementally: namely, in iteration i, it obtains a new function Φi that aims to
satisfy the sets of constraints for the intervals

⋃i
k=1[qk, qk+1), and computes a value for wi+1, as

well as an updated value for wi. In each iteration i, the algorithm guarantees that an OTA based on Φi

respects the profile on all sequences whose maximum rate is in [1, qi+1) (provided that this is indeed
feasible) and, furthermore, that the utilization at the end of iteration i, namely wi+1 is as small as
possible. This is crucial, since it allows us to decide FEASIBLE(F ) based on the final value of wl+1.

The algorithm makes a distinction between two types of updates. The first type occurs in the
increasing part of the profile, i.e., when ti < ti−1. This is a relatively simpler case, because the
algorithm has already guaranteed a smaller ratio in the previous interval. Hence the algorithm can
afford to wait until it sees a rate that exceeds the reservation rate ρi (line 5-7). The second type occurs
in the decreasing part of the profile (lines 9-14). This is intuitively a harder case, because on every
new interval the algorithm must do even better than in the previous intervals. That is, when observing
a rate equal to qi, the algorithm now needs to perform at a ratio ti < ti−1, hence it should have made
a bigger profit. To this end, we need first to increase wi (lines 9 and 13) then extend Φi−1 to account
for interval i (line 12). The precise amount by which we increase wi is guided by the requirement that
the algorithm must have performance ratio ti for the worst-case sequence of increasing rates up to qi.

5 An Adaptive Pareto-Optimal Algorithm

In this section we study another generalization of Pareto-optimality. The starting observation is
that the Pareto-optimal OTA of [38] is tailored to worst-case scenarios. Namely, the threshold
function in [38] is static, i.e., determined prior to the execution of the algorithm, and tailored to
a sequence of continuously increasing exchange rates that may suddenly drop to 1. However, in
practice, such sequences never occur in real markets. We show how to obtain an algorithm that is not
only Pareto-optimal, but also leverages deviations from the worst-case sequence to its benefit.

Our setting is further motivated by [19], who studied the basic setting of standard competitive analysis
without predictions. Their solution is based on threat-based policies, i.e., algorithms that exchange at
each point in time the minimum required amount so as to guarantee the optimal competitive ratio. In
this section, instead, we consider the learning-augmented setting in which the algorithm has access
to a max-rate prediction p̂. Our algorithm uses an adaptive threshold policy, in which the threshold
function is updated every time a deviation from the worst-case input is observed. We follow this
approach since OTAs are typically more versatile than threat-based policies, and can apply to more
complex problems and settings, such as several variants of the knapsack problem, e.g., [40].

In a nutshell, we seek a Pareto-optimal algorithm that is not only optimal over worst-case sequences,
but also over all other sequences. To describe this formally, we first define some concepts. Let p̂ be
a max-rate prediction for an input σ of increasing rates, and define σ̃ as the suffix of σ comprised
of rates at least as high as p̂. (in the event that σ̃ is the empty sequence, our problem reduces to
standard Pareto optimality). Let σ̃ = p̃1, . . . , p̃m, and s̃i+1(A, σ) denote the profit made by an online
algorithm A on σ after its exchange over rate p̃i, for any i ∈ [1,m], . Let also s(A, σ) denote the
vector ⟨s̃i(A, σ)⟩ : i ∈ [1,m]. We say that algorithm A dominates another algorithm B on input σ, if
s(A, σ) is lexicographically no smaller than s(B, σ).

Informally, s(A, σ) is the vector of profits that A has made so far, for each rate that is at least as
high as the predicted maximum rate. The lexicographic ordering assigns priority to profits made at
exchange rates close to, but larger than the prediction. We now state our main result.
Theorem 5.1 (Appendix C). For any robustness requirement r, ADA-PO is Pareto-optimal and
dominates every other Pareto-optimal algorithm, on every possible sequence σ.
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Note that the algorithm of [38] is dominant only for sequences in which the exchange rates increase
continuously up to some p∗ ≥ p̂, then drop to 1. For those and all other sequences, our algorithm
dominates that of [38]. Note also that a dominant r-robust algorithm is a Pareto-optimal algorithm.

