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ABSTRACT

Reasoning-based Large Language Models (LLMs) exhibit strong capabilities in
complex tasks such as mathematics, programming, and logic, with performance
highly dependent on the length of the generated reasoning chains. However, the
relationship between reasoning length and task performance is not simply linear;
instead, it exhibits task-dependent, non-monotonic, and multi-peaked patterns.
Short reasoning chains often result in incomplete arguments, while overly long
ones may introduce noise or logical inconsistencies. Existing approaches such as
reinforcement learning require extensive supervision or heuristic strategies based
on fixed token budgets, and they struggle to effectively identify the optimal rea-
soning length. To address this, we propose Token Bayesian Optimization (TBO),
a supervision-free and task-agnostic framework for reasoning length optimiza-
tion. TBO combines coarse-grained boundary initialization with Bayesian itera-
tive search, leveraging the evaluative power of LLMs to actively explore the token-
length space and progressively converge toward the globally optimal reasoning
point. Experiments on multiple standard reasoning benchmarks demonstrate that
TBO consistently discovers reasoning lengths that better unlock the model’s po-
tential, achieving significant accuracy gains over existing baselines. The code is

publicly available at: https://anonymous.4open.science/r/TBO-BEFDY/.

1 INTRODUCTION

In recent years, large language models (LLMs)
have demonstrated remarkable reasoning capa-
bilities in complex tasks such as mathemati-
cal problem solving, code generation, and log-
ical inference (Liu et al., 2025 [Zhang et al.|
2024a; |Liang et al., [2025} Zhang et al.| [2024b;
Hong et al., 2024). These advances not only
signal the growing maturity of LLMs in natu-
ral language understanding but also highlight
their potential for tackling tasks that require
deep and structured thinking. Researchers have
explored efficient prompting strategies, such
as Chain-of-Thought (CoT) and Direct Prefer-
ence Optimization (DPO), to guide the mod-
els toward generating more structured and log-
ically coherent reasoning. Building on this
foundation, reasoning-oriented LLMs, such as
Deepseek-R1 (DeepSeek-Al et al., 2025) and

Performance

Reasoning Chain Length

Figure 1: Schematic diagram of the relationship
between reasoning length and performance: per-
formance exhibits a multi-peak relationship with
the reasoning length.

03-mini (Ballon et al., [2025)), have rapidly emerged as a key focus of contemporary research.

A critical insight revealed by recent studies (Han et al.| [2024) is that there exists a task-dependent
optimum relationship between reasoning length and model performance. When the reasoning chain
is too short, the generative process lacks sufficient depth, leading to incomplete arguments and
logical gaps (Chen et al, [2025). Conversely, excessively long chains introduce errors or irrele-
vant details that can contradict the original prompt, ultimately diminishing answer accuracy. This
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non-monotonic relationship between reasoning length and performance presents a significant opti-
mization challenge.

Current approaches to regulate reasoning depth fall into two main paradigms. The first uses contin-
uous control based on reinforcement learning, exemplified by LCPO (Aggarwal & Welleck, |2025),
which directs models to learn termination strategies through reward signals. However, these meth-
ods require extensive annotated datasets and develop task-specific policies that transfer poorly to
new domains. The second approach employs heuristic strategies based on discrete thresholds, such
as the Token Length Aware framework (Han et al., [2024) and TOPS (Yang et al.| 2025b)), which
estimate and enforce token budgets during reasoning. While more lightweight, these methods pro-
vide only coarse-grained estimates and cannot accurately locate the optimal point on the reasoning
length-performance curve. Further complicating this challenge, our analysis reveals that reasoning
chains may exhibit multiple performance peaks as they increase in length, forming a complex, multi-
phase performance landscape. This raises a central challenge: How can we effectively identify and
guide the model towards the true global optimum among a set of unstable and task-dependent
local peaks?

