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ABSTRACT

When machine learning (ML) models need to be frequently retrained, it is often
too expensive to obtain human-annotated samples, so recent ML models have
started to label samples by themselves. This paper studies a setting where an ML
model is retrained (with human and model-annotated samples) over time to make
decisions about a sequence of strategic human agents who can adapt their behaviors
in response to the most recent ML model. We aim to investigate what happens
when model-annotated data are generated under the agents’ strategic feedback and
how the models retrained with such data can be affected. Specifically, we first
formalize the interactions between agents and the ML system and then analyze
how the agents and ML models evolve under such dynamic interactions. We find
that as the model gets retrained, agents are increasingly likely to receive positive
decisions, whereas the proportion of agents with positive labels may decrease over
time. We thus propose an approach to stabilize the dynamics and show how this
method can further be leveraged to enhance algorithmic fairness when agents come
from multiple social groups. Experiments on synthetic/semi-synthetic and real data
validate the theoretical findings.

1 INTRODUCTION
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Figure 1: Illustration of model retraining with
strategic feedback from t to t ` 1

As machine learning (ML) is widely used to automate
human-related decisions (e.g., in lending, hiring, col-
lege admission), there is a growing concern that these
decisions are vulnerable to human strategic behav-
iors. With the knowledge of decision policy, humans
may adapt their behavior strategically in response to
ML models, e.g., by changing their features at costs
to receive favorable outcomes. A line of research
called Strategic Classification studies such problems
by formulating mathematical models to characterize
strategic interactions and developing algorithms ro-
bust to strategic behavior (Hardt et al., 2016; Levanon
& Rosenfeld, 2022). Among the existing works, most studies focus on one-time deployment where
an ML model is trained and applied to a fixed population once.

However, practical ML systems often need to be retrained periodically to ensure high performance
on the current population. As the ML model gets updated, human behaviors also change accordingly.
To prevent the potential adverse outcomes, it is critical to understand how the strategic population is
affected by the model retraining process. Traditionally, the training data used for retraining models
can be constructed manually from human-annotated dataset (e.g., ImageNet). However, acquiring
a large amount of human-annotated training samples can be highly difficult and even infeasible,
especially in human-related applications (e.g., in automated hiring where an ML model is used to
identify qualified applicants, even an experienced interviewer needs time to label an applicant).

Motivated by a recent practice of automating data annotation for retraining large-scale ML models
(Taori & Hashimoto, 2023; Adam et al., 2022), we study strategic classification in a sequential
framework where an ML model is periodically retrained by a decision-maker with both human and
model-annotated samples. The updated models are deployed sequentially on agents who may change
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Figure 2: Evolution of the student distribution and ML model at t “ 0 (left), t “ 5 (middle), and
t “ 14 (right): each student has two features. At each time, a classifier is retrained with both human
and model-annotated samples, and students best respond to be admitted as illustrated in Fig. 1. Over
time, the learned classifier (black lines) deviates from ground truth (green lines).

their features to receive favorable outcomes. Specifically, we consider practical settings where: (i)
the decision-maker can only label a limited number of human-annotated samples by itself, and has to
use the current classifier to produce model-annotated samples for future retraining; (ii) the strategic
agents need time to adapt their behaviors (Zrnic et al., 2021) and they best respond based on the
previous model; (iii) feature changes caused by agents’ best responses can genuinely change their
underlying labels (Kleinberg & Raghavan, 2020), and feature-label relationship is fixed over time.
Because the ML model affects agent behavior and such strategic feedback is further captured when
retraining the future model, both the model and agents change over time. However, it remains unclear
how the two evolve under such dynamics and what long-term effects one may have on the other.

In this paper, we examine the evolution of the ML model and the agent data distribution after they
best respond. In particular, we ask: 1) How is the agent population reshaped over time when the
model is retrained with strategic feedback? 2) How is the ML system affected by the agent’s strategic
response? 3) If agents come from multiple social groups, how can model retraining further impact
algorithmic fairness? 4) What happens if the human-annotated samples have a systematic bias?

To further illustrate our problem, consider an example of college admission where new students from
a population apply each year. In the t-th year, an ML model ft is learned from a training dataset
St and used to make admission decisions. For students who apply in the pt ` 1q-th year, they will
best respond to the model ft in the previous year (e.g., preparing the application package in a way
that maximizes the chance of getting admitted). Meanwhile, the college retrains the classifier ft`1

using a new training dataset St`1, which consists of previous training data St, new human-annotated
samples, and new model-annotated samples (i.e., previous applicants annotated by the most recent
model ft). This retrained model ft`1 is then used to make admission decisions in the pt ` 1q-th year.
This process continues over time and we demonstrate how the training dataset St is updated in Fig. 1.
Under such dynamics, both the ML system and the strategic population change over time and may
lead to unexpected long-term consequences. An illustrating example is given in Fig. 2.

Compared to prior studies on strategic classification, we go beyond one-shot settings to study the
long-term impacts of retraining in a sequential framework. Instead of assuming labels are available
while retraining, we consider more practical scenarios with model-annotated samples. Although the
risk of using model-annotated samples to retrain models has been highlighted in some existing works
(Taori & Hashimoto, 2023), ours is the first to incorporate strategic feedback from human agents.
More related works are discussed in App. C. Our contributions are summarized as follows:

1. We formulate the problem of model retraining with strategic feedback and qualitatively analyze
the sources influencing the system dynamics (Sec. 2).

2. We theoretically characterize the evolution of the expectation of acceptance rate (i.e., the propor-
tion of agents receiving positive classifications), qualification rate (i.e., the proportion of agents
with positive labels), and the classifier bias (i.e., the discrepancy between acceptance rate and
qualification rate) under the retraining process. We show that the acceptance rate increases over
time under the retraining process, while the actual qualification rate may decrease under certain
conditions. The dynamics of classifier bias are more complex depending on the systematic bias of
human-annotated samples. Finally, we propose an approach to stabilize the dynamics (Sec. 3).

3. We consider settings where agents come from multiple social groups and investigate how inter-
group fairness can be affected by the model retraining process; we also propose an early stopping
mechanism to promote fairness (Sec. 4).

4. We conduct experiments on synthetic/semi-synthetic and real data to verify the theoretical results
and test their robustness (Sec. 5, App. E, App. F).
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2 PROBLEM FORMULATION

Consider a population of agents who are subject to certain machine learning decisions (e.g., admis-
sion/hiring decisions) and join the decision-making system in sequence. Each agent has observable
continuous features X P Rd and a hidden binary label Y P t0, 1u indicating its qualification state ("1"
being qualified and "0" being unqualified). Let PXY be the joint distribution of pX,Y q which is fixed
over time, and PX , PY |X be the corresponding marginal and conditional distributions. PX , PY |X

are continuous with non-zero probability mass everywhere in their domain. For agents who join the
system at time t, the decision-maker makes decisions about them using a classifier ft : Rd Ñ t0, 1u.
In this paper, we consider practical settings that the decision-maker does not know PXY and can only
learn ft from the training dataset at t (Guldogan et al., 2022).

