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Abstract

Effective traffic intersection control is crucial for urban sustainability. State of the1

art research seeking Artificial Intelligence (AI), for example Deep Reinforcement2

Learning (DRL) based traffic control requires environment states through various3

Computer Vision methods, where the collective state of multiple cameras across an4

intersection constitute the single state for AI. This brings in serious robustness or5

fault-tolerance concerns on the deployed system. Camera systems are highly sus-6

ceptible to faults due to multiple possible points of failure. A single fault collapses7

the AI state and hence the capacity of AI controller to manage the traffic is gone.8

Also, infrastructure deployment and maintenance is a slow bureaucratic process9

in these countries, which makes camera faults a regular event. In the given paper,10

we build a web based, independent and alternative, traffic state processing method11

which can replace the camera dependency completely, or support as a backup12

mechanism until the camera system is back online, making the AI intersection13

control robust to camera failures.14

1 Introduction15

While gathering the real data for an intersection for analysis, we observed multiple issues hampering16

the sound operation of the deployed cameras. Some of the issues were related to17

• One camera power adapter failure18

• Power failure for one approach19

• Communication line failure from one approach20

• Multiple times Local Processing Unit hang or power-off21

In issues related to the camera device, a crane was required for repair. For issues at ground level,22

efforts have to be made to trace down the point of failure, and then replace the faulty component. All23

of these require days to weeks to get done, due to many dependencies involved in the maintenance24

process. Due to such problems, we could get just 40 days of complete data in 4-month duration.25

We started to wonder how can AI based systems be deployed effectively with so many failure points26

present in even a simple camera based traffic control system. A fault in a single component can27

collapse the whole AI state, and the capacity to control the traffic is gone. To overcome this problem,28

we analyzed for an alternative mechanism to compensate for camera failures until the repair is done.29

This requires getting traffic dependent travel time(s) across the intersection from Webservice APIs30

provided by Google or Microsoft. For our analysis, we used the Distance Matrix (Advanced)1 API of31

the former , which returns the distance with real-time travel times for the set of points given.32

There maybe a side concern that a good and consistent network connectivity is needed for the proper33

functioning of web-based methods. For such scenarios, we will only miss receiving latest information34

for the time instant where connectivity goes low. We can utilize the information received in the35

1https://developers.google.com/maps/documentation/distance-matrix/overview
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Type Duration Desc Freq Cnt Traffic Density Google Time

Min Mean Max Min Mean Max

Train 8 hours Daytime 5 sec 5760 0.011 0.360 0.935 35 72.04 188
Test 4 hours Till-noon 30 sec 480 0.013 0.323 0.931 47 74.79 117

Table 1: Dataset Description with absolute 3M (Min,Mean,Max) Traffic Density, Google Time values
previous communication as an approximate. Also, the connectivity will resume automatically without36

our intervention, which is not the case with installed cameras as something has to be done to fix their37

failures. Also, as per our analysis and observations from the traffic API, the real-time travel times38

does not fluctuate highly over a few seconds. Related work is discussed in Appendix A.39

2 Data Description40

To analyze the suitability of Google Time data in place of Traffic Density, we gathered two sets of41

data, an 8 hour high frequency (5 sec) data for training and analysis, and a 4 hour low frequency (3042

sec) data for evaluation. As the purpose of evaluation data is to validate the generalization of the43

learning over a longer period, high frequency test data is not cost-effective. Various other details on44

these data are given in Table 1. This process required data collection from two modules in a time45

synchronized manner -46

i. Traffic Density: This data was gathered using Bouwmans (2014) from the cameras placed at a busy47

intersection in New Delhi.48

ii. Google Time: We requested real-time data from Google for the various approaches at the49

intersection. Each time value correspond to the primary flow of traffic for each phase for 400mt50

distant points across the intersection.51

We pair the Traffic Density and Google Time values based on the frequency of the latter. We ignore52

the intermediate Time Density values in that duration.53

3 Evaluation Baselines, Benchmarks, Metrics54

To validate the performance of Google Time, we performed experiments over various scenarios and55

traffic datasets, and compared the performance with suitable baselines.56

3.1 Baselines57

We compare our methods with state-of-the-art RL models and recognized baselines:58

i. Presslight (Wei et al. (2019)) for decentralized multi-intersection processing with 20x20 DNN59

architecture and MaxPressure as the reward.60

ii. FrugalLight for low-resource decentralized intersection processing, with 15x15 DNN architecture61

with StopDensity as the reward.62

iii. EcoLight (Chauhan et al. (2020)) for efficiently deployable decentralized intersection control,63

with 10x10 DNN architecture and StopDensity reward.64

iv. Fixed Timing: for signal switching to the next approach after fixed time intervals.65

