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Abstract

Current Large Language Models (LLMs) demonstrate exceptional general rea-
soning and problem-solving abilities but often struggle with specialized tasks or
domains requiring proprietary information due to their generalized training and
size constraints. Fine-tuning large models for every specific domain is impractical
because of inaccessibility to black-box model parameters and high computational
costs. We explore a solution to this challenge: can a collaborative framework
between a specialized weak model and a general strong model effectively extend
LLMs’ capabilities to niche but critical tasks? We propose a dynamic interaction
where the weak model, tailored to specific domains, generates detailed initial drafts
and background information, while the strong model refines and enhances these
drafts using its advanced reasoning skills. To optimize this collaboration, we intro-
duce a feedback loop by fine-tuning the weak model based on the strong model’s
preferences, fostering an adaptive and synergistic relationship. We validate our
framework through experiments on three datasets. We find that the collaboration
significantly outperforms each model alone by leveraging complementary strengths.
Moreover, fine-tuning the weak model with strong model’s preference further
enhances overall performance. Our collaborative approach achieves an average
F1 score improvement of 3.24% over the weak model alone and 12.17% over the
strong model alone across all benchmarks.

1 Introduction

The rapid evolution of Large Language Models (LLMs) [45, 4] has exhibited remarkable proficiency
in general reasoning [20, 47], problem-solving [21, 41], and natural language understanding [37].
These models have demonstrated the ability on a broad range of tasks across diverse domains, often
with minimal task-specific training. However, their immense size and general-purpose training can
make them less effective in specialized tasks that are underrepresented in their training data or require
access to proprietary information [9]. This limitation poses a significant challenge: how can we
extend the problem-solving spectrum of LLMs to encompass these niche but critical tasks?

Directly training or fine-tuning large models for every specific domain or task is often impractical
due to the following two key reasons. First, some popular LLMs (e.g., GPT-4 [2], Gemini [34]) are
black-box models, with their internal parameters inaccessible for modification. Even when fine-tuning
is possible, it can be costly and raises concerns about scalability as models continue to grow in size,
such as those models exceeding 70 billion parameters. Additionally, fine-tuning LLMs on private
data can pose security and privacy risks. Specifically, fine-tuning requires exposing the model to
potentially sensitive data, which could inadvertently be memorized or leaked through the model’s
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outputs. This exposure creates a risk of violating data privacy regulations and necessitates robust
measures to ensure data confidentiality and compliance.

To overcome these challenges, we aim to leverage a collaborative framework that synergizes a small-
sized weak model with a large-sized strong model. In this paradigm, the weak model is tailored with
specialized problem-solving abilities in specific domains. Conversely, the strong model boasts robust
general capabilities, excelling in tasks that require broad knowledge and advanced reasoning. By
orchestrating a collaboration between these two models, we leverage their complementary strengths
to tackle specific tasks more effectively than either could achieve independently. The weak model
contributes domain-specific insights and preliminary solution drafts, while the strong model refines
and enhances these drafts using its advanced reasoning capabilities.

While a few existing works have explored forms of weak and strong model collaboration [18, 28],
they often predefine the interaction mechanisms—for example, the strong model merely receiving
knowledge pieces generated by the weak model [18]. However, the most effective interaction
strategy can vary depending on the specific scenario, task, or models involved. Moreover, prior
approaches typically focus on unidirectional communication from the weak model to the strong
model, overlooking the potential benefits of feedback from the strong model back to the weak model.
Such feedback is crucial for the weak model to understand the strong model’s preferences and to
enhance the mutual cooperation between the two models.

In this paper, we thus introduce an innovative framework for dynamic weak-strong model collabora-
tion. Our approach harnesses the specialized knowledge of a knowledge-intensive weak model to
generate detailed initial drafts and background information. The strong model then applies its robust
general reasoning capabilities to enhance these drafts by identifying errors, navigating complexities,
and making necessary adjustments, effectively merging the strengths of both models. To optimize this
collaborative interaction further, we implement a feedback loop, which fine-tunes the weak model
based on the strong model’s preferences, creating an adaptive and synergistic interaction that continu-
ously improves. We evaluate the impact of the weak model’s contributions on overall performance by
analyzing the final outputs and monitoring changes in evaluation scores. This data-driven strategy
allows us to amplify beneficial contributions from the weak model and minimize detrimental ones,
thereby fostering a mutually beneficial interaction.

We validate our framework through experiments on three datasets. The collaboration between the
weak and strong models significantly outperforms each model operating independently, demonstrating
the effectiveness of leveraging complementary strengths. Incorporating feedback from the strong
model to fine-tune the weak model enhances the overall effectiveness of the collaboration. This
iterative refinement allows the weak model to align closely with the strong model’s preferences and
reasoning patterns.

2 The Proposed Method - COWEST

In this section, we introduce COWEST, a Collaboration method between Weak and Strong models
that harnesses their complementary strengths to improve cooperative performance. An overview
of the framework is shown in Figure 1. Algorithm 1 and Algorithm 2 include the pseudo codes of
training and inference in the appendix.