The agent’s best response. Agents who join the system at time t can adapt their behaviors based
on the latest classifier ft´1 and change their features X strategically. We denote the resulting data
distribution as P t

XY . Specifically, given original features X “ x, agents have incentives to change
their features at costs to receive positive classification outcomes, i.e., by maximizing utility

xt “ maxz tft´1pzq ´ cpx, zqu (1)

where distance function cpx, zq ě 0 measures the cost for an agent to change features from x to z.
In this paper, we consider cpx, zq “ pz ´ xqTBpz ´ xq for some d ˆ d positive semidefinite matrix
B, allowing heterogeneous costs for different features. After agents best respond, the agent data
distribution changes from PXY to P t

XY . In this paper, we term PXY agents’ prior-best-response
distribution and P t

XY agents’ post-best-response distribution. We consider natural settings that (i)
the agents’ responses are delayed: they act based on the latest classifier ft´1 they are aware of, not
the one they receive; (ii) agents’ behaviors are benign and cause the actual labels to change, so the
relationship between features and label P t

Y |X “ PY |X does not change (Guldogan et al., 2022).

Human-annotated samples and systematic bias. At each round t, we assume the decision-maker
can draw a limited number of unlabeled samples from the prior-best-response distribution PX . Note
that the human annotation process is independent of the decision-making process. At t, each agent is
classified by the model ft and best responds to ft´1, the decision-maker never confuses the agents
by simultaneously using human experts to label agents. Instead, human experts never participate in
the interaction and human annotation is another process for the decision-maker to obtain additional
information about the whole population (e.g., by first acquiring data from public datasets or third
parties, and then labeling them to recover the population distribution). We may also consider the
situation where human-annotated samples at t are drawn from post-best-response distribution P t

X ,
the discussion is in App. D.1. With some prior knowledge (possibly biased), the decision-maker
can annotate these features and generate human-annotated samples So,t. We assume the quality of
human annotations is consistent, so So,t at any t is drawn from a fixed probability distribution Do

XY
with marginal distribution Do

X “ PX . Because human annotations may not be the same as true
labels, Do

Y |X can be biased compared to PY |X . We define such difference as the decision-maker’s
systematic bias, formally stated below.
Definition 2.1 (Systematic bias). Let µpDo, P q “ Ex„PX

rDo
Y |Xp1|xq ´ PY |Xp1|xqs. The decision-

maker has a systematic bias if µpDo, P q ą 0 (overestimation) or µpDo, P q ă 0 (underestimation).

Def. 2.1 implies that the decision-maker has a systematic bias when it labels a larger (or smaller)
proportion of agents as qualified compared to the ground truth. Depending on the applications, the
systematic bias may or may not exist and we study both scenarios in the paper.

Model-annotated samples. In addition to human-annotated samples, the decision-maker at each
round t can also leverage the most recent classifier ft´1 to generate model-annotated samples for
training the classifier ft. Specifically, let txi

t´1uNi“1 be N post-best-response features (equation 1)
acquired from agents coming at t´1, the decision-maker uses ft´1 to annotate the samples and obtain
model-annotated samples Sm,t´1 “ txi

t´1, ft´1pxi
t´1quNi“1. Both human and model-annotated

samples can be used to retrain the classifier at t.

Classifier’s retraining process. With the human and model-annotated samples introduced above, we
next introduce how the model is retrained by the decision-maker over time. Denote the training set at
t as St. Initially, the decision-maker trains f0 with a human-annotated training dataset S0 “ So,0.
Then the decision-maker updates ft every round to make decisions about agents. The decision-maker
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learns ft P F using empirical risk minimization (ERM) with training dataset St. Similar to studies
in strategic classification (Eilat et al., 2022), we consider linear hypothesis class F . At each round
t ě 1, St consists of three components: existing training samples St´1, N new model-annotated and
K new human-annotated samples, i.e.,

St “ St´1 Y Sm,t´1 Y So,t´1, @t ě 1 (2)
Since annotating agents is usually time-consuming and expensive, we have N " K in practice. The
complete retraining process is shown in Alg. 1 (App. A).

Given the training dataset St and the post-best-response distribution P t
XY , we can define their

associated qualification rates as the proportion/probability of agents that are qualified, i.e.,
QpStq “ Epx,yqPSt

rys ; QpP tq “ Epx,yq„P t
XY

rys ,

For the classifier ft deployed on marginal feature distribution P t
X , we define acceptance rate as the

probability that agents are classified as positive, i.e.,
Apft, P

tq “ Ex„P t
X

rftpxqs.

Since St is related to random sampling at all t, the resulting classifier ft and agents’ best responses
are also random. Denote Dt

XY as the probability distribution of sampling from St and recall
that Do

XY is the distribution for human-annotated So,t, we can further define the expectations of
qualification/acceptance rate QpStq, QpP tq, Apft, P

tq over the training dataset:
qt :“ ESt

rQpStqs; qt :“ ESt´1
rQpP tqs; at :“ ESt

rApft, P
tqs

where qt is the expected qualification rate of agents in the training set; qt is the expected actual
qualification rate of agents after they best respond, note that the expectation is taken with respect to
St´1 because the distribution P t

XY is the result of agents best responding to ft´1 which is trained
with St´1; at is the expected acceptance rate of agents at time t.

Dynamics of qualification rate & acceptance rate. Under the model retraining process, both the
model ft and agents’ distribution P t

XY change over time. One goal of this paper is to understand
how the agents and the ML model interact and impact each other in the long run. Specifically, we are
interested in the dynamics of the following variables:

1. Qualification rate qt: it measures the qualification of agents and indicates the social welfare.
2. Acceptance rate at: it measures the likelihood that an agent can receive positive outcomes and

indicates the applicant welfare.
3. Classifier bias ∆t “ |at ´ qt|: it is the discrepancy between the acceptance rate and the

true qualification rate, measuring how well the decision-maker can approximate agents’ actual
qualification rate and can be interpreted as decision-maker welfare.

While it is difficult to derive the dynamics of at and qt explicitly, we can first work out the dynamics
of qt using the law of total probability (details in App. G.1), i.e.,

qt “
tN`pt´1qK
pt`1qN`tK ¨ qt´1 ` N

pt`1qN`tK ¨ at´1 ` K
pt`1qN`tK ¨ q0 (3)

Then, we explore relations between qt and at (or qt). By leveraging such relations and equation 3,
we can further study the dynamics of at (or qt).

Objectives. This paper studies the above dynamics and we aim to answer the following questions: 1)
How do the qualification rate qt, acceptance rate at, and classifier bias ∆t evolve under the dynamics?
2) How can the evolution of the system be affected by the decision-maker’s retraining process? 3)
What are the impacts of the decision-maker’s systematic bias? 4) If we further consider agents from
multiple social groups, how can the retraining process affect inter-group fairness?

3 DYNAMICS OF THE AGENTS AND MODEL

In this section, we examine the evolution of qualification rate qt, acceptance rate at, and classifier
bias ∆t. We aim to understand how applicant welfare (Sec. 3.1), social welfare (Sec. 3.2), and
decision-maker welfare (Sec. 3.3) are affected by the retraining process in the long run.

Because the acceptance rate at :“ ESt
rApft, P

tqs and qualification rate qt :“ ESt´1
rQpP tqs depend

on agent post-best-response distribution P t
XY and the classifiers, we can indeed identify all sources

that affect the evolution of these quantifies (details are in App. G.2):
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• qt: Expected qualification rate of agents in training set.
• δpDt,Fq : Algorithmic bias that measures how well hypothesis class F can approximate the

training data distribution Dt
Y |X . It universally exists in the PAC learning framework.

• δtBR: Strategic shift caused by agents’ best responses to ft´1 at t.

