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Abstract

One of the most striking findings in modern research on large language models (LLMs) is
that scaling up compute during training leads to better results. However, less attention
has been given to the benefits of scaling compute during inference. This survey focuses
on these inference-time approaches. We explore three areas under a unified mathemati-
cal formalism: token-level generation algorithms, meta-generation algorithms, and efficient
generation. Token-level generation algorithms, often called decoding algorithms, operate
by sampling a single token at a time or constructing a token-level search space and then
selecting an output. These methods typically assume access to a language model’s logits,
next-token distributions, or probability scores. Meta-generation algorithms work on partial
or full sequences, incorporating domain knowledge, enabling backtracking, and integrating
external information. Efficient generation methods aim to reduce token costs and improve
the speed of generation. Our survey unifies perspectives from three research communities:
traditional natural language processing, modern LLMs, and machine learning systems.

1 Introduction

One of the most striking findings in modern research on large language models (LLMs) is that, given a model
and dataset of sufficient scale, scaling up compute at training time leads to better final results (Kaplan
et al., 2020; Hoffmann et al., 2022). However, there is also another lesser-mentioned scaling phenomenon,
where adopting more sophisticated methods or scaling compute at inference time (Jones, 2021) can result
in substantially better outputs from LLMs. This survey focuses on these approaches by exploring three
connected themes: token-level generation algorithms, meta-generation algorithms, and efficient generation.

Token-level generation algorithms, often called decoding algorithms, have a rich history in natural language
processing, ranging from classical greedy decoding and beam search to modern sampling algorithms such as
nucleus (Holtzman et al., 2020) and η-sampling (Hewitt et al., 2022). These methods operate by sampling
one token at a time or constructing a token-level search space. They assume varying levels of access to a
language model’s internals, such as logits, next-token distributions, or probability scores.

Recently there has been growing interest in meta-generation algorithms—algorithms that operate on partial
or full sequences, and treat the LLM as a black box that is called as part of a larger generation program
(Figure 1; Dohan et al. (2022); Schlag et al. (2023)). For example, a meta-generation algorithm for solving
a math problem might generate multiple solution paths, evaluate the solutions with a calculator, then select
the most common answer. Meta-generators can increase the compute resources devoted to generation by
making multiple model calls, augmenting the model with search algorithms (Yao et al., 2023; Madaan et al.,
2023), or incorporating external data sources. Doing so has seen success in improving task performance
(e.g., problem solving (Lewkowycz et al., 2022)) and steering the output distribution (e.g., with human
preferences (Stiennon et al., 2020)), and potentially offers a way to overcome limitations of standard LLMs
such as error accumulation (Dziri et al., 2023) and computational capacity (Merrill & Sabharwal, 2024).
Moreover, meta-generation research is widely accessible, as it often only requires black-box LLM access.

Finally, generation needs to be fast and cost-effective. Fast generation becomes increasingly challenging as
models grow in size, while cost becomes critical to consider as LLMs are integrated into algorithms that call
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1. Generation algorithms
• Maximization
• Sampling
• Controlled generation

2. Meta-generation
• Programmatic patterns
• External information

– Multiple models
– Tools
– Environments

3. Efficient generation
• Optimizing token cost
• Speeding up generators
• Speeding up meta-generators

Meta-generator

def generate_proof(llm, theorem):
strategies = [

"Prove by contradiction.\n",
"Prove by induction.\n",

]
candidates = [

llm.generate(strategy + theorem)
for strategy in strategies
for sample in range(5)

]
output = llm.generate(

"Which of the proofs is best?\n"
+ "\n".join(candidates)

)
return output

Generator

Figure 1: Generation algorithms produce output text using a language model. Meta-generation algorithms
are programs that interleave calls to generation algorithms with control flow and external information,
yielding text. Our survey covers generation algorithms and their goals (§3), meta-generation patterns (§4)
and sources of external information (§5), and efficiency in terms of token cost (§6) and speed (§7).

models many times. As a result, there is growing interest in efficient generation algorithms that speed up
generation and reduce token costs by drawing on ideas from machine learning systems and related areas.

Our survey provides a unified treatment of these three themes: token-level generation algorithms, meta-
generation algorithms, and techniques for making generation fast and cost-effective. We integrate ideas
from traditional natural language processing, modern LLMs, and machine learning systems, and present
a mathematical formalism that includes both classical generation algorithms and modern meta-generators.
This unified view is particularly important as the field expands. For example, practitioners working on novel
meta-generation algorithms may benefit from learning about the historical context of generation algorithms
or practical efficiency constraints, while researchers interested in efficiency may benefit from learning about
major algorithmic patterns. More broadly, we aim to promote further research on inference-time approaches.

Roadmap. This paper provides a survey of algorithms for token-level generation, meta-generation, and
efficient generation, summarized in Figure 1. First, we consider why we use generation algorithms at all.
Generally, a user’s intent is to surface a high-quality output from the model, which we formalize and discuss
in §2. Readers who would like to review terminology or follow the mathematical formulation of the survey in
depth should start in this section. Next, we discuss token-level generation algorithms in detail in §3. Most
algorithms referred to as “decoding algorithms” in the literature are covered in this section. We discuss these
methods’ theoretical motivation, practical impact, commonalities, and provide a unified frame for discussion.
These methods generally require some degree of access to the model’s internals.

A growing set of methods operate over partial or full sequences rather than individual tokens. These meta-
generation algorithms have emerged from several communitites, including researchers interested in designing
new decoding algorithms or prompting methods, as well as researchers interested in language model alignment
and reasoning. Works from these communities often have different motivations and use different terminology.
We present a unified picture in §4, classifying them according to their programmatic structure (e.g., parallel
generation, search, or refinement), and discussing their motivations.

In addition to wanting a high-quality output, we often care about the efficiency of generation. We consider
two definitions of efficient generation. In §6 we consider the token cost of generation algorithms, which is
especially relevant to those using API-access models that charge by the token. In §7, we discuss methods for
speeding up generation primarily from a systems perspective, where access to the model weights is assumed
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and latency and throughput are the key considerations. In this section, we draw upon work primarily from
the machine learning systems (MLSys) community. The section serves as both an introduction to this area
for machine learning researchers whose work does not focus on systems, and a practical exploration of tools
for speeding up generation. We include a review of libraries that implement the described techniques.

We conclude the survey by discussing takeaways, broader directions, and future work in §8.

2 Preliminaries

Generation algorithms are used to produce outputs from a trained language model. Language models are
probabilistic models over sequences, pθ(y|x), and most generation algorithms attempt to either find highly
probable sequences or sample from the model’s distribution. A natural question is why are sophisticated
generation algorithms needed at all? For example, we might imagine that simply sampling once from the
model’s unmodified output distribution, y ∼ pθ(y|x) is sufficient. We begin by defining some terminology,
and then present general goals of generation which shed some light on this question.

2.1 The user’s goal in generation

When a user is generating outputs with a language model, it may be with one or more goals in mind.
The user may want output that is as high quality as possible for some notion of quality, such as a correct
answer to a math problem or a factual and well-written summary. The user may want multiple outputs,
such as alternative solutions to a problem or multiple summaries to read through and synthesize. In general,
users now access language models through general-purpose text-in text-out APIs, making it impossible to
enumerate all of the specific use cases or goals that a user might have.

As a result, to formalize an overall goal for generation, we will need to take a fairly general perspective. We
assume that the user has some underlying measure of “acceptability” for any set S of outputs, A(S) ∈ R. For
example, a single sequence set may have high acceptability if it represents a correct solution to a problem,
while in a different context a set S may have high acceptability if it balances some notion of diversity with
some notion of quality. The acceptability scores, when normalized, form a probability distribution that we
call the target distribution q∗,

q∗(S) ∝ A(S). (1)

Next, we treat generating outputs with a language model as sampling from a generator S ∼ g that produces
a set of sequences each time it is called. Finally, we assume that a user wants the distribution of outputs
from the generator to be “close” to the distribution of their acceptability scores according to some proximity
measurement d between distributions. An ideal generator g would thus satisfy:

arg min
g

d(q∗, g). (2)

In practice, we typically do not know how to measure the user’s acceptability nor their desired notion of
proximity, let alone how to design a generator that is guaranteed to produce outputs with high acceptability.
At a high level, the remainder of this survey can be seen as surveying ways to design generators that optimize
some proxy of acceptability in an efficient way. For example, some algorithms will try to produce a single
output that is acceptable with a language model’s probability as a proxy of acceptability. Other algorithms
will try to directly sample from some target distribution that we may interpret as being a proxy to a user’s
target distribution. To begin with, let us go into more detail on what a “generator” is, starting with the
definition of a language model, a generation model, and a generation algorithm.

2.2 The modeling problem

Language models. Let pθ be a language model that approximates the distribution p∗, denoted pθ ≈ p∗.
We consider autoregressive language models pθ(y|x) =

∏T
t=1 pθ(yt|y<t, x), where y is a sequence of tokens

from vocabulary V. Each conditional distribution is of the form, pθ(·|y<t, x) = exp(sθ(·|y<t, x))/Z, where
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y1 ∼ pθ(·)
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y4 ∼ pθ(· | y:3)

y ∈ Y

Figure 2: Sampling algorithms choose the next token at each time step si by sampling from the conditional
distribution pθ(· | y:i−1) and appending it to the context.

sθ(·|y<t, x) ∈ R|V| are referred to as logits and Z =
∑|V|

i=1 exp (sθ(·|y<t, x))i. We henceforth refer to a model
of this form as simply a language model (LM) for brevity.

A generation model associated with a language model pθ is a function g : X × Θ × Φ → P(Y)
that maps an input x ∈ X , a model pθ with θ ∈ Θ, and any additional parameters ϕ ∈ Φ to a probability
distribution over outputs, q(y|x; pθ, ϕ) ∈ P(Y).

Calculating the probability distribution over outputs q(y|x; pθ, ϕ) ∈ P(Y) is in most situations analytically
intractable. One can use the generation algorithm in order to obtain independent or dependent samples
from q(y|x; pθ, ϕ) ∈ P(Y); we refer to this process as generating y ∼ q(y|x; pθ, ϕ)). We will also refer to
g as a generator and q as a generation distribution. Generation algorithms may be deterministic or
stochastic. While methods to maximize a scoring function are often deterministic and methods for generating
sets of outputs are often stochastic, in practice each kind of method can be used toward either goal.

Let us now return to the general goal of generation that we formulated above. For notational simplicity, let
us consider generating a single sequence, i.e. S = {y}. In practice, we can design a generation algorithm to
maximize some proxy r(·) of acceptability:

arg max
g

r (q∗(·|x), g(·|x; pθ, ϕ)) , (3)

where r : P(Y) × P(Y) → R is some reward function between distributions. We group generation methods
into 3 categories: methods for maximization (§2.2.1), sampling from the model (§2.2.2), and sampling from
a target distribution (§2.2.3). These are special cases of (3). For maximization, q∗ ∝ v for a scoring function
v, and we have r(q∗, g) = Ey∼gq∗(y|x). For sampling from a target distribution, r is a divergence between
the target distribution and the generation distribution.

2.2.1 Maximization

We define decoding as the process of maximizing a score either deterministically or with a high probability:

Definition 1 (Score maximizing algorithm). A score maximizing algorithm for score v : S → R refers to an
algorithm that approximates:

f(x; pθ, ϕ) = arg max
S∈P (Y)

v(S), (4)

where P (Y) is the set of all subsets of Y. Decoding algorithms can be greedy algorithms, concave maximiza-
tion algorithms, combinatorial optimization algorithms, or stochastic algorithms.

2.2.2 Sampling

Some algorithms are designed to sample from a distribution. The samples can then be used for any purpose,
such as for maximizing some task-specific metric (e.g., a metric that balances quality and diversity).
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Definition 2 (Sampler for q(pθ)). A sampler for q(pθ) gives a sample from some distribution proportional
to q(pθ):

y ∼ qp ∝ q(pθ(y|x)). (5)

2.2.3 Sampling from a specified target distribution

In some cases we can specify which target distribution q∗ an algorithm is aiming to sample from.
Definition 3 (Sampler for a target distribution). A generator q = g(x, pθ, ϕ) is called a sampler for target
distribution q∗ if it approximates:

max
q

−DKL (q∗(·|x)∥q(·|x; pθ, ϕ)) .1 (6)

An optimal sampling algorithm for q∗ yields an unbiased sample y ∼ q∗(·|x).

Next, we will see examples of algorithms that achieve these goals by generating token-by-token.

3 Token-level generation algorithms

In this section, we discuss representative methods that operate on the token-level (e.g. by sampling a single
token at a time, or constructing a token-level search space and then selecting an output at the end).

