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ABSTRACT

We present a three-stage framework for training deep learning models specializing
in antibody sequence-structure co-design. We first pre-train a language model using
millions of antibody sequence data. Then, we employ the learned representations
to guide the training of a diffusion model for joint optimization over both sequence
and structure of antibodies. During the final alignment stage, we optimize the
model to favor antibodies with low repulsion and high attraction to the antigen
binding site, enhancing the rationality and functionality of the designs. To mitigate
conflicting energy preferences, we extend AbDPO (Antibody Direct Preference
Optimization) to guide the model towards Pareto optimality under multiple energy-
based alignment objectives. Furthermore, we adopt an iterative learning paradigm
with temperature scaling, enabling the model to benefit from diverse online datasets
without requiring additional data. In practice, our proposed methods achieve
high stability and efficiency in producing a better Pareto front of antibody designs
compared to top samples generated by baselines and previous alignment techniques.
Through extensive experiments, we showcase the superior performance of our
methods in generating nature-like antibodies with high binding affinity consistently.

1 INTRODUCTION

Antibodies are large, Y-shaped proteins that play a crucial role in protecting the human body against
various disease-causing antigens (Scott et al., 2012). As shown in Figure 1, an antibody consists of
two identical heavy chains and two identical light chains. Antibodies have remarkable abilities to
bind a wide range of antigens, and the tips of the Y shape exhibit the most variability (Collis et al.,
2003; Chiu et al., 2019). These critical regions, composed of specific arrangements of amino acids,
are known as Complementarity Determining Regions (CDRs) since their shapes complement those of
antigens. To a great extent, the CDRs at the tips of light and heavy chains determine an antibody’s
specificity to antigens (Akbar et al., 2021). Hence, the key challenge in antibody design is identifying
and designing effective CDRs as part of the antibody framework that bind to specific antigens.

Antibody

Antigens

CDRs on variable domain of light chain 

CDRs on variable domain of heavy chain 

CDRs

CDRs

Heavy chain

Light chain

 

 

CDR-H3 in Antigen-Antibody Complex

Figure 1: Illustration of an antibody binding to an antigen. The antibody’s light and heavy chains are
shown with their variable (V) and constant (C) regions. The third CDR in the heavy chain (CDR-H3),
colored in orange, is critical for determining the binding affinity to the antigen.

Recently, various deep learning based methods achieve great success in the long-standing problem
of antibody design. For example, Madani et al. (2023) and Rives et al. (2019) borrow ideas from
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language models and treat proteins as sequences to predict their structures, functions, and other
properties. These methods benefit from having access to large datasets with millions of protein
sequences, but often lead to subpar results in generation tasks conditioned on protein structures (Gao
et al., 2023; Martinkus et al., 2024). Due to the determinant role of structure in protein function, co-
designing sequences with structures emerges as a more promising approach (Anishchenko et al., 2020;
Harteveld et al., 2022; Jin et al., 2022a;b). Among all, diffusion-based methods stand out by learning
the reverse process of transforming desired protein structures from noise (Vinod, 2022; Lisanza
et al., 2023; Martinkus et al., 2024). These methods achieve atomic-resolution antibody design and
state-of-the-art results in various tasks, including sequence-structure co-design, fix-backbone CDR
design, and antibody optimization (Luo et al., 2022; Zhou et al., 2024b).

Despite the prevalence of generative models, two key problems persist in effective antibody sequence-
structure co-design. First, datasets containing complete 3D structures of antibodies are orders of
magnitude smaller than sequence-only datasets. For example, the most common dataset for antibody
design, SAbDab (Dunbar et al., 2013), only contains a few thousand antibody structures despite
daily updates. The scarcity of high-quality antigen-antibody pairs, coupled with high variability of
CDR structures (Collis et al., 2003), further constrains the performance of learning-based approaches.
Second, existing methods overlook energy functions during supervised training and struggle to
generate antibodies with low repulsion and high binding affinity. Contrary to traditional computational
methods, recent efforts (Luo et al., 2022; Jin et al., 2022a;b; Kong et al., 2023a) shift their focus from
searching for minimal energy states to optimizing metrics such as Amino Acid Recovery (AAR) and
Root Mean Square Deviation (RMSD). However, these metrics are prone to manipulation, often fail to
differentiate between different error types, and ignore important side chain structures in CDR-antigen
interactions (Zhou et al., 2024b). Overreliance on these metrics gives rise to irrationality in generated
structures and widens the gap between in silico and in vitro antibody design.

To address the aforementioned challenges, we introduce a three-stage training pipeline focusing on
rationality and functionality for antibody design. Inspired by the recent success of Large Language
Models, we adopt a similar training paradigm comprising pre-training, transferring and alignment.

1. Pre-training. We first utilize a pre-trained antibody language model, trained on millions of amino
acid sequences, to alleviate the shortage of structured antibody data. This approach enables the
model to capture underlying relationships between proteins and internalize fundamental biological
concepts such as structure and function (Rives et al., 2019; Chowdhury et al., 2021).

2. Transferring. We then leverage the learned representations extracted from the language model to
train a smaller model on a curated dataset of antibody-antigen pairs, allowing the model to adapt
to the specific task of antigen-specific antibody design. The diffusion-based model is then able to
recover not only sequences but also coordinates and side-chain orientations of each amino acid
conditioned on the entire antigen-antibody framework (Luo et al., 2022).

3. Alignment. For the final stage, we conduct energy-based alignment of the diffusion model using
Pareto-Optimal Energy Alignment as an extension of Direct Preference Optimization (DPO)
(Wallace et al., 2023). By reusing designs generated by the model and labeling them with
biophysical energy measurements, we compel the model to favor antibodies with lower repulsion
and higher affinity in a data-free fashion. Additionally, we introduce an iterative version of the
alignment algorithm in an online setting, allowing the model to benefit from online exploration. To
balance exploration and exploitation during alignment, we propose decaying temperature scaling
during the sampling process. Empirical results verify that our methods surpass existing alignment
methods, consistently generating antibodies with energies closer to Pareto optimality.