Through our experiments, we found that for a given category of tasks, the underlying logical struc-
ture and required reasoning lengths tend to be fairly consistent, suggesting that identifying a single,
globally optimal reasoning length for the entire task category is both feasible and effective. Based
on this insight as well as former discussions, we propose a framework called Token Bayesian Opti-
mization (TBO) which identifies the optimal reasoning length for a small number of representative
examples and generalizes it across the entire task category, leveraging Bayesian optimization to
model global uncertainty, enabling dynamic, task-adaptive exploration beyond unstable local peaks
and guiding the search toward the true global optimum. TBO consists of the following three stages:
1) Searching Space Initialization: We begin by selecting a set of key boundary points to construct
an initial search space. Using an LLM-as-a-Judge posterior evaluation model, we assess perfor-
mance across discrete reasoning lengths and identify an initial local optimum. While this point is
likely not globally optimal, it serves as a strong starting point for further optimization. 2) Bayesian
Iterative Exploration: Building on the initial extrema, we apply Bayesian optimization to model
and predict the reasoning performance over the entire token length space, guided by existing eval-
uation results. By continuously providing performance feedback through the LLM evaluator, the
search space is updated and refined, gradually approaching the global optimum. 3) Convergence
and Length Generalization: Once the search space stabilizes, we retain the final identified opti-
mum. By aggregating the results from multiple samples, we compute an average optimal length,
which serves as the recommended reasoning token length for the entire task class. The main contri-
butions of our work are:

1. We show that reasoning length optimization for a single task is not a simple single-peak
search problem, but exhibits complex, non-monotonic patterns.

2. We propose Token Bayesian Optimization (TBO)—the first framework that achieves global
reasoning length optimization without requiring labeled supervision or task-specific tuning.

3. We present extensive experiments demonstrating that TBO consistently improves accuracy
across multiple benchmarks by adaptively allocating tokens. In addition, we show that rea-
soning length and performance exhibit a multi-peak relationship, that TBO remains robust
under varying task difficulty distributions.

2 METHOD

Due to the non-monotonicity, non-continuity, and multi-peak of the relationship between reasoning
chain length and reasoning performance, traditional gradient-based optimization methods and inter-
val search iterative algorithms are not suitableﬂ Furthermore, using scalar metrics for evaluation not
only introduces significant optimization cost but also makes it difficult to conduct a detailed analysis
of the reasoning process. Therefore, we propose Token Bayesian Optimization (TBO), a method that
progressively explores and converges toward the optimal reasoning length. The overall procedure
is summarized in Algorithm[I] and the detailed algorithm of the GenerateNewTokens subroutine is
provided in Appendix [B]

'A detailed survey of related work is provided in Appendix@
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Figure 2: Overview of Token Bayesian Optimization (TBO). The process includes three main stages:
(a) Initialization: boundary token lengths are selected and evaluated with an LLM judge to identify
an initial optimum; (b) Exploration: Bayesian iterative optimization is performed, where a surrogate
model is fit over token lengths, candidates are proposed and evaluated with the LLM; (c) Gener-
alization: once the search stabilizes, the final optimum is selected and results are aggregated to
recommend the optimal reasoning length for the task.

In this work, we implement optimization using Preferential Bayesian Search, with listwise rank-
ing and LLM-as-a-judge for evaluating and acquiring preference signals. We construct a pipeline
that consists of the following three keys. Through this pipeline, the TBO enables label-free,
performance-driven control over the reasoning depth of LLMs, achieving adaptive enhancement
of inference performance.

2.1 SEARCHING SPACE INITIALIZATION

We begin by defining a reasonable reasoning length range £ = [100, 8000], and perform uniform
sampling with a fixed step size A = 1000 to construct the initial candidate set:

Liit = {l1,l2,.. ., lx}, 1, =100+ (G —1)-A (1)

For each candidate length [; € £ « init, we adopt a few-shot optimization strategy by sampling 1%
of similarﬂ question instances D * sub from the dataset. For each instance, we generate a reason-
ing response 7_¢ that includes both the reasoning process and final answer. Following the LCPO
method(Aggarwal & Welleckl [2025)), we insert a length control instruction into the original prompt
using the following format:

prompt, = Concat(prompt, “Think for [, tokens.”) ()

We then cast the evaluation of reasoning lengths as a Content-based Listwise Ranking prob-
lem. For each [;, the model produces an output r;, and we prompt the LLM to globally rank
the set r1,73,...,7, based on the overall quality of the responses. The resulting ranking R =
Rank(rq, ..., ry) provides relative preference signals among the candidates. Unlike pairwise com-
parison methods, which only assess two candidates at a time, Listwise Ranking captures the global
relationship among all candidates, enabling more accurate identification of performance trends. This
is particularly beneficial in noisy settings, where local comparisons may be misleading, while global
rankings help stabilize and guide the optimization trajectory.