Methods in this category generally assume access to a language model’s logits, next-token distributions, or
probability scores. These methods will later be treated as black boxes that are called by meta-generators.

3.1 MAP decoding algorithms

When faced with the question of what sequence to choose from the distribution defined by a language model, a
natural objective is to choose the most likely sequence. Several popular decoding algorithms therefore attempt
to find a generation y that maximizes pθ(y|x), referred to as maximum a-posteriori (MAP) decoding.
Definition 4 (MAP decoding algorithms). A maximum a-posteriori (MAP) decoding algorithm approxi-
mates

f(x; pθ, ϕ) = arg max
y∈Y

pθ(y|x). (7)

The term MAP comes from viewing pθ as a posterior over outputs y given the observed input x, and decoding
comes from information theory.

Greedy decoding. Arguably the simplest MAP decoding algorithm is greedy decoding, which generates a
sequence ŷ1, . . . , ŷT by recursively selecting the highest probability token from the next-token distribution:

ŷt = arg max
yt∈V

pθ(yt|ŷ<t, x), (8)

for t = 1, . . . , T , with T determined by a stopping condition (e.g., a fixed T or y including a certain string).
Greedy decoding is an approximate MAP decoding algorithm, meaning that it finds a sequence that is not
necessarily a maximizer of (7). Specifically, it approximates (7) as:

arg max
y∈Y

pθ(y|x) = arg max
(y1,...,yT )∈Y

T∏
t=1

pθ(yt|y<t, x) (9)

≈
(

ŷ1 = arg max
y1∈V

pθ(y1|x), · · · , ŷT = arg max
yT ∈V

pθ(yT |ŷ<T , x)
)

. (10)

Despite its naive approximation, greedy decoding is a widely-used generation algorithm. For instance, it is
used in Google’s Gemini report (Gemini Team et al., 2023), and is available on typical language model APIs.

1Any divergence d with the property that q∗ = q iff d = 0 is suitable.
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Other MAP decoding algorithms. Several algorithms have been designed that typically return better
approximations (i.e., more probable sequences) than greedy decoding. In the context of neural sequence-
to-sequence models, beam search (Graves, 2012; Sutskever et al., 2014) is a widely-studied MAP decoding
algorithm. It maintains a data structure of multiple prefixes y<t at each generation step, expands each prefix
with each possible next-token, y<t ◦yt, scores each expanded prefix with pθ(y<t ◦yt|x), and retains the top-K
expanded prefixes for the next iteration. This can be seen as a generalization of greedy decoding, which
expands only a single prefix. In practice, beam search has been shown to improve upon greedy decoding in
terms of downstream task performance in many settings (e.g., Sutskever et al. (2014); Freitag & Al-Onaizan
(2017); Kulikov et al. (2019)). It has several variations and generalizations that we will return to when we
take the perspective of generation as search (§4.3). Although the space of possible outputs is extremely large,
it is sometimes possible to find an exact MAP solution (i.e., a sequence that maximizes (7)). For instance,
Stahlberg & Byrne (2019) combine elements of beam search and depth-first search to perform exact search
with machine translation models, which was improved upon in Stahlberg et al. (2022).

Pitfalls of MAP decoding. Despite its popularity, several studies suggest that the MAP decoding objec-
tive is not desirable (Meister et al., 2020). Empirically, MAP decoding has a tendency to produce degenerate
results. For example, Koehn & Knowles (2017) found that wide beam search (which approaches exact MAP
decoding in the limit) degrades neural machine translation (NMT) outputs by favoring shorter outputs. In
fact, Stahlberg & Byrne (2019) found that exact MAP decoding often returned the empty sequence in NMT.
Length normalization (e.g., dividing the log-probability of the sequence by its length) can mitigate MAP
decoding’s tendency to favor shorter sequences (see Murray & Chiang, 2018), but this is only a heuristic and
does not fully counteract degradation for the largest beam sizes (Koehn & Knowles, 2017). Approximate
MAP decoding, e.g., greedy, can also fail by getting trapped in repetitive sequences (Holtzman et al., 2020;
Welleck et al., 2020; Eikema & Aziz, 2020).

There are several explanations for degenerate behavior in MAP decoding, a phenomenon known as the
inadequacy of the mode (Eikema, 2024). Some studies attribute degenerative phenomena in MAP decoding
to the tendency of the most likely generations to accumulate so little probability that the mode becomes
arbitrary due to small errors in probability estimation (Eikema & Aziz, 2020; Stahlberg et al., 2022). In
an alternative explanation, Meister et al. (2023b) use information-theoretic analysis to show that MAP
decoding generations often fall outside of the typical set of sequences in the language model’s distribution.
To illustrate how this occurs, consider that the most probable outcome of 100 flips of a slightly biased coin
(with 0.51 probability of heads, 0.49 probability of tails) is a sequence of 100 heads. However, this result
would be atypical; a close-to-even mix of heads and tails would be more typical (Dieleman, 2020).

Unreasonable effectiveness of approximate MAP decoding. Despite the drawbacks of MAP decod-
ing, rough approximations of MAP decoding remain popular in the forms of greedy decoding and narrow
beam search. Meister et al. (2020) hypothesize that these decoding methods are effective because they
inadvertently enforce information-theoretic patterns that are characteristic of human text.

3.2 Sampling and adapters

A popular alternative to the MAP objective is to sample directly from the language model’s distribution
y ∼ pθ(y|x).

Ancestral sampling. The most basic sampling algorithm for pθ is motivated by the fact that autoregres-
sive models decompose sequence probabilities into a product of next-token conditionals:

pθ(y|x) =
|y|∏

t=1
pθ(yt|y<t, x), (11)

where y = (y1, . . . , y|y|) and yt are individual tokens. As shown in Figure 2, sampling from this model can
be done recursively,

yt ∼ pθ(·|y<t, x), (12)
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Method Purpose Adapter Extrinsic

Ancestral sampling y ∼ pθ – –
Temperature sampling y ∼ q(pθ) Rescale –
Greedy decoding y ← max pθ Argmax (temperature→ 0) –
Top-k sampling y ∼ q(pθ) Truncation (top-k) –
Nucleus sampling y ∼ q(pθ) Truncation (cumulative prob.) –
Typical sampling y ∼ q(pθ) Truncation (entropy) –
Epsilon sampling y ∼ q(pθ) Truncation (probability) –
η sampling y ∼ q(pθ) Truncation (prob. and entropy) –
Mirostat decoding Target perplexity Truncation (adaptive top-k) –
Basis-aware sampling y ∼ q(pθ) Truncation (linear program) LP Solver
Contrastive decoding y ∼ q(pθ) log pθ′ − log pθ and truncation Model pθ′

DExperts y ∼ q∗(·|x, c) ∝ pθ · (pθ+ /pθ− )α Models pθ+ , pθ−

Inference-time adaptors y ∼ q∗ ∝ R(y) ∝ (pθ · pθ′ )α Model pθ′

Proxy tuning y ∼ q∗(·|x, c) ∝ pθ · (pθ+ /pθ− )α Models pθ+ , pθ−

Table 1: Survey of token-level generation. R(y) is a scalar reward function. c is a control attribute.

where y0 is a given starting token, and the algorithm terminates upon reaching a particular token or a given
length. The result is mathematically equivalent to sampling a sequence y directly from pθ(· | x), and is
known as ancestral sampling. Other algorithms such as speculative sampling (Leviathan et al., 2022) aim to
sample from pθ more efficiently, which we will discuss in more detail later in the review (§7).

Sampling, MAP, and the diversity-coherence trade-off. Ancestral sampling avoids many of the
degenerate behaviors of MAP decoding, such as repetition traps, and introduces more diversity into LM
generations. However, ancestral sampling can suffer from incoherence, i.e., over-sampling highly-unlikely
tokens due to model error (Zhang et al., 2021). Hewitt et al. (2022) hypothesize that this occurs because
perplexity-based loss functions encourage language models to over-estimate the probability of unlikely to-
kens to avoid large loss penalties (a behavior called mode-seeking). Alternatively, Finlayson et al. (2024a)
hypothesize that constraints imposed by the LM’s output layer, i.e., the softmax bottleneck (Yang et al.,
2018), cause model errors, and propose a method, basis-aware truncation (BAT), to avoid these errors.

Balancing the diversity-coherence tradeoff. Several decoding strategies attempt to balance the
diversity-coherence tradeoff by interpolating between greedy and ancestral sampling. These include nu-
cleus (Holtzman et al., 2020), top-k (Fan et al., 2018), and η- and ϵ-sampling (Hewitt et al., 2022), which use
various heuristics to choose a threshold at each time step and only sample tokens with probability greater
than the threshold. Another approach, temperature sampling (Ackley et al., 1985; Hinton et al., 2015), scales
the LM logits to interpolate between greedy sampling and uniform sampling (setting all token probabilities
equal), which can be useful when one wants more diversity than ancestral sampling offers.

3.3 Token-level sampling adapters.

Except for beam search, all of the token-level sampling methods discussed so far can be viewed as sampling
adapters qt (Meister et al., 2023a) which adjust each next-token distribution,

yt ∼ qt(pθ(yt|y<t, x)). (13)

Example 1 (Temperature sampling as an adapter). Temperature sampling adjusts the distribution by
dividing the logits by a scalar temperature parameter τ :

qt(yt|y<t, x; pθ, τ) ∝ exp (sθ(y<t, x)/τ) . (14)

Sending τ to 0 yields greedy decoding, τ = 1 yields ancestral sampling, and τ > 1 approaches uniform
sampling (all tokens have the same probability).
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Many other token-level decoding methods can be cast as sampling adapters, including methods that re-
weight logits with outputs from another model (Liu et al., 2021; Li et al., 2023a), and a variety of other
transformations summarized in Table 1. Many of these token-level generation algorithms assume access to
the language model’s next-token distributions. In practice, next-token distributions are increasingly not
provided by common generation APIs, both for practical reasons and for security (Finlayson et al., 2024b;
Carlini et al., 2024). Instead, token-level algorithms are often implemented by the API provider, and used
by setting hyperparameters (e.g., setting a temperature τ).

Adapters for statistical control. Several decoding methods use sampling adapters to control the sta-
tistical and information-theoretic properties of model outputs and align them with those of human text.
These include locally typical sampling (Meister et al., 2023b), which aims to sample from the LM distribu-
tion’s typical set (MacKay, 2004); and mirostat sampling (Basu et al., 2021), which attempts to match the
perplexity of the generated text to the expected perplexity under Zipf’s law (Zipf, 1999; Powers, 1998).

Autoregression and lookahead adapters. Token-level algorithms generate from left-to-right, meaning
that they generate each token without knowing the eventual identity of tokens to the right. Several algorithms
have incorporated various heuristic scores v(y≤t) that adjust the next-token distribution using information
from potential future tokens. This includes explicitly generating several tokens ahead (e.g., Lu et al. (2022);
Leviathan et al. (2022)), or learning a function vϕ(y≤t) that predicts a property of a full sequence (e.g., its
style score or correctness) (Yang & Klein, 2021). Doing so can aid in satisfying sequence-level criteria.

Distribution adjustment with another language model. Some algorithms adjust the next-token
distribution using another language model. This can arise from several motivations, including removing
abnormalities in the model’s next-token distributions (Li et al., 2023a), speeding up generation (Leviathan
et al., 2022), or shifting the generation distribution to one with a property (e.g., a style) (Liu et al., 2021).

3.4 Controlled generation

Many scenarios can be framed as aiming to sample from a language model’s distribution modulated by a
sequence-level criterion c(y) (Korbak et al., 2022a;c; Hu et al., 2024; Zhao et al., 2024a):

q∗ ∝ pθ(y|x)c(y). (15)

For example, c(y) may assign high values to sequences with a particular style, or low values to sequences
with toxic content or buggy code. Another way of phrasing (15) is sampling from a particular energy-based
model (LeCun et al., 2006; Khalifa et al., 2021). We discuss three examples based on the structure of c(y).

Classifier. In some cases c(y) is a classifier p(a|x, y), which predicts the probability that y contains an
“attribute” a, such as a style or non-toxicity. The goal is then to sample from:

q∗ ∝ pθ(y|x)p(a|x, y)β , (16)

where β is a hyperparameter assigning more weight to the classifier at higher values of β. Various generation
algorithms have been developed for this purpose, such as approximations based on reweighting next-token
distributions with other language models (Liu et al., 2021), reweighting with a learned classifier that approx-
imates the sequence-level classification pϕ(a|y<t, x) ≈ p(a|y, x) (Yang & Klein, 2021), or additional training
to sample from q∗ (Khalifa et al., 2021; Hu et al., 2024; Zhao et al., 2024a).