Our RLDecision module contains 15x15 DNN architecture and Stop Density reward.66

3.2 Benchmarks67

We use 4 real road datasets (1-4 hour each) -68

i. Dataset 1 is a legacy traffic data from same intersection, processed using YOLO Redmon et al.69

(2016) and used in our prior works.70

ii. Dataset 2 is generated from the procured training data, using Traffic Density based processing.71

iii. Dataset 3 is a new 4 hour dataset generated from the recent procured training data.72

iv. Dataset 16x1 is a 16-intersection 4-approach dataset taken from the baseline Presslight Wei et al.73

(2019). As our real data based Google Time conversion supports 3 approaches, the experiments with74

this dataset consider the traffic on three incoming approaches.75

3.3 Metrics76

The average case performance metrics are i. nOut: the number of vehicles cleared, ii. Travel Time:77

time spent by cleared vehicles, and iii. Total Time: time spent by all vehicles, over the single or the78

network of intersections as per the dataset type.79
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3.4 Simulator80

We use the CityFlow traffic simulator Zhang et al. (2019) for these experiments, for the purpose of81

comparison with suitable state-of-the-arts. It requires road network structure, phase information and82

traffic dataset. We can set the desired phase using API calls. For every phase change, a 5-second83

yellow and all-red time is given to clear the intersection. CityFlow provides environment information84

via various data-structures, which are processed to compute various metrics to compare across the85

control algorithms.86

Figure 1: Various RL models (Dotted DNNs used only for training i.e. only solid DNNs are deployed)

4 GoogleTime based RL model performance87

We generate TD_TO_GT conversion mapping, learnt by fitting Traffic Density to Google Time88

over a DNN, as per the process described in Section C. We explore a range of multiple DNN based89

models (in Figure 1) to seek a fault tolerant solution. We performed various experiments, for the 390

real datasets and the results are shown in Table 2, GT denotes Google Time and TD denotes Traffic91

Density. We perform RL training for 250 epochs and then average their metrics for the next 50 unseen92

epochs. We employ a DNN with loss function as Mean Square Error, with details shown in Table 4.93

The Figure 1(a) shows the current way of exploiting RL models for traffic management, where camera94

data is processed via Computer Vision methods to get traffic measurement (like density). Figure 1(b)95

shows a way to exploit Google Time at training through simulation. During training, we convert96

the simulator provided Traffic Density to Google Time using the conversion learnt by TD_TO_GT97

module over real data. Once the model is trained, we can remove the TD_TO_GT conversion98

module and directly feed Google Time data taken from web to the DecisionRL for real-time usage.99

This model is highly suitable for developing regions where a large number of intersections can be AI100

controlled without cameras installation and building other backbone infrastructure. Figure 1(c) gives101

a method to exploit both traffic density data and Google data to allow RL learn a more robust policy102

than existing methods with unary data. Here, the actual Traffic Density information is also given to103

DecisionRL alongside Google Time.104

Finally, Figure 1(d) gives a method to exploit Google Time data to compensate for the Camera105

with a fault, thus allowing RL to function as it would with the real camera data. The Google Time,106

Fig Model DNN 1 2

State Arch Param nOut Travel Total nOut Travel Total

1(a)
Presslight 80 20x20 2082 1250.2 244.31 249.91 1763.2 158.79 162.16

FrugalLight 3 15x15 332 1214.3 238.85 257.39 1808.5 177.02 177.52
EcoLight 2 10x10 162 1246.7 253.83 254.16 1860.7 182.60 181.04

1(b) GT 3 15x15 332 1146.8 113.09 264.18 1664.2 126.71 192.17
GT(S) 1229.9 185.63 247.53 1795.3 149.13 173.25