2Specifically, we attempt multiple samples until we obtain a 1% subset in which the token lengths differ by
no more than 20%.
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Algorithm 1 TBO: Token Bayesian Optimization

Require: Tp: Initial token candidates, /: Max iterations, 7: Early stop threshold
Ensure: ¢*: Optimal token length

1: T+ Ty, H< T > Current candidates and history
2: A+ {t:callForAnswers(t) |t €T} > Evaluate initial candidates
3: T « Rank(T, A) > Sort by performance
4: t* < T[0],s+ 0 > Best token and stagnation counter
5: for k =1to K do

6: T+« T[: [2|T|/3]] > Keep top 2/3 candidates
7: Thew < GenerateNewTokens(T, H, |To|) \ H

8 A<+ AU{t:CcallForAnswers(t) |t € Thew}

9: T <+ Rank(T U Thew, A)
10: H <+ H U Thew
11: 54 (s+ 1) Lpp—¢» > Update stagnation counter
12: t* « T|0] > Update best token
13: if s > 3or|T| < 7 then
14: break
15: end if
16: end for

17: return t*

2.2 BAYESIAN ITERATIVE EXPLORATION

To efficiently optimize reasoning length in the absence of explicit scalar supervision, we adopt a
Preferential Bayesian Optimization (PBO) framework that leverages pairwise preference feed-
back. This approach is well-suited for open-ended or black-box reasoning tasks where direct ac-
curacy signals may be unavailable or unreliable. Let the discrete candidate reasoning lengths be
denoted as £ = {ly,1s,...,lx}. Instead of relying on absolute performance scores, PBO models a
latent utility function f(I) using a Gaussian Process (GP), where preferences between length pairs
({; > 1;) are expressed probabilistically:

3)

P 1 = (210)

V20

where & is the standard normal CDF and ¢ is a noise parameter (Chu & Ghahramani, 2005). We
place a Gaussian Process (GP) prior over f(l), enabling uncertainty-aware modeling across the
discrete candidate space.

Unlike standard preferential Bayesian optimization, where each iteration selects a new candidate
point from a fixed space, our method operates directly on the reasoning token sequences. Specifi-
cally, in each iteration, we maintain a fixed sequence length and perform localized edits through a
delete-and-replace strategy.

At each step ¢, given the current reasoning sequence of fixed length L. Based on previous evalua-
tion signals, we identify and remove the bottom-performing one-third of these segments, yielding a
truncated sequence S;.

To compare the quality of the generated sequences, we prompt an external LL.M-as-a-judge to rank
them based on content relevance, coherence, and correctness (A discussion of the computational
overhead of LLM-as-a-Judge is provided in Appendix [C). This results in a listwise preference or-
dering, which is converted into multiple pairwise comparisons. Bayesian generates new nodes based
on this preference relationship.

D: = Dg, U{S;} “4)

We model a latent utility function f(S) over full sequences using a Gaussian process and adopt a
preference-based acquisition function to select the most promising sequence S; for the next itera-
tion. Note that our acquisition does not optimize over single token lengths, but over full sequence
configurations derived from structured edits. Once the Bayesian optimization process converges,
we retain the final optimum reasoning length. A theoretical justification of the convergence of our
Bayesian optimization procedure is provided in Appendix D}
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The surrogate model is updated based on the new posterior, and the process continues iteratively,
refining the landscape of f(I) and progressively converging toward the global optimum reasoning
length [5,. As high-performing regions emerge, the search space can be resampled with finer gran-
ularity to enhance resolution, while fallback strategies such as posterior mean sampling and random
exploration ensure robustness against local optima.