Indicator. A special case is c(y) indicating whether y falls into a target set Y ∗
x , such as the set of correct

solutions to a reasoning problem, or sequences that have desired keywords. The goal is then to sample from:

q∗ ∝ pθ(y|x)I[y ∈ Y ∗
x ], (17)

where I[y ∈ Y ∗
x ] is 0 when y ∈ Y ∗

x and 1 when y ̸∈ Y ∗
x . Various generation algorithms incorporate a learned

verifier vϕ(x, y) ≈ I[y ∈ Y ∗
x ] to aid in achieving this goal (Cobbe et al., 2021; Lightman et al., 2024), or

design beam search heuristics for the case of desired keywords (Hokamp & Liu, 2017; Lu et al., 2022).
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There is a clear connection between sampling from a target distribution of the form (17) and maximizing a
scoring function (§2.2.1): sampling from (17) maximizes v(y) = I[y ∈ Y ∗

x ], e.g., correctness.

Reward. An important case is when c(y) is governed by a reward function r(x, y) → R:

q∗ ∝ pθ(y|x) exp
(

1
β

r(x, y)
)

, (18)

where β ∈ R interpolates between sampling from pθ (β → ∞) and maximizing reward (β → 0).

A notable example is aligning the distribution of generated text with a distribution of text preferred by
humans (Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022). One way of operationalizing this
problem is as one of finding a policy π that balances maximizing a reward r(x, y) that quantifies human
preferences with generating sequences that are probable under a pretrained model pθ:

max
π

Ex∼p,y∼pθ(y|x)[r(x, y)] − βKL (π(y|x)∥pθ(y|x)) . (19)

The policy that maximizes the above objective is (Korbak et al., 2022b; Rafailov et al., 2023):

q∗(y|x) = 1
Z(x)pθ(y|x) exp

(
1
β

r(x, y)
)

, (20)

where Z(x) is a normalization factor. One strategy for sampling from q∗ is updating pθ with reinforcement
learning, then using ancestral sampling. This strategy is referred to as reinforcement learning from human
feedback (Askell et al., 2021). Later, we will discuss meta-generation algorithms for addressing this problem.

A second approach is to re-weight each next-token distribution during autoregressive sampling. For example,
reward-augmented decoding (Deng & Raffel, 2023) assumes access to a reward function r(y≤t, x) that assigns
a scalar reward to partial generations y≤t. It re-weights the tokens with the top-k next-token probabilities
using the reward, and samples from the re-weighted distribution. That is,

yt ∼ softmax
(
s1:k

θ (y<t, x) + βr1:k)
, (21)

where s1:k
θ (y<t, x) ∈ Rk are the top-k logits at timestep t, r1:k ∈ Rk are the rewards evaluated after appending

each of the top-k tokens to the prefix y<t, and β ∈ R is a hyper-parameter. Inference-time policy adaptors (Lu
et al., 2023) directly optimizes an “adaptor” language model to adjust a base language model’s next-token
distributions so that the combined model’s generations receive higher rewards. Specifically, an adaptor
language model pϕ is combined with a base language model to form a “tailored policy”,

p(·|y<t, x) ∝ pθ(·|y<t, x)pϕ(·|y<t, x), (22)

and the tailored policy is updated with reinforcement learning while freezing the base model pθ’s parameters.

In summary, we have seen several strategies for constructing a token-level search space and adjusting the
next-token distributions of a model during sampling. Next, we will treat these algorithms as black-boxes
that can be used to generate partial or full sequences, and survey algorithms that construct search spaces
on the (partial-)sequence level or operate by drawing multiple samples.

4 Meta-generation algorithms

Some generation algorithms have the distinctive property of requiring access to a separate generation sub-
routine. For instance, best-of-N calls a generator to sample N sequences from the language model. This
sub-generator is interchangable; it can be freely chosen from top-k, temperature sampling, or any other
sequence generator. We coin the term meta-generation to describe algorithms that call sub-generators, and
identify four common patterns among meta-generators. In particular, we find that they can be classified
into the categories of chained, parallel, step-level, and refinement-based meta-generators.
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Figure 3: Three meta-generation patterns.

4.1 Chained meta-generators.

The first programmatic pattern chains multiple generators together. We start by explaining this idea in the
context of prompted language models.

Chaining prompted language models. It is increasingly common to perform input-output tasks with
a language model by specifying a prompt z,

y = f(x; pθ, z, ϕ), (23)

where f(·) is a generation algorithm, and the prompt z is a sequence of tokens that specifies the desired
behavior through a natural language instruction or input-output examples (Brown et al., 2020; Ouyang et al.,
2022). For instance, given z = multiply the two numbers and x = 1432 293, we can generate an output
y that contains an (attempted) solution. It is natural to compose the generator call with other operations,
such as composing a generator that outputs Python code with a function that executes Python code.

Similarly, it is natural to combine multiple calls to generators, e.g., generating a story using:

y = f3 ◦ f2 ◦ f1, (24)

where f1 generates a story outline, f2 fills in the sections, and f3 revises the story to meet a length constraint.
Notice that the composition is itself a generation algorithm,

f(x; pθ, (f1, f2, f3)), (25)

i.e., a mapping from an input x, model pθ, and other parameters ϕ, to an output (here, ϕ contains the
generation algorithms f1, f2, f3), or in general, a distribution over outputs q(y|x, pθ, ϕ). In general, we can
view calls to generation algorithms as steps in a program whose execution yields a generated output. We
refer to a program f(x; pθ, F ), which calls generation algorithms f ′ ∈ F , as a meta-generation algorithm.

Related ideas appear in the literature under various names, including language model cascade (Dohan et al.,
2022), LLM program (Schlag et al., 2023), and recently, scaffolding program (Zelikman et al., 2024b). We
introduce the term meta-generation as an abstraction that is agnostic to the implementation of the underlying
generator model(s) (which need not be LLMs), and to clarify the connection with other generation algorithms.

Problem decomposition. A variety of algorithms have adopted the chain pattern in order to decompose
an input-output problem into multiple steps, with each step implemented by a language model or external
function. For instance, Self-Ask (Press et al., 2023) alternates between prompting a language model to gener-
ate a sub-question and calling a search engine to find an answer to the question. System 2 Attention (Weston
& Sukhbaatar, 2023) uses multi-step generation to help the model refrain from attending to irrelevant infor-
mation. More generally, a number of tools such as LangChain (Chase, 2022) and MiniChain (Rush, 2023)
provide domain-specific languages for declaring and executing chains involving prompted language models.

4.2 Parallel meta-generators.

Another pattern is to generate multiple trajectories in parallel, then merge the resulting terminal states to
arrive at a final generated sequence. For instance, various sequence-level generation algorithms generate an
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Algorithm Aggregation type Scoring / transforming with
Best-of-N 23 Rerank LLM score or external score
Noisy-channel 145 Rerank Log-linear combination score
Majority voting 10 Transform Empirical vote frequency
Weighted majority voting 190 Transform Empirical distribution over answers
Self-consistency 194 Transform Marginal distribution over answers
Universal self-consistency 29 Transform Answer aggregation using an LLM generator
Branch-Solve-Merge 167 Transform Answer aggregation using an LLM generator / rule-based parsing
QE-fusion 192 Transform Answer contains spans from candidates

Table 2: Parallel meta-generators.

N-best list {y(n)}N
n=1 ∼ g, then apply an aggregation function h(y(1), . . . , y(N)) to arrive at a final generated

sequence. The N -best list of sequences might come from sampled generations, a beam search algorithm, or
any other generator y ∼ g that generates full sequences. We discuss aggregation functions that rerank (§4.2.1)
or transform (§4.2.2) the N -best list, then discuss sequence-level statistical rejection sampling (§4.2.3).
Table 2 presents a brief summary of algorithms from the classes that we discuss.

4.2.1 Reranking algorithms

Reranking (or rescoring) is a classical approach (Collins, 2000; Huang & Chiang, 2007) originally developed
for parsing and automatic speech recognition to achieve a trade-off between the computational complexity
of MAP decoding and its tendency to rule out good hypotheses. A reranking algorithm orders an N -best
list with a reranking function h(y(1), . . . , y(N)) → (yσ(1), . . . , yσ(N)), then selects the top-k ranked sequences.
Reranking has recently found new applications in text generation (e.g., Cobbe et al. (2021); Stiennon et al.
(2020); Krishna et al. (2022); Ni et al. (2023); Lightman et al. (2024)) by using various reranking functions
and various sources of data to learn the reranking functions. A simple and effective method is best-of-N .

Best-of-N . Best-of-N (Charniak & Johnson, 2005; Pauls & Klein, 2009) refers to generating an N -best
list and picking the best sequence according to a scoring function.

Definition 5 (Best-of-N : BoN(x, g, v, N ; ϕ)). Let g be a generation algorithm with output space Y, and
v : Y → R a scoring function. Assume that ϵ ∈ ϕ governs the randomness in g. The best-of-N generation
algorithm is defined as:

f(x, g, N, ϕ) = arg max
y(n)|n∈{1,...,N}

{
v(y(n)) | y(n) ∼ g(·|x), n ∈ {1, 2, . . . , N}

}
, (26)

where each y(n) is a generated sequence.

Best-of-N can be performed with any algorithm that can be used to generate a list of N sequences, including
temperature sampling, beam search, Viterbi decoding, or many others. In the context of language modeling,
best-of-N was developed for parsing (Charniak & Johnson, 2005; Pauls & Klein, 2009), and traditionally
involved modifying a decoding algorithm originally developed to find the top-1 hypothesis so that it obtains
the top-N highest scoring decodings. An attractive property is that Best-of-N usually incurs only a linear
increase in computational complexity compared to top-1 decoding. In the context of LLMs, best-of-N is
amenable to black-box generators (e.g., accessed via an API), since it does not require knowledge of the
generator for populating the N -best list. Modern instances of best-of-N use learned scoring functions that
are often themselves parameterized by LLMs. We discuss examples from reasoning and preference alignment.

Best-of-N in reasoning. In some settings the goal is to generate correct sequences, such as a correct
solution to a mathematical problem or a program that passes test cases. A common approach in these cases
is to learn a verifier vθ′(y) → [0, 1] that predicts the probability that an output y is correct, and use it within
Best-of-N . Doing so has seen success in mathematical reasoning (e.g., Cobbe et al. (2021); Uesato et al.
(2022); Lightman et al. (2024)), code generation (Ni et al., 2023), and other settings with similar properties.
Naturally, the performance depends on the quality of the verifier, which we return to in (§5.1).
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Best-of-N in alignment. Previously in §3.4, we discussed how the problem of aligning the distribution
of generated text with a distribution of text preferred by humans can be framed as sampling from

q∗(y|x) = 1
Z(x)pθ(y|x) exp

(
1
β

r(x, y)
)

. (27)

When a single high-reward sequence is desired (e.g., at low values of β), a natural strategy is to use best-of-N
with a learned approximation of the reward, rϕ(x, y), as the scoring function. In practice, this strategy is
an effective alternative to reinforcement learning from human feedback (RLHF) methods (Gao et al., 2022;
Beirami et al., 2024). For example, AlpacaFarm (Dubois et al., 2023) found that Best-of-1024 with a human-
preference reward model was competitive with more standard decoding methods with a model trained using
RLHF. A potential benefit is that Best-of-N does not require updating the model pθ’s parameters, at the
expense of generation-time compute.

Best-of-N depends on the quality of the reward function, which is typically a learned function rϕ(x, y). It
can suffer from reward over-optimization–i.e., returning an undesired sequence that nevertheless receives
high reward. Specifically, suppose that q∗(y|x) ∝ r∗(y), where r∗ perfectly captures the desired outcome of
generation. Best-of-N at high values of N can be seen as approximating:

arg max
y∈Y

q∗(y|x) ≈ arg max
yn|n∈{1,...,N}

rϕ(x, yn), (28)

where yn ∼ g. In practice, the learned model rϕ typically does not match r∗, especially on out-of-distribution
sequences, so best-of-N may find sequences that “overoptimize” the reward.

Noisy-channel reranking in Neural Machine Translation. A wide range of reranking methods pre-
cede the era of large language models. A classic approach is a noisy-channel model (Brown et al., 1993).
Noisy-channel means that the observed output from the system (e.g., a machine translation system) is
distorted by some unknown noise pattern (i.e., noisy channel). If we consider pθ(y|x) as the probability
of the translation y of the source language text x, then Bayes rule suggests the following relationship:
pθ(y|x) ∝ p(x|y)p(y), where p(x|y) is a channel-model, and p(y) is the target language LM.