Note that δtBR and qt closely affect each other and cannot be decoupled quantitatively. Meanwhile,
δpDt,Fq only depends on how well the hypothesis class F fits P t

Y |X . Since F is pre-determined,
we ignore δpDt,Fq in our theoretical analysis (Assumption 3.1). However, all experiments in Sec. 5
and Appendix naturally capture δpDt,Fq and the results are consistent with theorems.

Assumption 3.1. Under the retraining process, algorithmic bias δpDt,Fq is negligible.

Finally, we further assume the monotone likelihood ratio property holds for Do
XY and PXY .

Assumption 3.2. Let xrms be m-dimension of x P Rd, then Do
Y |Xp1|xq and PY |Xp1|xq is continuous

and monotonically increasing in xrms, @m “ 1, ¨ ¨ ¨ , d.

Note that the Assumption 3.2 is mild and widely used in previous literature (Zhang et al., 2022).
It can be satisfied by many distributional families such as exponential, Gaussian, and mixtures of
exponential/Gaussian. It implies that agents are more likely to be qualified as feature value increases.

3.1 APPLICANT WELFARE: THE DYNAMICS OF ACCEPTANCE RATE

We first examine the dynamics of at “ ESt
rApft, P

tqs. Intuitively, when δpDt,Fq is negligible
(Assumption 3.1), all classifiers can fit the training data well. Then the model-annotated samples
Sm,t´1 generated from post-best-response agents would have a higher qualification rate than the
qualification rate of St´1 (i.e., qt´1). As a result, the training data St augmented with Sm,t´1 has a
higher proportion of qualified agents qt than qt´1, thereby producing a more "generous" classifier ft
with a larger at. This reinforcing process can be formally stated in Thm. 3.3.

Theorem 3.3 (Evolution of at). Under the retraining process, the acceptance rate of the agents that
join the system increases over time, i.e., at ą at´1, @t ě 1.

Figure 3: Illustration of increased acceptance rate at. The left plot
shows the training dataset St contains 2 unqualified (red circle) and 2
qualified agents (blue square) and at is 0.5. The middle plot shows the
new agents coming at t best respond to ft´1. After the best responses,
3 of 4 agents are qualified (blue square) and 1 is still unqualified (blue
circle). However, all 4 agents are annotated as "qualified" (blue). The
right plot shows the training dataset St`1 contains all points of the left
and middle plot, plus two new human-annotated points (points with
dashed edges). All blue points are labeled as 1 and the red points are
labeled as 0. So the qualification rate sqt`1 of St`1 becomes larger and
ft`1 accepts a higher proportion of agents (at`1 is 0.58).

We prove Thm. 3.3 by
mathematical induction in
App. G.3. Fig. 3 below illus-
trates Thm. 3.3 by showing
how agents’ best responses
can reshape training data
St and classifier ft. When
agents best respond, the
decision-maker tends to ac-
cept more and more agents.
Indeed, we can further show
that when the number of
model-annotated samples
N is sufficiently large com-
pared to the number of
human-annotated samples
K, the classifier will accept
all agents in the long run
(Prop. 3.4).

Proposition 3.4. For any set of PXY , D
o, B, there exists a threshold λ ą 0 such that limtÑ8 at “ 1

whenever K
N ă λ.

The specific value of λ in Prop. 3.4 depends on PXY , D
o, B, which is difficult to find analytically.

Nonetheless, we can demonstrate in Sec. 5 that when K
N “ 0.05, at tends to approach 1 in various

datasets. Since the human-annotated samples are often difficult to attain (due to time and labeling
costs), the condition in Prop. 3.4 is easy to satisfy in practice.
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3.2 SOCIAL WELFARE: THE DYNAMICS OF QUALIFICATION RATE

Next, we study the dynamics of qualification rate qt “ ESt´1
rQpP tqs. Unlike at which always

increases during the retraining process, the evolution of qt is more complicated and depends on
agents’ prior-best-response distribution PXY .

Specifically, let q0 “ QpP q “ Epx,yq„PXY
rys be the initial qualification rate, then the difference

between qt and q0 can be interpreted as the amount of improvement (i.e., increase in label) agents gain
from their best responses at t. This is determined by (i) the proportion of agents that decide to change
their features at costs (depends on PX ), and (ii) the improvement agents can expect upon changing
features (depends on PY |X ). Thus, the dynamics of qt depend on PXY . Despite the intricate nature
of dynamics, we can still derive a sufficient condition under which qt decreases monotonically.

Theorem 3.5 (Evolution of qt). Let FXpxq be the cumulative density function corresponding to PX .
Denote J “ tx|f0pxq “ 0u as the half-space in Rd determined by the classifier f0 trained with So,0.
Under the retraining process, if FX and PY |Xp1|xq are convex on J , then qt`1 ă qt, @t ě 1.

Note that qt`1 ă qt in Thm. 3.5 holds only for t ě 1. Because agents can only improve their
labels from their best responses, prior-best-response q0 always serves as the lower bound of qt. The
half-space J in Thm. 3.5 specifies the region in feature space where agents have incentives to change
their features. The convexity of FX and PY |Xp1|xq ensure that as ft evolves from t “ 1: (i) fewer
agents choose to improve their features, and (ii) agents expect less improvement from feature changes.
Thus, qt decreases over time. The proof and a more general analysis are shown in App. G.5.

Indeed, the condition in Thm. 3.5 can be satisfied by common distributions PX (e.g., Uniform, Beta
when α ą β) and labeling functions PY |Xp1|xq (e.g., linear function, quadratic functions with degree
greater than 1). Other distributions (e.g., Gaussian) and labeling functions (e.g., logistic function) can
also satisfy the condition if FX and PY |Xp1|xq are convex on x P J . We also show that Thm. 3.5 is
valid under diverse experimental settings (Sec. 5, App. E, App. F).

3.3 DECISION-MAKER WELFARE: THE DYNAMICS OF CLASSIFIER BIAS

Sec. 3.1 and 3.2 show that as the classifier ft gets updated over time, agents are more likely to get
accepted (at increases). However, their true qualification rate qt (after the best response) may actually
decrease. It indicates that the decision-maker’s misperception about agents varies over time. Thus,
this section studies the dynamics of classifier bias ∆t “ |at ´ qt|. Our results show that the evolution
of ∆t is largely affected by the systematic bias and its magnitude µpDo, P q (Def. 2.1).

Theorem 3.6 (Evolution of ∆t). Under the retraining process and the conditions in Thm. 3.5:
1. If systematic bias does not exist (i.e., µpDo, P q “ 0), then ∆t increases over time.

2. If the decision-maker overestimates agent qualification (µpDo, P q ą 0), then ∆t increases.

3. If the decision-maker underestimates agent qualification ( µpDo, P q ă 0), then ∆t either mono-
tonically decreases or first decreases but then increases.

Thm. 3.6 highlights the potential risks of the model retraining process and is proved in App. G.6.
Originally, the purpose of retraining the classifier was to ensure accurate decisions on the targeted
population. However, in the presence of strategic agents, the retraining may lead to adverse outcomes
by amplifying the classifier bias. Meanwhile, though systematic bias is usually an undesirable
factor to eliminate when learning ML models, it may help mitigate classifier bias to improve the
decision-maker welfare in the retraining process, i.e., ∆t decreases when µpDo, P q ă 0.

3.4 INTERVENTION TO STABILIZE THE DYNAMICS

Sec. 3.1- 3.3 show that as the model is retrained from strategic agents, at, qt,∆t are unstable and may
change monotonically over time. Next, we introduce an effective approach to stabilize the system.