Algorithm 2 ADA-PO (adaptive Pareto-optimal)
Input: r ∈ R, p̂ ∈ [1,M ]

1: w ← 0, s← 0, p∗ ← 1
2: for pi ∈ σ do
3: if pi > p∗ then
4: p∗ ← pi
5: if pi ≤ p̂ then
6: wi+1 ← pi−r·(s+1−wpi)

r·(pi−1)

7: s← s+ pi · (wi+1 − w)
8: w ← wi+1

9: else
10: if r · (s+ 1− pw + w∗) ≥M then
11: wi+1 ← 1
12: else
13: wi+1 ← w∗

14: s← s+ pi · (wi+1 − w)
15: w ← wi+1

ADA-PO consists of two phases. The first phase (lines 5-9) consists of revealed rates strictly smaller
than p̂. In this phase, the algorithm exchanges the minimum amounts so as to guarantee r-robustness
(i.e., it makes threat-based decisions). Here, adaptivity allows the algorithm to reserve its budget
for the second phase. The second phase (lines 11-15) consists of revealed rates at least as high as p̂.
This is the challenging part, since we need to ensure simultaneously dominance and r-robustness, but
these two objectives are in a trade-off relation. Here, adaptivity allows us to exchange more money at
each revealed rate without sacrificing robustness.

Suppose that pi is revealed in the second phase (i.e., pi ≥ p̂). To achieve simultaneously the
robustness and the dominance, we need to find a continuous increasing Φ whose domain is [wi+1, 1],
along with a value for wi+1. To this end, we solve the optimization problem Oi, described below.

Here, constraint [β] is for guaranteeing r-robustness; and constraint [M ] and [u] guarantee that Φ
is well-defined as a threshold function. Maximizing w maximizes the amount exchanged at rate pi,
which is essential for dominance. In Appendix C we give further details, and we show that Oi has
optimal solution w∗ equal to the root of the equation w∗ = 1− 1

r ln
(

M−1
r(si+1−piwi+w∗(pi−1)−1)

)
,

which is used in line 13 of ADA-PO.

max w (Oi)
subj. to

[β] ∀β ∈ [w, 1) :
Φ(β)

si + pi · (w − wi) +
∫ β

w
Φ(t) dt+ 1− β

= r,

[M ] Φ(1) ≥M,

[u] wi ≤ w ≤ 1.

Remark 5.1. ADA-PO, unlike the known static OTAs, does not require a prediction p̂ ahead of time;
the prediction can be revealed during its execution instead, since it is only used in the second phase.
This can be very useful in practice, e.g., if the trader obtains information “on-the-fly”.

6 Experimental evaluation

We present experimental results for both the profile-based algorithm PROFILE (Algorithm 1) and the
adaptive Pareto-optimal algorithm ADA-PO (Algorithm 2). We compare our algorithms to the state
of the art Pareto-optimal algorithm of [38], which we denote by PO.
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Profile setting. We use a profile F that consists of three intervals [q1 = 1, q2), [q2, q3) and [q3, q4 =
M ], where M = 100. The profile is defined in terms of the prediction p̂, by choosing q2 = 0.9p̂ and
q3 = 1.1p̂. In addition, F is such that F ([q1, q2)) = t1 = F ([q3, q4]) = t3 = r, where r = 4 (larger
than, but close to the optimal competitive ratio r∗). Here, F ([q2, q3)) = t2 < r is the smallest value
such that F is feasible. To find t2, we use binary search in [1, r] in combination with PROFILE, and
note that this depends on p̂. F is depicted in Figure 2a. Intuitively, r corresponds to the robustness,
whereas t2 is the performance ratio if the input σ is such that p∗ ∈ [0.9p̂, 1.1p̂), i.e. if p̂ is “close” to
p∗. The length of [q2, q3), which is equal to 0.2p̂, reflects how much the user trusts the prediction.

Figure 2b depicts the performance of PROFILE, and PO with robustness r, on the worst case sequences
of maximum rate p∗, as a function of p∗. Recall that such sequence is of the form 1, . . . , p∗, 1, with
infinitesimal increments up to p∗, simulated using a step equal to 0.01. We denote this sequence
by σw

p∗ . We choose p̂ u.a.r. in [1,M ] (p̂ = 67.8 in Figure 2b). We observe that PO exhibits high
brittleness if p∗ is very close, but smaller than p̂, namely has performance ratio of r, which validates
Theorem 3.1. In contrast, PROFILE guarantees a performance ratio equal to t2 in the entire interval
[0, 9p̂, 1.1p̂], as required by F , thus tolerating a prediction error as high as 10%, while remaining
r-robust for all errors. This validates Theorem 4.1. As expected, PO has better ratio if p∗ = p̂ (from
the definition of Pareto optimality).

To further quantify the performance difference between the two algorithms, we evaluated both
algorithms on 100 randomly defined worst-case sequences. Each sequence σw

p∗ is obtained by
sampling p̂ u.a.r. in [1,M ], and for such p̂, by randomly picking p∗ ∈ [0.9p̂, 1.1p̂], the significant
prediction error for the user. Figure 2c depicts the relative performance difference of the two
algorithms for each σw

p∗ , as a function of the prediction error. We observe that if p∗ < p̂, then
PROFILE improves upon PO by 20% to 50% , whereas if p∗ > p̂, PROFILE is inferior by only 10% to
20%. The average improvement we report, taken over the 100 ratios is 22%. We conclude that while
both algorithms guarantee robustness r, PROFILE is not only smooth around the prediction, but also
performs better on the average, which supports the benefits from using a profile.