As an example from the literature, Och & Ney (2002); Ng et al. (2019) propose to use the following log linear
combination to rerank translation candidates in beam search:

snoisy-channel(y) = log p(y|x) + λ1 log p(x|y) + λ2 log p(y), (29)

where the log-linear coefficients λ1 and λ2 are tuned empirically on a development set. Therefore, the
reranking function h in this case is defined so that the order of candidates is given by a decreasing order of
noisy channel scores snoisy-channel computed for every translation candidate.

4.2.2 Transformation algorithms

In contrast to reranking elements of the N -best list, other algorithms transform the list into a new sequence
which might not be part of the N-best list itself. For instance, mathematical question answering is an example
of a task where the potential outputs (answers to math questions) are produced as part of a much longer
decoded sequences from the LLM. In other cases we might draft N summaries, then synthesize them into a
new, final summary. This requires a transformation of the N summaries rather than a simple reranking.

Majority voting. First, this algorithm processes an N-best list (y(1), . . . , y(N)) and counts how each of
the candidates y(i) votes towards a different set of outputs (a1, . . . , aK):

h(y(1), . . . , y(N)) → (v(y(1)), . . . , v(y(N))), (30)

where v : Y → 1, . . . , K is a voting function that maps from sequence space to an output from (a1, . . . , aK).
Second, it selects the output that received the largest number of votes:

â = arg max
k

K∑
j=1

N∑
i=1

I(v(y(i)) = j). (31)
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Weighted majority voting. Integer votes counted towards each output have a tendency to result in
multiple outputs taking exactly the same number of votes. In such situations, votes assigned by every
sequence from the N-best list can be associated with a scalar score rather than a count: w(y(i)) : Y → R.
The final output selection is done by aggregating (e.g., summing) scores associated with the votes:

â = arg max
k

K∑
j=1

N∑
i=1

w(y(i))I(v(y(i)) = j). (32)

Self-consistency. Wang et al. (2023b) proposed a probabilistic perspective on aggregating scores for each
output using the probabilities of the N -best list of candidates associated with the given final output. As a
concrete example, every candidate from (y(1), . . . , y(N)) is expected to have a trailing substring that matches
at least one output from (a1, . . . , aK). Then the probability of the output ai can be approximated by
marginalizing over all candidates that ends with ai:

p(ai) =
N∑

j=1
p(ai|prefix(y(j)))I(v(y(j)) = i), (33)

where we adapt the voting function v(y(j)) to map to those outputs which correspond the ending substring
of the given candidate. While being similar to weighted majority voting, this approach gives an explicit
probability distribution over outputs. It is, however, not a hard task to normalize any given set of scores
provided by weighted majority voting to obtain a proper distribution over outputs (a1, . . . , aK).

Minimum Bayes risk decoding. Rather than seeking the most probable sequence as in MAP decoding,
minimum Bayes risk algorithms aim to find the best sequence in terms of a pairwise utility function u(y, y′):
Example 2 (Minimum Bayes risk algorithm). A minimum Bayes risk (MBR) decoding algorithm refers to
an algorithm of the form (Bickel & Doksum, 1977; Kumar & Byrne, 2004):

f(x) ≜ arg max
y′∈Y

∑
y∈Y

u(y, y′)p∗(y|x), (34)

where u : Y × Y → R. A dependence on pθ is introduced in specific instances of MBR decoding algorithms.

The MBR objective is motivated by decision theory. Intuitively, it can be thought of as seeking an output
with highest average “similarity,” as measured by the utility function u, to other candidates, particularly
those assigned high probability under p∗.

Various algorithms provide approximate solutions to the Minimum Bayes Risk (MBR) objective. They
typically consist of providing a metric m(·, ·) → R, populating a hypothesis set Yh using a generator, and
populating a evidence set Ye to estimate the risk of each hypothesis:

ŷ = arg max
y′∈Yh

1
Yh

∑
y∈Ye

m(y, y′). (35)

The hypothesis set is typically akin to an N-best set, populated by calling a generator {y(n)}N
n=1 ∼ g(·|x).

Simple strategies sample from the model, y(n) ∼ pθ. Others take the best-k outputs from a ranked list
of generations, or use more sophisticated strategies such as iteratively adding hypotheses or transforming
them (González-Rubio et al., 2011; González-Rubio & Casacuberta, 2013). Freitag et al. (2023) investigate
the impact of the underlying sampling strategy, finding variation across strategies, with epsilon sampling
performing best for machine translation. The evidence set is typically sampled from a generator, or set to
the hypothesis set to save on computation. Finally, the metric impacts performance. MBR with a particular
metric tends to inflate performance on that metric, sometimes by gaming it (Freitag et al., 2023), akin to
our discussion of reward over-optimization.

MBR methods have a rich history in the machine translation and speech recognition literature (Goel et al.,
2004; Heigold et al., 2005; GOEL, 2003; Kingsbury et al., 2012; Eikema & Aziz, 2020), and have also been
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Known upper bound distribution Mp

Un-normalized distribution q

Reject region
Accept region

Figure 4: In rejection sampling, the aim is to sample from a distribution q whose normalizing constant is
unknown. To do so, use a known distribution p that serves as an upper bound for the unknown distribution
when scaled by a constant, i.e., for some constant M and all values y, Mp(y) ≥ q(y). Next, obtain a
sample y ∼ p and accept this sample with probability q(y)/Mp(y)), otherwise reject the sample and repeat
the process. This is equivalent to sampling from q.

applied across other tasks (Shi et al., 2022; Suzgun et al., 2023). Interestingly, Bertsch et al. (2023) show
that self-consistency is a special case of MBR. In general, there are several other dimensions along which
MBR methods are categorized. We refer the reader to Bertsch et al. (2023) for further in-depth study and
taxonomy of MBR methods.

Generate-and-transform. In general, we can view the algorithms above as first generating an N best
list, followed by transforming the N best list using a transformation g(y(1), . . . , y(N)) such as voting or one
that internally estimates risk. Several other algorithms fall into this generate-and-transform pattern.

For instance, universal self-consistency (Chen et al., 2023c) prompts a language model to generate a final
sequence given the N -best list, which can avoid the aforementioned issue of parsing sequences into an answer.
Branch-solve-merge (Saha et al., 2023) transforms an input into N different prompts, generates with those
prompts, then merges the results by providing the generations to a language model. Finally, Bertsch et al.
(2023) show that several voting techniques are instances of MBR decoding methods.

4.2.3 Sequence-level rejection sampling

Previously we discussed the goal of designing a generation algorithm that samples from a target distribution
q∗ (§2.2.3). A related pattern is using a stochastic sequence generator y ∼ g to sample from q∗ using rejection
sampling. This involves sampling multiple sequences from g and is thus akin to a parallel meta-generator.

Specifically, statistical rejection sampling is a technique for sampling from a target distribution q∗ with an
unknown normalizing constant. This is accomplished by first sampling from a known distribution y ∼ g
which serves as an upper bound for q∗, (e.g., for some constant M , Mg(y) ≥ q∗(y)), then accepting the
sample with probability q∗(y)/Mg(y). Figure 4 illustrates this process. Rejection sampling is a useful tool
for sampling from a specified target distribution over an intractably large support, e.g., the set of sequences.

One example of sequence-level rejection sampling for LMs is sampling valid JSON strings from an LM. The
space of valid JSON strings is infinite and the normalizing factor is unknown, but we can sample from this
distibution by first sampling from the LM distribution pθ, then rejecting any string that is not valid JSON.
Here, the un-normalized distribution we are sampling from is

q∗(y) ∝

{
pθ(y) y is valid JSON
0 Otherwise

,

and we must use rejection sampling since the normalization term is unknown.

Best-of-N and rejection sampling. Above we introduced best-of-N as a deterministic algorithm (Defi-
nition 5). Another view is that calling best-of-N with a stochastic generator g is itself a stochastic generator,

y ∼ Bon(pθ, g, N, v), (36)

where Bon means generating N sequences y(1), . . . , y(N) ∼ g, then selecting the sequence with the highest
score v. This idea has been termed the best-of-N policy (Stiennon et al., 2020; Gao et al., 2022). Interestingly,
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Gao et al. (2022) find that the best-of-N policy may give similar reward maximization to reinforcement
learning, though with a different pattern of divergence from the underlying language model. Beirami et al.
(2024) give analytical forms for the best-of-N policy and its KL-divergence from the underlying model.

Finally, y ∼ Bon can be understood as internally performing rejection sampling (Stiennon et al., 2020). We
refer the reader to Liu et al. (2024b) for a more detailed discussion of this connection, as well as an improved
algorithm that builds on the connection between rejection sampling and best-of-N.

Pseudo-rejection sampling. Several decoding methods employ various forms of pseudo-rejection sam-
pling. One example of this is Li et al. (2024a), where the authors sample a set of k outputs from the LM,
compute the “value” of each of these outputs, and then sample from the output set by interpreting the
values as logits. As k tends toward infinity, this method approaches sampling from the value function with
a regularization term that keeps the distribution close to the LM distribution. Pseudo-rejection sampling
is often employed when the prerequisites for rejection sampling are not met, for instance when there is no
known upper bound on the target distribution.

4.3 Step-level search algorithms.

Next, we discuss meta-generation algorithms that implement classical search algorithms by calling generators.
To introduce these, it is helpful to view generation as navigating a state space s ∈ S by taking actions a ∈ A
using a generator, and receiving new states from an environment E : S × A → P(S), yielding a trajectory
(s0, a1, s1, . . . , aT , sT ). The start state s0 contains the input to the generation algorithm, i.e. x ∈ s0, while
the terminal state contains the output of the generation algorithm, i.e. y ∈ sT . Generation consists of
running the resulting process until reaching a terminal state.

As a basic example, recall that greedy decoding is defined as:

ŷt = arg max
yt∈V

pθ(yt|ŷ<t, x), (37)

for t = 1, . . . , T . The search perspective interprets this as taking next-token actions ŷt given states (x, ŷ<t), a
generator that selects the most probable next-token from pθ, and an environment that appends a next-token
to form a state (x, ŷ<t ◦ ŷt). Since greedy decoding is an approximate MAP decoding algorithm, it aims to
end in a state that maximizes pθ(y|x). In other cases the environment is less trivial, such as those involving
code execution and visual observations (Shinn et al., 2023; Zhou et al., 2023). Many algorithms can be
recovered by varying the states, actions, environment, and/or generator.

In particular, reasoning tasks such as mathematical problem solving or theorem proving have served as a
testbed for developing step-level search algorithms. In these tasks, the final output (a solution or a proof)
naturally decomposes into ‘steps’, y = (y1, . . . , yT ), where each yt is itself a sequence of tokens. One can then
consider a partial solution y<t as the state st, and generating a next-step yt as the action. The environment
appends the next-step to the partial solution, y<t ◦ yt. There is also a natural notion of success (i.e., a
correct answer, a valid proof), leading to the idea of a value function v̂(st) → [0, 1] that is used to predict
whether a solution-so-far will eventually be correct (or in general, predict the expected reward of the state).

Several algorithms maintain a queue of states that contain partially generated outputs, and iteratively select
states for exploration. Exploring a state involves expanding the state’s partial output and scoring the
expanded output with a value function v̂(st). The scores are then used to prune or prioritize states for the
next iteration. Conceptually, step-level search is typically a tree search, consisting of states as nodes and
actions plus environment transitions as edges. Although the algorithms below typically contain domain-
agnostic ideas, we will ground the discussion below by discussing reasoning tasks as the running examples.

Warmup: token-level beam search. Traditional beam search (Graves, 2012; Sutskever et al., 2014)
maintains a queue of prefixes {yk

<t}K
k=1 termed a beam, expands each prefix using each possible next-token,

{yk
<t ◦ yt | k ∈ {1, . . . , K}, yt ∈ V}, scores each expanded prefix using log pθ(yk

<t ◦ yt|x), and prunes the
queue by keeping only the top-K scored expansions for the next iteration. In this case, the value function
is v̂(y<t ◦ yt) = log pθ(y<t ◦ yt|x), and it is used to prune states by selecting the top-K expanded prefixes.
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Method Search State Generation Value v̂(st) Tasks
gpt-f proof search [158] Best-first Proof-so-far Proof step log pθ Formal proving
gpt-f +outcome [158] Best-first Proof-so-far Proof step v̂ϕ ≈ E(success) Formal proving
Proofsize search [159] Best-first Proof-so-far Proof step v̂ϕ ≈ E(length) Formal proving
Stepwise++ [198] Beam Proof-so-far Proof step log pθ + n-grams Informal proving
Self-evaluation [203] Beam Steps-so-far Reasoning step log pθ + LLM Multi-step correctness
Tree-of-Thought BFS [210] Beam Steps-so-far Generation step Prompted LLM Multi-step generation
Tree-of-Thought DFS [210] DFS Steps-so-far Generation step Prompted LLM Multi-step generation
Graph-of-Thought [15] BFS/DFS Steps-so-far Generation step Prompted LLM Multi-step generation
HyperTree Proof Search [109] MCTS Proof-so-far Proof step v̂ϕ ≈ E(success) Formal proving
AlphaLLM [186] MCTS Steps-so-far Reasoning steps v̂ϕ ≈ E(correct) Multi-step correctness
ThoughtSculpt [34] MCTS Steps-so-far Generation step Prompted LLM Multi-step generation

Table 3: Survey of step-level search methods.