From the above analysis, we know that one reason that makes qt, at, ∆t evolve is agent’s best
response, i.e., agents improve their features strategically to be accepted by the most recent model,
which leads to a higher qualification rate of model-annotated samples (and the resulting training
data), eventually causing at to deviate from qt. Thus, to mitigate such deviation, we can improve the
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quality of model annotation. Our method is proposed based on this idea, which uses a probabilistic
sampler (Taori & Hashimoto, 2023) when producing model-annotated samples.

Specifically, at each time t, instead of adding Sm´1,o “ txi
t´1, ft´1pxi

t´1quNi“1 (samples annotated
by ft´1) to training data St (equation 2), we use a probabilistic model Φt´1 : Rd Ñ r0, 1s to annotate
each sample according to the following: for each sample x, we label it as 1 with probability Φt´1pxq,
and as 0 otherwise. Here Φt´1pxq « Dt´1

Y |Xp1|xq is the estimated posterior probability learned from
St´1 (e.g., logistic model). We call the procedure refined retraining process if model-annotated
samples are generated in this way based on a probabilistic sampler.

Fig. 3 also illustrates the idea: after agents best respond to ft´1 (middle plot), their features improve
and ft will label both as 1. By contrast, a probabilistic sampler Φt only labels a fraction of them
as 1 to produce a smaller qt`1. This alleviates the influence of agents’ best responses to stabilize
the dynamics of at, qt,∆t. In App. F.3, we also compare the evolution of at, qt,∆t under refined
retraining process with that under the original retraining process, and the results validate our approach.

4 LONG-TERM FAIRNESS DYNAMICS UNDER STRATEGIC RETRAINING

Dynamics without fairness interventions. In this section, we focus on the long-term fairness
dynamics of the retraining process. We first state that the decision-maker easily has systematic bias
(Adebayo et al., 2022; Bareinboim & Pearl, 2012; Alvero et al., 2020) (see App. B for motivating
examples). In this section, we consider scenarios where agents come from two groups i, j with
different sensitive attributes, and the decision-maker, uses group-dependent classifiers to make
decisions about two groups of agents. We assume the initial qualification qi0 ě qj0 and both groups
have the same cost matrix B to change features. Denote the systematic bias to i, j as µi, µj where
µi ě µj . This is reasonable because the group with lower qualifications is usually under-represented.
To measure the unfairness, we consider the metric demographic parity (DP) (Feldman et al., 2015),
which measures the unfairness between two groups i, j as the discrepancy in their acceptance rates
|ait ´ ajt |. The extension to other commonly used fairness metrics is discussed in App. D.2.
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Figure 4: Comparison of unfairness (DP)
when refined retraining process is applied
to both groups (left) and when it is only
applied to group i (right) under dataset 2.

First, if applying the original retraining process for both
groups, then the decision-maker is expected to admit all
agents in the long run and it ultimately preserves fairness,
but the classifier bias will be maximized. However, the
dynamics in the middle of the retraining cannot be deter-
mined without knowing the feature distributions of both
groups. By contrast, applying refined retraining process
on both groups can stabilize the dynamics, but it cannot
mitigate the systematic bias of the decision-maker. In the
left plot of Fig. 4, we see that under the refined retraining
process, the unfairness between groups is always around
0.2. Instead, if the decision-maker only applies the refined retraining process on i while keeping the
original retraining process on j, then perfect fairness will be achieved in the middle of the retraining
process, but the model becomes unfair again as the retraining goes on.

Theorem 4.1 (Promote fairness through the early stopping mechanism). When qi0 ě qj0 and µi ě µj ,
if the decision-maker applies the refined retraining process to group i while applying the original
retraining process to group j, then |ait ´ ajt | will first decrease to be close to 0, and then increase.

Thm. 4.1 implies that the decision-maker can monitor the unfairness at each round, and executes the
early stopping mechanism to attain almost perfect DP fairness. As shown in the right plot of Fig. 4,
the unfairness is minimized at t “ 5 under the proposed method.

Fairness interventions at each round. Since both the original retraining process and the refined
retraining process are unable to maintain demographic parity among groups. We consider fairness
interventions at each round to ensure the deployment of fair models in App. D.2. Specifically, we
examine the dynamics of the qualification rate and acceptance rate for both groups under fairness
interventions. The results show that fairness interventions under the original retraining process still
cause the qualification rate and acceptance rate to change monotonically, but the intervention on the
refined retraining process can produce stable and fair classifiers.
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5 EXPERIMENTS

We conduct experiments on two synthetic datasets (Uniform, Gaussian), one semi-synthetic dataset
(German Credit (Hofmann, 1994)), and one real dataset (Credit Approval (Quinlan, 2017)) to validate
the theorems and proposed methods. Note that only the Uniform dataset satisfies all assumptions
and the conditions in the above theoretical analysis, while the Gaussian dataset and German Credit
dataset violate the conditions in Thm. 3.5. The Credit Approval dataset violates all assumptions
and conditions of the main paper. The decision-maker trains logistic regression models for all
experiments using stochastic gradient descent (SGD) over T steps. We present the experimental
results of the Gaussian and German Credit datasets in this section, while the results for Uniform and
Credit Approval data are similar and shown in App. E.

Table 1: Gaussian Dataset Setting

PXkpxkq PY |Xp1|xq n, r, T, q0

N p0, 0.52q p1 ` exppx1 ` x2qq´1 100, 0.05, 15, 0.5

Gaussian data. We consider a synthetic dataset with
Gaussian distributed PX . PY |X is logistic and satisfies
Assumption 3.2 but not the conditions of Thm. 3.5. We
assume agents have two independent features X1, X2 and
are from two groups i, j with different sensitive attributes but identical joint distribution PXY . Their

cost matrix is B “

„

5 0
0 5

ȷ

and the initial qualification rate is q0 “ 0.5. We assume the decision-

maker has a systematic bias by overestimating (resp. underestimating) the qualification of agents in
the advantaged group i (resp. disadvantaged group j), which is modeled as increasing Do

Y |Xp1|xq to
be 0.1 larger (resp. smaller) than PY |Xp1|xq for group i (resp. group j). For the retraining process,
we let r “ K

N “ 0.05 (i.e., the number of model-annotated samples N “ 2000, which is sufficiently
large compared to the number of human-annotated samples K “ 100). Table 1 summarizes the
dataset information, and the joint distributions are visualized in App. F.1.

We first verify the results in Sec. 3 by illustrating the dynamics of at, qt,∆t for both groups (Fig. 5a).
Since our analysis neglects the algorithmic bias and the evolution results are in expectation, we
perform n “ 100 independent runs of experiments for every parameter configuration and show the
averaged outcomes. The results are consistent with Thm. 3.3, 3.5 and 3.6: (i) acceptance rate at (red
curves) increases monotonically; (ii) qualification rate qt decreases monotonically starting from t “ 1
(since strategic agents only best respond from t “ 1); (iii) classifier bias ∆t evolves differently for
different groups and it may reach the minimum after a few rounds of retraining. Next, we verify
whether the early stopping mechanism of the retraining process proposed in Thm. 4.1 can promote
fairness. Fig. 5b shows that the decision-maker attains almost perfect fairness at t “ 5. However, as
discussed in Sec. 4, although fairness can be enhanced, it only ensures both groups have a similar
classifier bias ∆t but cannot reduce such bias.