2.1 Problem Setup

We propose a collaborative approach that leverages both weak and strong models to tackle diverse
reasoning tasks. These tasks require domain-specific knowledge, problem-solving skills, and strong
general capabilities such as reasoning, comprehension, and calculation. To address these tasks, we
employ a weak model (e.g., Llama2-7b), denoted as πw. This relatively small, cost-efficient model is
a white-box system that can be fine-tuned for specific domains to acquire task-relevant knowledge.
Alongside this, we utilize a strong model (e.g., GPT-4), referred to as πs, a black-box model with
fixed internal parameters. Although it has limited access to specific knowledge or proprietary data,
the strong model excels in general reasoning.

Given a user query x from a target task, our objective is to enhance overall inference capability by
utilizing the complementary strengths of πw and πs. The inference process is formulated as:

y∗ = F
(
πw ◦ x, πs ◦ x, x

)
∀x ∈ X,
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Figure 1: Overview of the proposed method - COWEST. In the training stage, the weak model is first
fine-tuned on task-specific data using supervised learning (Stage 1), followed by preference tuning
(Stage 2) based on evaluations provided by the strong model. The strong model assesses outputs from
collaborative interactions to generate preference triplets, aligning the weak model’s outputs with the
strong model’s preferences. During inference, the weak model processes the input query to generate
an initial output, which the strong model refines, resulting in the final enhanced response.

where y∗ represents the final output for the query x, and F is the mechanism that integrates the
domain-specific expertise of πw with the general reasoning capability of πs, resulting in improved
task performance.

2.2 Supervised Fine-tuning of the Weak Model

The weak model πw is initially fine-tuned on a task-specific training dataset, DSFT = {(x, ŷ)}, where
each query x has a corresponding ground truth ŷ. The goal of this fine-tuning is to adapt πw to the
specific task by learning from these examples. This is achieved by optimizing the following objective:

πSFT
θ = argmin

θ
LSFT (πθ; DSFT) , (1)

where πSFT
θ is the policy after fine-tuning, and LSFT is the supervised loss function as defined in (4).

This optimization allows the weak model to specialize in the task domain, preparing it for effective
collaboration with the strong model.

2.3 Aligning the Weak Model with Strong Model Feedback

To align the weak model with feedback from the strong model, we first construct preference triplets
by comparing the outputs produced solely by the strong model with those generated in collaboration
with the weak model. An external evaluator scores these outputs based on reasoning coherence
and alignment with the ground truth, identifying instances where the weak model’s contributions
improve the final result. These triplets are then used to fine-tune the weak model through preference
optimization, aligning it with the strong model’s preferences to facilitate better collaboration.

2.3.1 Preference Feedback from the Strong Model

Given a set of training data, {(x, ŷ)}, where x is the query and ŷ the groundtruth, our goal is to
construct preference triplets (x, y+, y−), where y+ and y− represent the preferred and non-preferred
outputs of the weak model. To construct these preference triplets, we introduce two generation
scenarios: Strong Model Only: The query x is directly fed into the strong model, which generates
an explanation and a final output using a chain-of-thought (CoT) prompt. This approach helps the
model break down complex tasks into intermediate reasoning steps. The resulting output is denoted
as z ∼ πs(z | x). Weak-Strong Model Collaboration: The query x is first processed by the weak
model to produce an explanation and an initial result, y ∼ πw(y | x). This output, along with the
original query, is then passed to the strong model for refinement, resulting in the final response
y∗ ∼ πs(y

∗ | y). Here, the weak model’s explanation may contain knowledge-intensive information
that the strong model analyzes to detect potential flaws or gaps in reasoning.
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Preference Evaluation To assess output quality, we introduce an external evaluator, E(y, x), which
is a large language model with strong general capabilities (e.g., GPT-4). While various models can
serve as the evaluator, using the same large language model as the strong model ensures consistency
in reflecting the strong model’s preferences. The evaluator scores the outputs based on a manually
defined rubric focusing on: (1) Coherence of reasoning logic: whether the explanation is logically
sound. (2) Consistency with ground truth: how closely the final result aligns with the ground truth.
The evaluator E assigns a fine-grained score to each output, providing a nuanced assessment of both
the reasoning process and the final result. This model-based evaluation approach is preferred over
traditional metrics like BLEU or ROUGE, as it captures not just surface similarity but also the depth
of reasoning and logical coherence.

