
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INFLUENCE FUNCTIONS FOR SCALABLE DATA
ATTRIBUTION IN DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and
interpretability. In this paper, we aim to help address such challenges in diffusion
models by developing an influence function framework. Influence function-based
data attribution methods approximate how a model’s output would have changed
if some training data were removed. In supervised learning, this is usually used
for predicting how the loss on a particular example would change. For diffusion
models, we focus on predicting the change in the probability of generating a
particular example via several proxy measurements. We show how to formulate
influence functions for such quantities and how previously proposed methods can be
interpreted as particular design choices in our framework. To ensure scalability of
the Hessian computations in influence functions, we systematically develop K-FAC
approximations based on generalised Gauss-Newton matrices specifically tailored
to diffusion models. We recast previously proposed methods as specific design
choices in our framework, and show that our recommended method outperforms
previous data attribution approaches on common evaluations, such as the Linear
Data-modelling Score (LDS) or retraining without top influences, without the need
for method-specific hyperparameter tuning.

1 INTRODUCTION

Generative modelling for continuous data modalities — like images, video, and audio — has advanced
rapidly propelled by improvements in diffusion-based approaches. Many companies now offer easy
access to AI-generated bespoke image content. However, the use of these models for commercial
purposes creates a need for understanding how the training data influences their outputs. In cases
where the model’s outputs are undesirable, it is useful to be able to identify, and possibly remove, the
training data instances responsible for those outputs. Furthermore, as copyrighted works often make
up a significant part of the training corpora of these models (Schuhmann et al., 2022), concerns about
the extent to which individual copyright owners’ works influence the generated samples arise. Some
already characterise what these companies offer as “copyright infringement as a service” (Saveri &
Butterick, 2023a), which has caused a flurry of high-profile lawsuits Saveri & Butterick (2023a;b).
This motivates exploring tools for data attribution that might be able to quantify how each group of
training data points influences the models’ outputs. Influence functions (Koh & Liang, 2017; Bae
et al., 2022) offer precisely such a tool. By approximating the answer to the question, “If the model
was trained with some of the data excluded, what would its output be?”, they can help finding data
points most responsible for a low loss on an example, or a high probability of generating a particular
example. However, they have yet to be scalably adapted to the general diffusion modelling setting.

Influence functions work by locally approximating how the loss landscape would change if some of
the training data points were down-weighted in the training loss (illustrated in Figure 5). Consequently,
this enables prediction for how the (local) optimum of the training loss would change, and how
that change in the parameters would affect a measurement of interest (e.g., loss on a particular
example). By extrapolating this prediction, one can estimate what would happen if the data points
were fully removed from the training set. However, to locally approximate the shape of the loss
landscape, influence functions require computing and inverting the Hessian of the training loss,
which is computationally expensive. One common approximation of the training loss’s Hessian is the
generalised Gauss-Newton matrix (GGN, Schraudolph, 2002; Martens, 2020). The GGN has not been
clearly formulated for the diffusion modelling objective before and cannot be uniquely determined

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Generated
sample

Top
influences

Most
neutral

Negative
influences

.

Figure 1: Most influential training data points as identified by K-FAC Influence Functions for samples
generated by a denoising diffusion probabilistic model trained on CIFAR-10. The top influences
are those whose omission from the training set is predicted to most increase the loss of the generated
sample. Negative influences are those predicted to most decrease the loss, and the most neutral are
those that should change the loss the least.

based on its general definition. Moreover, to compute and store a GGN for large neural networks
further approximations are necessary. We propose using Kronecker-Factored Approximate Curvature
(K-FAC, Heskes, 2000; Martens & Grosse, 2015) to approximate the GGN. It is not commonly
known how to apply it to neural network architectures used in diffusion models; for example, Kwon
et al. (2023) resort to alternative Hessian approximation methods because “[K-FAC] might not be
applicable to general deep neural network models as it highly depends on the model architecture”.
However, based on recent work, it is indeed clear that it can be applied to architectures used in
diffusion models (Grosse & Martens, 2016; Eschenhagen et al., 2023), which typically combine
linear layers, convolutions, and attention (Ho et al., 2020).

In this work, we describe a scalable approach to influence function-based approximations for data
attribution in diffusion models, using a K-FAC approximation of GGNs as Hessian approximations.
We articulate a design space based on influence functions, unify previous methods for data attribution
in diffusion models (Georgiev et al., 2023; Zheng et al., 2024) through our framework, and argue for
the design choices that distinguish our method from previous ones. One important design choice is
the GGN used as the Hessian approximation. We formulate different GGN matrices for the diffusion
modelling objective and discuss their implicit assumptions. We empirically ablate variations of the
GGN and other design choices in our framework and show that our proposed method outperforms
the existing data attribution methods for diffusion models as measured by common data attribution
metrics like the Linear Data-modelling Score (Park et al., 2023) or retraining without top influences.
Finally, we also discuss interesting empirical observations that challenge our current understanding
of influence functions in the context of diffusion models.

2 BACKGROUND

This section introduces the general concepts of diffusion models, influence functions, and the GGN.

2.1 DIFFUSION MODELS

Diffusion models are a class of probabilistic generative models that fit a model pθ(x) parameterised
by parameters θ ∈ Rdparam to approximate a training data distribution q(x), with the primary aim being
to sample new data x ∼ pθ(·) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Turner et al., 2024). This
is usually done by augmenting the original data x with T fidelity levels as x(0:T) = [x(0), . . . , x(T)]
with an augmentation distribution q(x(0:T)) that satisfies the following criteria: 1) the highest
fidelity x(0) equals the original training data q(x(0)) = q(x), 2) the lowest fidelity x(T) has a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

distribution that is easy to sample from, and 3) predicting a lower fidelity level from the level directly
above it is simple to model and learn. To achieve the above goals, q is typically taken to be a
first-order Gaussian auto-regressive (diffusion) process: q(x(t)|x(0:t−1)) = N (x(t)|λtx

(t−1), (1−
λt)

2I), with hyperparameters λt set so that the law of x(T) approximately matches a standard
Gaussian distributionN (0, I). In that case, the reverse conditionals q(x(t−1)|x(t:T)) = q(x(t−1)|x(t))
are first-order Markov, and if the number of fidelity levels T is high enough, they can be well
approximated by a diagonal Gaussian, allowing them to be modelled with a parametric model with a
simple likelihood function, hence satisfying (3) (Turner et al., 2024). The marginals q(x(t)|x(0)) =

N
(
x(t)|

(∏t
t′=1 λt′

)
x(0),

(
1−

∏t
t′=1 λ

2
t′

)
I
)

also have a simple Gaussian form, allowing for the
augmented samples to be sampled as:

x(t) =
∏t

t′=1
λtx

(0) +
(
1−

∏t

t′=1
λ2
t′

)1/2

ϵ(t), with ϵ(t) ∼ N (0, I). (1)

Diffusion models are trained to approximate the reverse conditionals pθ(x(t−1)|x(t)) ≈ q(x(t−1)|x(t))
by maximising log-probabilities of samples x(t−1) conditioned on x(t), for all timesteps t = 1, . . . , T .
We can note that q(x(t−1)|x(t), x(0)) has a Gaussian distribution with mean given by:

µt−1|t,0(x
(t), ϵ(t)) =

1

λt

(
x(t) − 1− λ2

t(
1−

∏t
t′=1 λ

2
t′
)1/2 ϵ

(t)

)
, with ϵ(t)

def
=

(
x(t) −

∏t
t′=1 λt′x

(0)
)

(1−
∏t

t′=1 λ
2
t′)

1/2

as in Equation (1). In other words, the mean is a mixture of the sample x(t) and the noise ϵ(t) that
was applied to x(0) to produce it. Hence, we can choose to analogously parameterise pθ(x

(t−1)|x(t))

as N
(
x(t−1)|µt−1|t,0

(
x(t), ϵtθ(x

(t))
)
, σ2

t I
)
. That way, the model ϵ(t)θ (x(t)) simply predicts the noise

ϵ(t) that was added to the data to produce x(t). The variances σ2
t are usually chosen as hyper-

parameters (Ho et al., 2020). With that parameterisation, the negative expected log-likelihood
Eq(xt−1,x(t)|x(0))

[
− log p(x(t−1)|x(t))

]
, up to scale and shift independent of θ or x(0), can be written

as (Ho et al., 2020; Turner et al., 2024):1

ℓt(θ, x
(0)) = Eϵ(t),x(t)

[∥∥∥ϵ(t) − ϵtθ

(
x(t)
)∥∥∥

2
] ϵ(t) ∼ N (0, I)

x(t) =
∏t

t′=1
λtx

(0) +
(
1−

∏t

t′=1
λ2
t′

)1/2

ϵ(t)

(2)
This leads to a training loss ℓ for the diffusion model ϵtθ(x

(t)) that is a sum of per-diffusion timestep
training losses:2

ℓ(θ, x) = Et̃ [ℓt̃(θ, x)] t̃ ∼ Uniform([T]).

The parameters are then optimised to minimise the loss averaged over a training dataset D={xn}Nn=1:

θ⋆(D) = argmin
θ
LD(θ) LD(θ)

def
=

1

N

N∑

n=1

ℓ(θ, xn). (3)

Other interpretations of the above procedure exist in the literature (Song & Ermon, 2020; Song et al.,
2021b;a; Kingma et al., 2023).

2.2 INFLUENCE FUNCTIONS

The aim of influence functions is to answer questions of the sort “how would my model behave
were it trained on the training dataset with some datapoints removed”. To do so, they approximate
the change in the optimal model parameters in Equation (3) when some training examples (xj)j∈I ,
I = {i1, . . . , iM} ⊆ [N], are removed from the dataset D. To arrive at a tractable approximation, it
is useful to consider a continuous relaxation of this question: how would the optimum change were
the training examples (xj)j∈I down-weighted by ε ∈ R in the training loss:

r−I(ε) = argmin
θ

1

N

N∑

n=1

ℓ(θ, xn)− ε
∑

j∈I
ℓ(θ, xj) (4)

1Note that the two random variables x(t), ϵ(t) are deterministic functions of one-another.
2Equivalently, a weighted sum of per-timestep negative log-likelihoods − log pθ(x

(t−1)|x(t)).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The function r−I : R → Rdparam (well-defined if the optimum is unique) is the response function.
Setting ε to 1⁄N recovers the minimum of the original objective in Equation (3) with examples
(xi1 , . . . , xiM) removed.

Under suitable assumptions (see Appendix A), by the Implicit Function Theorem (Krantz & Parks,
2003), the response function is continuous and differentiable at ε = 0. Influence functions can be
defined as a linear approximation to the response function r−I by a first-order Taylor expansion
around ε = 0:

r−I(ε) = r−I(0) +
dr−I(ε′)

dε′

∣∣∣
ε′=0

ε + o(ε)

= θ⋆(D) +
∑

j∈I

(
∇2

θ⋆LD(θ
⋆)
)−1∇θ⋆ℓ(θ⋆, xj)ε + o(ε),

(5)

as ε → 0. See Appendix A for a formal derivation and conditions. The optimal parameters with
examples (xi)i∈I removed can be approximated by setting ε to 1⁄N and dropping the o(ε) terms.

Usually, we are not directly interested in the change in parameters in response to removing some
data, but rather the change in some measurement function m(θ⋆(D), x′) at a particular test input x′

(e.g. per-example test loss). We can further make a first-order Taylor approximation to m(·, x′) at
θ⋆(D) — m(θ, x′) = m(θ⋆, x′) +∇⊺

θ⋆m(θ⋆, x′)(θ − θ⋆) + o (∥θ − θ⋆∥2) — and combine it with
Equation (5) to get a simple linear estimate of the change in the measurement function:

m(r−I(ε), x
′) = m(θ⋆, x′) +

∑

j∈I
∇⊺

θ⋆m(θ⋆, x′)
(
∇2

θ⋆LD(θ
⋆)
)−1∇θ⋆ℓ(θ⋆, xj)ε+ o(ε). (6)

2.3 GENERALISED GAUSS-NEWTON MATRIX

Computing the influence function approximation in Equation (5) requires inverting the Hessian
∇2

θLD(θ) ∈ Rdparam×dparam . In the context of neural networks, the Hessian itself is generally compu-
tationally intractable and approximations are necessary. A common Hessian approximation is the
generalised Gauss-Newton matrix (GGN). We will first introduce the GGN in an abstract setting
of approximating the Hessian for a general training loss L(θ) = Ez [ρ(θ, z)], to make it clear how
different variants can be arrived at for diffusion models in the next section.

In general, if we have a function ρ(θ, z) of the form hz ◦ fz(θ), with hz a convex function, the GGN
for an expectation Ez[ρ(θ, z)] is defined as

GGN(θ) = Ez

[
∇⊺

θfz(θ)
(
∇2

fz(θ)
hz(fz(θ))

)
∇θfz(θ)

]
,

where ∇θfz(θ) is the Jacobian of fz . Whenever fz is (locally) linear, the GGN is equal to the
Hessian Ez[∇2

θρ(θ, z)]. Therefore, we can consider the GGN as an approximation to the Hessian in
which we “linearise” the function fz . Note that any decomposition of ρ(θ, z) results in a valid GGN
as long as hz is convex (Martens, 2020).3We give two examples below.