In addition, we performed experiments over sequences obtained from real trading data, using the
profile F as above. We used exchange rates from Bitcoin (BTC) to USD; specifically, we used a list
of the last 1000 daily exchange rates (finishing on May 20, 2024), defining as the prediction p̂ the
maximum rate in the first 200 rates, and running the algorithm on a sequence consisting of the last
800 rates. Figure 2d depicts the performance ratios of PROFILE and PO, where each point in the plot
corresponds to the maximum rate observed so far: these are the only rates at which the algorithms
make exchanges. We observe that PO continues to suffer from brittleness, whereas PROFILE still
exhibits smooth degradation in the interval [0.9p̂, 1.1p̂].

In Appendix E we report an additional experiment on the average performance over BTC sequences.
The key takeaway from all experiments on both synthetic and real sequences is that PROFILE performs
much better if p∗ < p̂, and at the same time it is only slightly worse, if p∗ > p̂. This behavior is due
to the smoothness enforced around the prediction, as guaranteed by the profile.

Adaptive setting. Since, by definition, PO and ADA-PO perform the same over worst-case sequences,
we focus on sequences from BTC rates. Based on a list of the last 1000 daily BTC rates, we obtain
a prediction p̂ and the sequence, as in our profile-based experiments above. Figure 2e plots the
performance ratio as a function of the currently observed maximum rate in the sequence. For every
such rate that exceeds p̂, ADA-PO outperforms PO, which validates Theorem 5.1. This comes at an
unavoidable increase in brittleness, as expected, and illustrates the tradeoff between smoothness and
dominance. We expect ADA-PO to be the algorithm of choice when the prediction is conservative, or
when p̂ is not given to the trader ahead of time, but is rather revealed at some point in the sequence.

7 Discussion

Our profile-based framework can apply to many other problems augmented with ML predictions, and
is not specific to one-way trading. To illustrate this, in Appendix D we analyze another application
in the context of contract scheduling, which is a classic problem from resource-bounded reasoning
in AI, and which, likewise, suffers from brittleness. Our work is the first towards understanding the
power and limitations of imperfect ML predictions in competitive financial optimization beyond
extreme values of the prediction error. The techniques introduced will help address problems such as
two-way trading and portfolio optimization, which have not yet been studied in learning augmented
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Figure 2: Summary of the experimental results.

settings. Other potential applications include several well-known variants knapsack problems, where
online threshold algorithms are commonly used, especially in learning-augmented settings [16, 40].
Last, it would be interesting to study dynamic settings, in which the predictions are obtained as the
sequence is revealed to the algorithm.
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Appendix

A Details from Section 3

Proof of Theorem 3.1. Let A be a Pareto-optimal algorithm of robustness r, and consistency c(r).
We will show that for any fixed ϵ > 0, there exists a sequence σ and a prediction p̂ such that
η = |p̂− p∗σ| ≤ ϵ, and A satisfies Definition 3.1. Since A is Pareto-optimal, there exists a non-empty
set of sequences Σc, such that for all σc ∈ Σc, if A is given as prediction p∗σc

, then

p∗σc

A(σc)
= c(r).

As shown in [19] we can assume, without loss of generality, that every σc is increasing, i.e., it is
of the form σc = p1, . . . , pk, p

∗
σc

with pi > pj , for all i < j, and p∗σc
> pk. We define Σ to be the

co-domain of the following function, f :

f : Σc → Σ such that f(σc) =

{
σc if |p∗σc

− pk| ≤ ϵ,

p1, . . . , pk, p
∗
σc
− ϵ, p∗σc

otherwise.
(A.1)

Given a σ ∈ Σ, let n = |σ| − 1, and let xn be the fraction exchanged by A. Since A is r-robust, it
needs to account for the scenario in which the adversary chooses to drop all rates to 1 after exchanging
at the rate pn. Thus, xn must satisfy

pn
sn + pn · xn + 1− xn − wn

≤ r,

or equivalently,

xn ≥
pn − r · (sn + 1− wn)

r · (pn − 1)
. (A.2)

Define ω to be the RHS of (A.2) Suppose first, that there exists a sequence σ ∈ Σ for which A
exchanges xn = ω. In this case, if A is given a prediction p̂ = p∗σ, then for the the sequence
σr = σ[1, n] we have that |p̂− p∗σr

| ≤ ϵ, and:

p∗σr

A(σr)
=

pn
sn + pn · ω + 1− ω − wn

= r,

and the proof is complete in this case.