In summary, our main contributions are:

• We devise the first three-stage training framework for antibody sequence-structure co-design,
consisting of pre-training, transferring, and alignment.

• We propose an efficient multi-objective alignment algorithm with online exploration which consis-
tently produces a better Pareto front of models in terms of energy without additional data.

• Our approach achieves state-of-the-art performance in generating more natural-like antibodies with
better rationality and functionality.
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2 RELATED WORK

Computational Antibody Design. Deep learning based methods are now widely used for antibody
design, with many latest work incorporating generative models (Alley et al., 2019; Saka et al., 2021;
Shin et al., 2021; Akbar et al., 2022). Jin et al. (2022a) introduce HERN, which uses hierarchical
message passing networks to encode both atoms and residues in an autoregressive manner. Kong et al.
(2022) propose MEAN, utilizing E(3)-equivariant graph networks to better capture the geometrical
correlation between different components. Additionally, Kong et al. (2023b) propose dyMEAN,
focusing on epitope-binding CDR-H3 design and modeling full-atom geometry. Luo et al. (2022)
propose a diffusion model that uses residue type, atom coordinates, and side-chain orientations to
generate antigen-specific CDRs. Martinkus et al. (2024) propose Ab-Diffuser, which incorporates
more domain knowledge and physics-based constraints.

Diffusion-based Generative Models. Diffusion models are a type of generative model with an
encoder-decoder structure. It involves a Markov-chain process with diffusion steps to add noise
to data (encoder) and reverse steps to reconstruct desired data from noise (decoder) (Weng, 2021;
Luo, 2022; Chan, 2024). DDPM (Ho et al., 2020) is one of the most well-known diffusion models
utilizing this process. Song et al. (2020a) propose DDIM, which is an improved version of DDPM
that reduces the number of steps in the generation process. Score-matching (Hyvärinen and Dayan,
2005; Vincent, 2011; Song et al., 2020b) is also a popular research area in diffusion models. The key
idea of score-matching is to use Langevin dynamics to generate samples and estimate the gradient
of data distribution. Later, Song et al. (2021) propose a solver for faster sampling in the context of
score-matching methods using stochastic differential equations.

Alignment of Generative Models. Preference alignment during fine-tuning improves the quality
and usability of generated data. Reinforcement Learning (RL) is one popular approach to align
models with human preferences, and RLHF (Ouyang et al., 2022) is an example of such algorithm.
Rafailov et al. (2024) propose DPO as an alternative approach to align with human preferences.
Different from RL-based approaches, DPO achieves higher stability and efficiency as it does not
require explicit reward modeling. Building upon DPO, recent work such as DDPO (Black et al.,
2023), DPOK (Fan et al., 2024), and DiffAC (Zhou et al., 2024a) demonstrate the possibility of
adapting existing alignment techniques to various generative models. SimPO (Meng et al., 2024)
improves DPO by using the average log probability of a sequence as the implicit reward.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Each amino acid is represented by its type si ∈ {ACDEFGHIKLMNPQRSTVWY}, coordinate
xi ∈ R3, and orientation Oi ∈ SO(3), where i ∈ {1, . . . , N}. Here, N is total number of amino
acids in the protein complex which may contain multiple chains (Luo et al., 2022).

In this work, we focus on the specific problem of designing CDR, a critical functioning component
of the antibody, given the remaining antibody and antigen structure. Let the CDR of interest consists
of m amino acids starting from index l+ 1 to l+m on the entire antibody-antigen framework with a
total of N amino acids. We denote the target CDR asR = {(sj ,xj ,Oj) | j = l+1, . . . , l+m} and
the given antibody-antigen framework as F = {(si,xi,Oi) | i ∈ {1, . . . , N}\{l + 1, . . . , l +m}}.
Therefore, our objective is to model the conditional distribution P (R | F).

3.2 DIRECT PREFERENCE OPTIMIZATION

To tackle the common issues of fine-tuning with Reinforcement Learning (RL), Rafailov et al. (2023)
propose DPO as an alternative for effective model alignment. In the setting of DPO, we have an
input x and a pair of output (y1, y2) from dataset D, and a corresponding preference denoted as
yw ≻ yl | x where yw and yl are the “winning” and “losing” samples amongst (y1, y2) respectively.
According to Bradley-Terry (BT) model (Bradley and Terry, 1952), for a pair of output, the human
preferences are governed by a ground truth reward model r(x, y) such that BT preference model is

p(y1 ≻ y2 | x) = σ(r(x, y1)− r(x, y2)), (3.1)
where σ(·) is sigmoid. Then, the optimal policy π∗

r is defined by maximizing reward:

π∗
r = argmax

π
Ex∼D,y∼π(y|x)

[
r(x, y)− β log

π(y | x)
πref(y | x)

]
, (3.2)
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where β is the inverse temperature controlling the KL regularization. By solving (3.2) analytically,
Rafailov et al. (2023) give a relation between the ground-truth reward and optimal policy:

r(x, y) = β log
π∗
r (y | x)

πref(y | x)
+ β logZ(x), where Z(x) =

∑
y

πref(y | x) exp (r(x, y)/β). (3.3)

This allows us to rewrite BT preference model (3.1) without reward model r (only in π∗
r , πref ):

p(yw ≻ yl | x) = σ

(
β log

π∗
r (yw | x)

πref(yw | x)
− β log

π∗
r (yl | x)

πref(yl | x)

)
. (3.4)

In this way, the maximum likelihood reward objective for a parameterized policy πθ becomes:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
. (3.5)

This derived loss function bypasses the need for explicit reward modeling, enabling an RL-free
approach for preference optimization. While DPO is first designed for language models, we can
re-formulate it for diffusion models and arrive at a similar differentiable objective following (Wallace
et al., 2023), or see Appendix A.3 for details.

4 METHODOLOGY

In this section, we present our energy alignment method for designing nature-like antibodies, named
AlignAb. We introduce Pareto-Optimal Energy Alignment to fine-tune the model under conflicting
energy preferences in Section 4.1. Then, we present an iterative version of the algorithm and discuss
how to mitigate mode collapse during sampling with temperature scaling in Section 4.2. Finally, we
summarize the alignment algorithm and three-stage training framework in Section 4.3.