Option 1. A typical choice would be for fz to be the neural network function on a training datapoint
z, and for hz to be the loss function (e.g. ℓ2-loss), with the expectation Ez being taken over the
empirical (training) data distribution; we call the GGN for this split GGNmodel. The GGN with this
split is exact for linear neural networks (or when the model has zero residuals on the training data)
(Martens, 2020).

fz := mapping from parameters to model output
hz := loss function (e.g. ℓ2-loss)

→ GGNmodel(θ) (7)

Option 2. Alternatively, a different GGN can be defined by using a trivial split of the loss ρ(θ, z)
into the identity map hz := id and the loss fz := ρ(·, z), and again taking the expectation over the

3hz is typically required to be convex to guarantee the resulting GGN is a positive semi-definite (PSD) matrix.
A valid non-PSD approximation to the Hessian can be formed with a non-convex hz as well; all the arguments
about the exactness of the GGN approximation for a linear fz would still apply. However, the PSD property
helps with numerical stability of the matrix inversion, and guarantees that the GGN will be invertible if a small
damping term is added to the diagonal.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

empirical data distribution. With this split, the resulting GGN is

fz := ρ(·, z)
hz := id

→ GGNloss(θ) = Ez

[
∇θρ(θ, z)∇

⊺
θρ(θ, z)

]
. (8)

This is also called the empirical Fisher (Kunstner et al., 2019). Note that GGNloss is only equal to
the Hessian under the arguably more stringent condition that ρ(·, z) — the composition of the model
and the loss function — is linear. This is in contrast to GGNmodel, for which only the mapping
from the parameters to the model output needs to be (locally) linear. Hence, we might prefer to
use GGNmodel for Hessian approximation whenever we have a nonlinear loss, which is the case for
diffusion models.

3 SCALABLE INFLUENCE FUNCTIONS FOR DIFFUSION MODELS

In this section, we discuss how we adapt influence functions to the diffusion modelling setting in
a scalable manner. We also recast data attribution methods for diffusion models proposed in prior
work (Georgiev et al., 2023; Zheng et al., 2024) as the result of particular design decisions in our
framework, and argue for our own choices that distinguish our method from the previous ones.

3.1 APPROXIMATING THE HESSIAN

In diffusion models, we want to compute the Hessian of the loss of the form

LD(θ) = Exn
[ℓ(θ, xn)] = Exn

[
Et̃

[
Ex(t̃),ϵ(t̃)

[
∥ϵ(t̃) − ϵt̃θ(x

(t̃))∥2
]]]

,

where Exn
[·] =

(
1
N

∑N
n=1 ·

)
is the expectation over the empirical data distribution. 4We will

describe how to formulate different GGN approximations for this setting.

3.1.1 GGN FOR DIFFUSION MODELS

Option 1. To arrive at a GGN approximation, as discussed in Section 2.3, we can partition the function
θ 7→ ∥ϵ(t) − ϵtθ(x

(t))∥2 into the model output θ 7→ ϵtθ(x
(t)) and the ℓ2-loss function ∥ϵ(t) − ·∥2. This

results in the GGN:

fz := ϵt̃θ(x
(t̃))

hz := ∥ϵ(t̃) − ·∥2
→ GGNmodel

D (θ) = Exn

[
Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
(2I)∇θϵ

t̃
θ

(
x(t̃)
)]]]

, (9)

where I is the identity matrix. This correspond to “linearising” the neural network ϵtθ. For diffusion
models, the dimensionality of the output of ϵt̃θ is typically very large (e.g. 32×32×3 for CIFAR), so
computing the Jacobians ∇θϵ

t
θ explicitly is still intractable. However, we can express GGNmodel

D as

FD(θ) = Exn

[
Et̃

[
E
x
(t̃)
n

[
Eϵmod

[
gn(θ)gn(θ)

⊺]]]]
, ϵmod ∼ N

(
ϵt̃θ

(
x(t̃)
n

)
, I
)

(10)

where gn(θ) = ∇θ∥ϵmod − ϵt̃θ(x
(t̃)
n)∥2 ∈ Rdparam ; see Appendix B for the derivation. This formulation

lends itself to a Monte Carlo approximation, since we can now compute gradients using auxiliary
targets ϵmod sampled from the model’s output distribution, as shown in Equation (10). FD can be
interpreted as a kind of Fisher information matrix (Amari, 1998; Martens, 2020), but it is not the
Fisher for the marginal model distribution pθ(x).

Option 2. Analogously to Equation (8), we can also consider the trivial decomposition of ℓ(·, x) into
the identity map and the loss, effectively “linearising” ℓ(·, x). The resulting GGN is:

fz := ℓ(·, xn)

hz := id
→ GGNloss

D (θ) = Exn [∇θℓ(θ, xn)∇⊺
θℓ(θ, xn)], (11)

where ℓ(θ, x) is the diffusion training loss defined in Equation (2). This Hessian approximation
GGNloss

D turns out to be equivalent to the ones considered in the previous works on data attribution
4Generally, Exn might also subsume the expectation over data augmentations applied to the training data

points (see Appendix J.8 for details on how this is handled).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for diffusion models (Georgiev et al., 2023; Zheng et al., 2024; Kwon et al., 2023). In contrast,
in this work, we opt for GGNmodel

D in Equation (9), or equivalently FD, since it is arguably a
better-motivated approximation of the Hessian than GGNloss

D (c.f. Section 2.3).

In Zheng et al. (2024), the authors explored substituting different (theoretically incorrect) training
loss functions into the influence function approximation. In particular, they found that replacing the
loss ∥ϵ(t) − ϵtθ(x

(t))∥2 with the square norm loss ∥ϵtθ(x(t))∥2 (effectively replacing the “targets” ϵ(t)

with 0) gave the best results. Note that the targets ϵ(t) do not appear in the expression for GGNmodel
D

in Equation (9).5 Hence, in our method substituting different targets would not affect the Hessian
approximation. In Zheng et al. (2024), replacing the targets only makes a difference to the Hessian
approximation because they use GGNloss

D (an empirical Fisher) to approximate the Hessian.

3.1.2 K-FAC FOR DIFFUSION MODELS

While FD(θ) and GGNloss
D do not require computing full Jacobians or the Hessian of the neural

network model, they involve taking outer products of gradients of size Rdparam , which is still intractable.
Kronecker-Factored Approximate Curvature (Heskes, 2000; Martens & Grosse, 2015, K-FAC) is a
common scalable approximation of the GGN to overcome this problem. It approximates the GGN
with a block-diagonal matrix, where each block corresponds to one neural network layer and consists
of a Kronecker product of two matrices. Due to convenient properties of the Kronecker product, this
makes the inversion and multiplication with vectors needed in Equation (6) efficient enough to scale
to large networks. K-FAC is defined for linear layers, including linear layers with weight sharing like
convolutions (Grosse & Martens, 2016). This covers most layer types in the architectures typically
used for diffusion models (linear, convolutions, attention). When weight sharing is used, there are
two variants – K-FAC-expand and K-FAC-reduce (Eschenhagen et al., 2023); see Appendix C for an
overview. For the parameters θl of layer l, the GGN FD in Equation (10) is approximated by

FD(θl) ≈
1

N2

N∑

n=1

Et̃

[
E
x
(t̃)
n ,ϵ(t̃)

[
a(l)n a(l)

⊺
n

]]
⊗

N∑

n=1

Et̃

[
E
x
(t̃)
n ,ϵ(t̃),ϵ

(t̃)
mod

[
b(l)n b(l)

⊺
n

]]
, (12)

with a
(l)
n ∈ Rdl

in being the inputs to the lth layer for data point x(t̃)
n and b

(l)
n ∈ Rdl

out being the
gradient of the ℓ2-loss w.r.t. the output of the lth layer, and ⊗ denoting the Kronecker product.6 The
approximation trivially becomes an equality for a single data point and also for deep linear networks
with ℓ2-loss (Bernacchia et al., 2018; Eschenhagen et al., 2023).

For our recommended method, we choose to approximate the Hessian with a K-FAC approximation
of FD, akin to Grosse et al. (2023). We approximate the expectations in Equation (12) with Monte
Carlo samples and use K-FAC-expand whenever weight sharing is used since the problem formulation
of diffusion models corresponds to the expand setting in Eschenhagen et al. (2023); in the case of
convolutional layers this corresponds to Grosse & Martens (2016). Lastly, to ensure the Hessian
approximation is well-conditioned and invertible, we follow standard practice and add a damping
term consisting of a small scalar damping factor times the identity matrix. We ablate these design
choices in Section 4 (Figures 4, 7 and 9).

3.2 GRADIENT COMPRESSION AND QUERY BATCHING

In practice, we recommend computing influence function estimates in Equation (6) by first computing
and storing the approximate Hessian inverse, and then iteratively computing the preconditioned inner
products∇⊺

θ⋆m(θ⋆, x)
(
∇2

θ⋆LD(θ⋆)
)−1∇θ⋆ℓ(θ⋆, xj) for different training datapoints xj . Following

Grosse et al. (2023), we use query batching to avoid recomputing the gradients ∇θ⋆ℓ(θ⋆, xj) when
attributing multiple samples x. We also use gradient compression; we found that compression by
quantisation works much better for diffusion models compared to the SVD-based compression used
by Grosse et al. (2023) (see Appendix F), likely due to the fact that gradients ∇θℓ(θ, xn) are not
low-rank in this setting.

5This is because the Hessian of an ℓ2-loss w.r.t. the model output is a multiple of the identity matrix.
6For the sake of a simpler presentation this does not take potential weight sharing into account.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 WHAT TO MEASURE

For diffusion models, arguably the most natural question to ask might be, for a given sample x
generated from the model, how did the training samples influence the probability of generating a
sample x? For example, in the context of copyright infringement, we might want to ask if removing
certain copyrighted works would substantially reduce the probability of generating x. With influence
functions, these questions could be interpreted as setting the measurement function m(θ, x) to be the
(marginal) log-probability of generating x from the diffusion model: log pθ(x).

Computing the marginal log-probability introduces some challenges. Diffusion models have originally
been designed with the goal of tractable sampling, and not log-likelihood evaluation. Ho et al. (2020);
Sohl-Dickstein et al. (2015) only introduce a lower-bound on the marginal log-probability. Song
et al. (2021b) show that exact log-likelihood evaluation is possible, but it only makes sense in settings
where the training data distribution has a density (e.g. uniformly dequantised data), and it only
corresponds to the marginal log-likelihood of the model when sampling deterministically (Song et al.,
2021a).7Also, taking gradients of that measurement, as required for influence functions, is non-trivial.
Hence, in most cases, we might need a proxy measurement for the marginal probability. We consider
a couple of proxies in this work:

1. Loss. Approximate log pθ(x) with the diffusion loss ℓ(θ, x) in Equation (2) on that particular
example. This corresponds to the ELBO with reweighted per-timestep loss terms (see
Figure 19).

2. Probability of sampling trajectory. If the entire sampling trajectory x(0:T) that gen-
erated sample x is available, consider the probability of that trajectory pθ(x

(0:T)) =

p(xT)
∏T

t=1 pθ(x
(t−1)|x(t)).

3. ELBO. Approximate log pθ(x) with an Evidence Lower-Bound (Ho et al., 2020, eq. (5)).

4 EXPERIMENTS

Evaluating Data Attribution. To evaluate the proposed data attribution methods, we primarily
focus on two metrics: Linear Data Modelling Score (LDS) and retraining without top influences.
These metrics are described in Appendix D. In all experiments, we look at measurements on samples
generated by the model trained on D. We primarily focus on Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020) throughout. Runtimes are reported in Appendix E.

Baselines We compare influence functions with K-FAC and GGNmodel
D (MC-Fisher; Equation (10))

as the Hessian approximation (K-FAC Influence) to TRAK as formulated for diffusion models in
Georgiev et al. (2023); Zheng et al. (2024). In our framework, their method can be tersely described
as using GGNloss

D (Empirical Fisher) in Equation (11) as a Hessian approximation instead of
GGNmodel

D (MC-Fisher) in Equation (10), and computing the Hessian-preconditioned inner products
using random projections (Dasgupta & Gupta, 2003) rather than K-FAC. We also compare to the
ad-hoc changes to the measurement/training loss in the influence function approximation (D-TRAK)
that were shown by Zheng et al. (2024) to give improved performance on LDS benchmarks. Note that,
the changes in D-TRAK were directly optimised for improvements in LDS scores in the diffusion
modelling setting, and lack any theoretical motivation. Hence, a direct comparison for the changes
proposed in this work (K-FAC Influence) is TRAK; the insights from D-TRAK are orthogonal to our
work. These are the only prior works motivated by predicting the change in a model’s measurements
after retraining that have been applied to the general diffusion modelling setting that we are aware
of. We also compare to naı̈vely using cosine similarity between the CLIP (Radford et al., 2021)
embeddings of the training datapoints and the generated sample as a proxy for influence on the
generated samples. Lastly, we report LDS results for the oracle method of “Exact Retraining”, where
we actually retraining a single model to predict the changes in measurements.

LDS. The LDS results attributing the loss and ELBO measurements are shown in Figures 2a and 2b.
K-FAC Influence outperforms TRAK in all settings. K-FAC Influence using the loss measurement

7Unless the trained model satisfies very specific “consistency” constraints (Song et al., 2021b, Theorem 2).
7Better LDS results can sometimes be obtained when looking at validation examples (Zheng et al., 2024),

but diffusion models are used primarily for sampling, so attributing generated samples is of primary practical
interest.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.3% ±0.7

10.3% ±0.8

21.5% ±0.9

20.9% ±0.9

50.3% ±0.2

(1.3%)

(21.5%)

(0.1%)

0 20 40 60 80 100

Rank Correlation % (LDS)

CIFAR-2

2.7% ±0.8

8.9% ±0.8

18.3% ±0.7

15.4% ±0.8

41.2% ±0.3

(5.2%)

(14.4%)

(0.9%)

0 20 40 60 80 100

Rank Correlation % (LDS)

Exact Retraining

D-TRAK

K-FAC Influence

TRAK

CLIP Cosine Similarity

CIFAR-10

(a) LDS results on the loss measurement.