3 EXPERIMENT

Table 1: Performance comparison on five benchmarks with 03-mini, o4-mini, and DeepSeek R1 .
As CoT prompting is the default for all models, the CoT row denotes directly inputting the ques-
tion without additional constraints. SPO is another prompting-based baseline, while TALE-EP is a
length-control baseline. TBO is applied on top of CoT or SPO to optimize reasoning lengths.

Base Model Method AGIEval-MATH GPQA-Diamond WSC BBH-Navigate StrategyQA
ACC Token ACC Token ACC Token ACC Token ACC Token
CoT 0.6977 904 0.6939 3156 0.8782 643 0996 849 0.7753 745
SPO 0.6467 679 0.7500 2287 0.8635 591 1.0000 853 0.7753 571
03-mini TALE-EP  0.6924 1193  0.7397 2616 0.8561 1047 0.9960 1437 0.7709 1239

CoT+TBO* 0.7244 2113  0.7551 4019 0.8893 1596 0.9980 1613 0.7841 1725
SPO+TBO* 0.6524 826 0.7551 2295 0.8819 648 09919 1019 0.7709 641

CoT 0.6486 1001  0.7614 2674 09449 362 0.9960 619 0.8202 533
SPO 0.6334 1569 0.7424 2662 09121 889 1.0000 587 0.8166 1041
04-mini TALE-EP  0.6460 1253  0.7626 2388 09158 806 0.9960 1020 0.8166 815

CoT+TBO* 0.6486 1187  0.7727 2522 0.9341 745 09920 752 0.8238 781
SPO+TBO* 0.6323 1550 0.9596 2796 09121 912 0996 621 0.8166 815

CoT 0.8498 3432  0.7424 5601 0.8864 745 0.9280 1792 0.7118 638
SPO 0.8130 2586 - - 0.8571 884 - - 0.6332 493
DeepSeek R1 TALE-EP  0.8693 2982 0.7172 6011  0.8959 973 0.9680 1703 0.7336 623
CoT+TBO* 0.8444 3390 0.7828 5456 0.8974 827 0.9760 1668 0.7118 615
SPO+TBO* 0.9889 1995 - - 0.8864 835 - - 0.7336 579

3.1 EXPERIMENT SETUP

To evaluate the performance of TBO, we conducted comprehensive experiments using three distinct
large language models: DeepSeek R1 (DeepSeek-Al et all [2025)), o3-mini(Ballon et al., [2025)
and o4-mini. Each model was systematically evaluated across multiple reasoning depths on a di-
verse benchmark suite of reasoning tasks. We used XML tags in prompts to structure outputs and
employed GPT-3.5-turbo to validate and filter non-conforming responses.

Specifically, we used five challenging benchmarks: 1) AGIEval-MATH: (Zhong et al.||2023)) Con-
taining 1,000 fill-in-the-blank math problems from high-level competitions such as AMC and AIME;
2) GPQA-Diamond: (Rein et al.| [2024) Comprising 198 expert-authored multiple-choice ques-
tions in biology, physics, and chemistry, specifically selected for their difficulty and objectivity; 3)
WSC: (Levesque et al.,[2012) A commonsense reasoning dataset with 273 pronoun disambiguation
tasks; 4) BBH-Navigate: (Suzgun et al.,|2023)) A spatial reasoning task from BIG-Bench Hard that
evaluates whether an agent returns to its starting point after following navigation instructions; S)
StrategyQA: (Geva et al., 2021) Consisting of 2,780 yes/no questions requiring multi-step reason-
ing strategies.

We evaluated our TBO framework by integrating it with reasoning methods such as CoT and
SPO, comparing these enhanced versions against their original baselines. We also included TALE-
EP (Han et al., [2024)), which uses expectation propagation to model token elasticity. Unlike TALE-
EP, CoT (Wei et al.;,|2022) and SPO (Xiang et al., 2025) are reasoning strategies that TBO effectively
augments.

