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Abstract. Inspired by self-training learning via pseudo labeling, we con-
struct self-training framework with selective re-training pseudo labels to
improve semi-supervised abdominal organ segmentation. In this work, we
carefully design the strong data augmentations (SDA) and test-time aug-
mentations (TTA) to alleviate overfitting noisy labels as well as decouple
similar predictions between the teacher and student models. For efficient
segmentation learning (ESL), knowledge distillation is adopted to trans-
fer larger teacher model to smaller student model for compressing model.
In addition, we propose the single-label based connected component la-
belling (CCL) for post processing. Compared to one-hot CCL of O(n)
time complexity, which on the single-label based method is reduced to
O(1). Quantitative evaluation on the FLARE2022 validation cases, this
method achieves the average dice similarity coefficient (DSC) of 0.8813
on semi-supervised model, it achieves significant improvement compared
to 0.7711 on full-supervised model. Code is available at
https://github.com/Shanghai-Aitrox-Technology/EfficientSegLearning

Keywords: Self-training · Efficient segmentation learning · Abdominal
organ segmentation.

1 Introduction

Automatic segmentation of abdominal organs is confronted with main difficul-
ties stem from three aspects: 1) It is costly, laborious, and even infeasible to
annotate multi-organs at pixel-wise level in a large dataset. 2) The limited con-
sumption resource and segmentation efficiency are required. 3) The variations in
size, morphology and texture of different organs lead to class imbalance problem.

To avert the labor-intensive procedure for voxel-wise manual labeling, semi-
supervised semantic segmentation has been proposed to learn a model from
a handful of labeled images along with abundant unlabeled images. The self-
training is commonly regarded as a form of entropy minimization in semi-
supervised learning (SSL), since the re-trained student is supervised with pseudo
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labels produced by the teacher which is trained on labeled data. However, poten-
tial performance degradation when iteratively optimizing the model with those
ill-posed pseudo labels.

For efficient segmentation learning (ESL), self-training and self-supervised as
the label-efficient approaches are used to boost the model representation capac-
ity. Moreover, the common model compression and acceleration methods includ-
ing pruning, distillation and quantization are adopted to produce light-weight
models for efficient inference. The main concern of these method is to avoid the
potential performance degradation on compressed model.

Fig. 1. A schematic diagram of the proposed efficient segmentation learning framework.

In this work, we empirically present four simple and effective techniques to
alleviate the potential performance degradation as follows:

• We adopt an advanced self-training framework performs selective re-training
via prioritizing reliable images based on holistic prediction-level stability in
the entire training course.

• We design strong data augmentations (SDA) and test-time augmentations
(TTA) on unlabeled images to alleviate overfitting noisy labels as well as
decouple similar predictions between the teacher and student.

• We adopt knowledge distillation to transfer the knowledge from larger teacher
model to smaller student model.

• We convert the one-hot based connected component labelling (CCL) to
single-label based CCL for post processing.

2 Method

The pipeline of the proposed efficient segmentation framework is depicted in
Fig 1. We adopt the whole-volume-based coarse-to-fine framework as proposed
in efficientSegNet [8] for abdominal multi-organ segmentation. The self-training



is adopted for semi-supervised semantic segmentation. In addition, post quan-
tization and single-label based CCL are designed to accelerate the inference. A
detail description of the method is as follows.

2.1 Preprocessing

The proposed method includes the following preprocessing steps:

• Reorienting images to the right-anterior-inferior (RAI) view by linear resam-
pling.

• Background removal by threshold segmentation. Cropping the bounding box
of target, and resampling image to fixed size. The sizes of coarse and fine
input are [160, 160, 160] and [160, 192, 192], respectively.

• Intensity normalization: First, the image is clipped to the range [-500, 500].
Then a z-score normalization is applied based on the mean and standard
deviation of the intensity values.

2.2 Proposed Method

The proposed method is derived from self-training framework [7] (namely ST++)
in semi-supervised semantic segmentation task. We employ 3D UNet with resid-
ual block (ResUNet) for both teacher and student models. The self-training from
is as follows:
1) Strong data augmentations

Table 1. The framework of self-training with selective re-training.