Traditional beam search operates on the token-level, using the specific strategy of expanding each possible
next-token, which assumes access to primitive operations (e.g., next-token distributions).

Partial sequence expansion. We can consider higher-level algorithms that operate on the partial se-
quence (i.e., “step”) level rather than the token level, and call an arbitrary generator to expand states, e.g.,
{y(k)

t }K
k=1 ∼ g(·|st). For example, stepwise beam search (Welleck et al., 2022; Xie et al., 2023) performs a

beam search over steps of mathematical problems or proofs. Tree-of-thoughts (Yao et al., 2023) considers a
beam search over generated steps that include additional “thought” sequences. Potential benefits of partial
sequence expansion over traditional beam search include efficiency due to executing the value function less
often, and not requiring access to all of a model’s next-token probabilities.

Alternate search strategy. Another axis of variation is the underlying search strategy. Beam search is
a pruned breadth-first search, which has been used with contemporary LLMs in methods such as stepwise
beam search (Welleck et al., 2022) and tree-of-thoughts (Yao et al., 2023). However, other search algorithms
are available, such as depth-first search, also used in tree-of-thoughts, and best-first search, used in the
context of formal theorem proving (Polu & Sutskever, 2020; Polu et al., 2023; Yang et al., 2023a; Welleck
& Saha, 2023). Formal theorem proving has a natural decomposition of outputs (i.e., a proof) into steps
(termed “tactics”), which has historically made it a fruitful testbed for more advanced search algorithms. For
example, HyperTree Proof Search (Lample et al., 2022) draws on monte-carlo tree search (MCTS), which
prioritizes states according to a confidence bound and scores states by partially rolling out trajectories.
Recently, similar ideas have translated to other LLM generation tasks. For instance, ThoughtSculpt (Chi
et al., 2024) incorporates MCTS selection and rollouts for a variety of tasks.

Alternate value functions. Another axis of variation is the choice of value function. For instance, in
traditional beam search, a value function can be manually designed to score candidates (y<t ◦yt) more highly
if they contain desired n-grams (Lu et al., 2022), while others use learned heuristics vϕ(y≤t) trained to predict
a property of the full sequence (e.g., its style score or correctness) (Yang & Klein, 2021). In the context of
large language models, a recent trend is to use a prompted language model to evaluate states (Yao et al.,
2023). As mentioned previously, to achieve better results one can train a model that predicts whether the
solution-so-far will eventually be correct, vϕ(y<t) → [0, 1] (or more generally, predict the expected reward
from the current state), termed a process-based verifier (Uesato et al., 2022).

4.4 Refinement algorithms

A refinement algorithm consists of (1) an initial generator g0, (2) an information source h, (3) a refiner g:

y(0) ∼ g0(y|x), (38)
z(t) ∼ h(z|x, y(<t), z(<t)), (39)
y(t) ∼ g(y|x, y(<t), z(≤t)). (40)
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Intuitively, the refiner generates a “revised” output y(t) given previous versions y(<t) and extra information
z(≤t), such as feedback or environment observations. The algorithm alternates between receiving information,
z ∼ h, and refining, y ∼ g, until a stopping condition is met. Refinement algorithms vary based on choice of
initial generator, the refiner, the content and source of extra information z, and the stopping condition.

Learned refiners. Self-correction, introduced by Welleck et al. (2023), provides a recipe for training a
refiner model pθ(y(t)|x, y(t−1), z(t)) which iteratively refines an output to improve the score from a reward
function r(x, y) using (z(t), y(t−1), y(t)) examples collected from model trajectories. Here z is either 0/1
(apply the refiner or do not apply the refiner) or a feedback string. z is assumed to be given to the system
at generation time, which is a limitation for some tasks (e.g., we often do not know whether a mathematical
solution should be revised). GLoRe (Havrilla et al., 2024) relaxes this limitation by training a verifier to
determine whether to apply the refiner, and to localize per-step errors.

Prompted refiners. A second option is to parameterize the refiner using a prompted language model,

y(t) ∼ gθ

(
y|Prefine(x, y(<t), z(≤t))

)
, (41)

where gθ is a generation algorithm that involves prompting a model pθ with a prompt Prefine(x, y(<t), z(≤t)),
as introduced in Self-Refine (Madaan et al., 2023) and Reflexion (Shinn et al., 2023). This allows the initial
generator and the refiner to share a single language model that is not necessarily tuned for a specific task.

Prompted feedback. It is common for the information z ∼ h to include “feedback” on a preceding version
y, with the feedback being a sequence of tokens generated with a prompted language model:

z(t) ∼ hθ

(
z|Pfeedback(x, y(<t), z(<t))

)
. (42)

This feedback is often also termed “critique” (Matiana et al., 2021; Castricato et al., 2022; Bai et al., 2022;
Saunders et al., 2022). Self-Refine (Madaan et al., 2023) shares θ across the feedback provider, refiner,
and initial generator, yielding a refinement algorithm given only a model pθ and 3 prompts. Similarly,
Reflexion (Shinn et al., 2023) uses a prompted feedback provider. In these cases, the feedback is termed
self-feedback or self-reflection.

Environment feedback. As we discussed previously, the search perspective treats generation as a tra-
jectory (s0, a1, s1, . . . , aT , sT ), with state transitions determined by an environment E : S × A → P(S). In
some cases the environment transitions are nontrivial, such as executing generated code or clicking a link in
a webpage. We can view the resulting observations (e.g., code execution results or an image of a webpage) as
extra information z̃(t) ∈ s(t) that is contained in the state. This information can be passed to the feedback
provider to generate feedback z̄, and the refiner (e.g., via prompts):

z̄(t) ∼ hθ

(
z̄|Pfeedback(x, y(<t), z̃(≤t), z̄(<t))

)
, (43)

y(t) ∼ gθ

(
y|Prefine(x, y(<t), z̃(≤t), z̄(≤t))

)
, (44)

meaning that each iteration refines based on new environment information (e.g., code execution results).

Reflexion (Shinn et al., 2023) adopts this perspective of generation as a trajectory involving an environment,
with the refiner akin to an “actor” or “policy”. Subsequently the idea has been adapted to digital agents (Kim
et al., 2023; Pan et al., 2024), code (Chen et al., 2024b; Shi et al., 2024), and other environments (Pan et al.,
2023).

Does refinement work? Notice that a refinement algorithm is a 3-tuple (g0, h, g). Intuitively, if the
information source h adds new information beyond that contained in the initial generator g0(·|pθ) to the
refinement algorithm, it is plausible that a refinement algorithm can outperform the initial generator alone.
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For instance, if z ∼ h contains the results of code execution or an image of webpage after it is clicked, the
refiner is likely to receive new information. Similarly, if z ∼ h represents feedback, and the feedback comes
from a source outside of the model pθ (e.g., a human, a model with additional parameters, supervision, or a
different objective), the feedback function may be expected to add new information beyond that in g0(·|pθ).
For challenging grounded tasks, this external feedback can be essential; for instance, Reflexion (Shinn et al.,
2023) finds that without execution, refinement yields little to no gain on code generation.

Moreover, the quality of the feedback z ∼ h is important. Self-Refine (Madaan et al., 2023) finds that generic
feedback hurts refinement quality, and Olausson et al. (2024) finds that higher quality natural language
feedback (i.e. from humans) helps models to perform better on code self-repair. However, for complex tasks
without environment feedback, it can be difficult for models to generate meaningful and accurate feedback.
This stems from the fact that models often struggle with evaluating the correctness of (their own) outputs
(Huang et al., 2024) and ties into a fundamental challenge of refinement methods: when should we refine?

Clearly, if at some iteration the model yields a correct output, there is no need to continue refining. Additional
rounds of refinement may spur a model to modify correct parts of its prior output, hurting performance. For
tasks with access to a ground-truth environment evaluator (as in Shinn et al. (2023)), it is easy to know when
to stop; for instance, in code self-repair we can simply stop once the code passes all test cases. However, in
tasks where this is not possible, refinement methods resort either setting a fixed number of iterations (Welleck
et al., 2023), leveraging the generator itself (Madaan et al., 2023), or using learned external models (Havrilla
et al., 2024). Presently, none of these approaches are ideal. Tyen et al. (2024) and Huang et al. (2024) find
that self-refinement often fails to improve reasoning due to models’ inability to gauge the correctness of their
outputs and localize errors. Havrilla et al. (2024) observe that reward models trained to predict correctness
tend to have high false positive rates, triggering spurious refinements.

At present, refinement usually works best for tasks that either have rich environment feedback or can be
reliably evaluated by current language models. As language models improve as verifiers, the range of tasks
for which refinement is effective will likely grow. However, this may be paired with improvements in the
abilities of the initial generator g0, potentially even to the extent that refinement is no longer necessary.

5 Incorporating external information

Next, we consider what kinds of information a generation or meta-generation algorithm incorporates outside
of the language model, such as other models or tools. Algorithms use external information by calling
operations beyond primitive operations from pθ (e.g., those from another model), or through assumptions
on the inputs or outputs. We comment on common patterns related to incorporating external information.

5.1 Multiple models

A variety of generation algorithms incorporate multiple models. More formally, recall that in (§2.2) we
defined a generation algorithm as a function that maps an input x, model pθ, and other inputs ϕ to a
distribution q(y|x; pθ, ϕ). A generator uses multiple models if ϕ contains other models (e.g., an additional
language model), and operations from the model are used in the algorithm. In this sense, the external models
can add new information beyond that contained in pθ to the generator.

Small and large language models. A notable pattern is using a small language model to either adjust
a model’s distribution or to speed up generation. Lu et al. (2023) train a small model pβ with reinforcement
learning such that it adjusts the next-token probabilities of a larger model pθ to maximize a reward function.
The models are combined into a token-level “product of experts” (Liu et al., 2021),

p′(yt|y<t, x) = 1
Z

pθ(yt|y<t, x)pβ(yt|y<t, x)α, (45)

where pβ is a separate language model, α ∈ R, and Z ∈ R is a normalization constant. Liu et al. (2024a)
adopt a similar idea but with supervised finetuning of pβ . In order to amplify the improvement of a large,
strong model over a small, weak one, contrastive decoding (Li et al., 2023a) defines a scoring function for
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beam search that returns the difference between the likelihood under the model pθ with that of a smaller
language model p′

θ,

s(y<t ◦ yt) = log pθ(yt|y<t) − log p′
θ(yt|y<t), (46)

along with a truncation criterion that sets the score to zero for some tokens. Intuitively, the smaller model
often has larger model errors on unfavorable tokens (e.g., assigning more probability to tokens leading to
repetition or incoherence compared to pθ). Assuming there is a nontrivial difference in probability assigned
to these tokens, the score will reduce their prevalence in generated texts.

Finally, speculative decoding (Leviathan et al., 2022) is motivated by speeding up generation, which we will
discuss further in (§7). It uses a small draft model to propose generations that are verified or rejected in
parallel by the larger model pθ, hence speeding up generation when the rejection rate is not too high.

Scalar feedback models. A common pattern is learning a verifier model vθ(y) → [0, 1] that predicts
the probability that a generation is correct. The verifier can be used to select outputs in best-of-N (Cobbe
et al., 2021), or for weighted majority voting (Li et al., 2023b). This pattern is particularly suitable for
mathematical problem solving and code generation (Ni et al., 2023), which have well-defined notions of
correctness. Several works have iterated on the verifier model vθ(y)’s design and learning procedure. Uesato
et al. (2022) show that a verifier trained to predict the correctness of each step in an output (termed a
process-based verifier) can outperform a verifier trained to predict the correctness of a full solution (termed
an outcome-based verifier), and Lightman et al. (2024) obtain new human annotations for a process-based
verifier. Math Shepherd (Wang et al., 2023a) propose a method for obtaining supervision from generations.