4.1 PARETO-OPTIMAL ENERGY ALIGNMENT (POEA)

Pre-trained models often struggle to produce natural-like antibodies because they tend to ignore
important physical properties during the optimization process. These physical properties manifest
themselves as various energy measurements such as Lennard-Jones potentials (accounting for at-
tractive and repulsive forces), Coulombic electrostatic potential and hydrogen bonding energies
(Adolf-Bryfogle et al., 2017). We aim to close this gap by aligning the pre-trained model to favor
antibodies with low repulsion and high attraction energy configurations at the binding site. While
AbDPO (Zhou et al., 2024b) demonstrates the potential of naïve DPO in antibody design, there are
two primary distinctions in this context:

(D1) The ground-truth reward model, given by energy measurements, is available.

(D2) There are multiple, often conflicting, energy-based preferences.

Therefore, we propose Pareto-Optimal Energy Alignment to address (D1) by injecting ground-truth
reward margin into the DPO loss, and (D2) by extending DPO to multiple preferences.

Incorporating Reward Model. Since we have access to the ground-truth reward model, it would be
unwise to ignore this extra information and perform alignment with just the preference labels. We
show how to extend DPO and incorporate the available reward values as part of the training objective.
Let’s consider a new reward function r′(x, y) := r(x, y) + f(x) by adding the ground-truth reward
model r(x, y) and a random reward model f(x) which depends only on the input. According to (3.3),
we express r′(x, y) in terms of its optimal policy under the KL constraint:

r′(x, y) = β log
π∗
r′(y | x)

πref(y | x)
+ β logZ(x), where Z(x) =

∑
y

πref(y | x) exp (r′(x, y)/β). (4.1)

Note that r′(x, y) and r(x, y) induce the same optimal policy by construction (see Lemma A.2 and
Appendix A.2 for details):

π∗
r′ = π∗

r = argmax
π

Ex∼D,y∼π(y|x)

[
r(x, y)− β log

π(y | x)
πref(y | x)

]
.

Then, we cast the random reward model f(x) into a function of π∗
r and r:

f(x) = β log
π∗
r (y | x)

πref(y | x)
+ β logZ(x)− r(x, y). (4.2)
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Finally, we replace r(x, y) with f(x) in the original preference model p(y1 ≻ y2 | x) = σ(r(x, y1)−
r(x, y2)) and hence DPO loss (3.5) becomes below loss over the parametrized model πθ as

−E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

−∆r

)]
, (4.3)

where ∆r := r(x, yw) − r(x, yl) is the positive reward margin between yw and yl. Notably, the
obtained loss differs from the vanilla DPO loss (3.5) by including an additional reward margin ∆r.
To better understand how the derived loss facilitates the alignment process, we take the gradient of
the loss and interpret each term individually:

−βE(x,yw,yl)∼D

[
σ(r̃θ(x, yl)− r̃θ(x, yw) + ∆r︸ ︷︷ ︸

(I): combined sample weight

)

[
∇θ log π(yw | x)︸ ︷︷ ︸

(II): increase likelihood of yw

− ∇θ log π(yl | x)︸ ︷︷ ︸
(III): decrease likelihood of yl

]]
,

where r̃θ(x, y) = β log πθ(y|x)
πref(y|x) is the implicit reward defined by the models. Similar to the DPO

gradient, term (II) and (III) aim to increase the likelihood of the preferred sample yw and decrease that
of the dispreferred sample yl. However, the key distinction lies in the weighting of each sample pair
in term (I). Our weighting term incorporates both the implicit reward margin, r̃θ(x, yw)− r̃θ(x, yl),
and the explicit ground-truth reward margin ∆r. This meets our expectation as a larger reward gap
between the sampled pair would result in a more pronounced adjustment in the model’s weights.

Multi-Objective Alignment. Given n ground-truth reward models r = [r1, . . . , rn]
T, we construct

a dataset D̂ = {(xi, yi, r(x, yi))} that records the reward values for each input and its corresponding
output. In practice, each reward value is an energy measurement associated with certain physical
properties. Following Zhou et al. (2023), the goal for multi-objective preference alignment is not to
learn a single optimal model but rather a Pareto front of models {π∗

r̂ | r̂ = wTr,w ∈ Ω} and each
solution optimizes for one specific collective reward model r̂:

π∗
r̂ = argmax

π
Ex,y∼D̂

[
r̂(x, y)− β log

π(y | x)
πref(y | x)

]
, (4.4)

where w = [w1, . . . , wn]
T s.t.

∑n
i=1 wi = 1 is a weighting vector in the preference space Ω.

To obtain a preference pair (x, yw, yl), we first select two random data points (x, yi, r(x, yi)) and
(x, yj , r(x, yj)) from D̂ and then compute their collective rewards r̂(x, yi) and r̂(x, yj). Among
(yi, yj), we assign yw ≻ yl | x which satisfies r̂(x, yw) > r̂(x, yl).

To incorporate multiple preferences, we replace the original reward model r in (4.3) with the collective
reward model r̂ = wTr and arrive at a Pareto-Optimal-Energy-Alignment (POEA) loss:

LPOEA(πθ;πref) = −E(x,yw,yl)∼D̂

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

−∆r̂

)]
, (4.5)

where ∆r̂ := r̂(x, yw)− r̂(x, yw). This simple formulation inherits the desired properties from its
single-objective counterpart, ensuring that it produces the optimal model πr̂ for each specific w. In
practice, we calculate the reward margin with energy measurements following Equation (D.4).

4.2 ITERATIVE ALIGNMENT WITH TEMPERATURE SCALING

Iterative Online Alignment. To further exploit the available reward model, we develop an iterative
version of our alignment method as an analogy to online reinforcement learning (RL). Instead of
relying on a large offline dataset collected prior to training as in AbDPO (Zhou et al., 2024b), our
approach starts with an empty dataset and augments it with an online dataset constructed by querying
the current model at the start of each iteration. This method mirrors how online RL agents gather
data and learn by interacting with the environment, enabling continuous policy improvement. We
present the detailed algorithm in Algorithm 1. Ideally, we are able to repeat the process until no
further improvement is observed, and we select the best model based on validation metrics. Our
experiments suggest that this online exploration leads to substantial performance gains, even when
utilizing a much smaller dataset compared to offline learning, as shown in Section 5.3.