It thus remains to consider the case that for all σ ∈ Σ, xn > ω. Let xn+1 be the amount exchanged by
A at rate p∗σ . We define an online algorithm A′, whose statement is given in Algorithm 3. Intuitively,
while the rate is below p∗σ, A′ makes the same decisions as A. If the rate is between p∗σ − ϵ and p∗σ,
A′ exchanges ω. If the rate is precisely p∗σ A′ exchanges xn plus what A did not exchange on rates
which were between p∗σ − ϵ and p∗σ. Finally, A′ makes the same decisions as A for all rates that
exceed p∗σ . We will show that A′ has robustness at most r and consistency cA′ such that cA′ < c(r),
which contradicts that A is Pareto-optimal.

We first show that A′ is r-robust. Let σ′ be an input sequence and p̂ a prediction given to A′, we will
show that p∗σ′ ≤ rA(σ′). If p∗σ′ < p̂− ϵ, then has A′ made the same decisions as A, hence remains
r-robust. If p̂− ϵ < p∗σ′ < p̂, then by definition of ω, A′ is guaranteed to be r-robust. Last, if p∗σ′ ≥ p̂,
then A′ achieves a strictly better profit than A.

It remains to show that A′ has consistency strictly smaller than c(r). To this end, it suffices to show
that: (i) for all σc ∈ Σc it holds that OPT(σc)

A′(σc)
< c(r), and that (ii) for all σ′ /∈ Σc it holds that

OPT(σc)
A′(σc)

< c(r), assuming that both A and A′ are given a prediction p̂ = p∗σ′ .

To show (i), note that for σ′ ∈ Σc it holds that OPT(f(σ′))
A(f(σ′)) < c(r), due to A exchanging xn > ω

and A′ exchanging xn = ω. If f(σ′) = σ′ (first case in (A.1)) then OPT(σ′)
A(σ′) < c(r). Otherwise,

(second case in (A.1)) A(σ′) > A(f(σ′)) hence the same result holds. To show (ii), observe that
A′(σ′) > A(σ′) due to A exchanging xn > ω and A′ exchanging xn = ω. Hence, by the definition
of Σc, we have
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Algorithm 3 Statement of the online algorithm A′

Input: Algorithm A, p̂, ϵ
1: p∗ = 1, e← 0
2: for each rate pi in the input sequence do
3: if pi > p∗ then
4: p∗ ← pi
5: if pi < p̂− ϵ then
6: Exchange the same amount as A
7: else if p̂− ϵ < pi < p̂ then
8: Exchange ω
9: e← e+ xi − ω

10: else if pi = p̂ then
11: Exchange xn + e
12: else
13: Exchange the same amount as A

OPT(σc)

A′(σc)
<

OPT(σc)

A(σc)
< c(r),

which concludes the proof.

B Details from Section 4

In this section, we show how to compute the function Φ used in PROFILE (Algorithm 1), for deciding
whether a profile F is feasible. Recall that we seek a function Φ and values 0 = w1 ≤ . . . ≤ wl+1 ≤ 1
that satisfy the following sets of constraints.

[β] ∀β ∈ [wi, wi+1) :
Φ(β)

si +
∫ β

wi
Φ(t) dt+ 1− β

≤ ti

[wi+1] Φ(wi+1) = qi+1

[u] wi ≤ wi+1 ≤ 1

for each rate interval [qi, qi+1).

As explained in Section 4, our algorithm builds a function Φ and values wi in an iterative way. That
is, it processes each set of constraints iteratively, and at each step j ∈ [1, l] it builds a function Φj and
computes values w1, . . . , wj+1 which satisfy the sets of constraints for all intervals [qi, qi+1) with
i ≤ j. Each function Φj and the new values w1, . . . , wj+1 are a function of Φj−1 and the previous
values w1, . . . , wj+1.

We explain an iteration of this process. Suppose that the algorithm is at a step where it has computed
Φj−1 and values w1, . . . , wj as to satisfy the sets of constraints for the intervals [qi, qi+1) with i < j.
Constraint [β] requires us to guarantee a ratio of at least tj for every sequence whose maximum rate
is in [qj , qj+1). We derive a function which achieves a ratio equal to tj for such sequences. The
equality is sought, instead of the inequality, in order to minimize utilization. Intuitively, enforcing a
ratio smaller than tj would force the algorithm to exchange more money to achieve a bigger profit.
Thus the following constraint

∀β ∈ [wj , wj+1) :
Φ(β)

sj +
∫ β

wj
Φ(t) dt+ 1− β

= tj ,

from which we can obtain the differential equation:

Φ̇ = tj · Φ− tj , (B.1)

which is a separable first order differential equation. We can hence find the unique solution

Φ(β) = C · etj ·β + 1.
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We then apply constraint [β], for an arbitrary β ∈ [wj , wj+1), so to find the value of the constant C,
which yields

Φ(β) = (tj · (sj + 1− wj)− 1) · etj ·(β−wj) + 1 (B.2)

The obtained function is the unique solution to such an equation. We denote ρj = tj · (sj + 1− wj).