For length optimization, we did not use the entire test set directly. Instead, we sampled a very small
subset (about 1% of samples) to fit candidate lengths, and then applied the selected length to evaluate
performance on the complete benchmark. This setup ensures that the optimization is data-efficient
while reducing the risk of overfitting.
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3.2 MAIN RESULT

As shown in Table [I} TBO demonstrates consistent performance across different datasets, consis-
tently surpassing existing baselines. Notably, the optimal reasoning lengths discovered by TBO
diverged significantly from those in prior naive settings, indicating substantial untapped optimiza-
tion potential.

On the AGIEval-MATH benchmark, 03-mini with CoT+TBO leverages targeted exploration to iden-
tify a reasoning length that best aligns with accuracy, yielding a 3.8% accuracy improvement. In
addition, 03-mini on GPQA-Diamond achieves an 8.8% relative accuracy gain with CoT+TBO,
while DeepSeek R1 on StrategyQA shows a substantial 15.9% improvement with SPO+TBO. Fur-
thermore, with o4-mini on GPQA-Diamond, SPO+TBO achieves a 29.2% accuracy increase over
SPO alone, highlighting the strong synergy of the two methods. Similarly, for DeepSeek R1 on
AGIEval-MATH, SPO+TBO discovers a reasoning length configuration that both reduces token us-
age by 22.8% and improves accuracy by 21.6%. These results suggest that existing naive settings
often overlook the reasoning lengths most compatible with accuracy. By uncovering hidden po-
tentials in underutilized model capacity, TBO effectively optimizes reasoning configurations while
SPO expands the exploration space, collectively maximizing performance beyond existing naive
limitations.

3.3 ABLATION ANALYSIS

We conducted an ablation experience on
StrategyQA with 03-mini to isolate the
impact of each component. = Without

Table 2: Ablation Study on StrategyQA using 03-mini.
Eliminating the Bayesian search module and the List-
wise ranking module respectively.

Bayesian optimization, the optimal rea-
soning length was chosen only from a

. 03-mini | ACC  Average Token
fixed set of discrete thresholds (e.g., from
100, 500, 1000 up to 12000 tokens), con- gﬁ@gg o baves 8;2‘2‘; ggg
: ith ioinal h < ize. oT+ w/o bayesian .
sistent with our original search space size CoT+TBO w/o LLM-Judge | 07493 1950

As for LL.M-as-a-judge, we replaced the
model-based evaluation with a simple ranking by exact match (or textual similarity) to the ground
truth. All experiments were conducted under identical settings.

Table [2] clearly shows that both components are vital to TBO. When we remove Bayesian opti-
mization and restrict the search to fixed thresholds, performance drops by roughly 4.0%. This not
only reflects the loss of continuous, adaptive exploration, but also demonstrates that the true opti-
mal reasoning length often does not coincide with commonly used discrete thresholds (e.g., 100,
500, 1000). Omitting the LLM-as-a-judge yields an even larger decline (4.3%), since exact-match
or simple similarity to the ground truth cannot assess answer completeness, logical coherence, or
necessary detail the way a dedicated LLM evaluator does. Specifically, Bayesian optimization un-
covers fine-grained optima that lie between conventional checkpoints, while the evaluator provides
the nuanced quality feedback needed to select the best candidate—Ilosing either one degrades both
accuracy and token efficiency.

3.4 FUTHER ANALYSIS

3.4.1 EVALUATOR CONSISTENCY AND BIAS ANALYSIS

To address potential bias or inconsistency when using large language models (LLMs) as evaluators,
we designed a structured prompt with explicit ranking rules to minimize subjectivity. To achieve this,
we conducted consistency experiments comparing evaluations from different LLMs (GPT-3.5-turbo,
GPT-40, GPT-03) and human evaluators (three volunteers). Each evaluator selected the best option
from a set of candidates generated during the optimization process, repeating the task three times
with three candidate tokens. The results indicate that human evaluations exhibited more subjectivity
and inconsistency. In contrast, LLM evaluations demonstrate higher stability and lower variance,
suggesting that LLMs, within our framework, are less prone to bias than human evaluators. Detailed
experimental results are provided in Appendix [G]
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3.4.2 MULTI-PEAK PATTERNS BETWEEN REASONING LENGTH AND LLM PERFORMANCE