Preference Data Construction For each query x, we construct the preference triplet (x, y+, y−)
by comparing the evaluation scores of the strong model’s output, z ∼ πs(z | x), and the collaborative
output, πs ◦ y. The preference is determined by the difference: ∆ = E(πs ◦ y, x) − E(z, x). If
∆ > 0, the weak model’s contribution is deemed beneficial, and its output y is selected as the positive
response y+. Conversely, if ∆ ≤ 0, y is designated as the negative response y−. The preference data
is formalized with two conditional probability distributions over the weak model’s outputs:

p+(y+ | z, x) =
πw(y+ | x)1 {E(πs ◦ y+, x) > E(z, x)}∫
πw(y | x)1 {E(πs ◦ y, x) > E(z, x)} dy

,

p−(y− | z, x) =
πw(y− | x)1 {E(πs ◦ y−, x) ≤ E(z, x)}∫
πw(y | x)1 {E(πs ◦ y, x) ≤ E(z, x)} dy

.

These distributions represent the preferred and non-preferred outputs when collaborating with the
strong model. After obtaining the sets of the positive and negative responses, we pair them to
construct the preference triplets.

2.3.2 Preference Tuning for the Weak Model

Using the preference triplets DPT = {(x, y+, y−)}, we fine-tune the weak model πw to align its
outputs with those preferred in collaboration with the strong model. We employ Direct Preference
Optimization (DPO) to adjust the weak model’s policy πw. The DPO objective is formulated as :

LDPO = min
π∗
w

−E x, z∼πs(z|x),
y+∼pw(·|z,x),
y−∼p−(·|z,x)

[
log σ

(
β log

π∗
w(y+ | x)

πw(y+ | x)
− β log

π∗
w(y− | x)

πw(y− | x)

)]
(2)

where σ(·) is the logistic sigmoid function, and α is a scaling parameter. By optimizing this objective,
the weak model generates outputs that lead to higher scores when refined by the strong model.

The overall objective is to find the optimal policy:
π∗
w = argminLDPO(πw;π

SFT
w ;DPT), (3)

where π∗
w is the optimal policy aligned with the strong model’s preferences, and πSFT

w is the reference
weak model obtained through supervised fine-tuning.

2.4 Collaborative Inference

During inference, the input query x is first processed by the weak model π∗
w to generate an initial

output. This output, along with the original query, is then passed to the strong model πs for refinement,
resulting in the final answer:

y∗ = πs ◦ (x, π∗
w ◦ x).

This process effectively combines the weak model’s specialized knowledge with the strong model’s
general reasoning capabilities to produce an enhanced final response.

3 Experiment

3.1 Experiment Setting

Dataset We incorporate three datasets from the specialized domains. (1) Counterfactuals: IfQA [42]
is a human annotated counterfactual QA benchmark. (2) Medicine: MedMCQA [25] is a multiple-
choice medical question-answering dataset. (3) Ethics: Prosocial-Dialog [19] is a multi-turn English
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Methods Models Counterfactuals Medicine Ethics
EM F1 Acc. F1 Acc. F1

Weak Only LLama-3-8B 68.57 71.85 59.48 46.99 38.10 36.40
+ SFT 69.71 72.69 73.08 58.26 64.29 62.40

Strong Only

GPT-3.5-Turbo 22.62 50.15 55.36 44.08 40.75 39.35
+ CoT 28.85 54.94 58.62 46.57 47.70 43.27

GPT-4 49.44 60.93 65.87 54.86 36.75 35.25
+ CoT 57.42 65.60 71.80 57.69 39.00 39.58

RAG SKR 59.75 68.33 71.90 56.37 56.46 55.40
FLARE 62.07 70.59 72.40 58.89 55.27 54.97

Collaboration CoWest 75.85 77.34 75.10 60.13 68.33 65.61

Table 1: Experiment results across three datasets. Results are reported as Exact Match (EM) and F1
scores for IfQA, Accuracy (Acc) and F1 for MedMCQA and Prosocial-Dialog.

dialogue safety classification dataset. More details can be found in Appendix D.1. Evaluation
Metrics For IfQA, we use exact match (EM) and F1 score to following the setting of previous work
[27, 42]. For MedMCQA and Prosocial-Dialog, we use accuracy and macro F1. Implementation
Details In our experiments, we utilize two models: the weak model, LLaMA3-8B [7], and the strong
model, GPT-4-0613 [2] for Counterfactuals and Medicine and GPT-3.5-Turbo for Ethics. For the
evaluator, we use the same model as the strong model. For the fine-tuning of the weak model, we
employ Low-Rank Adaptation (LoRA) [12] for both the supervised tuning and Direct Preference
Optimization stages. More details can be found in Appendix D.2. Baselines The baselines include
the following categories: (1) Weak Model: LLaMA3-8B [7] and LLaMA3-8B-SFT. (2) Strong
Model: zero-shot GPT-3.5-Turbo-0613 and GPT-4-0613, with or without chain-of-thought [38].
(3) Retrieval-Augmented Generation: SKR [36] and FLARE [17]. (4) Weak and Strong Model
Collaboration: the full model COWEST. See more details in Appendix D.3.