We then use constraint [wj+1] to find an expression for wj+1:

wj+1 =
1

tj
ln

(
qj+1 − 1

ρj − 1

)
+ wj (B.3)

Note that Φ(wj) = ρj . There are two cases to be analyzed.

First, if ρj > qj , then we can define Φj as follows:

Φj(w) =

{
Φj−1(w) if w ∈ [1, wj)

(tj · (sj + 1− wj)− 1) · etj ·(β−wj) + 1 if w ∈ [wj , wj+1),

where wj+1 is defined in (B.3). We say that we extend the previous Φj−1. This scenario materializes
when the algorithm has achieved a profit sj , which allows it to not exchange while observing rates
in [qj , ρj ] and still remain tj-competitive. This occurs when tj > tj−1, hence it occurs for the
increasing part of the profile.

On the other hand, ρj < qj , if tj < tj−1. If this case occurs, the algorithm has not obtained a
sufficient profit to be tj-competitive when presented with the sequence which continuously increases
from 1 to qj , which is the worst-case sequence as stated in Remark 2.1. As we will show in the
proof of Theorem 4.1 wj is the least utilization that can be spent so to satisfy every set of constraints
[qk, qk+1) with k < j. To enforce a ratio of tj and still minimize utilization, the algorithm must
exchange a bigger amount when rate qj is revealed, since exchanging more at a lower rate would lead
to a larger utilization. To guarantee a ratio of tj for the continuous increasing sequence, the algorithm
should trade an amount equal to w′

j − wj , where w′
j is obtained from:

qj
sj + qj · (w′

j − wj) + 1− w′
j

= tj

and leads to

w′
j =

qj − tj · (sj − wjqj + 1)

tj · (qj − 1)
.

We now wish to extend function Φj−1, obtained in the previous iteration, so as to satisfy all constraints
for interval [qj , qj+1). Let s′j = sj + qj · (w′

j − wj), which is the profit obtained by the OTA in the
worst case where the maximum rate is qj . We may express this problem by a new set of constraints,
which are:

[β] ∀β ∈ [w′
j , wj+1) :

Φ(β)

s′j +
∫ β

w′
j
Φ(t) dt+ 1− β

≤ tj ,

[wj+1] Φ(wj+1) = qj+1,

[u] w′
j ≤ wj+1 ≤ 1.

Note that this set of constraints is the same as the ones we started with, but sj was replaced by s′j and
wj by w′

j . Hence, the Φ and wj+1 which satisfy the constraints and minimize wj+1 are:

Φ(β) = (tj · (s′j + 1− w′
j)− 1) · etj ·(β−w′

j) + 1, (B.4)

wj+1 =
1

tj
ln

(
qj+1 − 1

ti · (s′ + 1− w′
i)− 1

)
+ w′

j . (B.5)

We can now proceed with the proof for Theorem 4.1.
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Proof of Theorem 4.1. As stated in Remark 2.1, every online strategy will exchange on rates which
are best-seen so far. We can hence state every strategy as an OTA. It suffices then to prove the
following: There exists an OTA which respects F if and only if PROFILE terminates with a value
wl+1 ≤ 1.

Let F be a performance profile. The if direction follows directly from the design of PROFILE. It
suffices to observe that the obtained function Φl can be used as the threshold function for an OTA
which respects the profile F .

To prove the only if direction, we will prove that every wi obtained by PROFILE is the least utilization
needed to satisfy all sets of constraints for intervals [qk, qk+1) for k < i. In other words, we
will prove that if A is an OTA, which respects F , defined by Φ, and where w′

1, . . . , w
′
l+1 are the

respective utilization levels reached by A when observing rates q1, . . . , ql+1, i.e: Φ(w′
i) = qi for each

i ∈ [1, . . . , l + 1], then wi ≤ w′
i. This statement follows, once again, from the design of PROFILE.

By replacing the inequality constraint in [β] by an equality, we manage to achieve a ratio which is
exactly the one demanded by the profile, hence reserving budget for futures rates. PROFILE obtains a
function Φl which enforces, for each i ∈ [1, l] and for each q ∈ [qi, qi+1) the equation:

q∫ Φ−1
l (q)

1
Φl(u)du+ 1− Φ−1

l (q)
= ti.