Temperature Scaling. While CDRs exhibit significant sequence variation within antibodies (Collis
et al., 2003), parameterized neural networks often struggle to capture this diversity and suffer
from mode collapse during training (Bayat, 2023). By measuring the entropy H = −

∑
p log p

of generated sequences, we observe a notable gap between the diversity of generated and natural
CDR-H3 sequences as shown in Table 1. This implies possible model collapse during model training

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(see the comparison between 100k and 200k training steps in Table 1). To combat this, we apply
temperature scaling to the pre-trained diffusion model during the inference process.

Table 1: CDR-H3 entropy

Method Entropy (↑)
Reference 3.95

MEAN 2.18
DiffAb (100k step) 3.57
DiffAb (200k step) 3.29
DiffAb-TS 3.84

Temperature scaling adjusts the logits before applying the
softmax function to control the randomness (i.e., entropy)
of generated sequences. The scaled softmax is given by:
Softmax(zi/T ) = exp(zi/T )∑

j exp(zj/T ) where T is the temperature.
Higher temperatures encourage diversity, while lower temper-
atures encourage predictability. Since our diffusion model uses
multinomial distribution to model antibody sequences (as de-
scribed in Appendix A.1), we inject a small temperature scale
to enhance the sample diversity at inference time. Inspired by epsilon-greedy learning from RL, we
adopt a decaying temperature schedule, achieving a balance between exploration and exploitation.

We validate this approach by applying a small temperature scale (T = 1.5) to the pre-trained diffusion
model DiffAb (Luo et al., 2022). The resulting model, DiffAb-TS, produces sequences that match the
diversity of natural CDR-H3 sequences, as shown in Table 1. Through ablation studies in Section 5.3,
we further demonstrate the effect of temperature scaling during our alignment process.

Algorithm 1 Iterative Pareto-Optimal Energy Alignment

1: Input: Initial dataset D̂0 = ∅, KL regularization β, online iterations T , batch size m, reference
model πref, initial model π0 = πref, and reward model r̂.

2: for t = 0, 1, 2, · · · , T do
3: Observe xi ∼ X , and sample y1i , y

2
i ∼ πt(· | x) for all i ∈ [m].

4: Calculate rewards r̂(xi, y
1
i ) and r̂(xi, y

2
i ) for all i ∈ [m], and collect them as D̂t.

5: Optimize πt+1 with D̂0:t according to (4.5):

πt+1 ← argmin
π

E(x,yw,yl)∼D̂0:t

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

−∆r̂

)]
.

6: end for
7: Output: Choose the best model in π0:T by a validation set.

4.3 THREE-STAGE TRAINING FRAMEWORK

Inspired by the recent success of large language models, we adapt the widely used 3-stage training
framework to the task of antibody design in combination with our devised alignment method.

• Pre-training. Due to the limited availability of structured antibody data, we leverage the abundant
online antibody sequences for pre-training using a BERT-based model (Devlin et al., 2019).
Following Gao et al. (2023), we employ a masked language modeling objective, where we mask
all residues within CDRs and aim to recover them. This approach enables the antibody language
model to learn expressive representations that capture the underlying relationships between proteins
and internalize fundamental biological concepts such as structure and function.

• Transferring. We use the pretrained BERT model as a frozen encoder to train a downstream
diffusion model. Specifically, this transfers the learned representations to the diffusion model for
antibody generation (see details of embedding fusion in Appendix E.1). Crucially, this representa-
tion enhancement addresses the challenge of antigen-specific antibody design: datasets are limited
and curated by human experts. The diffusion-based model recovers sequences, coordinates, and
side-chain orientations of each amino acid, conditioned on the entire antigen-antibody framework.
For detailed formulation on diffusion models for antibody generation, see Appendix A.1.

• Alignment. Lastly, we align the trained diffusion model via energy-based alignment using
Pareto-Optimal-Energy-Alignment (POEA) from (3.2), an extended version of multi-objective
DPO-diffusion for antibody design. Importantly, the Pareto weight w allows us to incorporate
designers’ preferences, enabling balanced control over multiple objectives (physical, chemical, and
biological properties) by domain experts. In summary, we propose POEA (3.2) to address issues
of conflicting energy preferences and potential mode collapse during the alignment stage. We take
advantage of ground-truth reward models (see detailed reward calculations in Appendix D) by
incorporating reward margin in the loss function and utilizing online exploration datasets.
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5 EXPERIMENTAL STUDIES

We evaluate our proposed framework, named AlignAb, for the task of designing antigen-binding
CDR-H3 regions. We first present the general experiment setup for the three training stages, then
describe the evaluation metrics and discuss the final results in this section.
5.1 EXPERIMENT SETUP

Energy Definitions. We introduce four key energy measurements where we use the first two to
evaluate the rationality and functionality of antibodies and use the rest to generate preferences during
alignment. To determine the rationality and functionality of different CDR designs, we identify two
key energy measurements CDR Etotal and CDR-Ag ∆G.

(1) CDR Etotal represents the combined energy of all amino acids within the CDR, calculated using
the default score function in Rosetta (Chaudhury et al., 2010). This energy is a strong indicator
of structural rationality, as a higher Etotal suggests significant clashes between amino acids.

(2) CDR-Ag ∆G represents the binding energy between the CDR and the target antigen, determined
using the protein interface analyzer in Rosetta (Chaudhury et al., 2010). This measurement
reflects the difference in total energy when antibody is separated from antigen. Lower ∆G values
correspond to greater binding affinity, serving as a strong indicator of structural functionality.

To generate energy-based preferences during model alignment, we use two fine-grained energy
measurements: CDR-Ag Erep and CDR-Ag Eatt.