3.2 Experiment Result

According to the evaluation results in Table 1, our major observation is Weak-Strong Model
Collaboration leads to substantial improvements over single models. Our collaborative framework,
COWEST, demonstrates clear performance gains across all datasets when compared to the single
models. For instance, COWESTimproves over the best-performing single model (LLaMA3-8B after
finetuning) by a significant margin, particularly on the IfQA and Prosocial-Dialog datasets. This
underscores the effectiveness of combining a specialized weak model with a general-purpose strong
model, allowing each to compensate for the other’s limitations. While RAG methods such as SKR
and FLARE exhibit notable gains over single models, they fall short compared to our weak-strong
model collaboration. Because the fine-tuned weak model develops a stronger generalization ability
on the test set, allowing it to provide insightful, domain-specific responses that the strong model can
further refine. In contrast, RAG methods rely on retrieving information from a large corpus. It lacks
the adaptability needed for specialized tasks.

4 Conclusion

In conclusion, our research has demonstrated the significant potential of leveraging a collaborative
framework between weak and strong models to address specialized tasks effectively. By combining
the specialized problem-solving abilities of a weak model with the broad reasoning capabilities of
a strong model, we have shown that it is possible to achieve superior outcomes compared to when
each model operates independently. The dynamic interaction and feedback mechanisms introduced
in our framework ensure that the collaboration is not only effective but also adaptive, allowing for
continuous improvement based on preference alignment.
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A Related Work

A.1 Enhancing LLMs for Solving Specialized Problems

Addressing the “long tail" of specialized problems—those that fall outside the generalist training of
LLMs—has been a significant focus of recent research. One common approach is to use retrieval-
augmented generation, where an LLM queries an external corpus or knowledge base to acquire
domain-specific information, which is then used to enhance its responses [11, 13, 31, 17, 44].
However, these methods often focus on providing static context, which the LLM uses to generate
responses without further refinement or learning from that context. This static nature can lead to less
adaptability in complex, evolving problem-solving scenarios.

Another line of work leverages small models to process domain-specific information and guide the
LLMs in their responses. Some research, in particular, studies on weak-to-strong generalization,
where focuses on training the strong model to learn from the weak model’s supervision [3, 5, 40, 10,
46, 32]. However, this approach often requires access to the strong model’s parameters, making it
difficult to apply to black-box models. Other techniques uses the outputs of small models as prompts
for larger models, have shown promise in enhancing LLM performance on niche tasks [39, 22].
Additionally, employing small models as intermediary steps—by first identifying relevant context or
breaking down a problem into more manageable sub-tasks—has been found to reduce the complexity
faced by the larger model in long-tail scenarios [18, 28].

While these methods improve LLM performance on specialized tasks, they rely on static interaction
schemes, where the weak model’s role is predefined as a mere retriever or prompter. Our proposed
framework extends this concept by incorporating a dynamic feedback loop between the weak and
strong models, facilitating an adaptive collaboration that evolves to the task at hand. This allows for a
more nuanced integration of domain-specific knowledge, paving the way for a versatile and robust
problem-solving approach.

A.2 Multi-Model Collaboration

Although LLMs demonstrate strong versatility across different tasks, different LLMs still have
distinct strengths and weaknesses. Therefore, various research initiatives have explored the effective
utilization of the collaborative strengths of multiple Large Language Models (LLMs). These initiatives
are generally classified into three categories: Merging, Ensemble, and Cooperation [23]. Model
merging combines the parameters of various LLMs into a cohesive model, requiring compatibility
of parameters within a linear framework [33, 8, 15]. On the other hand, model ensemble leverages
the outputs of different LLMs to produce unified outcomes, focusing less on the parameters of
the individual models [29, 16, 30]. Furthermore, model cooperation goes beyond merging and
ensembling by utilizing the unique strengths of LLMs to achieve specific goals [24, 6, 14]. Previous
research typically concentrated on interactions between models of comparable size or employed a
fixed interaction mechanism. In contrast, our work introduces a framework that supports adaptive,
preference-optimized interactions between models of varying strengths.

B Preliminary

B.1 Supervised Finetuning

Supervised fine-tuning is a key method for adapting large language models to specific tasks using
labeled data. Given an input prompt x, a model with policy πθ is trained to maximize the likelihood
of producing the correct output y. The dataset for fine-tuning is defined as: D = {(x, y)}, where
x is the input, and y is the corresponding target output. The objective is to minimize the negative
log-likelihood:

LSFT(πθ) = −E(x,y)∼D [log πθ(y | x)]

This process adjusts the model’s parameters to align its outputs with the labeled data, providing a
solid foundation for further post-training techniques like preference tuning.
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B.2 Preference Tuning

Preference tuning aim to fine-tune language models and aligning their behavior with desired outcomes.
Given an input prompt x, a language model with policy πθ can produce a conditional distribution
πθ(y | x) with y as the output text response. The preference data is defined as: D = {(x, y+, y−)},
where y+ and y− denote the preferred and dispreferred responses for the input prompt x. Preference
optimization leverages the preference data to optimize language models. Taking Direct Preference
Optimization (DPO) [26] as a representative example, it formulates the probability of obtaining each
preference pair as:

p(y+ ≻ y−) = σ
(
r(x, y+)− r(x, y−)

)
,

where σ(·) is the logistic sigmoid function.