Step 1. Supervised Learning: Train a teacher model T with higher input resolution
on labeled image with weak data augmentation.
Step 2. Pseudo Labeling: Predict un-labeled image on three model checkpoints with
T to obtain reliable scores. Select R highest scored images to generate pseudo
labels with test-time-augmentation.
Step 3. Re-training: Re-train a student model S with equal or larger model on the
jointed labeled and 50% of highest reliable pseudo labels. Where the labeled
image in training phase with weak data augmentation, while pseudo labels with
strong data augmentation.
Step 4. Re-labelling: Putting back the S as a T to obtain pseudo labels on
un-labelled image.
Step 5. Re-training: Re-train a student model S on the jointed labeled and all of
pseudo labels which reliable scores exceed the 0.9.
Step 6. Update: Return to step. 4 and employ the S model as the T model until
reaching desired number of iterations.

The weak or basic augmentations adopted in regular fully-supervised seman-
tic segmentation, including random rotating, resizing, brightness, cropping and
flipping. We inject SDA on unlabeled images to alleviate overfitting noisy labels



as well as decouple similar predictions between the teacher and student, includ-
ing color, noise and painting jitter. In the pseudo labeling phase, all unlabeled
images are predicted with test-time augmentations, which contains rotating,
cropping and fliping.
2) Selective re-training

We adopt a selective re-training scheme via prioritizing reliable unlabeled
samples to safely exploit the whole unlabeled set in an easy-to-hard curriculum
learning manner. The measurement for the reliability or uncertainty of an unla-
beled image is to compute the holistic stability of the evolving pseudo masks in
different iterations during the entire training course. Therefore, the more reliable
and better predicted unlabeled images can be selected based on their evolving
stability during training.

Concretely, several model checkpoints are saved in the first stage supervised
training, and the discrepancy of their predictions on the unlabeled image serves
as a measurement for reliability. Since training model tends to converge and
achieve the best performance in the late training stage, we evaluate the mean
Dice between each earlier pseudo mask and the final mask. Obtaining the sta-
bility score of all unlabeled images, we sort the whole unlabeled set based on
these scores, and select the top R images with the highest scores for the first
retraining phase.
3) Knowledge distillation

The teacher model has higher input resolution and wider initial channels by
giving the teacher model enough capacity and difficult environments in terms
of noise to learn through. In the last iteration phase, we train a small and fast
student model for inference via knowledge distillation.

2.3 Post-processing

We convert full precision to half precision models on the inference phase. The
CCL is applied on the coarse and fine model output to remove outlier and iso-
lated objects. The one-hot labels are converted into single-label mask, and small
isolated object removal is performed on the single-label mask. Compared to O(n)
time complexity of one-hot processing, this method reduces the time complexity
to O(1).

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2022 is an extension of the FLARE 2021 [4] with more segmenta-
tion targets and more diverse abdomen CT scans. The dataset is curated from
more than 20 medical groups under the license permission, including MSD [6],
KiTS [2,3], AbdomenCT-1K [5], and TCIA [1].

The training set includes 50 labelled CT scans with pancreas disease and
2000 unlabelled CT scans with liver, kidney, spleen, or pancreas diseases. The



validation set includes 50 CT scans with liver, kidney, spleen, or pancreas dis-
eases. The testing set includes 200 CT scans where 100 cases has liver, kidney,
spleen, or pancreas diseases and the other 100 cases has uterine corpus endome-
trial, urothelial bladder, stomach, sarcomas, or ovarian diseases. All the CT scans
only have image information and the center information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

1) Data augmentations
For weak data augmentations, the training images are randomly rotating on the
x-y plane, flipping along each axis, resizing scale from 0.8 to 1.2, brightness from
-200 to 200 and cropping. For the SDA on the unlabeled images, we use color
jitter with random brightness, contrast and gamma, noise jitter with gaussian
noise and blur, image in-painting with random values filled.