1(c) GT+TD 6 15x15 377 1291.2 240.65 241.75 1774.6 161.98 163.76
GT+TD(S) 1295.4 249.47 241.72 1774.6 161.98 163.76

1(d) GT+TD(B) 3 15x15 332 1220.3 195.92 251.77 1784.8 145.35 163.50
GT+TD(BS) 1242.1 230.36 250.33 1784.8 145.35 163.50

Table 2: Performance of WEBLIGHT’s RL models. Models corresponding to Fig 1(a) are the baselines
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corresponding to the traffic movement(s) underlying the failed camera, is exploited to predict the107

traffic density over the failed camera’s approach. To prepare the system with such capacity, we108

train each of TO_D1, TO_D2 to TO_Dn modules, for each approach, to handle the failure of109

any camera of that approach. During training over simulation, we use the TD_TO_GT conversion110

module alongside to facilitate the generation of Google Time corresponding to the faulty camera being111

considered. Finally, all of TO_D1 to TO_Dn modules and DecisionRL module are deployed to112

final system, and respective TO_D module is selected automatically as camera fault is detected.113

We observed that some intermittent models exhibit dull learning i.e. they either rarely switch to next114

phase, or seldom remain at a phase. This makes the model ineffective, and hence it can be discarded.115

The results after discarding these models and Selecting the remaining ones, are shown as GT(S). We116

believe that such behaviour occurs due to the outliers in the google data which get fused into the117

conversion models, and influence bad convergence for some intermittent models. The good thing118

is that it is easy to detect them by simply observing the signal change count. We also see that such119

dull learning is rare in 1(c) and 1(d) due to the influence of Traffic Density, where there is minimal120

change in metrics after the selection.121

As seen in Table 2, the performance of WEBLIGHT models with Google data and RL methods is at122

par with the state-of-the-art RL based methods. It is a promising result showing the effectiveness of123

our methods as well, alongside the robustness benefits. These outcomes are highly encouraging for124

developing regions where large number of intersections can be AI controlled without the installation125

of cameras and building other backbone infrastructure.126

In the models given in Figure 1, the dotted DNN represents conversion module which is used during127

training as a proxy to real time Google Time data. On deployment, it will be replaced with actual128

(realtime) google data. Also, as the DecisionRL is trained on good correlated Google Time and129

corresponding Traffic Density data, its expected to perform better with the real data either directly or130

with limited fine-tuning.131

5 Non-RL time-based methods performance132

Similar to the utility in RL based models, Google Time can also be utilized to improve Time based133

policies. We explore this in three flavours - Phase, Cycle and Random. The Phase queries for Google134

Time for the new phase at the start of each phase. The Cycle queries the time of all phases at the start135

of each cycle. The Random queries the time on random basis over multiple cycles. For any flavour,136

we simply allow the traffic signal to hold on to the phase for the duration as given by Google Maps in137

the previous API call, and then switch to the next phase.138

We performed experiments on the 4 real datasets discussed in Section 3 and employed the same139

TD_TO_GT modules as used for RL experiments, to facilitate Google Time values in simulation140

environment. The results are shown in Table 3. We can see that all Google Time variants perform141

better than a Fixed Time policy. For 16x1 dataset, we see that Travel Time is higher for our methods142

(shown in italics). Due to the linear arrangement of multiple (16) intersections and increased143

throughput, our methods allow some additional vehicles (with high travel time) to exit the network,144

thus pushing the overall average higher. The Cycle variant may be biased to a particular phase as it145

takes the Google Time values at the start of a particular phase. The Random variant performs fewer146

queries relatively, and is our recommendation considering the performance.147

Method 1 2 3 16x1

nOut Trvl Totl nOut Trvl Totl nOut Trvl Totl nOut Trvl Totl

FixedTime 1191 274 265 1586 257 249 5990 231 230 1672 320 1002

Phase 1361 230 224 1772 211 206 6408 188 187 1734 326 975
Cycle 1358 233 226 1726 235 228 6673 230 228 1834 369 922

Random 1356 233 226 1761 208 204 6352 193 192 1735 360 995

Table 3: Performance of WEBLIGHT’s Time based (nonRL) models on 4 real datasets

6 Conclusion and Future-work148

In the presented research work, we analyzed the Google Maps Time for its capacity to be utilized as a149

mechanism to control and manage the traffic signal, in order to sustain a fault-tolerant system. We150

can use approach-specific conversion models and intersection-level RL models to effectively bypass151

camera based failures. We also presented a Random query based mechanism to control traffic lights152

just by using the Google Time and without any camera based infrastructure.153
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Appendix154