(3) CDR-Ag Eatt captures the attraction forces between the designed CDR and the antigen.
(4) CDR-Ag Erep captures the repulsion forces between the designed CDR and the antigen.

As suggested by Zhou et al. (2024b), we further decompose Eatt and Erep at the amino acid level to
provide more explicit and intuitive gradients. We include detailed calculation formulas for the energy
measurements and their corresponding reward functions in Appendix D. We exclude CDR Etotal
and CDR-Ag ∆G measurements when determining the preference pairs because our experiments
demonstrate that CDR-Ag Eatt and CDR-Ag Erep are sufficient for effective model alignment. This
simplification reduces the computational cost associated with tuning multiple weights for different
reward models, resulting in a more efficient and stable alignment process.

Datasets. For pre-training, we utilize the antibody sequence data from the Observed Antibody Space
database (Olsen et al., 2022). Following Gao et al. (2023), we adopt the same preprocessing steps
including sequence filtering and clustering. Since we focus on CDR-H3 design, we select 50 million
heavy chain sequences to pre-train the model.

To transfer the knowledge, we use the antibody-antigen data with structural information from SAbDab
database (Dunbar et al., 2014). Following Kong et al. (2022), we first remove complexes with a
resolution worse than 4Å and renumber the sequences under the Chothia scheme (Chothia and Lesk,
1987). Then, we identify and collect structures with valid heavy chains and protein antigens. We
also discard duplicate data with the same CDR-H3 and CDR-L3. We use MMseqs2 (Steinegger and
Söding, 2017) to cluster the remaining complexes with a threshold of 40% sequence similarity based
on the CDR-H3 sequence of each complex. During training, we split the clusters into a training set
of 2,340 clusters and a validation set of 233 clusters. For testing, we borrow the RAbD benchmark
(Adolf-Bryfogle et al., 2017) and select 42 legal complexes not used during training.

For alignment, we avoid using additional datasets and only draw samples from the trained diffusion
model. During each iteration, we first generate 1,280 unique CDR-H3 designs and collect them as the
online dataset. Then, we reconstruct the full CDR structure including side chains at the atomic level
using PyRosetta (Chaudhury et al., 2010), and record the predefined energies for each CDR at residue
level. We repeat this iterative process 3 times for each antibody-antigen complex in the test set.

Baselines. We compare AlignAb with 5 recent state-of-the-art antibody sequence-structure co-design
baselines. MEAN (Kong et al., 2022) generates sequences and structures using a progressive full-shot
approach. HERN (Jin et al., 2022a) generates sequences autoregressively and refines structures
iteratively. dyMEAN (Kong et al., 2023b) generates designs with full-atom modeling. ABGNN (Gao
et al., 2023) introduces a pre-trained antibody language model combined with graph neural networks
for one-shot sequence-structure generation. DiffAb (Luo et al., 2022) utilizes diffusion models to
model type, position and orientation of each amino acid. All methods except for MEAN is capable of
generating multiple antibodies for a specific antigen. To ensure a fair comparison, we implement a
random version of MEAN by adding a small amount of random noise to the input structure.
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5.2 ANTIGEN-BINDING CDR-H3 DESIGN

Evaluation Metrics. To better measure the gap between designs generated by different models and
natural antibodies, we use CDR Etotal and CDR-Ag ∆G as defined above, rather than commonly
used metrics such as AAR and RMSD. Additionally, we include CDR-Ag Eatt and CDR-Ag Erep
used during model alignment. Zhou et al. (2024b) argue these physics-based measurements are
indispensable in designing nature-like antibodies and act as better indicators of the rationality and
functionality of antibodies. Based on these energy measurements, we compute energy gap as the
mean absolute error relative to natural antibodies. We sample 1,280 antibodies using each method
and perform structure refinement with the relax protocol in Rosetta (Chaudhury et al., 2010). To
select the best sample from each test case, we aggregate rankings of CDR Etotal and CDR-Ag ∆G.

Table 2: Summary of CDR Etotal, CDR-Ag ∆G, CDR-Ag Eatt, and CDR Erep (kcal/mol) of reference
antibodies, ranked top-1 andibodies and total antibodies designed by our model and other baselines
(MEAN, HERN, dyMEAN, ABGNN, DiffAb). We compute the generation gap as the mean absolute
error relative to reference. Lower values are better in all measurements. Our results indicate that our
methods generate antibodies closer to reference antibodies compared to baseline methods.

Method CDR Etotal CDR-Ag ∆G CDR-Ag Eatt CDR-Ag Erep Gap
Top Avg. Top Avg. Top Avg. Top Avg. Top Avg.

Reference -19.33 - -16.00 - -18.34 - 18.05 - - -

MEAN 46.27 186.05 -19.94 26.14 -5.13 -5.16 7.77 29.21 31.16 73.14
HERN 7,345.11 10,599.92 640.50 2,795.15 -6.64 -1.98 1.67 36.88 1453.75 2416.97
dyMEAN 5,074.11 12,311.15 4,452.26 10,881.22 -12.62 -5.06 139.42 1,762.59 2422.10 6183.425
ABGNN 1315.34 3022.88 -11.52 16.08 -1.63 -0.48 22.15 8.84 354.38 778.54
DiffAb -1.50 158.90 -6.18 260.30 -12.30 -15.71 18.63 603.58 19.74 263.44
AlignAb -6.37 30.45 -8.81 25.16 -14.89 -14.81 15.52 56.22 17.91 39.00

Results. We report the main evaluation results in Table 2. For the sake of completeness, we include
additional metrics for RMSD and AAR in Table 3. We also provide additional visualization examples
in Figure 4. Overall, AlignAb outperforms baseline methods and narrows the gap between generated
and natural antibodies. Furthermore, AlignAb demonstrates the smallest difference between top
samples and average samples, suggesting a higher consistency in the generated antibody quality.