Besides, while we assume agents at round t have perfect knowledge of the classifier ft´1, Jagadeesan
et al. (2021) pointed out agents may have a noisy knowledge in practice. To test the robustness of our
theoretical results against agent noisy response, we assume agents estimate their classification result
as pftpxq “ ftpxq ` ϵ where ϵ „ Np0, 0.1q. We present the dynamics of at, qt,∆t for both groups in
Fig. 7a which are quite similar to Fig. 5a, demonstrating the robustness of our theorems.

German Credit dataset (Hofmann, 1994). This dataset includes features for predicting individuals’
credit risks. It has 1000 samples and 19 numeric features, which are used to construct a larger-scaled
dataset. Specifically, we fit a kernel density estimator for all 19 features to generate 19-dimensional
features, the corresponding labels are sampled from the distribution PY |X which is estimated from
data by fitting a logistic classifier with 19 features. Given this dataset, the first 10 features are used to
train the classifiers. The attribute "sex" is regarded as the sensitive attribute. The systematic bias is
created by increasing/decreasing PY |X by 0.05. Other parameters n, r, T, q0 are the same as Table 1.
Since PY |X is a logistic function, Assumption 3.2 can be satisfied easily as illustrated in App. F.1.

We first verify the results in Sec. 3 by illustrating the dynamics of at, qt,∆t for both groups. The
results are shown in Fig. 6a and are consistent with Thm. 3.3, 3.5 and 3.6: (i) acceptance rate at (red
curves) always increases; (ii) qualification rate qt (blue curves) decreases starting from t “ 1 (since
strategic agents only best respond from t “ 1); (iii) classifier bias ∆t (black curves) evolve differently
for different groups. In the right plot of Fig. 6a, ∆j

t reaches the minimum at t “ 2, suggesting the
best time for the decision-maker to stop retraining to maximize its welfare. We also evaluate the early
stopping mechanism of the retraining and verify Thm. 4.1. Fig. 6b shows the unfairness decreases
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first and is minimized at t “ 9. Finally, similar to Fig. 7a, Fig. 7b demonstrates the results are still
robust under the noisy setting.
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Figure 5: Dynamics of at, qt,∆t and unfairness |ait ´ ajt | on Gaussian dataset.
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(a) at, qt, ∆t for group i (left) and j (right)
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Figure 6: Dynamics of at, qt,∆t and unfairness |ait ´ ajt | on German Credit dataset.
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(a) Gaussian: at, qt, ∆t for group i (left) and j (right)
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Figure 7: Dynamics of at, qt,∆t under the noisy setting.

More comprehensive experiments in App. F. App. F.1 describes experimental setups. App. F.2
demonstrates the additional results to verify Thm. 3.3 and Thm. 3.6 under different r “ K

N , where we
observe the same trends under different r, but at, qt change with different rates. It also provides results
on how at, qt,∆t change under the following situations: (i) the longer-term dynamics when T is very
large; (ii) no systematic bias; (iii) all training examples are human-annotated or model-annotated;
(iv) agents have different costs of changing different features. App. F.3 presents more dynamics
under refined retraining process to illustrate how it stabilizes the retraining; App. F.4 illustrates the
evolution of unfairness under various r; App. F.5 presents more experiments under the noisy setting,
while App. F.6 compares the situations when agents are non-strategic with the ones when they are
strategic, revealing that the strategic feedback of agents causes at, qt to diverge.

6 CONCLUSION & LIMITATIONS

This paper studies the dynamics where strategic agents interact with an ML system retrained over
time with model-annotated and human-annotated samples. We rigorously studied the evolution of
applicant welfare, decision-maker welfare, and social welfare. Such results highlight the potential
risks of retraining classifiers when agents are strategic. The paper also proposed solutions to stabilizing
dynamics and improving fairness. However, our theoretical results rely on certain assumptions and we
should first verify these conditions before adopting the results of this paper, which may be challenging
in real-world applications. Finally, though early stopping is a simple yet powerful mechanism to
promote fairness, it remains an interesting problem to ensure fairness during endless retraining.
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A THE RETRAINING PROCESS

Algorithm 1 retraining process

Require: Joint distribution Do
XY for any So,t, Hypothesis class F , the number of the initial training

samples and agents coming per round N , the number of decision-maker-labeled samples per
round K.

Ensure: Model deployments over time f0, f1, f2, . . .
1: S0 “ So,0 „ Do

XY “ txi
0uNi“1

2: At t “ 0, deploy f0 „ FpS0q

3: for t P t1, . . .8u do
4: N agents gain knowledge of ft´1 and best respond to it, resulting in txi

tu
N
i“1

5: Sm,t “ txi
t´1, ft´1pxi

t´1quNi“1 consists of the model-labeled samples from round t ´ 1.
6: So,t „ Do

XY consists of the new K decision-maker-labeled samples.
7: St “ St´1 Y Sm,t Y So,t

8: Deploy ft „ FpStq on the incoming N agents who best respond to ft´1 with the resulting
joint distribution P t

XY .
9: end for

B MOTIVATING EXAMPLES OF THE SYSTEMATIC BIAS

Def. 2.1 highlights the systematic nature of the decision-maker’s bias. This bias is quite ubiquitous
when labeling is not a trivial task. It almost always the case when the decision-maker needs to make
human-related decisions. We provide the following motivating examples of systematic bias with
supporting literature in social science:

1. College admissions: consider experts in the admission committee of a college that obtains a set of
student data and wants to label all students as "qualified" or "unqualified". The labeling task is
much more complex and subjective than the ones in computer vision/natural language processing
which have some "correct" answers. Therefore, the experts in the committee are prone to bring
their "biases" towards a specific population sharing the same sensitive attribute into the labeling
process including:

(a) Implicit bias: the experts may have an implicit bias they are unaware of to favor/discriminate
against students from certain groups. For instance, a famous study (Capers IV et al., 2017)
reveals admission committee members at the medical school of the Ohio State University
unconsciously have a "better impression" towards white students; Alvero et al. (2020) finds
out that even when members in an admission committee do not access the sensitive attributes
of students, they unconsciously infer them and discriminate against students from the minority
group.

(b) Selection bias: the experts may have insufficient knowledge of the under-represented pop-
ulation due to the selection bias (Bareinboim & Pearl, 2012) because only a small portion
of them were admitted before. Thus, experts may expect a lower qualification rate from
this population, resulting in more conservative labeling practices. The historical stereotypes
created by selection bias are difficult to erase.

2. Loan applications: consider experts in a big bank that obtains data samples from some potential
applicants and wants to label them as "qualified" or "unqualified". Similarly, the experts are likely
to have systematic bias including:

(a) Implicit bias: similarly, Brock & De Haas (2023) conduct a lab-in-the-field experiment with
over 300 Turkish loan officers to show that they bias against female applicants even if they
have identical profiles as male applicants.