A Background and Related Work155

The traffic problem has been widely acknowledged, and traffic control authorities are putting efforts156

to bring new and effective ways to manage the traffic flows. To reduce the waiting times at traffic157

signals, authorities convert the roads to one-way traffic int (2018b) and introduce new roundabouts158

int (2014) at traffic heavy intersections. These have been the traditional ways to manage the flow of159

traffic.160

With the fast progression and blending of technology with public life, new technological opportunities161

have been created. The authorities are open to experiment on such avenues. Shifting from wired162

connections between traffic controller and the control lights, to wireless control is already in progress163

int (2018a). CCTVs can be used to find queue length (with initial infrastructure factor), underground164

induction loop sensors can count the number of vehicles (which will be effected by unwanted digging),165

and Google Maps can be utilized (which has its own set of concerns).166

In a ground experiment by the city control authority at Hyderabad (India) int (2019b), Google Maps167

was utilized to increase the wait time for an approach if the traffic coming towards the intersection on168

that approach is low. Based on the trails, the method is expected to reduce waiting times by 30% and169

queue lengths by 50%. The authorities at Bengaluru (India) int (2019a) performed similar trial, and170

reported a 10-20 seconds improvement in wait times at a key intersection.171

One research group Kumarage et al. (2018) analyzed Google Maps travel time information over long172

distances in an urban area in SriLanka for the purpose of a pilot project for having a priority lane173

for buses. They observed a small increase in the travel time, and a small decrease in the speed (then174

available via Google Maps API), during the trials. They also analyzed the travel time and speed175

information from Google to predict the traffic flow. The flow was observed through an InfraRed176

Traffic Logger system. They used the spacial features of the road network in the process, which might177

make the system less transferable.178

In another work Arunachalam Muthupalaniappan (2019), the authors extracted the traffic information179

level from the colour codes of Google Maps image at a central server and then scaled the values to180

represent traffic data. Then they use a custom algorithm for controlling the traffic system.181

For our analysis, we utilize the Google Maps differently, getting precise time data using the API over182

small distances across the intersection.183

B Issues with Correlation184

On analysis of the correlation between Traffic Density and Google Time (using DNN as in Table 4(a)),185

we observed a good correlation and encouragement for Google Time to be used effectively for the186

traffic management purpose undertaken by Traffic Density till now. Almost 80% data samples showed187

less than 15% prediction error. There was a small fraction of data with unreasonable deviation.188

Purpose Type Loss Function Optimizer Architecture

a Correlate Regression Mean Squared Error RMSprop 15x15

b Classify Classification Sparse Categorical Crossentropy FullyConnected

Table 4: Various DNNs used in the fault-tolerance analysis.

To find the cause of the small set of outliers, we analyzed the data to see if we can find some of the189

outliers without using AI methods. So, we utilized a method to make many bins quantizing the traffic190

density. The samples falling into each bin have Traffic Density in a small range, but the Google Time191

can be in any range. A small processing in the bins lead us to one form of outliers as shown in Table192

5. Here, and for all subsequent experiments, we use the 400mt Google Time due to its alignment193

with Traffic Density.194

For every block of samples, 3 samples are presented, spanning over small period of time. The middle195

sample is from the clock time between the other two samples, and carries Traffic Density in between196

the two samples as well, yet the Google Time (ground truth) values are far beyond the values from197

other two samples.198
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Data Clock Traffic Density Google Time Our Prediction Percent Error

Test
11:33:00 0.37 0.27 0.21 79 78 73 80.73 83.40 66.38 2.19 6.92 9.07
11:43:00 0.35 0.25 0.04 59 81 80 77.98 80.06 63.58 32.17 1.16 20.53
11:53:30 0.16 0.22 0.04 87 82 72 75.58 76.32 63.55 13.13 6.92 11.74

Test
13:45:00 0.18 0.14 0.20 80 80 69 76.69 75.93 65.33 4.14 5.09 5.33
13:57:00 0.20 0.16 0.21 71 111 101 77.25 76.97 65.62 8.81 30.66 35.03
14:25:30 0.25 0.17 0.22 82 82 68 77.97 77.97 65.73 4.92 4.91 3.34

Train
13:29:50 0.05 0.08 0.51 79 86 70 78.32 76.02 69.59 0.86 11.61 0.58
13:58:00 0.04 0.07 0.49 72 161 69 77.73 75.11 69.18 7.96 53.35 0.26
14:45:15 0.02 0.07 0.47 84 80 69 77.24 74.50 68.90 8.05 6.87 0.14