While baseline methods possess lower values for certain energy measurements, the generated anti-
bodies are often far from ideal. For instance, MEAN, despite achieving a low CDR-Ag ∆G, exhibits
significantly higher CDR Etotal, indicating less favorable overall interactions and potential structural
clashes. HERN, dyMEAN and ABGNN show poor performance across most metrics, with high CDR
Etotal values, suggesting strong repulsion due to close antigen-antibody proximities. Comparatively,
DiffAb demonstrates a more balanced approach. It benefits from the theoretically guaranteed diversity
of diffusion models and produces a higher variance in the quality of the designed CDRs. This provides
DiffAb a higher probability of generating high-quality top-1 designs compared to other baselines.

Compared with DiffAb, AlignAb achieves better results in all but one energy measurement. Thanks
to the proposed energy alignment, AlignAb reduces average CDR Etotal, CDR-Ag ∆G and CDR-Ag
Erep by a large margin, while maintaining reasonable CDR-Ag Eatt values. This indicates antibodies
generated by AlignAb have fewer clashes and exhibit strong binding affinity to target antigens.

We anticipate further performance gains beyond current results with some simple modifications. Due
to limited computational resources, we assign the same weight to the reward models across all test
data (see Appendix E.2). By tuning the reward weightings, we can optimize the energy trade-offs
between multiple conflicting objectives for each antigen-antibody complex, potentially resulting
in a Pareto front of models. Additionally, increasing the sample size and number of iterations for
alignment will likely enhance the overall performance and reliability of the generated antibodies.
These preliminary results underscore the potential of AlignAb in generating nature-like antibodies.
We include the full evaluation results in Table 4.
5.3 ABLATION STUDIES

Our approach introduces three main novel designs for creating nature-like antibodies: Pareto-optimal
energy alignment, iterative online exploration, and temperature scaling. To validate the effectiveness
of each component, we conduct comprehensive ablation studies to demonstrate how these design
elements contribute to the overall performance of our model. As an example, we apply our method to
an antigen with PDB ID: 5nuz to illustrate the impact of each component. We provide additional
examples of our ablation studies in Figure 3.
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(A)  RNTLTGDYFDY

(B)  RRNRYGGYFDY

(C)  YYYYYGYYFDY

(D)  DSGSGGYGFDY

Figure 2: Frontiers of CDR-Ag Eatt and CDR-Ag Erep alignment and typical samples produced by
different reward weightings in POEA. (A) is the reference CDR-H3 (colored in orange) from PDB
ID 5nuz. (B) is the best CDR-H3 design generated by AlignAb with low overall energy and high
similarity with the reference structure. (C) is the typical type of design when Eatt reward dominates,
and often consists of large side chains and contains structural collisions. (D) is the typical type of
design when Erep reward dominates, and often lack of side chains with weak binding with the antigen.

Pareto-Optimal Energy Alignment. To illustrate how our proposed algorithm resolves conflicting
alignment objectives, we train a front of models by selecting different weightings of the reward
models defined in Equation (4.4). For each set of reward weightings, we train the model for 2,000
steps and record the average CDR-Ag Eatt and CDR-Ag Erep by sampling 128 designs. To better
understand the effects of different reward weightings between CDR-Ag Eatt and CDR-Ag Erep, we
analyze two typical categories of inferior results caused by unbalanced reward models, as shown in
Figure 2 (C) and (D). Specifically, when the weight for CDR-Ag Eatt is too high, the model tends to
generate sequences with large amino acids such as Tyrosine (Y) and Tryptophan (W), resulting in
massive structural collisions. Conversely, when the weight for CDR-Ag Erep is too high, the model
tends to generate sequences with small amino acids, like Serine (S) and Glycine (G), resulting in
low binding affinities with the target antigen. These examples highlight the importance of balancing
reward weightings during the alignment process to design nature-like antibodies.

Online Exploration with Temperature Scaling. To show the effectiveness of online learning and
temperature scaling, we compare the full AlignAb framework and its counterparts without the two
modules. For AlignAb, we collect 1,280 samples at each iteration and repeat the alignment process
for 3 times, each for 2k steps. For offline alignment with a fixed dataset (AlignAb offline), we collect
3,840 samples to match the total size of the dataset observed during iterative alignment. We also test
the performance of AlignAb without temperature scaling during sampling (AlignAb w/o TS). As
shown in Figure 2, the full training framework produces a better front of models in terms of CDR-Ag
Eatt and CDR-Ag Erep and proves the necessity of both online exploration and temperature scaling.
This matches our expectation as we show in Section 4.1 that using the POEA loss in Equation (4.5)
the model converges to the optimal model under different collective reward models.

6 CONCLUSION

In this work, we adapt the successful paradigm of training large language models to the field of
antibody sequence-structure co-design. Our three-stage training pipeline addresses the key challenges
posed by limited structural antibody-antigen data and the common oversight of energy considerations
during optimization. During alignment, we optimize the model to favor antibodies with low repulsion
and high attraction to the antigen binding site, enhancing the rationality and functionality of the
designs. To mitigate conflicting energy preferences, we extend AbDPO in combination with iterative
online exploration and temperature scaling to achieve Pareto optimality under multiple alignment
objectives. Our proposed methods demonstrate high stability and efficiency, producing a superior
Pareto front of antibody designs compared to top samples generated by baselines and previous
alignment techniques. Future work includes further investigating the performance of the framework
using larger fine-tuning datasets and extending our method to other structures such as small molecules.
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A SUPPLEMENTARY BACKGROUNDS

A.1 DIFFUSION PROCESSES FOR ANTIBODY GENERATION

A diffusion probabilistic model consists of two processes: the forward diffusion process and the
reverse generative process. Let T denote the terminal time, and t ∈ [T ] denote the diffusion time
step. LetRt = {(stj ,xt

j ,O
t
j) | j = l + 1, . . . , l +m} denote a sequence of latent variables sampled

during the diffusion process, where (stj ,x
t
j ,O

t
j) is the intermediate state for amino acid j at diffusion

step t. Intuitively, the forward diffusion process injects noises to the original data R0, while the
reverse generative process learns to recover ground truth by removing noise fromRT . To model both
the sequence and structure of antibodies, Luo et al. (2022) defines three separate diffusion processes
for q(Rt | R0) as follows:

q(stj | s0j ) = C
(
1(stj)