An underlying idea is that a generation algorithm that incorporates the verifier may have capabilities beyond
those of pθ. This may be due to additional supervision, or factors that stem from the intuitive idea that
evaluation is often easier than generation. For example, Sun et al. (2024a) show that weighted majority
voting with a verifier can improve the generator’s ability to generalize to harder problems.

More generally, a learned verifier is a special case of learning a scalar reward model rϕ(x, y) that can be used
to select or score outputs. For instance, in (§4.2.3) we discussed using a reward model of human preference
ratings to select outputs in best-of-N (Stiennon et al., 2020; Ouyang et al., 2022; Touvron et al., 2023). As
we discussed previously (§4.2.3), we can view this as shifting the generation distribution.

Information conveyed in prompts. Rather than using a separate model in a multi-model system, it is
now common to parameterize different models by providing different prompts. For instance, we can obtain
a feedback model by prompting a model to provide feedback. It is important to note that the prompts can
add new information to the generation algorithm.

5.2 External environment information

More generally, generation algorithms can incorporate information from an external environment.

Calling an external tool. Certain functionality such as reliably performing a calculation or a web search
may either be outside of a model’s capabilities or inefficient to perform with the language model. A natural
alternative is to issue a call to an external routine that performs the functionality at generation time.

One way to do this is through special tokens that denote a call to the routine, followed by replacing the
prefix with the result. For instance, suppose the preceding tokens y<t include [CALC]4+4[/CALC]. Then at
step t of a token-level decoding algorithm, a calculator would be called on the query 4+4, and in subsequent
steps, the prefix y≤t would contain the result 8, along with possible reformatting (e.g., removing [CALC]).

A second common use of an external routine is as a verifier following the generation of a full sequence. For
instance, in language-model based theorem proving the proof assistant is used to verify or reject generated
proofs, while in code generation it is common to execute test cases. More generally, the notion of “tool
use” (i.e., calling external programs) is now widespread, and has been incorporated into libraries such as
LangChain (Chase, 2022) and products. Refer to Wang et al. (2024) for further discussion.
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Method Input Output External Cost Params
Ancestral Sampling Tin T – –
Reranking (general) Tin ∗ N T ∗ N N ∗ Cs N, Cs

Best-of-N (log-p) Tin ∗ N T ∗ N – N
Best-of-N (LLM sequence scorer) Tin ∗ N T ∗ N N ∗ (Tin + T + 1) N

Transformation (general) Tin ∗ N T ∗ N Ct N, Ct
Self-consistency Tin ∗ N T ∗ N – N
Weighted SC (seq. scorer) Tin ∗ N T ∗ N N ∗ Cs N, Cs

Step-level beam (log-p) [198] Tin ∗ Nb ∗ Ne ∗ S Ts ∗ Nb ∗ Ne ∗ S – Nb, Ne, S
Step-level beam (seq. scorer) [210] Tin ∗ Nb ∗ Ne ∗ S Ts ∗ Nb ∗ Ne ∗ S Nb ∗ Ne ∗ S ∗ Cs Nb, Ne, S, Cs

Step-level DFS (seq. scorer) [210] Tin ∗ Ne ∗ S Ts ∗ Ne ∗ S Ne ∗ S ∗ Cs Ne, S, Cs

Refinement (general) Tin ∗ (1 + Nr) T ∗ (1 + Nr) Nr ∗ Cz Nr, Cz

Refinement (self-feedback) [133] Tin + (2Tin + T ) ∗ Nr T + 2T ∗ Nr – Nr

Table 4: Token budget for representative algorithms from each meta-generation class. Reranking. Tin
and T are the number of input tokens and output tokens for each call to the generator, respectively. For
simplicity, we assume the number of input and output tokens is constant across calls to the generator. Cs

refers to the number of tokens required to call a scoring model (e.g., a prompted LLM) on an input and
output sequence. LLM scorer refers to prompting a LLM with an input and output, and generating a scalar
score (assumed to be 1 token). Transformation. Ct refers to the number of tokens required to call a
transformation function (e.g., a prompted LLM) on N sequences. Step-level search. Ts is the number of
output tokens in a step, with S the maximum number of steps, such that Ts ∗ S ≥ T . Nb is the number of
candidates to keep after pruning (e.g., “beam size”), and Ne is the number of expansions per iteration. We
assume the cost of the scorer is equal to the cost of scoring a full sequence (Cs). Refinement. Nr is the
number of refinement iterations. Cz refers to the number of tokens required to obtain external information
during a refinement iteration.

Receiving observations from an environment. The search perspective framed generation as a sequen-
tial decision making process that involves observations from an environment (§4.3). A notable application
area is code generation, which has natural environment information (e.g., interpreters, compilers). For
instance, Lever (Ni et al., 2023) feeds execution results into a reward model used for best-of-N, while Self-
Debugging (Chen et al., 2024b) incorporates error messages into refinement. A recent line of work tailors
generation algorithms to language-conditioned digital agents–models that operate on diverse observation
spaces X such as images of web pages, and output sequences y representing actions–including variants of
refinement (Shinn et al., 2023) combined with learned evaluators (Pan et al., 2024).

6 Token cost and performance analysis

A natural question is the cost of executing a given meta-generator, and its relationship with performance.
There are several ways to measure cost, including the number of tokens generated, the overall compute used
during generation, or the runtime. In some cases, we would like to design an algorithm that improves as
we add more cost, such as improving problem solving ability by generating more tokens. In other cases, we
would like to minimize the cost at a fixed level of performance.

6.1 Token budget

Meta-generators consist of calling generators, which leads to costs associated with generating tokens. For
instance, common APIs charge by the number of tokens in the input prompt and the number of output tokens.
In general, meta-generators incur token costs from input tokens, output tokens, and external information.

For instance, a reranker that generates N sequences incurs a cost of Tin ∗ N input tokens, T ∗ N output
tokens, and N ∗ Cs tokens to run the scoring model, where Cs is the token cost of calling the scoring model
on one sequence. When the scoring model is implemented by prompting an LLM and generating a scalar
quality score (assumed to cost 1 token), the external information cost is N ∗ (Tin + T + 1). Table 4 shows
the token budget for representative algorithms from each meta-generation class.
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Step-level vs. sequence-level search. Consider solving a mathematical problem by generating a solu-
tion that consists of multiple steps. Two strategies for doing so are (1) generating one step at a time using
a step-level search algorithm, or (2) generating full solutions in a transformation or re-ranking algorithm.
In this case, we can assume that T = Ts ∗ S, i.e., the total number of tokens in a solution (T ) equals the
number of tokens in a step (Ts) times the number of steps (S). We can then use Table 4 to reason about
when step-level search can cost fewer tokens than sequence-level search.

From Table 4, we see that step-level methods incur a cost from generating output tokens that depends on the
pruning parameter Nb, the number of expansions per iteration Ne, and the number of iterations S. Assuming
that Ts ∗S = T , step-level search has fewer output tokens than sequence-level search when Nb ∗Ne < N . For
example, under these assumptions step-level beam with a beam size of 16 and 64 expansions per iteration
has the same number of output tokens as best-of-1024, while lowering the expansions per iteration to 32
would be half the output token cost compared to best-of-1024.

On the other hand, Table 4 shows that step-level search calls the scoring model more often than sequence-
level search methods. For instance, when Nb ∗ Ne = N , step-level beam search calls the scoring model
N ∗S times compared to N times with reranking. Therefore, one must also account for potential token costs
associated with external information (e.g., sequence scores) when comparing meta-generator token budgets.

Refinement vs. sequence-level search. Similarly, we can compare the token budget for refinement
versus sequence-level search. As seen in Table 4, general refinement algorithms have a lower output cost
when Nr < N , i.e., the number of refinements is less than the N in best-of-N . In practice this is often the
case, e.g. Madaan et al. (2023) use Nr = 3 in many experiments, while N typically ranges from 8 to 1024 in
the literature. However, we need to factor in the cost of external information. For instance, when generating
self-feedback as in Madaan et al. (2023), the output cost becomes T + 2T ∗ Nr, meaning that 3 refinements
costs 7T output tokens, which is still cheaper than best-of-8.

6.2 Increasing the token budget to improve performance.

In various reasoning-related tasks such as mathematical problem solving, it has been widely observed that
generation algorithms which generate multiple sequences and choose among the sequences (e.g., best-of-
N , majority voting) can outperform generation algorithms that generate a single sequence (e.g., greedy
decoding) (Cobbe et al., 2021; Wang et al., 2023b; Azerbayev et al., 2024; Lightman et al., 2024; Wang et al.,
2023a; Sun et al., 2024a).

Figure 5: Plot from Sun et al. (2024a). Scaling behav-
ior of three meta-generators in the number of samples
N on mathematical problem solving (MATH500).

Figure 5 shows a plot from Sun et al. (2024a)
that compares the relationship between the gen-
eration budget (in units of sequences) with three
sequence-level approaches on the MATH500 bench-
mark (Lightman et al., 2024). The plot shows that
these algorithms can improve monotonically by in-
creasing the generation budget. Moreover, each al-
gorithm has a different improvement as a function
of the generation budget. For instance, at a budget
of 1024 sequences, weighted voting is preferred to
majority voting or best-of-N in terms of task per-
formance. Recently, Chen et al. (2024a) found that
some models can have a non-monotonic relationship
between generation budget and voting performance.

The idea of increasing the generation budget to im-
prove performance has appeared in many applica-
tions. For instance, AlphaCode (Li et al., 2022)
generates up to a million sampled programs that are
then filtered using heuristics and execution results.
In theorem proving, Draft-Sketch-Prove (Jiang et al., 2023) leverage the proof checker at generation time by
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generating and checking many formal proof candidates, resulting in a monotonically increasing percentage
of proven theorems as a function of the generation budget.

More formally, let q∗(y|x) ∝ 1 if y is correct, and 0 otherwise, where correctness may mean a correct solution
to a mathematical problem, a valid proof, a program that passes test cases, etc. Then the goal of generation
is y∗ = arg maxy∈Y q∗(y|x). Since the space of solutions Y is too large, a meta-generator can approximate it
by calling a generator multiple times,

y∗ = arg max
y∈Y

q∗(y|x) (47)

≈ arg max
yn∈y1,...,yN

q∗(yn|x), (48)

where yn ∼ q(·|x, pθ). It is clear that performance should improve as N increases, so long as the generator
q assigns probability mass to correct solutions. However, in practice we do not have access to q∗ at test
time, so different meta-generators approximate (48), e.g. with a learned verifier vϕ(x, y), or with a voting
algorithm. The plot above shows that different approximations have different levels of effectiveness.

6.3 Minimizing the token budget.

A complementary direction is minimizing the generation budget to achieve a given level of performance.
One direction is to route generations to progressively more costly models. For instance, FrugalGPT (Chen
et al., 2023b) first generates with a cheap model, then uses a learned scoring function to determine whether
to generate again with a more expensive model, leading to significant cost reductions over calling GPT-
4 in their experimental setting. Kapoor et al. (2024b;a) argue that performance comparisons of complex
meta-generation algorithms must be performed with respect to token budget and monetary cost, and that
many simple meta-generation baselines provide a pareto-optimal cost-performance tradeoff compared to
more complex algorithms. Another direction is leveraging properties of specific meta-generation algorithms
to reduce the number of calls needed. Aggarwal et al. (2023) propose to stop sampling in majority voting
upon converging to a majority.

6.4 Dependence on the underlying generator(s)

The defining property of meta-generators is that they rely on calling other generation algorithms. Hence a
second natural question is to what degree their performance depends on the underlying generation algorithms.

Sampling parameters. Chen et al. (2021) found that the optimal temperature in best-of-N was dependent
on N for code generation with the Codex model, with higher temperatures returning better performance
for higher N . Many prior studies use temperatures or sampling parameters that are either unexplained
or ad-hoc. For instance, Minerva (Lewkowycz et al., 2022) uses majority voting with temperature 0.6 and
nucleus sampling p = 0.95. These settings have propagated into subsequent studies (Azerbayev et al., 2024).

For some classes of meta-generators such as minimum Bayes risk (§4.2.2), the effect of sampling parameters is
relatively well-studied. For example, Freitag et al. (2023) investigate the impact of the underlying sampling
strategy in MBR, finding variation across strategies, with epsilon sampling performing best for translation.

7 Speeding up generation

In the preceding sections, we introduced generation algorithms (e.g., ancestral sampling, beam search) and
meta-generation algorithms (i.e., programs involving multiple generation calls), and discussed one aspect of
efficient generation: making generation cost-effective in terms of the token budget. Next we turn to another
aspect of efficiency: the speed of (meta-)generation. Speed is an inherent concern of almost any practical
application of generation algorithms: users typically want outputs quickly.