DPO optimizes the language models with the following classification loss:

LDPO(πθ;πref) = −E(x,y+,y−)∼D

[
log σ

(
α log

πθ(y+ | x)
πref(y+ | x)

− α log
πθ(y− | x)
πref(y− | x)

)]
,

where πref(y|x) represents the reference policy, i.e., the language model after supervised fine-tuning.

C Method

C.1 Theoretical Insight

In this section, we build on the methodology discussed earlier to present a formal theoretical analysis
of how the proposed preference-based alignment affects the weak model’s behavior and performance.
The theory hinges on how the weak model optimizes its policy to align with the strong model’s
preferences using DPO.

For simplicity, we assume that the evaluator scores for the strong model’s outputs are constant for
all z, i.e. E(z, x) = p(x) for all z when given x. This means the strong model’s response to any
question x is uniformly at the same level. Under this assumption, we aim to understand the behavior
of the newly optimized weak model π∗

w.

Regarding the optimization objective (Equation 2), the key aspect is that the positive (p+(·|z, x)) and
negative (p−(·|z, x)) responses have disjoint support. This means they represent entirely different
sets of possible outputs. As a result, the optimized weak model π∗

w will allocate zero probability to
any output y that results in an evaluator score E(πs ◦ y, x) ≤ p(x). This finding implies:

π∗
w(y | x) = 0 for all y with E(πs ◦ y, x) ≤ p(x).

The implication here is that the optimized weak model learns to avoid producing responses that fail
to improve upon the baseline quality set by the strong model’s standalone performance. Thus, the
model’s optimization drives it to focus only on generating outputs that surpass this baseline, ensuring
that the weak model contributes positively to the collaborative outcome.

Next, we relax the assumption above, which directly leads to the following corollary.

Corollary 1: Assuming the strong model’s responses are not just uniform but also bounded below
by some quality threshold: p(z) ≤ E(z, x) for all z, the newly optimized weak model π∗

w(x) will
strictly avoid producing any response y for which the collaborative evaluation score fails to exceed
the baseline:

E(πs ◦ y, x) ≤ p(x).

The proof idea is exactly as the analysis above. In addition, this means that the weak model, through
preference optimization, learns to consistently produce only those responses that align with or surpass
the evaluator’s expectations. In doing so, it naturally filters out weak or unhelpful contributions,
thereby ensuring that every output it generates enhances the overall performance in collaboration
with the strong model.
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D Experiment Setting

D.1 Dataset

We incorporate three datasets from the specialized domains across counterfactual, medical, and ethical
dimensions. Each presenting unique challenges that require nuanced understanding and reasoning.
Table 2 includes the dataset statistics. Please find a few examples for each dataset in Table 4.

(1) IfQA [42] is a human annotated counterfactual QA benchmark where each question is based on a
counterfactual presupposition via an “if” clause. Such questions require models to retrieve and reason
about an imagined situation that may even go against the facts built into their parameters.

(2) MedMCQA [25] is a multiple-choice question-answering dataset to address real-world medical
entrance exam questions. Each sample contains a question, correct answers, and other options which
require a deeper language understanding and reasoning. Note that the testing set of MedMCQA is
not public. Thus, we test the models on validation set.

(3) Prosocial-Dialog [19] is the large-scale multi-turn English dialogue safety classification dataset
covering diverse unethical, problematic, biased, and toxic situations. Following social norms, this
dataset classifies the model responds to multiple safety levels, including casual, needs caution, and
needs intervention. Since the testing set is as large as 25K, we randomly sample a subset of 2K data
instances.

Dataset # Training # Validation # Testing
IfQA [42] 2.4K 700 700
MedMCQA [25] 183K 4.18K 6.15K
Prosocial-Dialog [19] 120K 20.4K 25K

Table 2: Overview of datasets used in the study.

D.2 Implementation Details

In our experiments, our framework utilizes two models: the weak model, LLaMA3-8B [7], and
the strong model, GPT-4 [2], with GPT-4 also serving as the evaluator. For the fine-tuning of the
weak model, we employ Low-Rank Adaptation (LoRA) for both the supervised tuning and Direct
Preference Optimization (DPO) stages. All the prompts involved in the framework are listed in Figure
5

Parameters of Supervised Tuning: For supervised tuning of the weak model, we use LoRA with a
rank (lora_r) of 16 and an alpha (lora_alpha) of 16. Training is performed with a learning rate of
1.41e-5, a batch size of 1, and gradient accumulation over 8 steps to effectively increase the batch
size. The model is trained for 1 epochs with gradient checkpointing enabled to optimize memory
usage, and we use mixed-precision training to further reduce computational overhead. Regarding the
training data, for the datasets of IfQA and Prosocial-Dialog, we use the training data according the
original dataset spilt. For the dataset of MedMCQA, we directly adopt an existing finetuned model,
ProbeMedicalYonseiMAILab/medllama3-v20, from an Open Medical-LLM Leaderboard 1.