We conclude that PROFILE minimizes utilization while satisfying every set of constraints, thus proving
the theorem.

Figure 3 illustrates PROFILE. Here we observe that for the increasing part of the profile, Φi with
i ∈ [4, 7] extends Φi−1 with an exponential function starting at wi, where Φi(wi) > Φi−1(wi). Here
the vertical “jumps” reflect the less stringent requirement in the increasing part (we can afford to
reserve our budget for later). For the decreasing part of the profile, Φi with i ∈ [1, 3] extends Φi−1

with an exponential function starting at w′
i > wi (line 9 in the statement) where Φi(w

′
i) = Φi−1(wi),

which is reflected in the presence of straight lines in Figure 3.
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Figure 3: An illustration of PROFILE. Here the profile F is as follows: F ([1, 20) = 7,F ([20, 35]) = 5,
F ([35, 50]) = 3, F ([50, 70]) = 3.5, and F ([70, 100]) = 4

.
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C Details from Section 5

In this section, we detail the calculations that lead to the value wi+1, which is the maximum an online
algorithm can spend on rate pi while ensuring r-robustness.

The aforementioned wi+1 is the solution to the following optimization problem:

max w (Oi)
subj. to

[β] ∀β ∈ [w, 1) :
Φ(β)

si + pi · (w − wi) +
∫ β

w
Φ(t) dt+ 1− β

= r,

[M ] Φ(1) ≥M,

[u] wi ≤ w ≤ 1.

From constraint [β], we do the same analysis as in B to find Φ(β) = C · erβ + 1. Once again, to find
the constant C we use constraint [β] for an arbitrary value β ∈ [wi+1, 1], which leads to:

Φ(β) =
(
r · (si + 1− piwi + wi+1 · (pi − 1))− 1

)
· er·(β−wi+1) + 1.

We then use constraint [M] to obtain an upper bound on wi+1:(
r · (si + 1− piwi + wi+1 · (pi − 1))− 1

)
· er·(1−wi+1) + 1 ≥M,

which leads to:

wi+1 ≤ 1− 1

r
ln

(
M − 1

r(si + 1− piwi + wi+1(pi − 1)− 1)

)
.

Thus the largest value of wi+1 is the root of the equation

wi+1 = 1− 1

r
ln

(
M − 1

r(si + 1− piwi + wi+1(pi − 1)− 1)

)
,

which can be solved using numerical methods. Let ρ be the reservation rate for utilization wi+1, then

ρ = Φ(wi+1) = r · (si + 1− piwi + wi+1 · (pi − 1)).

If ρ > M , then the algorithm has achieved a sufficient profit to guarantee r-robustness independently
of future rates. Hence, to maximize wi+1, we can safely set it to 1. However, if ρ < M , then
constraint [M ] was saturated, and the algorithm will achieve a performance ratio of r for every
sequence which grows continuously from ρ until a rate p∗ ∈ [ρ,M ]. Moreover, for every sequence
whose maximum rate p∗ ∈ [pi, ρ) the algorithm will have a performance ratio smaller than r.

As explained in Appendix B using constraint [β] with an equality allows us to guarantee a performance
ratio of r minimizing utilization. Observe that to maximize wi+1 we need to minimize the left-over
budget to remain r-robust in the future. We can hence conclude that wi+1 − wi is indeed the largest
amount of money we can exchange at rate pi and remain r-robust.

We will next provide the proof for Theorem 5.1.

Proof of Theorem 5.1. We are to prove that ADA-PO is Pareto-Optimal and dominates every other
Pareto-Optimal algorithm on any sequence σ.

First, we will prove that ADA-PO is Pareto-Optimal. Let r be a a robustness requirement, and c(r)
the respective consistency. To start with, we prove that ADA-PO is r-robust. Consider first the (easy)
case where p∗ < p̂ then ADA-PO assures a performance ratio of r using the threat-based approach.

Consider then the (harder) case in which p∗ > p̂. Let pi be the first rate above p̂ and wi+1,Φi be
the respective solution to problem Oi. We must prove that no matter how the sequence continues
ADA-PO achieves a performance ratio of at least r. If Φ(wi+1) ≥ M then a performance ratio of
r is guaranteed, due to M

si+1+1−wi+1
≤ r, from constraint [β]. Suppose then Φi(wi+1) < M , then

by constraints [M] and [u] we know that wi+1 < 1. When the next rate pi+1 > pi is revealed the
same analysis can be applied. We thus obtain a non-decreasing sequence of reservation rates Φj(pj)
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for j > i. For each rate, problem Oi is solved. Note that the feasibility of problem Oi with rate pi
implies the feasibility of the problem Oi with the next rate as shown by the next analysis. Namely,
if pi ≤ Φ(pi−1) then w = wi, Φi = Φi−1 is a solution, and if pi > Φ(pi−1), then w = Φ−1

i−1(pi),
Φi = Φi−1 is as well. Furthermore, both cases lead to a performance ratio of at least r in case the
next rate equals 1 and is the last rate. We hence conclude, that either one of the reservation rates is
greater or equal than M or ADA-PO successfully achieves a performance ratio of r for each rate
(wi < 1 was a solution for each problem). We conclude then that ADA-PO is r-robust.