Meta-generators in particular raise demands for fast generation, since they often involve generating many
sequences and coordinating multiple components. For example, the meta-generators shown in Figure 5
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require generating and scoring 1024 sequences. There are at least two high-level strategies one can take
to speed up generation: (1) speeding up the generation of each individual sequence, and (2) leveraging
structure that comes from multiple generator calls, such as shared partial outputs or the structure of the
overall meta-generation program. We will consider both of these below.

Before we start, it is worth noting two points. First, the notion of “speeding up” itself needs to be made
more precise and measurable. To that end we provide background on the notions of latency, throughput,
and the idea that speed is often dependent on the hardware environment in which a meta-generator is run.

Second, the topics in this section are part of a rich, rapidly evolving research field that ranges from machine
learning systems to programming language design. It goes without saying that our survey here merely
scratches the surface. We focus our discussion on introducing key ideas, and on examining the interaction
between the design space of (meta-)generation algorithms and generation speed.

7.1 Background

Goals of speeding up generation. Speeding up generation requires balancing between three high-level
metrics: (1) latency, the time it takes to generate a single output; (2) throughput, the rate at which outputs
can be produced; and (3) quality, measures of model quality such as loss or downstream task metrics. For
instance, one might change the generation algorithm in a way that speeds up a single generation (improving
latency), but removes the ability to generate outputs in parallel (degrading throughput). Other cases such
as reducing the precision of model weights may improve latency and throughput, but degrade the model’s
task performance. Ideally, we would like to reduce latency, increase throughput, and maintain quality.

Hardware-aware optimization. The underlying hardware is a key consideration for speeding up
generation. LLMs are typically run on accelerators such as GPUs or TPUs.

In the case of GPUs, performance is largely dictated by compute and memory bandwidth. Compute
is typically measured via the number of floating-point operations (FLOP) used in a given operation, while
memory bandwidth refers to the rate at which data can be transferred to and from memory. For example,
the operation:

A = BC, (49)

reads the matrices B, C from memory, computes BC on-chip, and writes the result out to memory. Similarly,

Y = ReLU(X) (50)

must read X from memory, compute ReLU(X) on-chip, and write the result out to memory. However,
these two operations have very different arithmetic intensities, defined as the ratio of compute (in FLOP)
to unit of memory read or written. This results in (49), for large enough B, C, being compute-bound
(bottlenecked by the rate at which operations can be performed) while (50) for large X is memory-bound
(bottlenecked by the speed of reading inputs and writing outputs to memory).

Thus, reducing the quantity of operations performed (in FLOP) for a given step may not always proportion-
ately transfer to an equivalent real-world speedup or cost reduction. This is exacerbated by the properties
of recent accelerators–GPUs and TPUs are heavily specialized for matrix multiplication and other high-
arithmetic intensity, heavily parallelizable workloads (NVIDIA, 2017; 2020). For example, the H100 can
perform up to 989.4 TFLOP/s in BF16 within a dense matrix multiplication using Tensor Cores, but only
133.8 TFLOP/s of BF16 arithmetic (NVIDIA, 2022). This specialization–and the fact that “naive” at-
tempts to optimize performance oblivious to which operations may be the key bottlenecks may not achieve
the anticipated gains–implies that hardware-aware optimization is a key viewpoint to take when seeking
speedy generation. Algorithmic and architectural co-design with the hardware (Dao et al., 2022; Dao, 2023;
Anthony et al., 2024) has yielded some of the most significant speed gains in recent years, in contrast to
approaches seeking to minimize theoretical complexity that are disconnected from the hardware level. On
the flip side, however, Hooker (2020) discuss the notion of the hardware lottery–the idea that co-design of
novel techniques creates adverse selection effects, where research ideas “off the beaten path” are dispreferred
because they interact less well with existing hardware.

23



Under review as submission to TMLR

Type Selected Examples Strategy
Architectural MQA [171], GQA [4], MLA [41], · · · Efficient attention

RWKV [156], Mamba [73], · · · Transformer alternative
Compression GPTQ [56], AWQ [124], SqueezeLLM [99] , · · · Quantize weights

LLM.int8() [43], Smoothquant [201], QuaRot [8], · · · Quantize activations
FlexGen [172], KVQuant [83], W4A8KV4 [125], · · · Quantize KV Cache

Hardware-aware impl. Rabe & Staats (2022), FlashAttention [38; 37], · · · Efficient attention
Triton [187], Torch compile [162, Cutlass [185], · · · Libraries/tooling

Parallelize over time Speculative decoding [113; 25], SpecInfer [139], · · · Draft-then-verify

Table 5: Outline of classes of techniques for speeding up a single generation call. Refer to the main text for
additional examples.

7.2 Speeding up the generator

Generation algorithms with autoregressive language models depend on computing next-token distributions.
Given an input sequence (y<t, x), typical implementations start with an initial “prefill” step that computes

pθ(·|y<t, x) = softmax(sθ(·|y<t, x)). (51)

Performing this step returns two outputs: pθ(·|y<t, x), the probability distribution over immediate next
tokens following (y<t, x) that we have discussed previously, and a “state” Sy<t,x created as a byproduct of
processing y<t, x. For a Transformer (Vaswani et al., 2017) Sy<t,x is produced by retaining all keys and
values from timesteps up to yt−1 within the attention for each layer.2 This is termed the “Key-Value (KV)
Cache” produced by attention at each layer. At this step, we may sample a next-token yt from pθ(·|y<t, x).

Subsequently, to generate additional new tokens we may perform any number of “decoding” steps, where
each step selects a token from a next-token distribution. For example, the t + 1’th step selects a token using:

pθ(·|y<t+1, x, Sy≤t,x) = softmax(sθ(·|y<t+1, x, Sy≤t,x)). (52)

Here, we feed the state Sy≤t,x into the model, representing the already-processed sequence. Each decoding
step saves on computations that are cached in the state, such as the attention keys and values from the
preceding steps. After selecting the t + 1’th token, the state is updated to Sy≤t+1,x. These decoding steps
may be repeated until we have finished generating a sequence.

One can accelerate a single generation from an LM by speeding up the time taken per step, such as through
architectural modifications, model compression, hardware-aware implementation decisions, or by clever par-
allelization during autoregressive generation. We discuss each of these in the following paragraphs.

Architectural modifications. One strategy is to modify the model architecture. For example, multi-
query (Shazeer, 2019) and grouped-query (Ainslie et al., 2023a) attention propose the use of fewer key and
value heads in transformers’ attention, leading to reduced KV Cache sizes. Smaller KV Cache sizes can
lower memory bandwidth demands, or provide the ability to process larger batches concurrently at a time by
enabling more requests to be stored in GPU memory. Similarly, DeepSeek-AI (2024) propose multi-headed
latent attention, attempting to retain the reduced KV Cache of GQA while improving model quality. The
O(t2) complexity of attention (O(t) for each decoding step) can slow generation down as sequences become
longer, so another option is to forego the transformer architecture or its attention layer altogether. For
example, traditional recurrent language models (Elman, 1990; Mikolov et al., 2010) compute a next-token
distribution by maintaining a hidden state, leading to a O(t) time and space complexity (O(1) per step).
Recent architectures draw on ideas from recurrent language models (Hutchins et al., 2022; Peng et al., 2023;
De et al., 2024; Yang et al., 2024) and/or state-space models (Gu & Dao, 2023; Lieber et al., 2024; Gu
et al., 2022; Smith et al., 2023; Poli et al., 2023; Fu et al., 2023; Arora et al., 2024) to achieve sub-quadratic
time and space complexities. Although models can occasionally be adapted post-hoc from a transformer

2The core attention operation is softmax
(

QKT /
√

d
)

V , where Q, K, V ∈ RT ×d are referred to as queries, keys, and values,
respectively, T is the time dimension, and d is the hidden dimension.
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architecture to one of these more efficient variants (Zhang et al., 2024; Ainslie et al., 2023a), this adaptation
can degrade model quality or require substantial compute.

Model compression. Adjacent to architectural modifications, one can compress a model into a more
efficient form after the fact. Distillation can transfer knowledge from a more capable teacher model into
a smaller one (Hinton et al., 2015; Sanh et al., 2020), or models can be quantized to reduce the floating-
point precision of the model’s weights which reduces the memory footprint of the model and in turn speeds
up generation in memory bandwidth-constrained settings (Dettmers et al. (2022); Frantar et al. (2023);
Dettmers et al. (2023); PyTorch (2023), inter alia). Model activations can also be quantized (Ashkboos
et al., 2024; Xiao et al., 2024a; Lin et al., 2024b). Approaches to sparsify or prune model weights (Frantar
& Alistarh (2023), inter alia) can also be used. Such compression approaches frequently, but not always,
degrade performance and require training to perform or to recover performance on a limited distribution.

Hardware-aware implementation. A number of optimizations may be performed without modifying
the model architecture or what operations must be performed, simply how they are performed.

For instance, Flash Attention (Dao et al., 2022; Dao, 2023) famously overcomes the O(t2) space complexity
of self-attention by adapting the algorithm proposed by Rabe & Staats (2022) for computing self-attention
based on online softmax (Milakov & Gimelshein, 2018; Jang et al., 2019) and blockwise computation, crucially
without changing the output of the attention mechanism, simply its mapping to hardware. Similarly, Flash
Decoding (Dao et al., 2023) accelerates the attention operation during decoding by adding extra parallelism
over the sequence dimension, allowing the GPU to be fully saturated even for small query and batch sizes, but
only changing the order and mapping of operations on-device, not the end result (up to numeric precision).

Numerous software tools (Tillet et al. (2019); PyTorch (2023); Thakkar et al. (2023), inter alia) can enable
fast decoding and efficient low-level implementation in practice. Overall, while architectural modifications
to the model itself can increase the ceiling on generation speed, effective implementation is key for achieving
performance anywhere near this ceiling on current accelerators.

Parallelization across time. Rather than speeding up the core next-token operation, the draft-then-
verify (also called “speculative sampling” or “speculative decoding”) pattern leverages clever parallelization
during autoregressive generation. Draft-then-verify consists of generating proposed next-tokens with a fast
method (e.g., a smaller model), computing next-token distributions given the proposed tokens in parallel,
and either keeping or rejecting the proposed tokens.

For example, previously we briefly referred to speculative sampling (Leviathan et al., 2022; Chen et al.,
2023a). This method assumes a language model pθ(yt|y<t) and an efficient draft model q(yt|y<t). At a given
step t, it generates a continuation yt, yt+1, . . . , yt+k using q, then computes the next token distributions
pθ(yt|y<t), . . . , pθ(yt+k|y<t+k) in parallel. Finally, it processes each proposed token, keeping it if q(yt′ |y<t′) ≤
pθ(yt′ |y<t′), and rejecting it when q(yt′ |y<t′) > pθ(yt′ |y<t′) with probability pθ(yt′ |y<t′)/q(yt′ |y<t′) or if a
preceding token was rejected. Intuitively, as long as (i) generating with q() is much faster than computing
the distributions with pθ in sequence, and (ii) the rejection rate is not too high, then speculative sampling
will speed up generation without affecting the original model’s output distribution or quality.

Several methods iterate on ideas underlying speculative sampling, including guessing and verifying a tree of
proposed tokens (Miao et al., 2023; Sun et al., 2024b; Chen et al., 2024c), using alternative proposal models
q (Miao et al., 2023; Cai et al., 2024), using prompt n-grams as proposals (Yang et al., 2023b), or generating
in parallel and reusing the generated n-grams as proposals (Fu et al., 2024).

Interestingly, many speculative sampling approaches which require a separate draft model q() require more
total FLOP in order to generate a given sequence (Chen et al., 2023a; Leviathan et al., 2023; Fu et al., 2024).
However, because the decoding step is typically memory-bound, the increased parallelism afforded is more
than sufficient to provide substantial generation speedups.
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Type Selected Examples
State reuse PagedAttention memory sharing [108], RadixAttention [219]
State compression Gisting [142], KV Cache compression [125; 218]
Improved batching Continuous batching [211], Disaggregated prefill [220]
Program-level optimization GPT-4 graph rewriting [219], DSPy [97]

Table 6: Outline of techniques for speeding up meta-generation algorithms, requiring many calls to an
underlying generator with often-predictable traffic patterns. Refer to the main text for more examples.

7.3 Speeding up meta-generation algorithms

While in §7.2 we note approaches to speeding up a single autoregressive generation call, the space of possible
optimizations is larger when considering usage patterns such as those found in meta-generation algorithms,
where multiple or many calls are made to the same model over time, often in a predictable way.