Preference Data Generation for Preference Tuning: For Direct Preference Optimization, we generate
the training data by running the weak model for inference 5 times on each data instance with pa-
rameters: max_new_tokens=1028, eos_token_id set to terminators, temperature=1.0, and top_p=0.9.
The strong model inference is performed with temperature=1 and no maximum token constraint.
Finally, we generate 2,000 pieces of data for the IFQA dataset and 5,000 pieces for the MedMCQA
and Prosocial-Dialog datasets.

Parameters of Direct Preference Tuning: The weak model undergoes DPO training using the LoRA
configuration (lora_r=16, lora_alpha=16), a learning rate of 1.41e-5, a batch size of 1 with gradient
accumulation over 16 steps, and the RMSProp optimizer. The training is conducted for 1 epoch with
gradient checkpointing enabled and mixed-precision training.

1https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard
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Computation Cost: The experiments are conducted using 4 NVIDIA A6000-48G GPUs and the
OpenAI API for interactions with GPT models.

D.3 Baselines

The baselines include the following categories: (1) Weak Model: We employ both weak and strong
models alone. For weak models, we include LLaMA3-8B [7] and LLaMA3-8B-SFT. (2) Strong
Model: we test zero-shot GPT-3.5-Turbo-0613 and GPT-4-0613, including their variants with chain-
of-thought [38]. (3) Retrieval-Augmented Generation: SKR [36] leverages large language models
(LLMs) to self-elicit knowledge and adaptively call a retriever. FLARE [17] continuously retrieves
new documents when confidence in the produced sentences is low. For fair comparison, we adopt
GPT-4 as the backbone for both RAG models. We use the default implementations of these models
in their repositories. (4) Weak and Strong Model Collaboration: We also explore the full model
without preference tuning for ablation study, where the weak model is LLaMA3-8B-SFT and the
strong models are GPT-3.5-Turbo-CoT and GPT-4-CoT respectively.

D.4 Analysis

We adopt different interaction strategies within our collaboration framework and evaluate various
large language models as weak and strong models respectively.
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Figure 2: Analysis of different inter-
action strategies between weak and
strong models in COWEST.

Interaction strategies between weak-strong models. In
our experiments, we examine two key interaction strategies
between weak and strong models: (1) Standard Refinement
Interaction, where the weak model generates initial responses
that the strong model then refines, and (2) Preference Enhance-
ment Interaction, which involves fine-tuning the weak model
based on the strong model’s preferences. We further explore
different formats for the weak model’s output to inform the
strong model: (1) Direct Answer, providing a straightforward
response to the user query; (2) Domain Knowledge, supply-
ing background information relevant to the reasoning; and (3)
Chain of Thought (CoT), offering detailed explanations with
the answer. By combining these two interaction strategies
with the three formats, we assess each combination’s effective-
ness in handling specialized tasks. We report the EM scores
for Counterfactuals and the accuracy scores for Medicine and
Ethics.

As shown in Figure 2, our experiments clearly demonstrate the
effectiveness of Preference Enhancement Interaction across all
three datasets when compared to Standard Refinement Interac-
tion, confirming our hypothesis that aligning the weak model
to the preferences of the strong model can significantly en-
hance performance. Particularly, the Chain of Thought (CoT)
format emerges as the most beneficial, outperforming both
Direct Answer and Domain Knowledge formats. The CoT
format provides a comprehensive reasoning path that consid-
erably assists the strong model in analyzing complex queries,
which is evident in its superior performance on the ethics and
counterfactual datasets. These datasets require enhanced rea-
soning capabilities, making the choice of interaction strategy
more critical. Conversely, in the medicine dataset, which de-
mands extensive domain-specific knowledge, the impact of
the interaction format is less pronounced. This suggests that
for knowledge-intensive tasks, the breadth and depth of the
model’s knowledge base are more pivotal than the interaction
strategy employed.
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Figure 3: Analysis of adopting different weak and strong models in COWEST.

Impact of different strong models: General capabilities enhance problem-solving. In this
setup, we standardized the strong model for specific domains. Llama3-8B served as the weak
model across all datasets, allowing us to evaluate the performance of different strong models—GPT-
4, Llama3-70B [7], GPT-3.5-Turbo, and Llama2-70B [35]—across various domains. According
to the experiment results in Figure 3, the strong model GPT-4, when engaged in the domain of
Counterfactuals, exhibits the highest accuracy at 75.9%, demonstrating its proficiency in handling
complex conditional reasoning. Conversely, in domains requiring nuanced ethical considerations,
GPT-3.5-Turbo outperforms other models with an accuracy of 68.3%. This indicates that the
effectiveness of strong models is highly domain-dependent, where their inherent strengths can
enhance overall performance significantly.