We will now prove that ADA-PO is c(r)-consistent. We must prove that for every error-free sequence
the performance ratio is at most c(r). Let A′ be any Pareto-Optimal algorithm. When observing rates
below p̂, ADA-PO follows the threat-based policy, hence for every error-free sequence, its budget is
at least the same as A′ when a rate equal to p̂ is exhibited. Then by solving the optimization problem,
ADA-PO exchanges the most it can in order to remain r-robust, a larger amount would make the
problem infeasible. In other words, there would not exist a function Φ satisfying the constraints,
and the continuously increasing function from p̂ to M will lead to a performance ratio bigger than r.
Hence, no other algorithm could achieve a better profit. We conclude that ADA-PO is c(r)-consistent.

We finally prove that ADA-PO dominates A′. By the previous analysis, when observing the first rate
above the prediction, ADA-PO has a budget at least the budget than A′. As ADA-PO exchanges
the most it can to remain r-robust, it will obtain a next utilization which is equal or smaller than
A′, hence achieving a better profit, because A′ exchanged the same or less at lower rates. If A′ has
behaved the same as ADA-PO, then this process repeats for every following rate. We conclude then
that ADA-PO dominates or performs equally to A′.

Remark C.1. To conclude we offer an intuitive explanation of dominance. If the maximum rate
of the sequence is below the prediction, then ADA-PO’s profit will be smaller or equal than any
other Pareto-Optimal algorithm. Its profit will be equal if the sequence is a continuously increasing
one. Moreover, for the first rate equal or greater than the prediction, its profit will be greater or
equal than any other Pareto-Optimal algorithm. By definition of dominance, while observing rates
above the prediction, either the two profits will be equal, or ADA-PO’s profit is larger, unless the
Pareto-Optimal algorithm attained a smaller profit at an earlier rate.

D Profile-based contract scheduling

In this section, we discuss another application of our profile-based framework of Section 3. Specifi-
cally, we focus on another well-known optimization problem that has been studied under learning-
augmented settings, namely contract scheduling. In its standard variant, the problem consists of
finding an increasing sequence X = (xi)

∞
i=0 which minimizes the acceleration ratio, formally

defined as

acc(X) = sup
T

T

ℓ(X,T )
. (D.1)

where ℓ(X,T ) denotes the largest contract completed by T in X , namely

ℓ(X,T ) = max
j
{xj :

j∑
i=0

xi ≤ T}.

Contract scheduling is a classic problem that has been studied under several settings. In its simplest
variant stated above, the optimal acceleration ratio is equal to 4 [37], but many more complex settings
have been studied in the literature; see [7] and references therein. In this section we are interested in
the learning augmented setting introduced in [7] in which there is a prediction τ on the interruption
time T . The prediction error is defined as η = |T − τ |. In this context, the consistency c(X) of
schedule X is defined as

c(X) =
τ

ℓ(X, τ)
,

whereas its robustness is defined as

r(X) = sup
T≥1

T

ℓ(X,T )
,
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i.e., the worst-case performance of X , assuming adversarial interruptions. Since the latter occur
arbitrarily close to the completion time of any contract, we obtain an equivalent interpretation of the
robustness as

r(X) = sup
i≥1

∑i
j=0 xj

xi−1
.

In [7] it was shown that the optimal consistency of a 4-robust schedule is equal to 2. However, as
proven in [5], any such schedule suffers from brittleness. Namely, for any ϵ > 0, there exists a
prediction τ and an actual interruption time T such that |T−τ | = ϵ, and any 4-robust and 2-consistent
schedule satisfies ℓ(X,T ) ≤ T+ϵ

4 .

In the remainder of this section we will show how to use our framework of profile-based performance
so as to remedy this drawback. For definiteness, and to illustrate the application of the techniques, we
consider the requirement that the performance of the schedule degrades linearly as a function of the
prediction error. Namely, suppose that we require that f(X,T ) := T/ℓ(X,T ) be respect a profile
Fϕ, where the latter is defined as a symmetric, bilinear function that is decreasing for T ≤ τ , and
increasing for T ≥ τ , with slope ϕ, as illustrated in Figure 4. This profile is chosen by the schedule
designer, and the angle ϕ captures the “smoothness” at which the schedule is required to degrade as a
function of the prediction error.