8.0% ±0.7

5.3% ±0.8

10.9% ±0.8

18.5% ±0.9

23.0% ±0.8

43.7% ±0.7

(0.9%)

(10.9%)

(0.9%)

(23.0%)

0 20 40 60 80 100

Rank Correlation % (LDS)

CIFAR-2

3.6% ±0.7

3.6% ±0.6

5.8% ±0.8

10.5% ±0.7

14.7% ±0.7

16.4% ±0.3

(2.1%)

(5.8%)

(0.6%)

(11.8%)

0 20 40 60 80 100

Rank Correlation % (LDS)

Exact Retraining

K-FAC Influence (m. loss)

D-TRAK

K-FAC Influence

TRAK

CLIP Cosine Similarity

CIFAR-10

(b) LDS results on the ELBO measurement.

Figure 2: Linear Data-modelling Score (LDS) for different data attribution methods. Methods that
substitute in incorrect measurement functions into the approximation are separated and plotted with .
Where applicable, we plot results for both the best Hessian-approximation damping value with and a
“default” damping value with . The numerical results are reported in black for the best damping value,
and for the “default” damping value in (gray). “(m. loss)” implies that the appropriate measurement
function was substituted with the loss ℓ(θ, x) measurement function in the approximation. Results for
the exact retraining method (oracle), are shown with . Standard error in the LDS score estimate is
indicated with ‘±’, where the mean is taken over different generated samples x on which the change
in measurement is being estimated.

also outperforms the benchmark-tuned changes in D-TRAK in all settings as well. In Figures 2a
and 2b, we report the results for both the best damping values from a sweep (see Appendix G), as
well as for “default” values following recommendations in previous work (see Appendix J.4). TRAK
and D-TRAK appear to be more sensitive to tuning the damping factor than K-FAC Influence. They
often don’t perform at all if the damping factor is too small, and take a noticeable performance hit
if the damping factor is not tuned to the problem or method (see Figures 8 and 10 in Appendix G).
However, in most applications, tuning the damping factor would be infeasible, as it requires retraining
the model many times over to construct an LDS benchmark, so this is a significant limitation. In
contrast, for K-FAC Influence, we find that generally any sufficiently small value works reasonably
well if enough samples are taken for estimating the loss and measurement gradients (see Figures 7
and 9).

Retraining without top influences. The counterfactual retraining results are shown in Figure 3 for
CIFAR-2, CIFAR-10, with 2% and 10% of the data removed. In this evaluation, influence functions
with K-FAC consistently pick more influential training examples (i.e. those which lead to a higher
loss reduction) than the baselines.

Hessian Approximation Ablation. In Figure 4, we explore the impact of the Hessian approximation
design choices discussed in Section 3.1. We use K-FAC to approximate the GGN in all cases, with
either the “expand” or the “reduce” variant (Section 3.1.2). We find that the better-motivated “MC-
Fisher” estimator GGNmodel in Equation (9) does indeed perform better than the “empirical Fisher”
in Equation (11) used in TRAK and D-TRAK. Secondly, we find that K-FAC expand significantly
outperforms K-FAC reduce, which stands in contrast to the results in the second-order optimisation
setting where the two are on par with one another (Eschenhagen et al., 2023). There are multiple
differences from our setting to the one from the previous optimisation results: we use a square loss
instead of a cross entropy loss, a full dataset estimate, a different architecture, and evaluate the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0019 ±0.0005

0.0025 ±0.0005

0.0029 ±0.0006

0.003 ±0.0005

0.0000 0.0025 0.0050 0.0075 0.0100

CIFAR-2 — 2% removed

0.0022 ±0.0005

0.0031 ±0.0005

0.0037 ±0.0005

0.004 ±0.0006

0.00000.00250.00500.00750.01000.0125

K-FAC Influence

D-TRAK

TRAK

Random

CIFAR-2 — 10% removed

0.00026 ±0.0003

0.00055 ±0.0003

0.00079 ±0.0003

0.00089 ±0.0003

0.000 0.002 0.004

Measurement Change

CIFAR-10 — 2% removed

0.00031 ±0.0003

0.0008 ±0.0003

0.0012 ±0.0003

0.0014 ±0.0003

0.000 0.002 0.004 0.006

Measurement Change

K-FAC Influence

D-TRAK

TRAK

Random

CIFAR-10 — 10% removed

Figure 3: Changes in measurements under counterfactual retraining without top influences for the
loss measurement. The standard error in the estimate of the mean is indicated with error bars and
reported after ‘±’, where the average is over different generated samples for which top influences are
being identified.

approximation in a different application. Notably, the expand variant is the better justified one since
the diffusion modelling problem corresponds to the expand setting in Eschenhagen et al. (2023).
Hence, our results all seem to imply that a better Hessian approximation directly results in better
downstream data attribution performance. However, we do not directly evaluate the approximation
quality of the estimates and also do not sweep over the damping value for all variants.

6.05% ±0.7

6.47% ±0.7

17.85% ±0.9

21.46% ±0.9

50.32% ±0.2

0 10 20 30 40 50 60 70

Rank Correlation % (LDS)

Exact Retraining

GGNmodel (MC-Fisher)

GGNloss (Empirical)

GGNmodel (MC-Fisher)

GGNloss (Empirical)
}

reduce

}
expand

Figure 4: Ablation over the different Hessian approximation variants introduced in Section 3.1. We
ablate two versions of the GGN: the “MC” Fisher in Equation (9) and the “Empirical” Fisher in
Equation (11), as well as two settings for the K-FAC approximation: “expand” and “reduce”.

4.1 POTENTIAL CHALLENGES TO USE OF INFLUENCE FUNCTIONS FOR DIFFUSION MODELS

One peculiarity in the LDS results, similar to the findings in Zheng et al. (2024), is that substituting
the loss measurement for the ELBO measurement when predicting changes in ELBO actually works
better than using the correct measurement (see Figure 2b “K-FAC Influence (measurement loss)”).8 To
try and better understand the properties of influence functions, in this section we perform multiple
ablations and report different interesting phenomena that give some insight into the challenges of
using influence functions in this setting.

As illustrated in Figure 19, gradients of the ELBO and training loss measurements, up to a constant
scaling, consist of the same per-diffusion-timestep loss term gradients∇θℓt(θ, x), but with a different
weighting. To try and break-down why approximating the change in ELBO with the training loss
measurement gives higher LDS scores, we first look at predicting the change in the per-diffusion-
timestep losses ℓt while substituting different per-diffusion-timestep losses into the K-FAC influence
approximation. The results are shown in Figure 11, leading to the following observation:

8Note that, unlike Zheng et al. (2024), we only change the measurement function for a proxy in the influence
function approximation, keeping the Hessian approximation and training loss gradient in Equation (6) the same.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Observation 1 Higher-timestep losses ℓt(θ, x) act as better proxies for lower-timestep losses.

More specifically, changes in losses ℓt can in general be well approximated by substituting measure-
ments ℓt′ into the influence approximation with t′ > t. In some cases, using the incorrect timestep
t′ > t even results in significantly better LDS scores than the correct timestep t′ = t.

Based on Observation 1, it is clear that influence function-based approximations have limitations
when being applied to predict the numerical change in loss measurements. We observe another
pattern in how they can fail:

Observation 2 Influence functions predict both positive and negative influence on loss, but, in
practice, removing data points predominantly increases loss.

We show in Figures 15 and 16 that influence functions tend to overestimate how often removal of
a group data points will lead to improvements in loss on a generated sample (both for aggregate
diffusion training loss in Section 2.1, and the per-diffusion-timestep loss in Equation (2)).

Lastly, although ELBO is perhaps the measurement with the most direct link to the marginal
probability of sampling a particular example, we find some peculiarities on the diffusion modelling
tasks considered. The below observation in particular puts the usefulness of estimating the change in
ELBO for data attribution into question:

Observation 3 For sufficiently large training set sizes, ELBO is close to constant on generated
samples, irrespective of which examples were removed from the training data.

As illustrated in Figure 17, ELBO measurement is close to constant for any given sample generated
from the model, no matter which 50% subset of the training data is removed. In particular, it is
extremely rare that one sample is more likely to be generated than another by one model (as measured
by ELBO), and is less likely to be generated than another by a different model trained on a different
random subset of the data. Our observation mirrors that of Kadkhodaie et al. (2024) who found that,
if diffusion models are trained on non-overlapping subsets of data of sufficient size, they generate
near-identical images when sampling with the same noise. This suggests that Observation 3 is not
necessarily a deficiency of the ELBO measurement as a proxy for marginal log-probability; the
different models are in fact learning nearly identical distributions.

5 DISCUSSION

In this work, we extended the influence functions approach to the diffusion modelling setting, and
showed different ways in which the GGN Hessian approximation can be formulated. Our proposed
method with recommended design choices improves performance compared to existing techniques
across various data attribution evaluation metrics. Nonetheless, experimentally, we are met with two
contrasting findings: on the one hand, influence functions in the diffusion modelling setting appear to
be able to identify important influences. The surfaced influential examples do significantly impact
the training loss when retraining the model without them (Figure 3), and they appear perceptually
very relevant to the generated samples. On the other hand, they fall short of accurately predicting
the numerical changes in measurements after retraining. This appears to be especially the case for
measurement functions we would argue are most relevant in the image generative modelling setting
– proxies for marginal probability of sampling a particular example. This appears to be both due
to the limitations of the influence functions approximation, but also due to the shortcomings of the
considered proxy measurements (Section 4.1).

Despite these shortcomings, influence functions can still offer valuable insights: they can serve as a
useful exploratory tool for understanding model behaviour in a diffusion modelling context, and can
help guide data curation, identifying examples most responsible for certain behaviours. To make them
useful in settings where numerical accuracy in the predicted behaviour after retraining is required,
such as copyright infringement, we believe more work is required into 1) finding better proxies
for marginal probability than ELBO and probability of sampling trajectory , and 2) even further
improving the influence function approximation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2), 1998.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger Grosse. If Influence Functions are
the Answer, Then What is the Question?, September 2022.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentiation, 2024. URL https://arxiv.org/abs/2405.12186.

Alberto Bernacchia, Mate Lengyel, and Guillaume Hennequin. Exact natural gradient in deep linear
networks and its application to the nonlinear case. In NeurIPS, 2018.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for deep
learning. In ICML, 2017.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss.
Random Structures & Algorithms, 22(1):60–65, January 2003. ISSN 1042-9832, 1098-2418. doi:
10.1002/rsa.10073.

Runa Eschenhagen, Alexander Immer, Richard E. Turner, Frank Schneider, and Philipp Hennig.
Kronecker-Factored Approximate Curvature for modern neural network architectures. In NeurIPS,
2023.

Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, and Aleksander Madry. The
Journey, Not the Destination: How Data Guides Diffusion Models, December 2023.

Roger Grosse and James Martens. A Kronecker-factored approximate Fisher matrix for convolution
layers. In ICML, 2016.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying Large
Language Model Generalization with Influence Functions, August 2023.

Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Computation,
12(4), 2000.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020.

Alexander Immer, Tycho F.A. van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, and Mark van der
Wilk. Invariance learning in deep neural networks with differentiable Laplace approximations. In
NeurIPS, 2022.

William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz maps into
banach spaces. Israel Journal of Mathematics, 54(2):129–138, 1986.

Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, and Stéphane Mallat. Generalization in
diffusion models arises from geometry-adaptive harmonic representations, April 2024.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models, April
2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1885–
1894. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/koh17a.
html.

Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, and Percy Liang. On the Accuracy of Influence
Functions for Measuring Group Effects, November 2019.

11

https://arxiv.org/abs/2405.12186
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.mlr.press/v70/koh17a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Steven G. Krantz and Harold R. Parks. The Implicit Function Theorem. Birkhäuser, Boston, MA,
2003. ISBN 978-1-4612-6593-1 978-1-4612-0059-8. doi: 10.1007/978-1-4612-0059-8.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical
report, University of Toronto, 2009. URL http://www.cs.utoronto.ca/˜kriz/
learning-features-2009-TR.pdf.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical Fisher approxima-
tion for natural gradient descent. In NeurIPS, 2019.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. DataInf: Efficiently Estimating Data Influence
in LoRA-tuned LLMs and Diffusion Models. In The Twelfth International Conference on Learning
Representations, October 2023.

Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-propagation.
In Proceedings of the 1988 connectionist models summer school, volume 1, pp. 21–28, 1988.

James Martens. New insights and perspectives on the natural gradient method. JMLR, 21(146), 2020.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In ICML, 2015.

Kazuki Osawa, Shigang Li, and Torsten Hoefler. PipeFisher: Efficient training of large language
models using pipelining and Fisher information matrices. arXiv 2211.14133, 2022.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
Attributing Model Behavior at Scale, April 2023.

J. Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian T. Foster, and
Zhao Zhang. KAISA: an adaptive second-order optimizer framework for deep neural networks. In
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC21), 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Joseph Saveri and Matthew Butterick. Image generator litigation. https://
imagegeneratorlitigation.com/, 2023a. Accessed: 2024-07-06.

Joseph Saveri and Matthew Butterick. Language model litigation. https://llmlitigation.
com/, 2023b. Accessed: 2024-07-06.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7), 2002.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
Laion-5b: An open large-scale dataset for training next generation image-text models, 2022. URL
https://arxiv.org/abs/2210.08402.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics, November 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models, October
2022.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
2020. URL https://arxiv.org/abs/1907.05600.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum Likelihood Training of
Score-Based Diffusion Models, October 2021a.