The multi-peak relationship between reasoning
length and model performance is the core mo-
tivation behind the design of TBO. To verify
this phenomenon, we systematically varied the
suggested reasoning length in fixed increments
and recorded both the actual token consump-
tion and the corresponding performance at each
setting. These experiments were carried out
on BBH-Navigate, using the locally deployed
DeepSeek R1 model. By sweeping the sug-
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Figure 3: Schematic diagram of the relation-
ship between reasoning model length and perfor-
mance: the performance exhibits a multi-peak re-

As shown in Figure 3] our experimental results lationship with the reasoning length.

in BBH-Navigate show that as the reasoning

length increases, the precision of the answer

does not follow a single-peak or monotonic pattern. Instead, multiple local maxima appear at dif-
ferent actual lengths. This multi-peak phenomenon is consistently observed across both datasets,
providing strong evidence for our hypothesis that a multi-peak relationship exists between reasoning
length and model performance. The theoretical justification for the emergence of such multi-peak
patterns is also provided in Appendix [E] We also analyzed the divergence between suggested and
consumed lengths, with detailed results presented in Appendix [

4 REASONING CHAIN LENGTH AND SOLUTION RELIABILITY — CASE STUDY

To further illustrate the relationship between reasoning length and answer reliability, we provide a
detailed case study of a sequence reasoning problem. To investigate the impact of reasoning chain
length on solution correctness, we attempted to solve the above problem using approaches with
different reasoning depths. We applied a short reasoning chain, an optimal long reasoning chain
selected by TBO, and an even longer chain, and compared the outcomes.

4.1 PROBLEM STATEMENT

Question: A strictly increasing sequence of positive integers a;, as, as, ... has the property that
for every positive integer k, the subsequence asg—1, asg, Gog41 1S geometric and the subsequence
G2k, A2k+1, A2k+2 18 arithmetic. Suppose that a;3 = 2016. Find a;.

4.2 VERY SHORT REASONING CHAIN
Key reasoning steps:

a1 =T

a13 = ’I"12l’

Setr =2 = a3 = 4096z = 2016

_ 2016
= T = 1096

This approach makes the most naive substitution, assuming a3 can be expressed as a1 - f(r). Setting
r = 2 directly gives a fractional solution for a;, which is invalid. The chain is too short. It is quick
to compute but ignores integer constraints entirely, leading to immediate failure.
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4.3 SHORT REASONING CHAIN

Key reasoning steps:

a, =
2

ax =7rxr, a3 =12
a3 =z - [Tr — 6]> = 2016
Setr =6/5 = x = 350

Let a; = z and use the problem’s structure to derive a13 = x - [7r — 6]%. By setting r = 6/5, this

method finds a; = 350. This short chain gives a seemingly reasonable integer solution 350, but it
does not globally ensure integrality or uniqueness.

4.4 MEDIUM REASONING CHAIN

Key reasoning steps:
a1 = 350, az =420, a3=1504
a4y = as + (ag — ag) = 588
Check whether (a2, as, a4) forms a geometric sequence? No.

Building on a; = 350,7 = 6/5, this chain extends the reasoning to verify subsequent terms. It
succeeds for the first few terms but breaks down at a4, exposing inconsistency. This medium-length
chain appears correct locally but reveals contradictions mid-way. The candidate a; = 350 is not
globally valid.

4.5 OPTIMAL REASONING CHAIN (SELECTED BY TBO)

Key reasoning steps:

6r1—5:m:>r1:—mg5
2016
1 = T

Enumerate m = 2, 3,4,6,12,...
Check integrality step by step
Only m = 2 works, yielding a; = 504

A systematic approach introduces parameter m with 671 — 5 = m, giving a; = 2016/m?2. Enumer-
ating divisors of 2016 and checking integrality across the sequence yields the unique valid solution
a1 = 504. This chain length is optimal: long enough to verify all constraints, but not unnecessarily
extended. It ensures both uniqueness and correctness.