ϕ ϕ

Figure 4: An illustration of the profile Fϕ.

More specifically, for a given prediction τ , and a profile Fϕ as above, we are interested in finding the
best extension of Fϕ such that there exists a 4-robust schedule that respects the extension. We can
thus define the analytical concept of consistency according to Fϕ as

cFϕ
:= sup

τ
inf
T

T

ℓ(X,T )
: X respects Fϕ.

The following theorem states our main result.

Theorem D.1. Given a profile Fϕ and a prediction τ on an interruption time, we can compute a
4-robust schedule that respects Fϕ and has optimal consistency according to Fϕ.

Proof. We will assume that X if of the form (λ2i)i∈Z. This is not a limiting assumption, as discussed
in [5], and its purpose is to simplify the calculations. Since any 4-robust schedule is of the above
form [5], it will suffice to compute a λ that satisfies the constraints of our problem, and the result will
follow.

Recall that f(X,T ) denotes the function T/ℓ(X,T ). By definition, for every i ∈ N, f(X,T ) is
a linear, increasing function of T function in the interval Ik = [Tk, Tk+1] = [λ2k, λ2k+1], with
smallest value equal to 2, and largest value equal to 4.

With the above observation in mind, for a given, fixed λ, let k be such that τ ∈ Ik+1, i.e., we have
that ℓ(X, τ) = λ2k. Define α ∈ [1, 2] to be such that τ = αTk, and note that by construction, α is a
function of λ. Moreover

f(X, τ) =
τ

λ2k
=

αTk

λ2k
=

αλ2k+1

λ2k
= 2α, (D.2)

which implies that it suffices to compute α, then λ must be chosen so that λ = 2{log(2α)}, where {x}
denotes the fractional part of x.
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In order to minimize f , subject to X respecting the profile, λ must be chosen such that one of the
two cases occur, which we analyze separately.

Case 1. The profile Fϕ has a unique intersection point with f at T = τ , and moreover F (Tk+ ϵ) = 4,
for infinitesimally small ϵ > 0. This situation is illustrated in Figure 5. For this case to arise, and for
the schedule to be consistent with F , it must be that

tan(
π

2
− ϕ) ≥ 4− 2

Tk+1 − Tk
=

2

Tk
=

2α

τ
. (D.3)

It must then be that f(X, τ) + τ−Tk

tanϕ = 4, hence

4− ρ(1− 1

α
) = 2α, where ρ =

τ

tanϕ
.

Solving the above equality for α minimizes f , by means of (D.2). We obtain that

α =
1

4
(
√

ρ2 + 16− ρ+ 4) and f(X, τ) = 2α,

subject to the condition (D.3).

Time

T/ℓ(X,T )

2

4

Tk Tk+1
τ

ϕ ϕ

Figure 5: An illustration of Case 1.

Case 2. This case occurs if the condition in Case 1 does not apply. The profile Fϕ is such that
F (Tk + ϵ) = F (Tk+1 − ϵ), for infinitesimally small ϵ > 0. This situation is illustrated in Figure 6.
For this case to arise, and for the schedule to respect Fϕ it must be that τ = Tk+1+Tk

2 = 3
2
τ
α , hence

α = 3/2. In this case, we obtain that

f(X, τ) = 4− Tk+1 − τ

tanϕ
= 4− ρ, where ρ =

τ

tanϕ
.

We observe that in both cases in the analysis of Theorem D.1 we obtain that f ∈ (2, 4], as a function
of τ and ϕ. This result makes intuitively sense, since X is 4-robust, and the smallest consistency is
equal to 2 (when ϕ→ 0).

E Further experimental analysis

To further quantify the performance difference between the two algorithms, PROFILE and PO, we
performed additional experiments. Specifically, we used a list of the last 20,000 minute-exchange
rates of BTC to USD, so as to create 20 different sequences, each with its own prediction, using the
same method as in Fig 2c. For each sequence, we computed the average improvement over PO for
rates in the interval of interest [0.9p̂, 1.1p̂]. Figure 7 depicts this average for each of the 20 sequences.
We observe that for the sequences in which PROFILE outperforms PO (12 out of 20), the improvement
ranges from roughly 15% to 30%, whereas PO outperforms PROFILE in 8 out of 20 sequences, by a
factor that is at most 10%, roughly.
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Figure 6: An illustration of Case 2.
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Figure 7: Average ratio improvement of PROFILE over PO

F Computational setup

The experiments are reproducible on any standard computer, and do not require any memory or
computational power beyond the standard requirements. They run typically within few milliseconds.
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evaluation over real and synthetic data.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The only data used is obtained from publicly available datasets, namely
Binance.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is provided along with its documentation, in the README file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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