12

http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://imagegeneratorlitigation.com/
https://imagegeneratorlitigation.com/
https://llmlitigation.com/
https://llmlitigation.com/
https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/1907.05600

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations, February
2021b.

Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and Min Wang.
SKFAC: Training neural networks with faster Kronecker-factored approximate curvature. In CVPR,
2021.

Richard E. Turner, Cristiana-Diana Diaconu, Stratis Markou, Aliaksandra Shysheya, Andrew Y. K.
Foong, and Bruno Mlodozeniec. Denoising diffusion probabilistic models in six simple steps,
2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger B. Grosse. Which algorithmic choices matter at which batch
sizes? Insights from a noisy quadratic model. In NeurIPS, 2019.

Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing Properties of Data
Attribution on Diffusion Models, March 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DERIVATION OF INFLUENCE FUNCTIONS

In this section, we state the implicit function theorem (Appendix A.1). Then, in Appendix A.2, we
introduce the details of how it can be applied in the context of a loss function L(ε,θ) parameterised
by a continuous hyperparameter ε (which is, e.g., controlling how down-weighted the loss terms on
some examples are, as in Section 2.2).

−4 −3 −2 −1 0 1 2 3 4

θ
0

1

2N

1

N

ε

1
N

∑N
n=1 `(xn, θ)

1
N

∑N
n=1 `(xn, θ)− 1

2N
`(xj , θ)

1
N

∑N
n=1 `(xn, θ)− 1

N
`(xj , θ)

L(ε, θ)

Linear Extrapolation

Minimum

Figure 5: Illustration of the influence function approximation for a 1-dimensional parameter space θ ∈
R. Influence funcitons consider the extended loss landscape L(ε, θ) def

= 1
N

∑N
n=1 ℓ(xn, θ)− εℓ(xj , θ),

where the loss ℓ(xj , θ) for some datapoint xj (alternatively, group of datapoints) is down-weighted
by ε. By linearly extrapolating how the optimal set of parameters θ would change around ε = 0 (),
we can predicted how the optimal parameters would change when the term ℓ(xj , θ) is fully removed
from the loss ().

A.1 IMPLICIT FUNCTION THEOREM

Theorem 1 (Implicit Function Theorem (Krantz & Parks, 2003)) Let F : Rn × Rm → Rm be
a continuously differentiable function, and let Rn × Rm have coordinates (x,y). Fix a point
(a,b) = (a1, . . . , an, b1, . . . , bm) with F (a,b) = 0, where 0 ∈ Rm is the zero vector. If the
Jacobian matrix∇yF (a,b) ∈ Rm×m of y 7→ F (a,y)

[∇yF (a,b)]ij =
∂Fi

∂yj
(a,b),

is invertible, then there exists an open set U ⊂ Rn containing a such that there exists a unique
function g : U → Rm such that g(a) = b, and F (x, g(x)) = 0 for all x ∈ U . Moreover, g is
continuously differentiable.

Remark 1 (Derivative of the implicit function) Denoting the Jacobian matrix of x 7→ F (x,y) as:

[∇xF (x,y)]ij =
∂Fi

∂xj
(x,y),

the derivative ∂g
∂x : U → Rm×n of g : U → Rm in Theorem 1 can be written as:

∂g(x)

∂x
= − [∇yF (x, g(x))]

−1∇xF (x, g(x)). (13)

This can readily be seen by noting that, for x ∈ U :

F (x′, g(x′)) = 0 ∀x′ ∈ U ⇒ dF (x, g(x))

dx
= 0.

Hence, since g is differentiable, we can apply the chain rule of differentiation to get:

0 =
dF (x, g(x))

dx
= ∇xF (x, g(x)) +∇yF (x, g(x))

∂g(x)

∂x
.

Rearranging gives equation Equation (13).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 APPLYING THE IMPLICIT FUNCTION THEOREM TO QUANTIFY THE CHANGE IN THE
OPTIMUM OF A LOSS

Consider a loss function L : Rn × Rm → R that depends on some hyperparameter ε ∈ Rn (in
Section 2.2, this was the scalar by which certain loss terms were down-weighted) and some parameters
θ ∈ Rm. At the minimum of the loss function L(ε,θ), the derivative with respect to the parameters
θ will be zero. Hence, assuming that the loss function is twice continuously differentiable (hence
∂L
∂ε is continuously differentiable), and assuming that for some ε′ ∈ Rn we have a set of parameters
θ⋆ such that ∂L

∂ε (ε
′,θ⋆) = 0 and the Hessian ∂2L

∂θ2 (ε
′,θ⋆) is invertible, we can apply the implicit

function theorem to the derivative of the loss function ∂L
∂ε : Rn×Rm → Rm, to get the existence of a

continuously differentiable function g such that ∂L
∂ε (ε, g(ε)) = 0 for ε in some neighbourhood of ε′.

Now g(ε) might not necessarily be a minimum of θ 7→ L(ε,θ). However, by making the further
assumption that L is strictly convex we can ensure that whenever ∂L

∂θ (ε,θ) = 0, θ is a unique
minimum, and so g(ε) represents the change in the minimum as we vary ε. This is summarised in the
lemma below:

Lemma 1 Let L : Rn × Rm → R be a twice continuously differentiable function, with coordinates
denoted by (ε,θ) ∈ Rn × Rm, such that θ 7→ L(ε,θ) is strictly convex ∀ε ∈ Rn. Fix a point
(ε′,θ⋆) such that ∂L

∂θ (ε
′,θ⋆) = 0. Then, by the Implicit Function Theorem applied to ∂L

∂θ , there
exists an open set U ⊂ Rn containing θ⋆ such that there exists a unique function g : U → Rm such
that g(ε′) = θ⋆, and g(ε) is the unique minimum of θ 7→ L(ε,θ) for all ε ∈ U . Moreover, g is
continuously differentiable with derivative:

∂g(ε)

∂ε
= −

[
∂2L
∂θ2

(ε, g(ε))

]−1
∂2L
∂ε∂θ

(ε, g(ε)) (14)

Remark 2 For a loss function L : R× Rm of the form L(ε,θ) = L1(θ) + εL2(θ) (such as that in
Equation (4)), ∂2L

∂ε∂θ (ε, g(ε)) in the equation above simplifies to:

∂2L
∂ε∂θ

(ε, g(ε)) =
∂L2

∂θ
(g(ε)) (15)

The above lemma and remark give the result in Equation (5). Namely, in section 2.2:

L(ε,θ) = 1

N

N∑

i=1

ℓ(θ, xi)

︸ ︷︷ ︸
L1

L2︷ ︸︸ ︷

− 1

M

M∑

j=1

ℓ(θ, xij) ε
eq. (15)
=⇒ ∂2L

∂ε∂θ
= − 1

M

M∑

j=1

∂

∂θ
ℓ(θ, xij)

eq. (14)
=⇒ ∂g(ε)

∂ε
=

[
∂2L
∂θ2

(ε, g(ε))

]−1
1

M

M∑

j=1

∂

∂θ
ℓ(θ, xij)

B DERIVATION OF THE FISHER “GGN” FORMULATION FOR DIFFUSION
MODELS

As discussed in Section 2.3 partitioning the function θ 7→ ∥ϵ(t) − ϵtθ(x
(t))∥2 into the model output

θ 7→ ϵtθ(x
(t)) and the ℓ2 loss function is a natural choice and results in

GGNmodel
D (θ)

=
1

N

N∑

n=1

Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
∇2

ϵt̃θ(x(t̃))

∥∥∥ϵ(t̃) − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇θϵ
t̃
θ

(
x(t̃)
)]]

=
2

N

N∑

n=1

Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
I∇θϵ

t̃
θ

(
x(t̃)
)]]

. (16)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Note that we used
1

2
∇2

ϵt̃θ(x(t̃))

∥∥∥ϵ(t̃) − ϵt̃θ

(
x(t̃)
)∥∥∥

2

= I.

We can substitute I with

I = Eϵmod

[
−1

2
∇2

ϵt̃θ(x(t̃)) log p
(
ϵmod|ϵt̃θ

(
x(t̃)
))]

, p
(
ϵmod|ϵt̃θ

(
x(t̃)
))

= N
(
ϵmod|ϵt̃θ

(
x(t̃)
)
, I
)
,

where the mean of the Gaussian is chosen to be the model output ϵt̃θ
(
x(t̃)
)

. Furthermore, by using
the “score” trick:

Eϵmod

[
∇2

ϵt̃θ(x(t̃)) log p
(
ϵmod|ϵt̃θ

(
x(t̃)
))]

= −Eϵmod

[
∇ϵt̃θ(x(t̃)) log p

(
ϵmod|ϵt̃θ

(
x(t̃)
))
∇⊺

ϵt̃θ(x(t̃)) log p
(
ϵmod|ϵt̃θ

(
x(t̃)
))]

= −Eϵmod

[
1

2
∇ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2 1

2
∇⊺

ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2
]
,

we can rewrite:

∇⊺
θ ϵ

t̃
θ

(
x(t̃)
)
∇θϵ

t̃
θ

(
x(t̃)
)

= −2∇⊺
θ ϵ

t̃
θ

(
x(t̃)
)
Eϵmod

[(
∇2

ϵt̃θ(x(t̃)) log p
(
ϵmod|ϵt̃θ

(
x(t̃)
)))]

∇θϵ
t̃
θ

(
x(t̃)
)

=
1

2
Eϵmod

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
∇ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇⊺
ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇θϵ
t̃
θ

(
x(t̃)
)]

=
1

2
Eϵmod

[
∇θ

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇⊺
θ

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2
]
,

where the last equality follows by the chain rule of differentiation. We can thus rewrite the expression
for the GGN in Equation (16) as

GGNmodel
D (θ)

=
1

N

N∑

n=1

Et̃

[
Ex(t̃),ϵ(t̃),ϵmod

[
∇θgn(θ)∇θgn(θ)

⊺]]
g(θ)

def
=
∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

.

C KRONECKER-FACTORED APPROXIMATE CURVATURE

In this section, we give a brief overview of Kronecker-Factored Approximate Curvature, and how
it’s used for linear layers with weight-sharing. We will first describe it in the context of the original
setting it was introduced in, where the loss is a mean square error or a cross-entropy loss.

Kronecker-Factored Approximate Curvature (Heskes, 2000; Martens & Grosse, 2015; Botev et al.,
2017, K-FAC) is typically used as a layer-wise block-diagonal approximation of the Fisher or GGN
of a neural network. Each layer-wise block matrix can be written as a Kronecker product, hence the
name. We assume a loss function 1

N

∑N
n=1 ℓ(yn, fθ(xn)) where fθ is a neural network parametrised

by θ, D = {xn, yn}Nn=1 is the dataset with inputs xn and labels yn, and ℓ(·, ·) is a loss function like
the cross-entropy or mean square error. To derive the K-FAC approximation for the parameters of a
linear layer with weight matrix Wl

9, we first note that we can write the GGN block for the flattened
parameters θl = vec(Wl) as

GGND(θl) =
1

N

N∑

n=1

∇⊺
θl
fθ(xn)

(
∇2

fθ
ℓ(yn, fθ(xn))

)
∇θlfθ(xn); (17)

here we choose the split from GGNmodel in Equation (7), but the derivation also follows analogously
for GGNloss (see Section 2.3). Given that ∇⊺

θl
fθ(xn) = a

(l)
n ⊗ g

(l)
n , where a

(l)
n is the input to the lth

9A potential bias vector can be absorbed into the weight matrix.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

layer for the nth example and g
(l)
n is the Jacobian of the neural network output w.r.t. to the output of

the lth layer for the nth example, we have

GGND(θl) =
1

N

N∑

n=1

(
a(l)n ⊗ g(l)n

) (
∇2

fθ
ℓ(yn, fθ(xn))

) (
a(l)n ⊗ g(l)n

)⊺
(18)

=
1

N

N∑

n=1

(
a(l)n a(l)

⊺
n

)
⊗
(
g(l)n

(
∇2

fθ
ℓ(yn, fθ(xn))

)
g(l)

⊺
n

)
. (19)

K-FAC is now approximating this sum of Kronecker products with a Kronecker product of sums, i.e.

GGND(θl) ≈
1

N2

(
N∑

n=1

a(l)n a(l)
⊺

n

)
⊗

(
N∑

n=1

g(l)n

(
∇2

fθ
ℓ(yn, fθ(xn))

)
g(l)

⊺
n

)
. (20)

This approximation becomes an equality in the trivial case of N = 1 or for simple settings of
deep linear networks with mean square error loss function (Bernacchia et al., 2018). After noticing
that the Hessian ∇2

fθ
ℓ(yn, fθ(xn)) is the identity matrix for the mean square error loss, the K-FAC

formulation for diffusion models in Equation (12) can now be related to this derivation – the only
difference is the expectations from the diffusion modelling objective.

Note that this derivation assumed a simple linear layer. However, common architectures used for
diffusion models consist of different layer types as well, such as convolutional layers and attention.
As mentioned in Section 3.1.2, K-FAC can be more generally formulated for all linear layers with
weight sharing (Eschenhagen et al., 2023).