2) Test time augmentation
In the pseudo labeling phase, all unlabeled images are predicted with TTA,
which contains rotating 180 degree along the z axis and cropping with central
coordinates. The single-label based CCL is adopted to remove small isolated
objects and the images are evaluated on their original resolution.

3) Selective re-training
The reliable images are measured with three checkpoints that are evenly saved
at 1/3, 2/3, 3/3 total iterations during training. We simply treat the top 50%
highest scored images with meanDice score larger than 0.9 as reliable ones and
the remaining ones as unreliable. We oversampling labelled image to around the
same scale as un-labelled image and then sampling uniformly from the combined
dataset.

4) Environments and requirements
The environments and requirements of the proposed method is shown in Table
2.

5) Training procedure
We maintain the same optimizer strategy to train the teacher and student model.
Specifically, the batch size is set as 1 with single NVIDIA 2080Ti GPU on dis-
tributed training. We use the adamW optimizer for training, where the initial
base learning rate is set as 0.001. We use the step scheduling at 2/3, 6/7 epochs
to decay the learning rate as 1e-4 and 5e-5 during the training process. The



Table 2. Environments and requirements.

Ubuntu version 16.04.10
CPU Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz (×4)
RAM 502G
GPU NVIDIA 2080Ti (×8)

CUDA version 11.0
Programming language Python 3.6

Deep learning framework Pytorch (torch 1.5.0, torchvision 0.8.0)
Code is publicly available at Shanghai-Aitrox-Technology/EfficientSegLearning

model is trained for 1000 epochs on the labelled image, 100 epochs on the la-
belled and pseudo labelled image in the first iteration phase, and 60 epochs in the
subsequent iteration phase. Empirically, the 5 times of iterative training could
reach the satisfying result.

The training protocols of the proposed method is shown in Table 3.

Table 3. Training protocols.

Basic network ResUNet with initial channels of 16
Network initialization Kaiming normal initialization

Batch size 8
Patch size Coarse: 160, 160, 160

Fine: 160, 192, 192
Optimizer Adam with betas(0.9, 0.99), L2 penalty: 0.00001

Loss Dice loss
Dropout rate 0.2

Initial learning rate (lr) 0.001

Learning rate decay schedule
epoch <= epochs * 0.66: initLR

epochs * 0.66 < epoch <= epochs * 0.86: initLR * 0.1
epochs * 0.86 < epoch: initLR * 0.05

Training time per iteration 20 hours

4 Results and discussion

4.1 Quantitative results on validation set

Quantitative result is illustrated in Table 4, it can be found that the proposed
method can achieve very promising results on large organs, such as the liver,
spleen, kidney, stomach. But for small organs, it remains very challenging and



also desires to pay more attention, especially for some extremely small and
unclear boundary organs , such as adrenal and duodenum. Compared to full-
supervised model, the proposed semi-supervised method achieves the significant
improvement.

Table 4. Quantitative results of validation set in terms of DSC.

Organs Full-supervised Semi-supervised
Liver 0.9198 0.9771
RK 0.8620 0.9253

Spleen 0.8777 0.9762
Pancreas 0.7452 0.8839

Aorta 0.9286 0.9667
IVC 08512 0.9172
RAG 0.6779 0.7791
LAG 0.5352 0.7415

Gallbladder 0.5769 0.7971
Esophagus 0.7706 0.8497
Stomach 0.7896 0.9120

Duodenum 0.6494 0.7954
LK 0.8397 0.9361

Mean 0.7711 0.8813

4.2 Qualitative results on validation set

Fig 2 presents some easy and hard examples on validation set, and quantitative
result is illustrated Table 5.For Case #21 and Case #35, our method successfully
identify all organs with high DSC scores.For Case #2 and Case #44,Our method
also performed well on large organs with clear boundaries,such as the spleen ,
but performed poorly on some organs with unclear boundaries or small organs,
and even failed to segment, such as the stomach in Case #2.