∣∣∣ ᾱt · 1(s0j ) + (1− ᾱt) · 1
20
· 1

)
,

q(xt
j | x0

j ) = N
(
xt
j

∣∣∣ √ᾱ0 · x0
j , (1− ᾱ0)I

)
,

q(Ot
j | O0

j ) = IGSO(3)

(
Ot

j

∣∣∣ ScaleRot(√ᾱt,O0
j

)
, 1− ᾱt

)
,

where ᾱt =
∏t

τ=1(1− βτ ) and {βt}Tt=1 is the predetermined noise schedule. Here, C denotes the
categorical distribution defined on 20 types of amino acids; N denotes the Gaussian distribution on
R3; IGSO(3) denotes the isotropic Gaussian distribution on SO(3). We use 1 to represent one-hot
encoding function and ScaleRot to represent rotation angle scaling under a fixed axis.

To recoverR0 fromRT given specified antibody-antigen framework F , Luo et al. (2022) defines the
reverse generation process p(Rt−1 | Rt,F) at each time step as follows:

p(st−1
j | Rt,F) = C

(
st−1
j

∣∣∣ fθs(Rt,F)[j]
)
,

p(xt−1
j | Rt,F) = N

(
xt−1
j

∣∣∣ fθx(Rt,F)[j], βtI
)
,

p(Ot−1
j | Rt,F) = IGSO(3)

(
Ot−1

j

∣∣∣ fθO
(Rt,F)[j], βt

)
,

where all three fθ are parameterized by SE(3)-equivariant neural networks and f(·)[j] denotes the
output for amino acid j. Therefore, the training objective consists of three parts:

Lt
s = ERt∼p

[ 1

m

l+m∑
j=l+1

DKL
(
q(st−1

j | stj , s0j )
∥∥ p(st−1

j | Rt,F)
)]
, (A.1)

Lt
x = ERt∼p

[ 1

m

l+m∑
j=l+1

∥∥x0
j − fθx(Rt,F)[j]

∥∥2], (A.2)

Lt
O = ERt∼p

[ 1

m

l+m∑
j=l+1

∥∥(O0
j )

TfθO
(Rt,F)[j]− I

∥∥2
F

]
. (A.3)

Finally, the overall loss function is L = Et∼Uniform(1,··· ,T )[Lt
s + Lt

x + Lt
O]. After training the model,

we can use the reverse generation process to design CDRs given the antibody-antigen framework.

A.2 OPTIMAL POLICY OF EQUIVALENT REWARD FUNCTIONS

We cite the following definition and lemmas from DPO (Rafailov et al., 2023):

Definition A.1. We say that two reward functions r(x, y) and r′(x, y) are equivalent iff
r(x, y)− r′(x, y) = f(x) for some function f .

Lemma A.1. Under the Plackett-Luce, and in particular the Bradley-Terry, preference framework,
two reward functions from the same class induce the same preference distribution.

Lemma A.2. Two reward functions from the same equivalence class induce the same optimal policy
under the constrained RL problem.
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A.3 DPO FOR DIFFUSION MODEL ALIGNMENT

Here we review DPO for diffusion model alignment (Wallace et al., 2023). By alignment, we mean
to align the diffusion models with users’ preferences.

Let D := {(x, yw, yl)} be a dataset consisting an input/prompt x and a pair of output from a
preference model pref with preference yw ≻ yl. Our goal is to learn a diffusion model pθ(y | x)
aligning with such preference associated with pref . Let T denote the diffusion terminal time, and t
denote the diffusion time step. Let y1:T be the intermediate latent variables and R(y, y0:T ) be the
commutative reward of the whole markov chain such that

r(x, y0) := Epθ(y1:T |x,y0)[R(y, y0:T )].

Aligning pθ to pref needs

max
pθ

{
Ex∼D y0:T∼pθ(y0:T |x)[r(x, y

0)]−DKL

[
pθ(y

0:T | x) | pref(y0:T | x)
] }

.

Mirroring DPO (3.2), we arrive a ELBO-simplified DPO objective for diffusion model (Wallace et al.,
2023, Appendix S.2):

LDPO−Diffusion(pθ, pref)

≤ − E (xw
0 ,xl

0)∼D,
t∼U(0,T ),

xw
t−1,t∼pθ(x

w
t−1|x

w
t ),

xl
t−1,t∼pθ(x

l
t−1|x

l
t)

log σ

(
βT log

pθ(x
t−1
w | xt

w)

pref(x
t−1
w | xt

w)
− βT log

pθ(x
t−1
l | xt

l)

pref(x
t−1
l | xt

l)

)
,

where U denotes uniform distribution, β is KL regularization temperature. We remark this objective
has a simpler form for empirical usage, see (Wallace et al., 2023, Eqn. 14).
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B ADDITIONAL NUMERICAL EXPERIMENTS

B.1 ADDITIONAL EVALUATION METRICS

Table 3: Summary of AAR and RMSD metrics by our method and other baselines. We follow the
default sampling settings from all baselines and use ranked top-1 samples generated by our method.
AlignAb* indicates the AlignAb framework without the alignment stage.

Metrics HERN MEAN dyMEAN ABGNN DiffAb AlignAb* AlignAb
AAR ↑ 33.17 33.47 40.95 38.3 36.42 37.65 35.34

RMSD ↓ 9.86 1.82 7.24 2.02 2.48 2.25 1.51

B.2 ADDITIONAL ABLATION EXAMPLES
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Figure 3: Frontiers of CDR-Ag Eatt and CDR-Ag Erep alignment produced by different reward
weightings in POEA with four PDB examples.