First, note that the core building blocks of common neural network architectures can be expressed
as linear layers with weight sharing. If a linear layer without weight sharing can be thought of a
weight matrix W ∈ Rdout×din that is applied to an input vector x ∈ Rdin , a linear weight sharing
layer is applying the transposed weight matrix to right of an input matrix X ∈ RR×din , i.e. XW ⊺.
This can be thought of a regular linear layer that is shared across the additional input dimension of
size R. For example, the weight matrices in the attention mechanism are shared across tokens, the
kernel in convolutions is shared across the spatial dimensions, and in a graph neural network layer
the weights might be shared across nodes or edges; see Section 2.2 in Eschenhagen et al. (2023) for a
more in-depth explanation of these examples.

Given this definition of linear weight sharing layers, we can identify two different settings in which
they are used. In the expand setting, the weight-sharing dimension is maintained until the final loss
computation, which leads to R×N loss terms for a dataset with N data points; we have a loss of the
form 1

NR

∑N
n=1

∑R
r=1 ℓ(yn,r, fθ(Xn)). The diffusion loss in Equation (2) corresponds to the expand

setting. In contrast, in the reduce setting, the weight-sharing dimension has been reduced in the
forward pass before the loss computation, i.e. we have a loss of the form 1

N

∑N
n=1 ℓ(yn, fθ(Xn)).10

These two settings can now be used to motivate two different flavours of the K-FAC approximation.

The first flavour, K-FAC-expand, is defined as

GGND(θl) ≈
1

(NR)2

(
N∑

n=1

R∑

m=1

a(l)n,ma(l)
⊺

n,m

)
⊗

(
N∑

n=1

R∑

m=1

R∑

r=1

g(l)n,r,m Hn,r g(l)
⊺

n,r,m

)
, (21)

where a(l)n,m is the mth row of the input to the lth layer for the nth example, Hn = ∇2
fθ
ℓ (yn, fθ(Xn)),

and g
(l)
n,r,m is the Jacobian of the rth row of the matrix output of the neural network w.r.t. the mth

row of the output matrix of the lth layer for the nth example. K-FAC-expand is motivated by the
expand setting in the sense that for deep linear networks with a mean square error as the loss function,
K-FAC-expand is exactly equal to the layer-wise block-diagonal of the GGN. For convolutions
K-FAC expand corresponds to the K-FAC approximation derived in Grosse & Martens (2016) which
has also been used for attention before (Zhang et al., 2019; Pauloski et al., 2021; Osawa et al., 2022).

10In principal, the input to the neural network does not necessarily have to have a weight-sharing dimension,
even when we the model contains linear weigh-sharing layers; this holds for the expand and the reduce setting.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The second variation, K-FAC-reduce, is defined as

GGND(θl) ≈
1

(NR)2

(
N∑

n=1

(
R∑

r=1

a(l)n,r

)(
R∑

r=1

a(l)
⊺

n,r

))
⊗

(
N∑

n=1

(
R∑

r=1

g(l)n,r

)
Hn

(
R∑

r=1

g(l)
⊺

n,r

))
.

(22)
Analogously to K-FAC-expand in the expand setting, in the reduce setting, K-FAC reduce is exactly
equal to the layer-wise block-diagonal GGN for a deep linear network with mean square error loss
and a scaled sum as the reduction function. With reduction function we refer to the function that is
used to reduce the weight-sharing dimension in the forward pass of the model, e.g. average pooling
to reduce the spatial dimension in a convolutional neural network. Similar approximations have also
been proposed in a different context (Tang et al., 2021; Immer et al., 2022).

Although each setting motivates a corresponding K-FAC approximation in the sense described above,
we can apply either K-FAC approximation in each setting. Hence, we ablate the choice of the K-FAC
approximation in Figure 4. K-FAC-expand, the K-FAC approximation corresponding to the setting of
the diffusion modelling task, vastly outperforms K-FAC-reduce. Note that the diffusion modelling
objective is an example for the expand setting since the loss is computed pixel-wise over the output
of the diffusion model.

D EVALUATING DATA ATTRIBUTION

LDS measures how well a given attribution method can predict the relative magnitude in the change
in a measurement as the model is retrained on (random) subsets of the training data. For an attribution
method a(D,D′, x) that approximates how a measurement m(θ⋆(D), x) would change if a model
was trained on an altered dataset D′, LDS measures the Spearman rank correlation between the
predicted change in output and actual change in output after retraining on different subsampled
datasets:

spearman

[(
a(D, D̃i, x)

)M
i=1

;
(
m(θ⋆(D̃i), x)

)M
i=1

]
,

where D̃i are independently subsampled versions of the original dataset D, each containing 50% of
the points sampled without replacement. However, a reality of deep learning is that, depending on the
random seed used for initialisation and setting the order in which the data is presented in training,
training on a fixed dataset can produce different models with functionally different behaviour. Hence,
for any given dataset D′, different measurements could be obtained depending on the random seed
used. To mitigate the issue, Park et al. (2023) propose to use an ensemble average measurement after
retraining as the “oracle” target:

LDS = spearman

[(
a(D, D̃i, x)

)M
i=1

;
(1

K

∑K

k=1
m(θ̃⋆k(D̃i), x)

)M
i=1

]
, (23)

where θ̃⋆k(D′) ∈ Rdparam are the parameters resulting from training on D′ with a particular seed k.

Retraining without top influences, on the other hand, evaluates the ability of the data attribution
method to surface the most influential data points – namely, those that would most negatively affect
the measurement m(θ⋆(D′), x) under retraining from scratch on a dataset D′ with these data points
removed. For each method, we remove a fixed percentage of the most influential datapoints from
D to create the new dataset D′, and report the change in the measurement m(θ⋆(D′), x) relative to
m(θ⋆(D), x) (measurement by the model trained on the full dataset D).

E RUNTIME MEMORY AND COMPUTE

Influence functions can be implemented in different ways, caching different quantities at intermediate
points, resulting in different trade-offs between memory and compute. A recommended implemen-
tation will also depend on whether one just wants to find most influential training examples for a
selected set of query samples once, or whether one wants to implement influence functions in a
system where new query samples to attribute come in periodically.

The procedure we follow in our implementation can roughly be summarised as informally depicted
with pseudo-code in Algorithm 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 K-FAC Influence Computation (Single-Use)

1: Input: Training set {xi}Ni=1, query points {x̂j}Qj=1, number of Monte-Carlo samples S ∈ N
2: Output: Influence scores {scoreij : i ∈ {1, . . . , N}, j ∈ {1, . . . , Q}} for all pairings of training

examples with query examples
3: H−1 ← ComputeAndInvertKFAC() ▷ Compute and store K-FAC inverse
4: for j = 1 to Q do ▷ Process query points
5: vj ← ∇θm(x̂j ; θ) ▷ Compute gradient with S samples
6: yj ← H−1vj ▷ Precondition gradient
7: Store compressed yj
8: end for
9: for i = 1 to N do ▷ Process training points

10: vi ← ∇θℓ(xi; θ) ▷ Compute gradient with S samples
11: for j = 1 to Q do
12: scoreij ← y⊤j vi ▷ Compute influence score
13: end for
14: end for

For deployment, where new query samples might periodically come in, we might prefer to store
compressed preconditioned training gradients instead. This is illustrated in Algorithm 2.

Algorithm 2 K-FAC Influence Computation (Continual Deployment Setting)

1: Input: Training set {xi}Ni=1, samples S
2: Output: Cached preconditioned training gradients {yi}Ni=1 for efficient influence computation
3: H−1 ← ComputeAndInvertKFAC() ▷ Compute and store K-FAC inverse
4: for i = 1 to N do ▷ Preprocess training set
5: vi ← ∇θℓ(xi; θ) ▷ Compute gradient with S samples
6: yi ← H−1vi ▷ Precondition gradient
7: Store compressed yi
8: end for
9: procedure COMPUTEINFLUENCE({x̂j}Qj=1) ▷ Called when new queries arrive

10: for j = 1 to Q do
11: vj ← ∇θℓ(x̂j ; θ) ▷ Compute query gradient
12: for i = 1 to N do
13: scoreij ← y⊤i vj ▷ Compute influence score
14: end for
15: end for
16: return {scoreij : i ∈ {1, . . . , N}, j ∈ {1, . . . , Q}}
17: end procedure

In principle, if we used an empirical Fisher approximation (like in Equation (10)) to approximate
the GGN, we could further amortise the computation in the latter variant by caching training loss
gradients during the K-FAC computation.

Note that, for applications like classification with a cross-entropy loss or auto-regressive language
modelling Vaswani (2017), the gradients have a Kronecker structure, which means they could be
stored much more efficiently Grosse et al. (2023). This is not the case for gradients of the diffusion
loss in Section 2.1, since they require averaging multiple Monte-Carlo samples of the gradient.

We will primarily describe the complexities for the former variant (Algorithm 1), as that is the one
we used for all experiments. The three sources of compute cost, which we will describe below, are:
1) computing and inverting the Hessian, 2) computing, pre-conditioning and compressing the query
gradients, and 3) computing the training gradients and taking inner-products with the preconditioned
query gradients.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E.1 ASYMPTOTIC COMPLEXITY

Here, we will describe how runtime compute and memory scale with the number of query examples
to attribute Q, the number of of training examples N , the number of Monte-Carlo samples S, for
a standard feed-forward network with width W and depth L11. These variables are summarised in
Table 1. The number of parameters of the network P is then O(W 2L). 12

Q Number of query data points
N Number of training examples
W Maximum layer width
L Depth of the network

S
Number of samples for Monte-Carlo evaluation
of per-example loss or measurement gradients

Table 1: Variables for scaling analysis.

Altogether, the runtime complexity of running K-FAC influence in this setting is
O
(
(N +Q)SW 2L+NQW 2L+W 3L

)
and requires O(QW 2L + NQ) storage. We break this

down below.

E.1.1 K-FAC AND K-FAC INVERSION

For each training example, and each sample, the additional computation of K-FAC over a simple
forward-backward pass through the network (LeCun et al., 1988) comes from computing the outer
products of post-activations, and gradients of loss with respect to the pre-activations. Overall, this
adds a cost of O(W 2L) on top of the forward-backward pass, and so a single iteration has the same
O(W 2L) cost scaling as a forward-backward pass. Hence, computing K-FAC for the entire training
dataset with S samples has cost O(NSW 2L).

Since K-FAC is a block-wise diagonal approximation, computing the inverse only requires computing
the per-layer inverses. For a linear layer with input width Win and output width Wout, computing
the inverse costs O(W 3

in +W 3
out) due to the Kronecker-factored form of the K-FAC approximation.

Similarly, storing K-FAC (or the inverse) requires storing matrices of sizes Win ×Win and Wout ×
Wout for each linear layer.

Hence, computing K-FAC has a runtime complexity of O(NSLW 2). An additional O(LW 3) will
be required for the inversion, which is negligible compared to the cost of computing K-FAC for
larger datasets. The inverse K-FAC requires O(LW 2) storage. In practice, storing K-FAC (or inverse
K-FAC) requires more memory than storing the network parameters, with the multiple depending on
the ratios of layer widths across the network.

E.1.2 PRECONDITIONED QUERY GRADIENTS COMPUTATION

Computing a single query gradient takes O(SW 2L) time, and preconditioning with K-FAC requires
a further matrix-vector product costing O(W 3L). The cost of compressing the gradient will depend
on the method, but, for quantisation (Appendix F), it’s negligible compared to the other terms. Hence,
computing all Q query gradients costs O(QSW 2L+QW 3L).

Storing the Q preconditioned gradients requiresO(QW 2L) storage (although, in principle, this could
be more efficient depending on the compression method chosen and how it scales with the network
size while maintaining precision).

E.1.3 TRAINING GRADIENTS AND SCORES COMPUTATION

Again, computing a single training gradient takes O(SW 2L), and an inner product with all
the preconditioned query gradients takes an additional O(QW 2L). Hence, this part requires
O(NSW 2L+NQW 2L) operations.

12This can either be a multi-layer perceptron, or a convolutional neural network with W denoting the channels.
The feed-forward assumption is primarily chosen for illustrative purposes, but the analysis is straight-forward to
extend to other architectures, and the asymptotic results do not differ for other common architectures.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Storage-wise, storing the final “scores” (the preconditioned inner products between the training
and query gradients) requires a further O(NQ) memory, but this is typically small (4NQ bytes for
float32 precision).

E.1.4 COMPARISON WITH TRAK

The complexity of TRAK (Park et al., 2023) additionally depends on the choice of the projection
dimension R. The computational cost of running TRAK is O((N + Q)SW 2L + NQR + R3).
Similarly, the memory cost of the implementation by Park et al. (2023) is O((N +Q)R+R2).

Note that, it is unclear how R should scale with the neural network size W 2L. Random projections do
allow for constant scaling with vector size while maintaining approximation quality in some settings
(Johnson et al., 1986). To the best of our knowledge, it has not been shown, either empirically or
theoretically, what the expected scaling of R with network size might be in the context of influence
function preconditioned inner products (Equation (6)). In the worst case, the projection dimension R
might be required to scale proportionally to the network size to maintain a desired level of accuracy.

E.2 RUNTIME COMPLEXITY

We also report the runtimes of computing TRAK and K-FAC influence scores for the experiments
reported in this paper. We discuss what additional memory requirements one might expect when
running these methods. All experiments were ran on a single NVIDIA A100 GPU.

The runtime and memory is reported for computing influence for 200 query data points. As discussed
at the beginning of Appendix E, K-FAC computation and inversion costs are constant with respect to
the number of query data points, and computing the training gradients can be amortised in a sensible
deployment-geared implementation at the added memory cost of storing the (compressed) training
gradients.

E.2.1 RUNTIME RESULTS

Tables 2 and 3 report the runtimes on a single NVIDIA A100 GPU of the most time-consuming parts
of the influence function computation procedure.