7.3.1 Leveraging shared prefixes.

The repeated model generation calls that occur in meta-generation algorithms crucially often share sim-
ilarities in input. Most importantly, they often share prefixes across generation calls. This provides an
opportunity to save on computation and dramatically speed up generation throughput.

KV Cache and state reuse. In typical transformers, because the KV Cache is updated by appending
the keys and values of a new token to the cache, the KV Cache for shared prefixes can be “prefilled” only a
single time and reused across generation calls that share this input prefix.

For example, in parallel meta-generation algorithms (§4.2) such as Best-of-N , when producing an N -best
list {y(n)}N

n=1 ∼ g, generating each candidate yi requires a “prefill” step computing Sx in order to sample yi
1

and each successive token in yi. Simply computing Sx once and reusing it when sampling each yi can save
significant computation and time, in effect reducing the input token count for such algorithms by a factor
of N (Table 4).

Making such state sharing efficient requires careful handling of the state in memory, but can significantly
speed up throughput by allowing more outputs to be processed at a time as a result of lightened GPU
memory requirements (Kwon et al., 2023). It can also be generalized beyond a single prefix being shared
(Zheng et al., 2023) in order to handle branching, complex trees of already-processed inputs. Later work has
shown that redundant computation can be eliminated even further, allowing specific speed optimizations in
the presence of shared prefixes (Juravsky et al., 2024).

KV Cache and state compression. A complementary line of work approaches the challenge of handling
reused model states or KV Caches efficiently by compressing them, reducing the storage required. Gisting
(Mu et al., 2023) and other related techniques (Chevalier et al., 2023; Ge et al., 2024b) tackle the sub-problem
of long, frequently-recurring input prompts by learning to produce a series of “soft” tokens (trained token
embeddings) which compress a given large input prompt into a much smaller, more compact state. These
methods can be viewed as a generalization of prefix tuning or prompt tuning (Li & Liang, 2021; Lester et al.,
2021). Other methods explore the shortening of KV Caches via determining which items to retain or evict
from the input prompt, or at each step whether to append new keys and values to the cache (Ge et al.,
2024a; Liu et al., 2023; Zhang et al., 2023; Li et al., 2024b; Nawrot et al., 2024; Raposo et al., 2024; Xiao
et al., 2024b).

Much like model weights, the KV Cache can also be compressed via reducing its storage precision, such as
via quantization (Sheng et al., 2023; Lin et al., 2024b; Zhao et al., 2024b; Zirui Liu et al., 2023). Thus, the
memory bandwidth cost of loading the KV Cache from memory is reduced, and more tokens’ caches can be
fit onto GPU memory. However, again, these compression techniques can lose model quality when applied
aggressively.
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7.3.2 Optimizing computational graphs.

Finally, a class of optimizations takes into consideration the programmatic structure of the meta-generator.

Caching. Caching model state across calls to a generator as done by Zheng et al. (2023); Juravsky et al.
(2024); Kwon et al. (2023) and discussed previously can be beneficial for algorithms that involve backtracking
(e.g., tree search), or in general programs that involve duplicate generator calls.

Graph optimization. Additionally, the computational graph of such programs or algorithms can be
optimized and rewritten with efficiency in mind, by hand or automatically. For example, SGLang uses GPT-
4 in its optimization of programs to reorder computational graph nodes when possible (Zheng et al., 2023),
and DSPy optimizes performance or cost of LM programs via automating prompt engineering (Khattab
et al., 2023).

Algorithm-specific optimization. When the specific algorithm is known, optimizations can be made
even more targeted, such as speeding up voting algorithms by stopping early upon converging to a major-
ity (Aggarwal et al., 2023), or a host of methods that optimize MBR-style algorithms, including confidence-
based hypothesis pruning (Cheng & Vlachos, 2023) or leveraging a reduction of MBR to the medioid iden-
tification problem (Jinnai & Ariu, 2024).

7.4 Libraries and tools for fast generation.

We briefly note a few useful libraries and tools for fast and efficient generation, although the space of useful
tools and libraries is in particular especially subject to fast change.

vLLM (Kwon et al., 2023) is a highly popular library that introduced PagedAttention and implements a
number of up-to-date optimizations for fast generation, including continuous batching, prefix caching and
reuse, various model and KV cache quantization techniques, speculative decoding, and more. TensorRT-
LLM is another highly efficient LLM serving library. Especially relevant to this survey, SGLang (Zheng
et al., 2023) builds on vLLM to provide a domain-specific language optimized for meta-generation.

GPT-Fast (PyTorch, 2023) provides a minimal implementation of latency-constrained fast decoding in Py-
Torch, and is designed to be useful for prototyping new ideas and to demonstrate the ease of optimizing
low-latency unbatched decoding workloads using simple tools such as torch.compile.

For end users, especially those without easy access to data center-grade or high-end consumer-grade GPUs,
a number of libraries also implement fast decoding on CPU, which presents its own set of challenges not
fully explored in this paper. Libraries such as Llama.cpp3 are popular for consumers, and libraries such as
DeepSpeed-Inference (Aminabadi et al., 2022) or PowerInfer (Song et al., 2023; Xue et al., 2024) explore
optimizations when offloading activations or parameters to slower-access storage or CPU RAM, which require
systems considerations beyond those discussed for the more typical homogenous accelerator setting.

8 Discussion: why use sophisticated generation algorithms?

Finally, we return to the question that we posed in the introduction: why are sophisticated generation
algorithms needed at all? For example, we might imagine that simply sampling once from the model’s
unmodified output distribution, y ∼ pθ(y|x) is sufficient. We offer some takeaways based on our survey.

Takeaway 1: iron out degeneracies in the learned distribution. Above we discussed introducing
token-level truncation algorithms to avoid errors in the model’s distribution (for instance, when the learned
model assigns too much probability to sequences that have low or zero probability under the true distri-
bution). At a qualitative level, examples encountered in practice include ancestral sampling resulting in
incoherent sequences. At another extreme, MAP decoding algorithms can result in unnaturally repetitive
sequences that are nevertheless assigned high probability by the model, or even empty sequences. These

3https://github.com/ggerganov/llama.cpp
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degeneracies again motivate the use of generation algorithms with alternative goals, such as minimizing
Bayes Risk, or the use of a token-level truncation algorithm. In these cases, generation algorithms offer a
mechanism for modifying the resulting generation distribution to remove these errors.

Moving forward. As models improve, will generation algorithms for these cases still be needed? Since the
aforementioned errors stem from a model imperfection, it is plausible that future models will not have these
imperfections. Moreover, taking simplicity of the overall generation system as an objective to strive for, we
might explicitly strive to ultimately remove the generation algorithm for these cases. On the other hand,
imperfections may come from subtle design choices, such as the use of softmax (Finlayson et al., 2024a),
or the choice of an autoregressive architecture. Therefore, we speculate that on the way to achieving this
objective, it will remain important to identify degeneracies in existing models, introduce practical methods
to mitigate them, and ultimately gain an understanding that can be used in the design of new methods.

Takeaway 2: align the generation distribution with a new objective. Above we discussed how
the learned distribution pθ may not equal the desired distribution of generations q∗. For instance, language
modeling corpora often contain sequences considered offensive in many contexts (Gehman et al., 2020), and
we may want to generate only non-offensive outputs. We have seen examples of generation algorithms that
reweight the model’s distribution using another model (e.g., one trained to adjust the distribution so that
it optimizes a non-toxicity reward), or draw a large number of samples from the model and select one with
a reward function (a form of rejection sampling). In these cases, the generation algorithm offers a layer of
“control” over the generation distribution, allowing us to shift the generation distribution to a desired one.

Moving forward. Moving forward, we speculate that the language model’s learned distribution will not
always align with the desired distribution for all possible uses. Thus, using a generation algorithm to shift
the model’s distribution to a desired one may withstand the test of time. On the other hand, previously
we discussed the connection between generation algorithms and reinforcement learning. Indeed, if we have
a reward function, then for a particular application a model may be finetuned to match the distribution
induced by the reward function, offering a potential channel to removing the complexity associated with
generation algorithms.

In the near term, users may interact with models through black-box APIs that are simply imperfect for their
application of interest, but obtaining a filtering function or scoring model is relatively straightforward. Thus
we speculate that in practical cases, users will continue to benefit from algorithms such as rejection sampling
that shift the generation distribution using repeated calls to the generator model.

Takeaway 3: dynamic computation. Above, we discussed how generation algorithms can be viewed as
searching through the output space for a desired sequence, and that generation algorithms offer a mechanism
for using compute to expand the coverage of states explored during the search. For example, best-of-N
algorithms use compute to search for a solution by generating N hypotheses. More formally, we can write
down the objective of many algorithms as approximating the maximization of some scoring function, and
doing so with a sampling-based approximation indeed results in a better approximate solution as the number
of samples increases. We saw an example above where taking this approach was effective for increasing the
probability of a generator’s output being correct in reasoning problems. In this sense, generation algorithms
offer a mechanism for dynamically expending compute with a language model to improve performance.

Moving forward. Moving forward, we see several cases. For some tasks, models may become so good that
a single sequence is all that is needed to arrive at a desired state with near 100% probability. In these
cases, the generation algorithm may not be useful. In challenging cases, the model may have acquired a
useful representation, but may benefit from exploring the output space through backtracking, revision, etc.
before arriving at a final solution. In these cases, the computation expended at inference time remains
useful. Nevertheless, there are at least two potential alternatives to generation algorithms with respect to
dynamic computation. One is building dynamic computation into the architecture (Raposo et al., 2024)
or learning algorithm (Goyal et al., 2024; Zelikman et al., 2024a), so that (for instance) allocating more
compute to harder problems is automatically handled by the model. A second alternative is to learn the
search algorithm (Chang et al., 2015; Lehnert et al., 2024; Gandhi et al., 2024), then use a vanilla generation
algorithm.
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In the nearer term, at the application level users may interact with models through black-box APIs that are
simply imperfect. Thus we speculate that users will continue to benefit from using the API as a hypothesis
generator that is called multiple times within a search algorithm, rather than a model that is called once for
an answer. From a research perspective, the relationship between generation-time compute and performance
requires further investigation. For instance, we saw above that the relationship varies by generation algorithm
in voting settings. Designing algorithms that optimally leverage test-time compute even in these simple
settings requires further research, as well as in more general cascaded systems (Chen et al., 2024a).

Takeaway 4: leveraging external information. Above we saw several ways in which generation algo-
rithms incorporate information that is external to the language model. This includes predictions from other
models, instructions or few-shot examples in prompts, external tools or verifiers, or generally inputs and
outputs from an external environment.

Moving forward. Moving forward, we may expect that a generation algorithm that has information beyond
that present in a language model may exceed the performance of the language model on its own. We
speculate that language models on their own may either be unable to solve subproblems that are required
for a complete generation (e.g., performing an algebraic computation that is simple for a computer algebra
system, or retrieving a piece of information that is outside of the model’s parametric knowledge), or that
doing so is an inefficient allocation of computation. Moreover, we expect that in many challenging settings,
it may be necessary to decompose problems into a cascade of generations, interact with an environment,
and iteratively arrive at a final generation. In all of these cases, generation algorithms that incorporate
external information, be it in prompts that alter a module’s distribution within a cascade or environment
information, offer a range of possibilities to explore in future research.

Finally, we expect that discrete autoregressive sequence generators will increasingly be used in domains
traditionally outside of those considered in natural language processing, such as a component in an ‘agent’
that receives states and takes actions in a potentially stochastic environment. In these cases, using external
information is inherent to the problem. How this translates to generation algorithms remains an open area of
research. For instance, notions of ‘planning’ that are inherent to several methods discussed in this review are
natural fits for planning actions in interactive environments. In the near term, we expect to see generation
algorithms developed in the context of language generation such as refinement integrated into these settings.

Takeaway 5: speed up generation. Finally, we saw examples of how generation algorithms can them-
selves be used to speed up generation, even in the case of ancestral sampling from a language model.

Moving forward. Regardless of the future form of sequence generators, we expect that there will always be a
need and opportunity for speeding up generation. Naturally, one must consider the expected marginal benefit
of developing a new method for speeding up generation compared to existing methods. Given the evolving
nature of model scale, architectures, applications, and compute environments, we expect the marginal benefits
of new methods to remain high for the foreseeable future. In particular, optimized generation algorithms
that involve multiple models, external information, and/or cascaded generation is a nascent research area.

9 Conclusion

We surveyed generation algorithms for language models. We motivated generation algorithms, formalized
their goals, and provided a unified treatment of three themes: token-level generation algorithms, meta-
generation algorithms, and efficient generation. Our survey brings together past research from the decoding,
LLM reasoning, and machine learning systems communities, and identifies directions for future work.
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