B.3 DETAILED EVALUATION RESULTS
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C ADDITIONAL VISUALIZATION

Reference

(A) RNTLTGDYFDY

MEAN

(B) RGYYYYYYFDY

HERN

(C) DYDYGYYYLDV

dyMEAN

(D) ENHRGSGYSDH

DiffAb AlignAb

(E) GYGGSDYAYDY (F) RRNRYGGYFDY

Figure 4: Visualization of reference antibody (PDB ID 5nuz) and different antibodies designed by our
method and other baselines. The designed CDR-H3 structures are colored in orange and the designed
CDR-H3 sequences are recorded accordingly.
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D ENERGY CALCULATION AND REWARD MODELS

In Section 5, we introduce the calculation of two functionality-associated energies, CDR-Ag Eatt and
CDR-Ag Erep. Following Zhou et al. (2024b), we denote the residue with the index i in the antibody-
antigen complex as Ai. We then represent the side chain of the residue as Asc

i and backbone of the
residue as Abb

i , respectively.

We define the interaction energies between a pair of amino acids as EP, with the default weights
defined by REF15 (Adolf-Bryfogle et al., 2017). EP consists of six different energy types: EPhbond,
EPatt, EPrep, EPsol, EPelec, and EPlk. Following the settings from Section 3, we define the indices
of residues within the CDR-H3 range from l + 1 to l +m, and the indices of residues within the
antigen range from g + 1 to g + n. Thus, for the CDR residue with the index j, the CDR-Ag Eatt and
CDR-Ag Erep are defined as:

CDR-Ag Ej
att =

g+n∑
i=g+1

∑
e∈{hbond,att,sol,elec,lk}

(
EPe(A

sc
j , Asc

i ) + EPe(A
sc
j , Abb

i )
)
, (D.1)

CDR-Ag Ej
rep =

g+n∑
i=g+1

(
EPrep(A

sc
j , Asc

i ) + EPrep(A
sc
j , Abb

i ) + 2× EPrep(A
bb
j , Asc

i ) + 2× EPrep(A
bb
j , Abb

i )
)
.

(D.2)

From Equations (D.1) and (D.2), we conclude that the interaction energy between the CDR and the
antigen is determined by both side-chain and backbone interactions. The CDR-Ag Eatt considers
interactions primarily from side-chain atoms in the CDR-H3 region. In contrast, CDR-Ag Erep
assigns higher costs to repulsions from backbone atoms in the CDR-H3 region. This reason for the
different is that side-chain atoms contribute most of the interaction energy between CDR-H3 and
the antigen, as shown in Figure 1. Therefore, CDR-Ag Eatt exhibits a benefit in interactions, while
CDR-Ag Erep represents repulsive costs.

To guide the model alignment process, we utilize the above two energy definitions to compute the
final rewards as follows:

ratt(x, y) = −
l+m∑
i=l+1

CDR-AgEj
att, rrep(x, y) = −

l+m∑
i=l+1

CDR-AgEj
rep, (D.3)

where lower energy corresponds to a higher reward. Therefore, we compute the final collective reward
with predetermined weights as r̂(x, y) = wattratt(x, y) + wreprrep(x, y). We observe the repulsion
reward is often several orders of magnitude bigger than the attraction reward. Therefore, we utilize
the following reward margin in our actual experiments:

∆r̂ = log
(
r̂(x, yw)− r̂(x, yl)

)
. (D.4)
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E IMPLEMENTATION DETAILS

E.1 MODEL DETAILS

AlignAb consists of two parts: a pre-trained BERT model from AbGNN (Gao et al., 2023), and a
pre-trained diffusion model from DiffAb (Luo et al., 2022). For the pre-trained BERT model, our
model uses a 12-layer Transformer model with a BERTbase configuration. We set the embedding
size to 768 and the number of heads to 12. For the pre-trained diffusion model, our model takes the
perturbed CDR-H3 and its surrounding context as input. For example, 128 nearest residues of the
antigen or the antibody framework around the residues of CDR-H3. The input consists of both single
and pairwise residue embeddings. The number of features with single residue embedding is 128. It
consists of the encoded information of its amino acid types, torsional angles, and 3D coordinates
of all heavy atoms. The number of features with pairwise residue embedding is 64. It consists of
the encoded information of the Euclidean distances and dihedral angles between the two residues.
To combine the feature embeddings with the hidden representations learned from the pre-trained
BERT model, we extract the embedding for each residue from the final layer of the BERT model
and concatenate it with the single and pairwise residue embeddings. We then utilize multi-layer
perception (MLP) neural networks to process the concatenated embeddings. The MLP has 6 layers.
In each layer, the hidden state 128. The output of this neural network is the predicted categorical
distribution of amino acid types, Cα coordinates, a so(3) vector for the rotation matrix.

The diffusion models aim to generate amino acid types, Cα coordinates, and orientations. Hence, for
training the diffusion models, we take the output of MLP as input for diffusion models. We set the
number of diffusion (forward) stets to be 100. For the noise schedules, we apply the same setting of
DDPM (Ho et al., 2020), utilizing a β schedule with s = 0.01. The noises are gradually added to
amino acid types, Cα coordinates, and orientations.

E.2 TRAINING DETAILS

Transferring. We train the diffusion model part of AlignAb following the same procedure as Luo
et al. (2022). The optimization goal is to minimize the rotation, position, and sequence loss. We
apply the same weight to each loss during training. We utilize the Adam (Kingma and Ba, 2014)
optimizer with init_learning_rate=1e-4, betas=(0.9,0.999), batch_size=16,
and clip_gradient_norm=100. We also utilize a learning rate scheduler, with factor=0.8,
min_lr=5e-6, and patience=10. We perform evaluation for every 1000 training steps and
train the model on one NVIDIA GeForce GTX A100 GPU, and it can converge within 36 hours and
200k steps.

Alignment. After obtaining the diffusion model, we further align it with energy-based
preferences provided by domain experts. We utilize the Adam (Kingma and Ba, 2014)
optimizer with init_learning_rate=2e-7, betas=(0.9,0.999), batch_size=8,
clip_gradient_norm=100. We set the KL regularization term β = 100.0. In each batch,
we select 8 pairs of energy-based preference data with labeled rewards. We do not use learning rate
scheduling during alignment stage. For rewards, we set the watt and wrep with a fixed ratio 1:3. In
each alignment iteration, we fine-tune the diffusion model for 4k steps. We repeat this process 3
times for each antigen in the test set.
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