Dataset
(size)

Dataset
size

network
param.

(millions)

MC
samples

K-FAC
computation

Query
gradients

Training
gradients

CIFAR-2 5000 38.3 250 03:30:32 01:12 00:34:42
CIFAR-10 50000 38.3 250 35:01:33 01:12 05:43:14
ArtBench 50000 37.4 +83.6∗ 125 32:48:08 04:18 18:56:57

Table 2: Runtime for K-FAC influence score computation across datasets. “∗” indicates parameters
of a pre-trained part of the model (e.g. VAE for Latent Diffusion Models).

Dataset
(size)

Dataset
size

network
param.

(millions)

MC
samples

Query
gradients

Training
gradients

Hessian
inversion

Computing
scores

CIFAR-2 5000 38.3 250 3:38 01:32:10 00:11 3:43
CIFAR-10 50000 38.3 250 3:44 15:15:04 00:57 3:54
ArtBench 50000 37.4 +83.6∗ 125 5:46 23:58:44 00:28 6:24

Table 3: Runtime for TRAK score computation across datasets. “∗” indicates parameters of a pre-
trained part of the model (e.g. VAE for Latent Diffusion Models).

E.2.2 MEMORY USAGE

Tables 4 and 5 report the expected memory overheads due to having to manifest and store large
matrices or collections of vectors in the influence function implementations of K-FAC Influence and
TRAK.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Dataset # network
param. (millions)

Inverse K-FAC
(GB)

Cached query gradients
(GB)

CIFAR-2 38.3 1.57 7.66
CIFAR-10 38.3 1.57 7.66
ArtBench 37.4 +83.6∗ 1.57 7.47

Table 4: Memory usage linked to K-FAC Influence. “∗” indicates parameters of a pre-trained part of
the model (e.g. VAE for Latent Diffusion Models).

Dataset # network
param. (millions)

Projection
dimension

Projected train
gradients (GB)

Projected query
gradients (GB)

Projected Hessian
inverse (GB)

CIFAR-2 38.3 32768 0.66 0.027 4.29
CIFAR-10 38.3 32768 6.55 0.027 4.29
ArtBench 37.4 +83.6∗ 32768 6.55 0.027 4.29

Table 5: Memory usage linked to TRAK. “∗” indicates parameters of a pre-trained part of the model
(e.g. VAE for Latent Diffusion Models).

F GRADIENT COMPRESSION ABLATION

0% 10% 20% 30% 40% 50% 60% 70%

Compression ratio

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
a
n
k

co
rr

el
a
ti

o
n

to
u
n
co

m
p
re

ss
ed

sc
o
re

s

Rank 1

Rank 2

Rank 5

Rank 10

Rank 20

Rank 50
Rank 100 Rank 150

int8 int16

Figure 6: Comparison of gradient compression methods for the influence function approximation.

In Figure 6, we ablate different compression methods by computing the per training datapoint influ-
ence scores with compressed query (measurement) gradients, and looking at the Pearson correlation
and the rank correlation to the scores compute with the uncompressed gradients. We hope to see
a correlation of close to 100%, in which case the results for our method would be unaffected by
compression. We find that using quantisation for compression results in almost no change to the
ordering over training datapoints, even when quantising down to 8 bits. This is in contrast to the SVD
compression scheme used in Grosse et al. (2023). This is likely because the per-example gradients
naturally have a low-rank (Kronecker) structure in the classification, regression, or autoregressive
language modelling settings, such as that in Grosse et al. (2023). On the other hand, the diffusion
training loss and other measurement functions considered in this work do not have this low-rank
structure. This is because computing them requires multiple forward passes; for example, for the
diffusion training loss we need to average the mean-squared error loss in Equation (2) over multiple

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

noise samples ϵ(t) and multiple diffusion timesteps. We use 8 bit quantisation with query gradient
batching (Grosse et al., 2023) for all KFAC experiments throughout this work.

G DAMPING LDS ABLATIONS

We report an ablation over the LDS scores with GGN approximated with different damping factors
for TRAK/D-TRAK and K-FAC influence in Figures 7 to 10. The reported damping factors for
TRAK are normalised by the dataset size so that they correspond to the equivalent damping factors
for our method when viewing TRAK as an altenrative approximation to the GGN (see Section 3.1).

10−9 10−7 10−5 10−3 10−1 101

Damping factor

0.00

0.05

0.10

0.15

0.20

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Loss 100 samples

Loss 250 samples

Loss 1000 samples

Loss 2500 samples

ELBO 250 samples

ELBO 1000 samples

ELBO 2500 samples

CIFAR-2 - K-FAC Influence

Figure 7: Effect of damping on the LDS scores for K-FAC influence on CIFAR-2. In this plot,
K-FAC GGN approximation was always computed with 1000 samples, and the number of samples
used for computing a Monte Carlo estimate of the training loss/measurement gradient is indicated on
the legend.

10−9 10−7 10−5 10−3 10−1 101 103 105

Damping factor

0.00

0.05

0.10

0.15

0.20

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Target Measure Train.Loss

Loss Loss Loss

Loss Sq.Norm Sq.Norm (D-TRAK)

ELBO ELBO* Loss

ELBO Sq.Norm Sq.Norm (D-TRAK)

CIFAR-2 - TRAK Influence

Figure 8: Effect of damping on the LDS scores for TRAK (random projection) based influence
on CIFAR-2. 250 samples were used for Monte Carlo estiamtion of all quantities (GGN and the
training loss/measurement gradients). In the legend: Target indicates what measurement we’re
trying to predict the change in after retraining, Measure indicates what measurement function was
substituted into the influence function approximation, and Train.Loss indicates what function
was substituted for the training loss in the computation of the GGN and gradient of the training loss
in the influence function approximation.

H EMPIRICAL ABLATIONS FOR CHALLENGES TO USE OF INFLUENCE
FUNCTIONS FOR DIFFUSION MODELS

In this section, we describe the results for the observations discussed in Section 4.1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

10−9 10−7 10−5 10−3 10−1 101

Damping factor

0.00

0.05

0.10

0.15

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Loss 250 samples

ELBO* 250 samples

CIFAR-10 - K-FAC Influence

Figure 9: Effect of damping on the LDS scores for K-FAC based influence on CIFAR-10. 100
samples were used for computing the K-FAC GGN approximation, and 250 for computing a Monte
Carlo estimate of the training loss/measurement gradients. × indicates a NaN result (the computation
was not sufficiently numerically stable with that damping factor).

10−10 10−8 10−6 10−4 10−2 100

Damping factor

0.00

0.05

0.10

0.15

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Target Measure Train.Loss

Loss Loss Loss

Loss Sq.Norm Sq.Norm (D-TRAK)

Loss Sq.Norm Loss

ELBO* Loss Loss

ELBO* ELBO* Loss

ELBO* Sq.Norm Sq.Norm (D-TRAK)

CIFAR-10 - TRAK Influence

Figure 10: Effect of damping on the LDS scores for TRAK (random projection) based influence
on CIFAR-10. 250 samples were used for Monte Carlo estiamtion of all quantities (GGN and the
training loss/measurement gradients). In the legend: Target indicates what measurement we’re
trying to predict the change in after retraining, Measure indicates what measurement function was
substituted into the influence function approximation, and Train.Loss indicates what function
was substituted for the training loss in the computation of the GGN and gradient of the training loss
in the influence function approximation.

Observation 1 is based on Figures 11 and 12. Figure 11 shows the LDS scores on CIFAR-2
when attributing per-timestep diffusion losses ℓt (see Equation (2)) using influence functions, whilst
varying what (possibly wrong) per-timestep diffusion loss ℓt′ is used as a measurement function in
the influence function approximation (Equation (6)). Figure 12 is a counter-equivalent to Figure 16
where instead of using influence functions to approximate the change in measurement, we actually
retrain a model on the randomly subsampled subset of data and compute the measurement.

A natural question to ask with regards to Observation 1 is: does this effect go away in settings where
the influence function approximation should more exact? Note that, bar the non-convexity of the
training loss function LD, the influence function approximation in Equation (6) is a linearisation
of the actual change in the measurement for the optimum of the training loss functions with some
examples down-weighted by ε around ε = 0. Hence, we might expect the approximation to be
more exact when instead of fully removing some data points from the dataset (setting ε = 1/N), we
instead down-weight their contribution to the training loss by a smaller non-zero factor. To investigate
whether this is the case, we repeat the LDS analysis in Figures 11 and 12, but with ε = 1/2N; in other
words, the training loss terms corresponding to the “removed” examples are simply down-weighted

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Square
norm

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

14.4 12.6 10.4 9.6 9.1 8.5 7.8 13.1 5.0 4.7 -12.8

4.8 10.5 12.0 11.5 10.5 9.8 10.0 14.7 3.0 2.7 -4.7

2.1 6.8 9.6 12.0 12.0 11.8 12.3 15.6 2.7 2.6 -1.7

0.4 2.0 3.7 9.4 13.9 15.4 16.8 15.2 2.4 2.3 2.0

0.2 1.0 1.5 6.7 12.7 15.5 19.7 15.1 2.7 2.4 2.5

0.3 0.7 0.9 5.5 11.5 14.8 21.1 15.2 2.9 2.6 2.6

0.9 0.6 0.4 2.7 7.1 10.4 22.7 17.7 3.5 3.0 1.0

2.1 1.5 1.7 2.1 3.1 4.1 12.1 43.8 5.1 4.2 -1.6

5.0 2.4 1.4 0.7 0.4 0.5 2.8 22.8 56.4 50.2 -3.0

4.2 0.7 0.3 0.0 0.5 0.5 1.6 10.3 17.5 17.2 -0.0

−40

−20

0

20

40

R
a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 11: Rank correlation (LDS scores) between influence function estimates with different
measurement functions and different true measurements CIFAR-2. The plot shows how well
different per-timestep diffusion losses ℓt work as measurement functions in the influence function
approximation, when trying to approximate changes in the actual measurements when retraining a
model.

by a factor of 1/2 in the retrained models. The results are shown in Figures 13 and 14. Perhaps
somewhat surprisingly, a contrasting effect can be observed, where using per-timestep diffusion losses
for larger times yields a higher absolute rank correlation, but with the opposing sign. The negative
correlation between measurement ℓt, ℓt′ for t ̸= t′ can also be observed for the true measurements
in the retrained models in Figure 14. We also observe that in this setting, influence functions fail
completely to predict changes in ℓt with the correct measurement function for t ≤ 200.

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

32.3 20.3 13.9 7.9 6.4 6.1 6.1 7.1 4.0 0.6

19.9 30.3 28.2 19.4 15.5 14.1 12.2 10.1 3.6 -0.0

13.8 28.6 32.4 27.4 22.5 20.5 16.6 11.4 3.0 0.1

8.0 20.4 28.3 36.3 34.9 33.1 26.2 13.4 2.5 1.3

6.7 16.7 23.8 35.8 39.1 39.0 33.3 14.7 2.6 1.6

6.4 15.5 21.9 34.3 39.5 40.6 37.1 15.6 2.7 1.7

6.9 14.2 18.9 28.8 35.8 39.3 48.6 23.6 2.9 1.6

9.4 13.6 15.1 17.2 18.5 19.3 27.8 74.9 7.2 2.8

4.3 4.0 3.3 2.9 2.9 3.0 3.0 6.5 51.2 14.7

-0.1 -0.4 -0.2 0.7 1.1 1.2 1.1 1.7 10.4 7.8
−60

−40

−20

0

20

40

60
R

a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 12: Rank correlation between true measurements for losses at different diffusion timesteps on
CIFAR-2.

Observation 2 Figure 15 shows the changes in losses after retraining the model on half the data
removed against the predicted changes in losses using K-FAC Influence for two datasets: CIFAR-2
and CIFAR-10. In both cases, for a vast majority of retrained models, the loss measurement on a
sample increases after retraining. On the other hand, the influence functions predict roughly evenly
that the loss will increase and decrease. This trend is amplified if we instead look at influence
predicted for per-timestep diffusion losses ℓt (Equation (2)) for earlier timesteps t, which can be
seen in Figure 16. On CIFAR-2, actual changes in ℓ1, ℓ50, ℓ100 measurements are actually always
positive, which the influence functions approximation completely misses. For all plots, K-FAC
Influence was ran with a damping factor of 10−8 and 250 samples for all gradient computations.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Square
norm

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

-2.9 -1.0 -0.6 -0.5 -1.1 -1.3 -3.0 -8.3 -3.1 -2.6 0.1

-3.6 -3.8 -3.5 -3.0 -2.5 -2.9 -7.7 -23.4 -9.5 -8.1 2.7

-2.6 -3.4 -3.6 -3.0 -2.8 -3.3 -9.4 -28.8 -11.1 -9.6 2.4

-1.9 -2.8 -3.1 -2.9 -3.3 -4.0 -10.7 -33.5 -11.4 -9.8 1.3

-1.8 -2.4 -2.6 -2.4 -2.9 -3.7 -10.6 -34.7 -10.9 -9.2 1.0

-1.9 -2.2 -2.4 -2.3 -2.8 -3.5 -10.4 -35.2 -10.8 -9.1 1.2

-2.0 -1.7 -2.0 -2.0 -2.2 -2.8 -7.9 -34.8 -10.1 -8.6 1.3

0.6 0.1 0.2 0.3 1.0 1.7 6.1 15.7 -0.9 -0.9 -0.3

3.6 2.5 1.9 1.4 0.6 0.3 1.5 16.8 43.9 38.3 -2.5

6.5 5.8 4.0 3.2 1.9 1.4 1.6 7.2 10.1 8.6 -11.3 −40

−30

−20

−10

0

10

20

30

40

R
a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 13: Rank correlation (LDS scores) between influence function estimates with different
measurement functions and different true measurements CIFAR-2, but with the retrained models
trained on the full dataset with a random subset of examples having a down-weighted contribution
to a training loss by a factor of ×0.5.