Train
16:03:25 0.10 0.04 0.46 81 70 70 77.38 74.15 68.41 4.46 5.93 2.27
16:42:10 0.21 0.04 0.49 67 85 115 78.82 76.06 68.66 17.64 10.52 40.30
16:49:30 0.24 0.04 0.55 84 77 77 79.91 77.35 69.53 4.87 0.46 9.70

Table 5: Out of sequence Google API response with respect to Traffic Density for the 3-approach
intersection

Our learnt TD_TO_GT model predicts the Google Time with the same soundness for all Traffic199

Density values. These predicted Google Time values, which are biased largely towards the majority /200

correlated samples, are in a narrow range for all the three samples This also raises a concern, if this201

middle sample is valid, we do not see a way with respect to Traffic Density to learn this effectively.202

And if this is really an outlier, this must be impacting/disturbing the DNN learning, and removing it203

should be fruitful for the learning process.204

C Filtering of Outlier data205

We utilize a divide-and-rule based filtering process to refine the data-pairs with high level of correla-206

tion. In the process, the outliers are removed in a phased manner to improve the chances of good207

data-pairs being selected for further processing. An algorithm describing this process is described as208

below -209

Algorithm 1 Divide and Conquer based Filter Process

Require: TrainSet, TestSet
1: errStart← 35
2: errEnd← 15
3: errStep← 5
4: model← FitRegressorTrainSet
5: for errLmt← errStart to errEnd by errStep do
6: TrainSet,Outlier ← FilterDatamodel, T rainSet, errLmt
7: model← FitRegressorTrainSet
8: 3Mstats← EvalModelmodel, TestSet
9: classifier ← FitClassifierTrainSet,Outlier

10: TestOk, TestOutlier ← ClassifyDataclassifier, TestSet
11: 3MstatsOk ← EvalModelmodel, TestOk
12: MaxSeq ← GetMaxSequenceTestOutlier
13: print 3Mstats, 3MstatsOk, MaxSeq
14: end for

For FitRegressor and filtering outlier data from the training set using FilterData, we use DNN210

with parameters as shown in Table 4(a). For FitClassifier and classifying (unseen) test data211

using ClassifyData, we use DNN with a loss function as Sparse Categorical Crossentropy, with212

other features as shown in Table 4(b). The classification gives a confidence on the percentage of213

Google Time values to be effectively predicted using Traffic Density during training over simulation.214

EvalModel is used for evaluating the trained models over the test data, and provide the 3M (Min,215

Mean, Max) metrics. The values for errStart, errEnd and errStep are selected by intuition for216

experimental purpose.217
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D Impact of Data Filtering and Classification218

The results of the filter process are shown in Table 6. We can see that the 3M metric error for the raw219

test dataset keeps improving (reducing) as the training data is refined. We further opted to employ a220

classification mechanism to filter the test data as well, for which we see better prediction capability.221

Hence, this classification mechanism can be used as a confidence predictor to further show how222

reliable the prediction on unseen data can be. It also opens a window for new algorithms to be223

researched for the set of Filtered Outlier Test Data.224

The process enables us to find a generic and improved correlation between Traffic Density and Google225

Time, which is depicted in the RL based experiments as well. These refined models are deployed as226

TD_TO_GT modules in Figure 1, which facilitate effective simulation based RL training for traffic227

policy convergence. Regarding the outlier correlation, we think that it maybe due to i. some historic228

learning of the Google Maps service (which influences it to consider different traffic volume than it229

is on the road), or ii. an outcome of the network dependent crowd-sourced data (which is tough to230

always be realtime and accurate).231

Max Train Raw Test Data Filtered Good Test Data Outlier Test Data

Error Cnt Min Mean Max Cnt Min Mean Max Cnt MaxSeq

35 89.11 0.015 10.11 42.61 99.17 0.015 10.01 42.20 0.83 2
30 81.84 0.009 9.61 41.24 95.21 0.013 9.18 36.78 4.79 2
25 71.65 0.011 9.13 41.27 87.71 0.011 8.21 28.86 12.29 6
20 59.05 0.009 8.43 40.11 74.79 0.010 6.81 23.21 25.21 12
15 43.13 0.007 7.84 38.74 57.92 0.010 5.39 21.44 42.08 17

Table 6: Percent Error after sequential filtering process
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