Impact of different weak models: Foundation and adaptability are key. In this setup, we
use GPT-4 as the strong model for Counterfactuals and Medicine due to its complex reasoning
capabilities, and GPT-3.5-Turbo was used for Ethics to handle nuanced moral dilemmas. The involved
weak models include Llama3-8B [7], Llama2-7B [35], Phi-3-mini-3B [1], and TinyLlama-1B [43].
According to the experiment results in Figure 3, the selection and performance of weak models,
such as Llama3-8B and Llama2-7B, clearly show a superior handling of tasks across all domains
compared to smaller models like Phi-3-mini-3B and TinyLlama-1B. This observation underscores
the importance of the foundational training of weak models in our collaborative framework. While
smaller models are less effective initially, the iterative refinement process guided by the feedback
from strong models allows even these smaller models to enhance their outputs and contribute more
effectively.

D.5 Case Study

For the case study in Figure 6, we demonstrate the efficacy of our collaboration framework, CoWeSt,
in the domain of medical diagnosis, specifically identifying the causative agent of subdural effusion
in bacterial meningitis. The task involved discerning the correct bacterium associated with subdural
effusion among four candidates: H. influenza, Neisseria meningitidis, Streptococcus pneumonia, and
Enterococcus.

The output from the strong model alone suggested Streptococcus pneumoniae as the causative agent,
rating its confidence at 3.0 on a scale of 10. This model emphasized the prevalence of subdural
effusion with Streptococcus pneumoniae due to its ability to invade the meningeal spaces and cause
fluid buildup beneath the dural membrane.

Conversely, when the weak model, specialized in pediatric infections, collaborated with the strong
model, the combined output correctly identified H. influenza as the causative agent, significantly
improving the confidence score to 6.0. This joint output highlighted that while other agents are known
causes of meningitis, H. influenza is specifically linked with complications like subdural effusion,
especially in children.

The positive sample from this collaborative effort underscored the effectiveness of CoWeSt, showing
an accurate diagnosis with enhanced confidence. In contrast, the negative sample, where the models
failed to collaborate effectively, mistakenly identified Streptococcus pneumoniae again, with a low
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confidence score of 1.0, illustrating the need for the weak model’s specialization to guide the strong
model’s broad capabilities. This case study not only reinforces the value of model collaboration but
also demonstrates how our framework can lead to more precise and confident medical diagnostics.

Algorithm 1 Training for COWEST

1: Input: Training data DSFT = {(x, ŷ)}; The strong model πs; The initial weak model πw; The
evaluator E; Sampling count K

2: Output: The trained weak model π∗
w

3: 1. Supervised Fine-tuning of Weak Model:
4: Train πw on DSFT to obtain πSFT

w according to Equation 1
5: 2. Preference Fine-tuning of Weak Model
6: Initialize the preference triplet set
7: for each (x, ŷ) ∈ DSFT do
8: Initialize the positive sample set Y+ and the negative sample set Y−
9: Generate the strong model output: z ∼ πs(z | x)

10: Evaluate the model output: Ez = E(z, ŷ)
11: for i = 1 to K do
12: Generate the weak model output: y ∼ πSFT

w (y | x)
13: Generate the collaborative output: y∗ ∼ πs(y

∗ | y)
14: Evaluate the output: Ey∗ = E(y∗, ŷ)
15: if Ey∗ > Ez then
16: Y+ ← Y+ ∪ {y}
17: else
18: Y− ← Y− ∪ {y}
19: end if
20: end for
21: Let N = min (|Y+|, |Y−|)
22: for j = 1 to N do
23: DPT ← DPT ∪ {(x, Y+[j], Y−[j])}
24: end for
25: end for
26: Preference Fine-tuning: Optimize πSFT

w using DPT to obtain π∗
w according to Equation 3

Algorithm 2 Collaborative Inference for COWEST

1: Input: User query x; Trained weak model π∗
θ ; Strong model πs

2: Output: The final answer y∗
3: Generate the weak model output: y = π∗

θ(y | x)
4: Generate the final output through collaboration: y∗ = πs(y

∗ | y)
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IfQA
Given a context, answer the following question as briefly as possible.

Context:
The 2022 Grand National (officially known as the 2022 Randox Health Grand National for sponsorship 
reasons) will be the 174th annual running of the Grand National horse race. It will take place on Saturday, 
9 April 2022, at Aintree Racecourse in Liverpool, England. The event will once again be sponsored by 
Randox Health…

Question: 
If Noble Yeats hadn't been victorious in the 2022 Grand National horse race, which horse would have 
claimed the title?

MedMCQA
Given a question, choose the right answer from four options.

Question:
Which vitamin is supplied from only animal source:

Options
(A): Vitamin C (B): Vitamin B7 (C): Vitamin B12 (D): Vitamin D

Prosocial-Dialog
Given a context and the model‘s response, classify the safety level of the response into three categories: 
(1) casual, (2) needs caution, (3) needs intervention.