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

6.1 4.7 3.8 3.7 3.8 3.9 3.8 -0.7 -1.2 -0.1

4.8 11.2 12.7 13.1 13.1 13.2 12.4 -6.0 -4.5 -0.9

4.3 13.4 16.6 18.2 18.2 18.3 17.0 -9.1 -5.8 -0.9

4.4 14.7 19.4 23.4 24.2 24.4 22.6 -13.1 -6.7 -1.3

4.6 14.9 19.8 24.6 25.9 26.3 24.8 -14.4 -6.8 -1.5

4.7 14.9 19.9 24.9 26.4 26.9 25.9 -14.6 -6.9 -1.5

4.5 14.0 18.5 23.2 25.1 26.0 28.1 -12.8 -6.9 -1.5

-1.0 -7.2 -10.3 -14.0 -15.0 -15.2 -13.2 29.9 -1.7 0.5

-1.6 -4.9 -6.1 -6.6 -6.6 -6.7 -6.6 -1.7 19.3 5.2

-0.2 -0.7 -0.7 -1.1 -1.3 -1.3 -1.1 0.4 3.8 -2.0

−20

−10

0

10

20

R
a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 14: Rank correlation between true measurements for losses at different diffusion timesteps on
CIFAR-2, but with the retrained models trained on the full dataset with a random subset of examples
having a down-weighted contribution to a training loss by a factor of ×0.5.

Figures 15 and 16 also shows that influence functions tend to overestimate the magnitude of the
change in measurement after removing the training data points. This is in contrast to the observation
in (Koh et al., 2019) in the supervised setting, where they found that influence functions tend to
underestimate the magnitude of the change in the measurement. There are many plausible reasons
for this, ranging from the choice of the Hessian approximation ((Koh et al., 2019) compute exact
inverse-Hessian-vector products, whereas we approximate the GGN), to the possible “stability” of
the learned distribution in diffusion models even when different subsets of data are used for training
(Observation 3 and (Kadkhodaie et al., 2024)).

Observation 3 Lastly, the observations that the ELBO measurements remain essentially constant for
models trained on different subsets of data is based on Figure 17. There, we plot the values of the
ELBO measurement for different pairs of models trained on different subsets of data, where we find
near perfect correlation. The only pairs of models that exhibit an ELBO measurement correlation
of less that 0.99 are the CIFAR-2 model trained on the full dataset compared to any model trained
on a 50% subset, which is likely due to the fact that the 50% subset models are trained for half as
many gradient iterations, and so may have not fully converged yet. For CIFAR-10, where we train

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

−0.06−0.04−0.02 0.00 0.02 0.04 0.06

Estimated change in `(x, θ)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
A

ct
u
a
l

ch
a
n
g
e

in
`(
x
,θ

)

×10−2
CIFAR-2

−0.6 −0.4 −0.2 0.0 0.2 0.4

Estimated change in `(x, θ)

−2

−1

0

1

2

3

4

×10−3
CIFAR-10

100

101

102

103

F
re

q
u
en

cy
(#

o
f

sa
m

p
le

s
in

b
in

)

Figure 15: Change in diffusion loss ℓ in Section 2.1 when retraining with random subsets of 50% of
the training data removed, as predicted by K-FAC influence (x-axis), against the actual change in the
measurement (y-axis). Results are plotted for measurements ℓ(x, θ) for 50 samples x generated from
the diffusion model trained on all of the data. The scatter color indicates the sample x for which the
change in measurement is plotted. The figure shows that influence functions tend to overestimate
how often the loss will decrease when some training samples are removed; in reality, it happens quite
rarely.

for 5× as many training steps due to a larger dataset size, we observe near-perfect correlation in the
ELBO measurements across all models. Each ELBO measurement was computed with a Monte-Carlo
estimate using 5000 samples.

Interestingly, the observation does to an extent hold for the simple diffusion loss as well (see
Figure 18). For CIFAR-10, the correlation is again close to 100% among the retrained models, but
for CIFAR-2 it’s substantially lower. This is consistent with the results in (Kadkhodaie et al., 2024,
Figure 2), where the results might suggest that models trained on different subsets of data eventually
start behaving the same if the number of data points is sufficiently large, but Figures 17 and 18 would
imply that the thresholds of sufficient data size might differ at different diffusion timesteps.

I LDS RESULTS FOR PROBABILITY OF SAMPLING TRAJECTORY

The results for the “log probability of sampling trajectory” measurements are shown in Figure 20. The
probability of sampling trajectory appears to be a measurement with a particularly low correlation
across different models trained with the same data, but different random seeds. This is perhaps
unsurprising, since the measurement comprises the log-densities of particular values of 1000 latent
variables.

J EXPERIMENTAL DETAILS

In this section, we describe the implementation details for the methods and baselines, as well as the
evaluations reported in Section 4.

J.1 DATASETS

We focus on the following dataset in this paper:

CIFAR-10 CIFAR-10 is a dataset of small RGB images of size 32× 32 Krizhevsky (2009). We
use 50000 images (the train split) for training.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

−1 0 1

Estimated change in `1

1

2

3

4

5

A
ct

u
a
l

ch
a
n
g
e

in
` 1

×10−2

−0.6 −0.4 −0.2 0.0 0.2

Estimated change in `50

1

2

3

4

5

A
ct

u
a
l

ch
a
n
g
e

in
` 5

0

×10−2

−0.2 0.0 0.2

Estimated change in `100

1

2

3

4

5

A
ct

u
a
l

ch
a
n
g
e

in
` 1

0
0

×10−2

−0.04 −0.02 0.00 0.02 0.04

Estimated change in `500

0

1

2

3

4

A
ct

u
a
l

ch
a
n
g
e

in
` 5

0
0

×10−3

100 101 102 103

Frequency (# of samples in bin)

Figure 16: Change in per-diffusion-timestep losses ℓt when retraining with random subsets of 50%
of the training data removed, as predicted by K-FAC influence (x-axis), against the actual change in
the measurement (y-axis). Results are plotted for the CIFAR-2 dataset, for measurements ℓt(x, θ)
for 50 samples x generated from the diffusion model trained on all of the data. The scatter color
indicates the sample x for which the change in measurement is plotted. The figure shows that: 1)
influence functions predict that the losses ℓt will increase or decrease roughly equally frequently
when some samples are removed, but, in reality, the losses almost always increase; 2) for sufficiently
large time-steps (ℓ500), this pattern seems to subside. Losses ℓt in the 200− 500 range seem to work
well for predicting changes in other losses Figure 11.

CIFAR-2 For CIFAR-2, we follow Zheng et al. (2024) and create a subset of CIFAR-10 with
5000 examples of images only corresponding to classes car and horse. 2500 examples of class
car and 2500 examples of class horse are randomly subsampled without replacement from among
all CIFAR-10 images of that class.

J.2 MODELS

For all CIFAR datasets, we train a regular Denoising Diffusion Probabilistic Model using a standard
U-Net architecture as described for CIFAR-10 in Ho et al. (2020). This U-Net architecture contains
both convolutional and attention layers. We use the same noise schedule as described for the CIFAR
dataset in Ho et al. (2020).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

5
0
%

su
b

sa
m

p
le

1 r=0.668
ρ=0.649

r –Pearson correlation
coefficient

ρ –Spearman rank
correlation coefficient

5
0
%

su
b

sa
m

p
le

2 r=0.668
ρ=0.649

r=0.999
ρ=0.999

5
0
%

su
b

sa
m

p
le

3 r=0.669
ρ=0.648

r=0.999
ρ=0.999

r=0.999
ρ=0.999

Full
dataset

5
0
%

su
b

sa
m

p
le

4 r=0.668
ρ=0.651

50%
subsample 1

r=0.999
ρ=0.999

50%
subsample 2

r=0.999
ρ=0.999

50%
subsample 3

r=0.999
ρ=0.999

50%
subsample 3

r=1.000
ρ=1.000

50%
subsample 2

r=1.000
ρ=1.000

50%
subsample 1

r=1.000
ρ=1.000

Full
dataset

5
0
%

su
b

sa
m

p
le

1r=1.000
ρ=1.000

r=1.000
ρ=1.000

r=1.000
ρ=1.000

5
0
%

su
b

sa
m

p
le

2r=1.000
ρ=0.999

r=1.000
ρ=1.000

5
0
%

su
b

sa
m

p
le

3r=1.000
ρ=0.999

5
0
%

su
b

sa
m

p
le

4r=1.000
ρ=0.999

CIFAR-10→
←CIFAR-2

Figure 17: Correlation of the ELBO(x, θ) measurements on different data points x (samples gen-
erated from the model trained on full data), for models trained on different subsets of data. Each
subplot plots ELBO(x, θ) measurements for 200 generated samples x, as measured by two models
trained from scratch on different subsets of data, with the x-label and the y-label identifying the
respective split of data used for training (either full dataset, or randomly subsampled 50%-subset).
Each subplot shows the Pearson correlation coefficient (r) and the Spearman rank correlation (ρ)
for the ELBO(x, θ) measurements as measured by the two models trained on different subsets of
data. The two parts of the figure show results for two different datasets: CIFAR-2 on the left, and
CIFAR-10 on the right.

Sampling We follow the standard DDPM sampling procedure with a full 1000 timesteps to create the
generated samples as described by Ho et al. (2020). DDPM sampling usually gives better samples (in
terms of visual fidelity) than Denoising Diffusion Implicit Models (DDIM) sampling Song et al. (2022)
when a large number of sampling steps is used. As described in Section 2.1, when parameterising
the conditionals pθ(x(t−1)|x(t)) with neural networks asN

(
x(t−1)|µt−1|t,0

(
x(t), ϵtθ(x

(t))
)
, σ2

t I
)

we
have a choice in how to set the variance hyperparameters {σ2

t }Tt=1. The σ2
t hyperparameters do not

appear in the training loss; however, they do make a difference when sampling. We use the “small”
variance variant from Ho et al. (2020, §3.2), i.e. we set:

σ2
t =

1−
∏t−1

t′=1 λt′

1−
∏t

t′=1 λt′
(1− λt)

J.3 DETAILS ON DATA ATTRIBUTION METHODS

TRAK For TRAK baselines, we adapt the implementation of Park et al. (2023); Georgiev et al.
(2023) to the diffusion modelling setting. When running TRAK, there are several settings the authors
recommend to consider: 1) the projection dimension dproj for the random projections, 2) the damping
factor λ, and 3) the numerical precision used for storing the projected gradients. For (1), we use a
relatively large projection dimension of 32768 as done in most experiments in Zheng et al. (2024).
We found that the projection dimension affected the best obtainable results significantly, and so we
couldn’t get away with a smaller one. We also found that using the default float16 precision
in the TRAK codebase for (3) results in significantly degraded results (see Figure 21, and so we
recommend using float32 precision for these methods for diffusion models. In all experiments,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

5
0
%

su
b

sa
m

p
le

1 r=0.960
ρ=0.957

r –Pearson correlation
coefficient

ρ –Spearman rank
correlation coefficient

5
0
%

su
b

sa
m

p
le

2 r=0.964
ρ=0.957

r=0.989
ρ=0.988

5
0
%

su
b

sa
m

p
le

3 r=0.964
ρ=0.954

r=0.991
ρ=0.993

r=0.991
ρ=0.990

Full
dataset

5
0
%

su
b

sa
m

p
le

4 r=0.965
ρ=0.956

50%
subsample 1

r=0.990
ρ=0.989

50%
subsample 2

r=0.991
ρ=0.990

50%
subsample 3

r=0.993
ρ=0.991

50%
subsample 3

r=1.000
ρ=1.000

50%
subsample 2

r=1.000
ρ=0.999

50%
subsample 1

r=1.000
ρ=1.000

Full
dataset

5
0
%

su
b

sa
m

p
le

1r=0.989
ρ=0.988

r=1.000
ρ=1.000

r=1.000
ρ=0.999

5
0
%

su
b

sa
m

p
le

2r=0.989
ρ=0.988

r=1.000
ρ=1.000

5
0
%

su
b

sa
m

p
le

3r=0.989
ρ=0.989

5
0
%

su
b

sa
m

p
le

4r=0.989
ρ=0.988

CIFAR-10→
←CIFAR-2

Figure 18: Correlation of the diffusion loss ℓ(x, θ) measurements on different data points x (samples
generated from the model trained on full data), for models trained on different subsets of data. See the
caption of Figure 17 for details, the plot is identical except for the measurement being the diffusion
loss rather than ELBO.

0 200 400 600 800 1000

Diffusion timestep

100

101

ELBO weighting

Training loss weighting

Figure 19: The diffusion loss and diffusion ELBO as formulated in (Ho et al., 2020) (ignoring the
reconstruction term that accounts for the quantisation of images back to pixel space) are equal up to
the weighting of the individual per-diffusion-timestep loss terms and a constant independent of the
parameters. This plot illustrates the relatives difference in the weighting for per-diffusion-timestep
losses applied in the ELBO vs. in the training loss.

we use float32 throughout. For the damping factor, we report the sweeps over LDS scores in
Figures 8 and 10, and use the best result in each benchmark, as these methods fail drastically if the
damping factor is too small. The damping factor reported in the plots is normalised by the dataset
size N , to match the definition of the GGN, and to make it comparable with the damping reported for
other influence functions methods introduced in this paper. For non-LDS experiments, we use the
best damping value from the corresponding LDS benchmark.