4.6 LONG REASONING CHAIN

Key reasoning steps:

A1 =aq, Bl :2a1
A2 = 4a1, B2 = 6(11
By _ 3

T2 =%, = 2
Ag:%-4a1:9a1

A7 = Praq = 2016 = a1 = %G

No verification that Pr | 2016
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The chain is artificially extended by repeatedly introducing recurrences 7y, Ay, and By, under the
assumption that any r; > 1 will work. Without checking integer constraints, it produces appar-
ently self-consistent but actually invalid results. This long reasoning chain accumulates unchecked
assumptions. Although it looks coherent, it generates invalid or non-integer results, showing that
“longer” does not always mean “better.”

Table 3: Difficulty distribution analysis of GPQA-Diamond, StrategyQA, and WSC benchmarks
evaluated using 03-mini and DeepSeek R1 models.

Base Model Dataset Count Mean Std Dev Min Max
StrategyQA 227 908.12 614.85 215 3808
03-mini GPQA 198 3290.53 2860.30 391 14787
WSC 270  756.19 460.20 266 2605
StrategyQA 229  506.59 387.61 36 1475
DeepSeek R1  GPQA 198 5327.11 2713.06 381 12136
WSC 273 902.75 668.26 278 3930

4.7 ROBUSTNESS TO DATASET DIFFICULTY VARIANCE

The core theoretical foundation of TBO’s generalization ability lies in the assumption that most
instances within a task can benefit from a shared, globally optimal reasoning length. When reason-
ing complexity is uniform, one optimized length generalizes well and yields stable gains. When
complexity varies widely, a fixed length cannot fit all cases, reducing overall improvement.

To test this hypothesis, we conducted a cross-task analysis on three representative reasoning bench-
marks—GPQA, StrategyQA, and WSC. We compared token usage characteristics across datasets,
including statistics such as the mean and variance, and aligned these with the performance gains
achieved through TBO. Table 3| shows that GPQA has the highest standard deviation in actual token
usage, which is expected since its 198 multiple-choice questions cover a wide range of topics in bi-
ology, physics, and chemistry. This leads to large differences in the optimal reasoning length needed
for each question. StrategyQA shows moderate variation, while WSC is the most consistent, which
aligns with TBO achieving its best optimization results on WSC. Overall, these findings suggest that
TBO works best when question difficulty is relatively uniform, as a single reasoning length can suit
most examples. In contrast, when difficulty varies widely, it becomes harder to find one reasoning
length that fits all, and the optimization gains are reduced. Then a clear pattern emerges: the diffi-
culty of a question is linearly associated with the reasoning length required by the model, with more
difficult problems demanding longer reasoning chains. A more detailed empirical analysis of token
length distributions across datasets is provided in Appendix

5 CONCLUSION

We focus on a central challenge in large language model reasoning: how to determine the optimal
reasoning length to maximize task performance. The relationship between reasoning depth and ac-
curacy exhibits a multi-peaked landscape—several lengths may yield reasonable results, but only
specific ones achieve global optimality. Existing methods, which largely rely on fixed or heuris-
tic length settings, have long overlooked this critical factor, thereby constraining model potential.
To address this, we propose Token Bayesian Optimization (TBO), a lightweight, model-agnostic
framework that leverages iterative LLM feedback to efficiently identify globally optimal reasoning
lengths without labeled supervision or reinforcement learning.

Across diverse benchmarks, TBO improves performance across models and tasks, adapting reason-
ing length to task complexity. These demonstrate not only the effectiveness of reasoning length
optimization but also the substantial untapped potential within current prompting paradigms. In fu-
ture work, we aim to develop finer-grained optimization that adapts reasoning length to variations in
task type and difficulty, further enhancing robustness in heterogeneous settings.
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6 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. An anonymous link to the
source code is provided in the supplementary materials, enabling others to replicate our implemen-
tation. In addition, the appendix contains clear explanations of all underlying assumptions as well
as complete proofs of the theoretical results. For the empirical studies, we also release the datasets
used in our experiments together with detailed data processing steps. These resources collectively
support the faithful reproduction and verification of our findings.
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