(b) Selection bias: when fewer female applicants are approved historically, the experts have less
knowledge on females (i.e., whether they will actually default or repay), thereby tending to
stay conservative.
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C RELATED WORK

C.1 STRATEGIC CLASSIFICATION

Strategic classification without label changes. Our work is mainly based on an extensive line of
literature on strategic classification (Hardt et al., 2016; Ben-Porat & Tennenholtz, 2017; Dong et al.,
2018; Jagadeesan et al., 2021; Levanon & Rosenfeld, 2022; Braverman & Garg, 2020; Izzo et al.,
2021; Chen et al., 2020b; Ahmadi et al., 2021; Tang et al., 2021; Zhang et al., 2020; 2022; Eilat
et al., 2022; Liu et al., 2022; Lechner & Urner, 2022; Horowitz & Rosenfeld, 2023). These works
assume the agents are able to best respond to the policies of the decision-maker to maximize their
utilities. Most works modeled the strategic interactions between agents and the decision-maker as a
repeated Stackelberg game where the decision-maker leads by publishing a classifier and the agents
immediately best respond to it. The earliest line of works focused on the performance of regular
linear classifiers when strategic behaviors never incur label changes (Hardt et al., 2016; Ben-Porat &
Tennenholtz, 2017; Dong et al., 2018; Chen et al., 2020b), while the later literature added noise to the
agents’ best responses (Jagadeesan et al., 2021), randomized the classifiers (Braverman & Garg, 2020)
and limited the knowledge of the decision-maker (Tang et al., 2021). Levanon & Rosenfeld (2022)
proposed a generalized framework for strategic classification and a strategic hinge loss to better train
strategic classifiers, but the strategic behaviors are still not assumed to cause label changes.

Strategic classification with label changes. Several other lines of literature enable strategic behaviors
to cause label changes. The first line of literature mainly focuses on incentivizing improvement
actions where agents have budgets to invest in different actions and only some of them cause the label
change (improvement) (Kleinberg & Raghavan, 2020; Harris et al., 2021; Bechavod et al., 2022; Jin
et al., 2022; Chen et al., 2020a; Haghtalab et al., 2020; Alon et al., 2020; Bechavod et al., 2021; Raab
& Liu, 2021). The other line of literature focuses on causal strategic learning (Miller et al., 2020;
Shavit et al., 2020; Horowitz & Rosenfeld, 2023; Harris et al., 2022; Yan et al., 2023). These works
argue that every strategic learning problem has a non-trivial causal structure which can be explained
by a structural causal model, where intervening on causal nodes causes improvement and intervening
on non-causal nodes means manipulation.

Performative prediction. Several works consider performative prediction as a more general setting
where the feature distribution of agents is a function of the classifier parameters. Perdomo et al. (2020)
first formulated the prediction problem and provided iterative algorithms to find the stable points
of the model parameters. Izzo et al. (2021) modified the gradient-based methods and proposed the
Perfgrad algorithm. Hardt et al. (2022) elaborated the model by proposing performative power.

Retraining under strategic settings

Most works on learning algorithms under strategic settings consider developing robust algorithms
that the decision-maker only trains the classifier once (Hardt et al., 2016; Tang et al., 2021; Lev-
anon & Rosenfeld, 2022; Jagadeesan et al., 2021), while Performative prediction(Perdomo et al.,
2020) focuses on developing online learning algorithms for strategic agents. There are only a few
works (Horowitz & Rosenfeld, 2023; Rosenfeld et al., 2020) which permit retraining the Strategic
classification models. However, all these algorithms assume that the decision-maker has access to
a new training dataset containing both agents’ features and labels at each round. There is no work
considering the dynamics under the retraining process with model-annotated samples.

C.2 BIAS AMPLIFICATION DURING RETRAINING

There has been an extensive line of study on the computer vision field about how machine learning
models amplify the dataset bias, while most works only focus on the one-shot setting where the
machine learning model itself amplifies the bias between different groups in one training/testing
round (Hall et al., 2022; Adebayo et al., 2022). In recent years, another line of research focuses on
the amplification of dataset bias under model-annotated data where ML models label new samples
on their own and add them back to retrain themselves(Leino et al., 2018; Dinan et al., 2019; Wang
et al., 2019; Zhao et al., 2017; Adam et al., 2022; Sculley et al., 2015; Ensign et al., 2018; Mansoury
et al., 2020; Adam et al., 2020). These works study the bias amplification in different practical fields
including resource allocation (Ensign et al., 2018), computer vision (Wang et al., 2019), natural
language processing (Zhao et al., 2017) and clinical trials (Adam et al., 2020). The most related work
is (Taori & Hashimoto, 2023) which studied the influence of retraining in the non-strategic setting.
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Also, there is a work (Adam et al., 2022) touching on the data feedback loop under performative
setting, but it focused on empirical experiments under medical settings where the feature distribution
shifts are mainly caused by treatment and the true labels in historical data are highly accessible.
Besides, the data feedback loop is also related to recommendation systems. where extensive works
have studied how the system can shape users’ preferences and disengage the minority population
(Schmit & Riquelme, 2018; Sinha et al., 2016; Jiang et al., 2019; Mansoury et al., 2020). However,
previous literature did not touch on the retraining process.

C.3 MACHINE LEARNING FAIRNESS IN STRATEGIC CLASSIFICATION

Several works have considered how different fairness metrics (Feldman et al., 2015; Hardt et al.,
2016; Gupta et al., 2019; Guldogan et al., 2022) are influenced in strategic classification (Liu et al.,
2019; Zhang et al., 2020; Liu et al., 2020; Zhang et al., 2022). The most related works (Liu et al.,
2020; Zhang et al., 2022) studied how strategic behaviors and the decision-maker’s awareness can
shape long-term fairness. They deviated from our paper since they never considered retraining and
the strategic behaviors never incurred label changes.

D ADDITIONAL DISCUSSIONS

D.1 HUMAN-ANNOTATED SAMPLES DRAWN FROM P t
X

In this section, we consider the situation where all human-annotated samples at t are drawn from the
post-best-response distribution P t

X . This will change equation 3 to the following:

q1
t “

tN`pt´1qK
pt`1qN`tK ¨ q1

t´1 ` N
pt`1qN`tK ¨ a1

t´1 ` K
pt`1qN`tK ¨ q˚

t´1 (4)

where q1 and a1 denote the new qualification rate and acceptance rate, and q˚
t´1 stands for the

qualification rate of the human annotations on features drawn from P t´1
X . Note that the only

difference lies in the third term of the RHS which changes from q0 to q˚
t´1. Our first observation

is that q˚
t´1 is never smaller than q0 because the best response will not harm agents’ qualifications.

With this observation, we can derive Prop. D.1.
Proposition D.1. a1

t ě at holds for any t ě 1. If Prop. 3.4 further holds, we also have a1
t Ñ 1.

Prop. D.1 can be proved easily by applying the observation stated above. However, note that unlike
at, a1

t is not necessarily monotonically increasing.

D.2 ADDITIONAL DISCUSSIONS ON FAIRNESS

Other fairness metrics. It is difficult to derive concise results considering other fairness metrics
including equal opportunity and equal improvability because the data distributions play a role in
determining these metrics. However, Theorem 3.5 states the true qualification rate of the agent
population is likely to decrease, suggesting the retraining process may do harm to improvability.
Meanwhile, when the acceptance rate at increases for the disadvantageous group, the acceptance
rate of the qualified individuals will be likely to be better, but it is not guaranteed because the feature
distribution of the qualified individuals also changes because we assume the strategic behaviors are
causal which may incur label changes.