4.3 Segmentation efficiency results on validation set

The average running time is 13.0 s per case in inference phase, and average used
GPU memory is 2478 MB. The area under GPU memory-time curve is 13658.8
and the area under CPU utilization-time curve is 246.8.

4.4 Results on final testing set

Quantitative result is illustrated in Table 6, it can be found that in the final
test set, our test results are an average DSC of 0.8860 and an average NSD of



Table 5. The DSC scores of easy and hard examples.

Organs 0021 0035 0002 0044
Full Semi Full Semi Full Semi Full Semi

Liver 0.9797 0.9862 0.9757 0.9833 0.8927 0.9844 0.9175 0.9807
RK 0.9834 0.9791 0.9798 0.9833 0.8731 0.9510 0.0000 0.0000

Spleen 0.9871 0.9906 0.9885 0.9891 0.9754 0.9876 0.9650 0.9873
Pancreas 0.9254 0.9405 0.8618 0.9149 0.6832 0.8199 0.5878 0.8093

Aorta 0.9698 0.9721 0.9689 0.9729 0.9089 0.9574 0.8642 0.9464
IVC 0.9412 0.9491 0.9120 0.9368 0.8452 0.8524 0.8832 0.9449
RAG 0.8662 0.8525 0.6510 0.7973 0.5388 0.7670 0.0000 0.0000
LAG 0.6821 0.8503 0.6899 0.8464 0.7880 0.7540 0.5391 0.8424

Gallbladder 1.0000 1.0000 0.9358 0.9626 0.3066 0.2166 0.4060 0.9323
Esophagus 0.9073 0.9218 0.8539 0.9057 0.0000 0.0000 0.7171 0.8899
Stomach 0.9548 0.9705 0.8736 0.9669 0.5553 0.9624 0.4528 0.9168

Duodenum 0.9052 0.9333 0.8755 0.8910 0.7173 0.8500 0.0682 0.5606
LK 0.9830 0.9806 0.9847 0.9894 0.9344 0.9700 0.9257 0.9739

Mean 0.9296 0.9482 0.8885 0.9338 0.6938 0.7748 0.5636 0.7526

Table 6. Quantitative results on final testing set.

Organs DSC NSD
Liver 0.9786±0.0259 0.9859±0.0306
RK 0.9477±0.1685 0.9507±0.1718

Spleen 0.9517±0.1435 0.9560±0.1496
Pancreas 0.8536±0.0647 0.9488±0.0569

Aorta 0.9648±0.0227 0.9831±0.0294
IVC 0.9193±0.0625 0.9319±0.0757
RAG 0.8276±0.1130 0.9404±0.1118
LAG 0.8126±0.1221 0.9106±0.1261

Gallbladder 0.7792±0.3339 0.7894±0.3386
Esophagus 0.8166±0.1166 0.9056±0.1182
Stomach 0.9352±0.0471 0.9631±0.0555

Duodenum 0.7788±0.1049 0.9139±0.0818
LK 0.9519±0.1363 0.9562±0.1429

Mean 0.8860±0.0755 0.9335±0.0501



Fig. 2. Qualitative results of full-supervised and semi-supervised model on easy (case
FLARETs 0021 and 0035) and hard(case FLARETs 0002 and 0044) examples. First
column is the image, second column is the ground truth, third column is the predicted
results by full-supervised model and forth column is the predicted results by semi-
supervised model.



0.9335, and the average variance is very small, which proves that our model has
excellent generalization.

4.5 Limitation and future work

More verification experiments could be performed to reduce resource consump-
tion: 1) Lower dimension input, such as multi-views or 2.5D images. 2) Lower
precision representation, such as 8 bit-widths numerical precision. 3) Training-
aware pruning and quantization methods may recover the performance.

5 Conclusion

The proposed method achieves the highly generation ability for large organs. The
main challenge in this task lies in complex anatomical structures, the unclear
boundary of soft tissues, high resolution of images, and extremely unbalanced
sizes among large and small organs, etc. The proposed SSL method with low-
resource consumption achieves the significant improvement compared to the full-
supervised method.
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