CLIP cosine similarity One of the data attribution baselines used for the LDS experiments is CLIP
cosine similarity (Radford et al., 2021). For this baseline, we compute the CLIP embeddings (Radford

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

7.1% ±0.7

3.1% ±0.8

9.8% ±0.8

12.3% ±0.8

25.1% ±0.3

(1.7%)

(12.3%)

0 20 40 60 80 100

Rank Correlation % (LDS)

CIFAR-2

3.4% ±0.7

0.5% ±0.8

3.1% ±0.7

2.3% ±0.8

3.2% ±0.1

(0.5%)

(2.3%)

0 20 40 60 80 100

Rank Correlation % (LDS)

Exact Retraining

K-FAC Influence(m. loss)

D-TRAK

K-FAC Influence

CLIP Cosine Similarity

CIFAR-10

Figure 20: Linear Data-modelling Score (LDS) for the probability of sampling trajectory. The
plot follows the same format as that of Figures 2a and 2b. Overall, probability of the sampling
trajectory appears to be a difficult proxy for the marginal probability of sampling a given example,
given that it suffers from the same issues as the ELBO on CIFAR-2 (it’s better approximated by the
wrong measurement function), and there is extremely little correlation in the measurement across the
retrained models on larger datasets (CIFAR-10).

et al., 2021) of the generated sample and training datapoints, and consider the cosine similarity
between the two as the “influence” of that training datapoint on that particular target sample. See
(Park et al., 2023) for details of how this influence is aggregated for the LDS benchmark. Of course,
this computation does not in any way depend on the diffusion model or the measurement function
used, so it is a pretty naı̈ve method for estimating influence.

K-FAC We build on the https://github.com/f-dangel/curvlinops package for our
implementation of K-FAC for diffusion models. Except for the ablation in Figure 4, we use the
K-FAC expand variant throughout. We compute K-FAC for PyTorch nn.Conv2d and nn.Linear
modules (including in attention), ignoring the parameters in the normalisation layers.

Compression for all K-FAC influence functions results, we use int8 quantisation for the query
gradients.

Monte Carlo computation of gradients and the GGN for influence functions Computing the
per-example training loss ℓ(θ, xn) in Section 2.1, the gradients of which are necessary for computing
the influence function approximation (Equation (6)), includes multiple nested expectations over
diffusion timestep t̃ and noise added to the data ϵ(t). This is also the case for the GGNmodel

D in
Equation (9) and for the gradients ∇θℓ(θ, xn) in the computation of GGNloss

D in Equation (11),
as well as for the computation of the measurement functions. Unless specified otherwise, we use
the same number of samples for a Monte Carlo estimation of the expectations for all quantities
considered. For example, if we use K samples, that means that for the computation of the gradient of
the per-example-loss∇θℓ(θ, xn) we’ll sample tuples of (t̃, ϵ(t̃), x(t̃)) independently K times to form
a Monte Carlo estimate. For GGNmodel

D , we explicitly iterate over all training data points, and draw
K samples of

(
t̃, ϵ(t̃), x

(t̃)
n

)
for each datapoint. For GGNloss

D , we explicitly iterate over all training

data points, and draw K samples of
(
t̃, ϵ(t̃), x

(t̃)
n

)
to compute the gradients∇θℓ(θ, xn) before taking

an outer product. Note that, for GGNloss
D , because we’re averaging over the samples before taking

the outer product of the gradients, the estimator of the GGN is no longer unbiased. Similarly, K
samples are also used for computing the gradients of the measurement function.

For all CIFAR experiments, we use 250 samples throughout for all methods (including all gradient
and GGN computations for K-FAC Influence, TRAK, D-TRAK), unless explicitly indicated in the
caption otherwise.

J.4 DAMPING

For all influence function-like methods (including TRAK and D-TRAK), we use damping to improve
the numerical stability of the Hessian inversion. Namely, for any method that computes the inverse of
the approximation to the Hessian H ≈ ∇2

θLD = ∇2
θ
1/N

∑
ℓ(θ, xn), we add a damping factor λ to

31

https://github.com/f-dangel/curvlinops

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

10−9 10−7 10−5 10−3 10−1 101 103 105

Damping factor

0.00

0.05

0.10

0.15

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Target Measure Train.Loss

Loss Loss Loss

Loss Sq.Norm Sq.Norm (D-TRAK)

ELBO ELBO* Loss

ELBO Sq.Norm Sq.Norm (D-TRAK)

CIFAR-2 - TRAK Influence

Figure 21: LDS scores on for TRAK (random projection) based influence on CIFAR-2 when using
half-precision (float16) for influence computations. Compare with Figure 8. NaN results are
indicated with ×.

the diagonal before inversion:

(H + λI)−1,

where I is a dparam × dparam identity matrix. This is particularly important for methods where the
Hessian approximation is at a high risk of being low-rank (for example, when using the empirical
GGN in Equation (11), which is the default setting for TRAK and D-TRAK). For TRAK/D-TRAK,
the approximate Hessian inverse is computed in a smaller projected space, and so we add λ to
the diagonal directly in that projected space, as done in Zheng et al. (2024)). In other words, if
P ∈ Rdproj×dparam is the projection matrix (see (Park et al., 2023) for details), then damped Hessian-
inverse preconditioned vector inner products between two vectors v1, v2 ∈ Rdparam (e.g. the gradients
in Equation (6)) would be computed as:

(Pv1)
⊺
(H + λI)

−1
Pv,.

where H ≈ P∇2
θLDP

⊺ ∈ Rdproj×dproj is an approximation to the Hessian in the projected space.

For the “default” values used for damping for TRAK, D-TRAK and K-FAC Influence, we primarily
follow recommendations from prior work. For K-FAC Influence, the default is a small damping value
10−8 throughout added for numerical stability of inversion, as done in prior work (Bae et al., 2024).
For TRAK-based methods, Park et al. (2023) recommend using no damping: “[...] computing TRAK
does not require the use of additional regularization (beyond the one implicitly induced by our use of
random projections)” (Park et al., 2023, § 6). Hence, we use the lowest numerically stable value of
10−9 as the default value throughout.

Note that all damping values reported in this paper are reported as if being added to the GGN for the
Hessian of the loss normalised by dataset size . This differs from the damping factor in the TRAK
implementation (https://github.com/MadryLab/trak), which is added to the GGN for
the Hessian of an unnormalised loss (

∑
n ℓ(θ, xn)). Hence, the damping values reported in (Zheng

et al., 2024) are larger by a factor of N (the dataset size) than the equivalent damping values reported
in this paper.

J.5 LDS BENCHMARKS

For all LDS benchmarks Park et al. (2023), we sample 100 sub-sampled datasets (M := 100 in
Equation (23)), and we train 5 models with different random seeds (K := 5 in Equation (23)), each
with 50% of the examples in the full dataset, for a total of 500 retrained models for each benchmark.
We compute the LDS scores for 200 samples generated by the model trained on the full dataset.

Monte Carlo sampling of measurements For all computations of the “true” measurement functions
for the retrained models in the LDS benchmarks we use 5000 samples to estimate the measurement.

32

https://github.com/MadryLab/trak

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

J.6 RETRAINING WITHOUT TOP INFLUENCES

For the retraining without top influences experiments (Figure 3), we pick 5 samples generated by
the model trained on the full dataset, and, for each, train a model with a fixed percentage of most
influential examples for that sample removed from the training dataset, using the same procedure as
training on the full dataset (with the same number of training steps). We then report the change in the
measurement on the sample for which top influences were removed.

Monte Carlo sampling of measurements Again, for all computations of the “true” measurement
functions for the original and the retrained models used for calculating the difference in loss after
retraining we use 5000 samples to estimate the measurement.

J.7 TRAINING DETAILS

For CIFAR-10 and CIFAR-2 we again follow the training procedure outlined in Ho et al. (2020),
with the only difference being a shortened number of training iterations. For CIFAR-10, we train
for 160000 steps (compared to 800000 in Ho et al. (2020)) for the full model, and 80000 steps for
the subsampled datasets (410 epochs in each case). On CIFAR-2, we train for 32000 steps for the
model trained on the full dataset, and 16000 steps for the subsampled datasets (800 epochs). We
train for significantly longer than Zheng et al. (2024), as we noticed the models trained using their
procedure were somewhat significantly undertrained (some per-diffusion-timestep training losses
ℓt(θ, x) have not converged). We also use a cosine learning-rate schedule for the CIFAR-2 models.

J.8 HANDLING OF DATA AUGMENTATIONS

In the presentation in Section 2, we ignore for the sake of clear presentation the reality that in most
diffusion modelling applications we also apply data augmentations to the data. For example, the
training loss LD in Equation (3) in practice often takes the form:

LD =
1

N

N∑

n=1

Ex̃n
[ℓ(θ, x̃n)] ,

where x̃n is the data point xn after applying a (random) data augmentation to it. This needs to be
taken into account 1) when defining the GGN, as the expectation over the data augmentations Ex̃n

can either be considered as part of the outer expectation Ez , or as part of the loss ρ (see Section 2.3),
2) when computing the per-example train loss gradients for influence functions, 3) when computing
the loss measurement function.

When computing GGNmodel
D in Equation (9), we treat data augmentations as being part of the out

“empirical data distribution”. In other words, we would simply replace the expectation Exn
in the

definition of the GGN with a nested expectation Exn
Ex̃n

:

GGNmodel
D (θ) = Exn

[
Ex̃n

[
Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
(2I)∇θϵ

t̃
θ

(
x(t̃)
)]]]]

.

with x(t̃) now being sampled from the diffusion process q(x(t̃)|x̃n) conditioned on the augmented
sample x̃n. The terms changing from the original equation are indicated in yellow. The “Fisher”
expression amenable to MC sampling takes the form:

FD(θ) = Exn

[
Ex̃n

[
Et̃

[
E
x
(t̃)
n ,ϵ(t̃)

Eϵmod

[
gn(θ)gn(θ)

⊺]]]]
, ϵmod ∼ N

(
ϵt̃θ

(
x(t̃)
n

)
, I
)
,

where, again, gn(θ) = ∇θ∥ϵmod − ϵt̃θ(x
(t̃)
n)∥2.

When computing GGNloss
D in Equation (11), however, we treat the expectation over daea augmenta-

tions as being part of the loss ρ, in order to be more compatible with the implementations of TRAK
(Park et al., 2023) in prior works that rely on an empirical GGN (Zheng et al., 2024; Georgiev et al.,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

2023).13Hence, the GGN in Equation (11) takes the form:

GGNloss
D (θ) = Exn

∇θ (Ex̃n [ℓ(θ, x̃n)])∇⊺

θ (Ex̃n [ℓ(θ, x̃n)])︸ ︷︷ ︸
ℓ̃(θ,xn)

= Exn

[
∇θ ℓ̃(θ, x̃n)∇⊺

θ ℓ̃(θ, x̃n)
]
,

where ℓ̃ is the per-example loss in expectation over data-augmentations. This is how the Hessian
approximation is computed both when we’re using K-FAC with GGNmodel

D in presence of data
augmentations, or when we’re using random projections (TRAK and D-TRAK).

When computing the training loss gradient in influence function approximation in equation Equa-
tion (5), we again simply replace the per-example training loss ℓ(θ⋆, xj) with the per-example training
loss averaged over data augmentations ℓ̃(θ⋆, xj), so that the training loss LD can still be written as a
finite sum of per-example losses as required for the derivation of influence functions.

For the measurement function m in Equation (6), we assume we are interested in the log probability
of (or loss on) a particular query example in the particular variation in which it has appeared, so we
do not take data augmentations into account in the measurement function.

Lastly, since computing the training loss gradients for the influence function approximation for
diffusion models usually requires drawing MC samples anyways (e.g. averaging per-diffusion
timestep losses over the diffusion times t̃ and noise samples ϵ(t)), we simply report the total number
of MC samples per data point, where data augmentations, diffusion time t̃, etc. are all drawn
independently for each sample.

13The implementations of these methods store the (randomly projected) per-example training loss gradients
for each example before computing the Hessian approximation. Hence, unless data augmentation is considered
to be part of the per-example training loss, the number of gradients to be stored would be increased by the
number of data augmentation samples taken.

34

	Introduction
	Background
	Diffusion Models
	Influence Functions
	Generalised Gauss-Newton matrix

	Scalable influence functions for diffusion models
	Approximating the Hessian
	GGN for diffusion models
	K-FAC for diffusion models

	Gradient compression and query batching
	What to measure

	Experiments
	Potential challenges to use of influence functions for diffusion models

	Discussion
	Derivation of Influence Functions
	Implicit Function Theorem
	Applying the implicit function theorem to quantify the change in the optimum of a loss

	Derivation of the Fisher “GGN” formulation for Diffusion Models
	Kronecker-Factored Approximate Curvature
	Evaluating Data Attribution
	Runtime memory and compute
	Asymptotic Complexity
	K-FAC and K-FAC Inversion
	Preconditioned Query Gradients Computation
	Training Gradients and Scores Computation
	Comparison with TRAK

	Runtime Complexity
	Runtime Results
	Memory Usage

	Gradient compression ablation
	Damping LDS ablations
	Empirical ablations for challenges to use of influence functions for diffusion models
	LDS results for probability of sampling trajectory
	Experimental details
	Datasets
	Models
	Details on data attribution methods
	Damping
	LDS Benchmarks
	Retraining without top influences
	Training details
	Handling of data augmentations