Fairness intervention at each round with original retraining process. In Sec. 4, we show that even
if the retraining process promotes intergroup fairness, fairness is likely to be achieved only when the
decision-maker overestimates the qualification of both groups. In this section, we consider another
approach by applying a "hard fairness intervention" on both groups after retraining the classifier
at each round. Specifically, let f i

t “ 1phi
tpxq ě θitq, f

j
t “ 1phj

t pxq ě θjt q be the original optimal
classifiers for two groups without fairness constraints. Here h is used to predict the conditional
probability of an agent having label 1 given their feature x. Note that f i

t , f
j
t are trained from Si

t ,S
j
t

which do not include agents coming at t. Thus, to ensure DP fairness on the agents coming at t
with joint distributions P it

XY , P
jt
XY , the decision-maker needs to post-process f i

t , f
j
t to further satisfy

fairness constraint. Specifically, let the fair-optimal models for two groups be rf i
t ,

rf j
t ,the decision-

maker obtains them by adjusting the thresholds θit, θ
j
t to rθit,

rθjt . Denote the loss of the classifier with

16



Under review as a conference paper at ICLR 2024

threshold θ on the training set S as ℓpθ,Sq, the acceptance rate of group s at t under threshold θ as
Ast

θ , and the proportion of agents in group s as ps. The decision-maker selects rθit,
rθjt that satisfy the

following constrained optimization:

min
tθi,θju

piℓpθ
i,Si

tq ` pjℓpθ
j ,Sj

t q

s.t. Ait
θi “ Ajt

θj

To summarize, at t, we first train f i
t , f

j
t with Si

t ,S
j
t , then tune the thresholds to ensure the new

classifiers are fair on the new agents coming at t while optimizing the training loss. WLOG, we
assume i is the advantaged group and j is the disadvantaged group, where Ait

θi
t

ą Ajt

θj
t

. We can have
the relationships between the fair optimal thresholds and the original optimal thresholds as follows.

Proposition D.2. If P ti
XY , P

tj
XY are continuous, then rθit ě θit and rθjt ď θjt .

We prove Prop. D.2 in App. G.9. Note that since we need P ti
XY , P

tj
XY to be continuous, Prop. D.2 is

only compatible with the noisy best response (Jagadeesan et al., 2021). The noisy best response can
follow the setting specified in App. F.5 where the agents only know a noisy version of classification
outcomes: pftpxq “ ftpxq ` ϵ and ϵ is a Gaussian noise.

With Prop. D.2, we now consider the new dynamics under the fairness interventions (i.e., applying
rfs
t instead of fs

t ), where we can define the qualification rates of group i and group j, and acceptance
rate of both groups at time t as rqi,t, rqj,t,rat accordingly.

We first show that under the conditions of Thm. 3.5, compared to the case without fairness interven-
tion, enforcing fairness constraint at each round will cause the advantaged group to improve their
qualifications while harming the qualifications of the disadvantaged group.

Proposition D.3. Under the conditions in Thm. 3.5, the fairness intervention at round t can harm
the qualification rate for the disadvantaged group j while benefiting the qualification rate for the
advantaged group i. Specifically, denote q1

s,t`1 as the qualification rate of group s at t ` 1 if the
original optimal threshold θst is applied. Then we have rqi,t`1 ą q1

i,t`1 but rqj,t`1 ă q1
j,t`1.

Prop. D.3 can be proved by combining Prop. D.2 with the two convexity conditions in Thm. 3.5.
Moreover, we can also derive the dynamics of rat, rqi,t, rqj,t as follows.

Proposition D.4. Under fairness intervention, the acceptance rates of both groups increase over
time, i.e., rat ă rat`1. Moreover, under the conditions of Thm. 3.5, rqs,t ă rqs,t`1 for any group s.

These results show that although we can maintain equal acceptance rates among different groups
throughout the retraining process, the dynamics of acceptance rates and qualification rates for both
groups cannot be stabilized under fairness interventions. However, if applying fairness intervention
on the refined retraining process, we can obtain stable and fair dynamics.

Fairness intervention at each round with refined retraining process. In Prop. D.6, we already
prove that the refined retraining process will not break the conditional probability Do

Y |X . Therefore,
the optimal classifiers (without fairness interventions) are always stable regardless of the best response
of strategic agents, making the fair classifiers rfs

t also stable as illustrated in Prop. D.5.

Proposition D.5. If applying fairness intervention at each round with refined retraining process, rat
will stay stable.

Prop. D.5 provides a solution to produce fair models with stable dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0

X 2

qualified
unqualified

1 0 1 2
X1

1

0

1

2

X 2

qualified
unqualified

Figure 8: Visualization of distribution: Uniform data (left) and Gaussian data (right)
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D.3 ADDITIONAL DISCUSSIONS ON refined retraining process

We provide the following proposition to illustrate how the refined retraining process leverages a
probabilistic sampler to stabilize the dynamics.
Proposition D.6. If the decision-maker uses a probabilistic sampler Φtpxq “ Dt´1

Y |Xp1|xq to produce
model-annotated samples, Dt

Y |X “ Do
Y |X .

The proof details are in App. G.8. Prop. D.6 illustrates the underlying conditional distribution Dt
Y |X

is expected to be the same as Do
Y |X , meaning that the classifier ft always learns the distribution of

human-annotated data, thereby only preserving the systematic bias. However, there is no way to deal
with the systematic bias in refined retraining process.
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E MAIN EXPERIMENTS FOR OTHER DATASETS

We provide results on a Uniform dataset and a real dataset (Quinlan, 2017) with settings similar to
Sec. 5.

Uniform data. All settings are similar to the Gaussian dataset except that PX and PY |Xp1|xq change
as shown in Table 2.

Table 2: Gaussian Dataset Setting

PXkpxkq PY |Xp1|xq n, r, T, q0

Up0, 1q 0.5 ¨ px1 ` x2q 100, 0.05, 15, 0.5

We first verify the results in Sec. 3 by illustrating the dynam-
ics of at, qt,∆t for both groups (Fig. 9a). Since our analysis
neglects the algorithmic bias and the evolution results are
in expectation, we perform n “ 100 independent runs of
experiments for every parameter configuration and show the averaged outcomes. The results are
consistent with Thm. 3.3, 3.5 and 3.6: (i) acceptance rate at (red curves) increases monotonically;
(ii) qualification rate qt decreases monotonically starting from t “ 1 (since strategic agents only
best respond from t “ 1); (iii) classifier bias ∆t evolves differently for different groups and it may
reach the minimum after a few rounds of retraining. Next, we verify whether the early stopping
mechanism of the retraining process proposed in Thm. 4.1 can promote fairness. Fig. 9b shows that
the decision-maker attains almost perfect fairness at t “ 7. However, as discussed in Sec. 4, although
fairness can be enhanced, it only ensures both groups have a similar classifier bias ∆t but cannot
reduce such bias.
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(a) at, qt, ∆t for group i (left) and j (right)
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Figure 9: Dynamics of at, qt,∆t and unfairness |ait ´ ajt | on Gaussian dataset.

Table 3: Description of credit approval
dataset

Settings Group i Group j

PX1|Y px1|1q Betap1.37, 3.23q Betap1.73, 3.84q

PX1|Y px1|0q Betap1.50, 4.94q Betap1.59, 4.67q

PX2|Y px2|1q Betap0.83, 2.83q Betap0.66, 2.50q

PX2|Y px2|0q Betap0.84, 5.56q Betap0.69, 3.86q

n, r, T, q0 50, 0.05, 15, 0.473 50, 0.05, 15, 10

Next, we present the results of a set of complementary
experiments on real data (Quinlan, 2017) where we
directly fit PX|Y with Beta distributions. The fitting
results slightly violate Assumption 3.2. Also Do

X is
not equal to PX . More importantly, logistic models
cannot fit these distributions well and produce non-
negligible algorithmic bias, thereby violating Assump-
tion 3.1. The following experiments demonstrate how
the dynamics change when situations are not ideal.