Context:
I tried a bit of shadowboxing today. Got one guy called Jamal on the chin and another called Tyson 
between the eyes.

Response:
This isn't a joke about black people, right? If it is, it isn't funny.

Figure 4: The task example of three datasets.
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Prompt for the weak model
{{query}} Can you provide the explanation and output the final results?

Prompt for the strong model
Given a question and the output of an expert model, please refer to this output if you think it's helpful and 
correct, otherwise generate the final result based on your own knowledge.
Query:
{{query}}

Output of expert model:
{{weak_model_output}}

Note that strictly keep to the following output format and don't output any other information:

Explanation:
{{One paragraph to analyze the question and explain the reason}} 

Answer:
{{A few words. As brief as possible}}

Prompt for model inference
{{query}} Can you provide the explanation and output the final results? Note that strictly keep to the 
following output format and don't output any other information:

Explanation:
{{One paragraph to analyze the question and explain the reason}} 

Answer:
{{A few words. As brief as possible}}

Prompt for the evaluator
Given the groundtruth and the model output (including the explanation and the answer), score the model 
output with respect to correctness on a scale from 1 to 10. Here is the rubric:
1 means "the answer and the explanation have major errors"
3 means "the answer is partially correct, and the explanation has minor errors"
6 means "the answer is slightly different with the groundtruth but semantically corrct, and the explanation is 
reasonable" 
10 means "the answer is the exactly same with the groundtruth, and the explanation is reasonable". 

Please just output a number as the score. Don't output any other information. 
Groundtruth:
{{groundtruth}}

Model output:
{{model_output}}

Please only output an integer from 1 to 10 as the score. Don't output any other information. 

Figure 5: The prompts used in our framework.
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User Query

Which of the following bacterial meningitis is associated with sudural effusion??  A. H. influenza.  B. 
Neisseria meningitits.  C. Streptococcus pneumonia.  D. Enterococcus.

Groundtruth
Explanation:
Chronic Subdural Empyema It may be primary infection of subdural space from sinusitis focus causing suppuration 
and pus formation. It can be complication of the chronic subdural haematoma. It is due to secondary bacterial 
infection of collected clot/fluid. Infection is from sinusitis scalp (common)/through earlier trauma 
wound/haematogenous. Commonly Gram positive organisms cause empyema like streptococci (viridans/milleri) but 
other virulent organisms like Gram negative bacteria (H.influenzae) occasionally can cause. There is coical venous 
thrombophlebitis and coical infarction. Headache, fever, meningism and convulsions are the features. MRI is ideal 
than CT to diagnose. Treatment: Antibiotics, craniotomy and drainage; anticonvulsants, ICU care, proper monitoring, 
regular follow up. Condition has got 10% moality. Ref: SRB's Manual of Surgery 5th edition Pgno : 1097
Answer: A

Output of strong model alone (Evaluator: 3.0)
Explanation:
Subdural effusion, a complication of meningitis, is most commonly associated with Streptococcus pneumoniae. 
Subdural effusion occurs when an infection in the meninges causes an excess buildup of fluid beneath the dural
membrane, and Streptococcus pneumoniae is known to invade these spaces. The other options, Haemophilus
influenzae, Neisseria meningitidis, and Enterococcus are also causes for meningitis, but they tend to cause other 
forms of complications and have less correlation with subdural effusions.
Answer: C

Positive Sample (Evaluator: 6.0)

Weak model output
Explanation:
H. influenza type b is responsible for causing meningitis in children.\n- Other organisms that cause meningitis in 
children include Neisseria meningitidis, Streptococcus pneumonia and Listeria monocytogenes.\n- Streptococcus 
pneumoniae is the most common cause of childhood bacterial meningitis, while Haemophilus influenzae type b is 
responsible for the majority of cases in children less than 5 years of age.\n- Listeria monocytogenes is most 
commonly seen in pregnant women, neonates and immunosuppressed individuals.\n- Neisseria meningitidis is 
typically seen in older children and adolescents.
Answer: A

Strong model output
Explanation:
H. influenza (Haemophilus influenzae type b) is often associated with complications such as subdural effusion, which 
is a collection of fluid between the brain and its outermost covering, the dura. Other causative agents such as 
Neisseria meningitidis, Streptococcus pneumoniae, and Enterococcus are not typically associated with subdural 
effusion
Answer: A

Negative Sample (Evaluator: 1.0)

Weak model output:
Explanation:
Ans: c (Streptococcus pneumoniae)
Answer: C

Strong model output
Explanation:
Streptococcus pneumoniae (Answer C) is frequently associated with subdural effusion, a condition where fluid 
accumulates between the outermost and middle layers of the meninges - the protective layers covering the brain and 
spinal cord. Complications like subdural effusions are commonly seen in bacterial meningitis, particularly in cases 
caused by Streptococcus pneumoniae.
Answer: C

Figure 6: Case Study.
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