Credit approval dataset (Quinlan, 2017). We consider credit card applications and adopt the
data in UCI Machine Learning Repository processed by Dua & Graff (2017). The dataset includes
features of agents from two social groups i, j and their labels indicate whether the credit application is
successful. We first preprocess the dataset by normalizing and only keeping a subset of features (two
continuous X1, X2) and labels, then we fit conditional distributions PXk|Y for each group using Beta
distributions (Fig. 10) and calculate prior-best-response qualification rates qi0, q

j
0 from the dataset.

The details are summarized in Table 3. All other parameter settings are the same as the ones of
synthetic datasets in Sec. 5.

We first illustrate the dynamics of at, qt,∆t for both groups under different r. The results are shown
in Fig. 11 and are approximately aligned with Thm. 3.3, 3.5 and 3.6: (i) acceptance rate at (red
curves) has increasing trends; (ii) qualification rate qt (blue curves) decreases starting from t “ 1
(since strategic agents only best respond from t “ 1); (iii) classifier bias ∆t (black curves) evolve
differently for different groups. Next, we show the evolutions of unfairness and ∆t in Fig. 12. Though
the dynamics are still approximately aligned with the theoretical results, the changes are not smooth.
However, this is not surprising because several assumptions are violated, and the overall trends still
stay the same.
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Figure 10: Visualization of distribution for Credit Approval dataset.
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(a) Group i in Credit Approval data: r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(b) Group j in Credit Approval data: r “ 0.1 (left), 0.05 (middle) and 0 (right)

Figure 11: Dynamics of at, qt,∆t for Credit Approval dataset
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(a) Dynamics of unfairness in Credit Approval data: r “ 0.1 (left), 0.05 (middle) and 0
(right)
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Figure 12: Dynamics of unfairness and ∆t for Credit Approval dataset

F ADDITIONAL RESULTS ON SYNTHETIC/SEMI-SYNTHETIC DATASETS

In this section, we provide comprehensive experimental results conducted on two synthetic datasets
and one semi-synthetic dataset mentioned in Sec. 5 of the main paper. Specifically, App. F.1 gives
the details of experimental setups; App. F.2 demonstrates additional results to verify Theorem 3.3
to Theorem 3.6 under different r (i.e., ratios of human-annotated examples available at each round).
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The section also gives results on how at, qt,∆t change under a long time horizon or when there is
no systematic bias; App. F.3 further demonstrates the results under refined retraining process; App.
F.4 provides fairness dynamics under various values of r on different datasets; App. F.5 illustrates
how the results in the main paper still hold when strategic agents have noisy best responses; App.
F.6 compares the situations when agents are non-strategic with the ones when they are strategic,
demonstrating how agents’ strategic behaviors produce more extreme dynamics of at, qt,∆t.

F.1 ADDITIONAL EXPERIMENTAL SETUPS

Generally, we run all experiments on a MacBook Pro with Apple M1 Pro chips, memory of 16GB
and Python 3.9.13. All experiments are randomized with seed 42 to run n rounds. Error bars are
provided in App. H. All experiments train ft with a logistic classifier using SGD as its optimizer.
Specifically, we use SGDClassifier with logloss to fit models.

Synthetic datasets. The basic description of synthetic datasets 1 and 2 is shown in Sec. 5 and App.
E. We further provide the visualizations of their distributions in Fig. 8.

German Credit dataset. There are 2 versions of the German Credit dataset according to UCI
Machine Learning Database (Hofmann, 1994), and we are using the one where all features are
numeric. Firstly, we produce the sensitive features by ignoring the marital status while only focusing
on sex. Secondly, we use MinMaxScaler to normalize all features. The logistic model itself can
satisfy Assumption 3.2 with minimal operations: if feature i has coefficients smaller than 0, then just
negate it and the coefficients will be larger than 0 and satisfy the assumption.

F.2 ADDITIONAL RESULTS TO VERIFY THM. 3.3 TO THM. 3.6

Dynamics under different r. Although experiments in Sec. 5 and App. E already demonstrate the
validity of Thm. 3.3, Prop. 3.4 and Thm. 3.6, the ratio r of human-annotated examples is subject
to change in reality. Therefore, we first provide results for r P t0, 0.05, 0.1, 0.3u in all 3 datasets. r
only has small values since human-annotated examples are likely to be expensive to acquire. Fig. 15
shows all results under different r values. Specifically, Fig. 15a and 15b show results for synthetic
dataset 1, Fig. 15c and 15d show results for synthetic dataset 2, while Fig. 15e and 15f show results
for German Credit data. On every row, r “ 0.3, 0.1, 0.05, 0 from the left to the right. All figures
demonstrate the robustness of the theoretical results, where at always increases and qt decreases
starting from t “ 1. ∆t also has different dynamics as specified in Thm. 3.6.

Dynamics under a long time horizon to verify Prop. 3.4. Prop. 3.4 demonstrates that when r is
small enough, at will increase towards 1. Therefore, we provide results in all 3 datasets when r “ 0
to see whether at increases to be close to 1. As Fig. 13 shows, at is close to 1 after tens of rounds,
validating Prop. 3.4.

Dynamics under a different B. Moreover, individuals may incur different costs to alter different

features, so we also provide the dynamics of at, qt,∆t when the cost matrix B “

„

3 0
0 6

ȷ

in two

synthetic datasets. Fig. 14 shows the differences in costs of changing different features do not affect
the theoretical results.

Dynamics when all samples are human-annotated. Though this is unlikely to happen under the
Strategic Classification setting as justified in the main paper, we provide an illustration when all
training examples are human-annotated (i.e., r “ 1) when humans systematically overestimate the
qualification in both synthetic datasets. Theoretically, the difference between at and qt should be
relatively consistent, which means ∆t is only due to the systematic bias. Fig. 13d verifies this.

F.3 ADDITIONAL RESULTS ON refined retraining process

In this section, we provide more experimental results demonstrating how refined retraining process
stabilizes the dynamics of at, qt,∆t but still preserves the systematic bias. Specifically, we produce
plots similar to Fig. 15 in Fig. 16, but the only difference is that we use probabilistic samplers for
model-annotated examples. From Fig. 16, it is obvious the deviations of at from qt have the same
directions and approximately the same magnitudes as the systematic bias.
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F.4 ADDITIONAL RESULTS ON FAIRNESS

In this section, we provide additional results on the dynamics of unfairness and classifier bias under
different r (the same settings in App. F.2). From Fig. 17a, 17c and 17e, we can see unfairness reaches
a minimum in the middle of the retraining process, suggesting the earlier stopping of retraining
brings benefits. From Fig. 17b, 17d and 17f, we can see ∆t for the disadvantaged group j reaches a
minimum in the middle of the retraining process, but generally not at the same time when unfairness
reaches a minimum.

F.5 ADDITIONAL RESULTS ON NOISY BEST RESPONSES

Following the discussion in Sec. 5, we provide dynamics of at, qt,∆t of both groups under different
r similar to App. F.2 but when the agents have noisy knowledge. The only difference is that the
agents’ best responses are noisy in that they only know a noisy version of classification outcomes:
pftpxq “ ftpxq ` ϵ, where ϵ is a Gaussian noise with mean 0 and standard deviation 0.1. Fig.18 shows
that Thm. 3.3 to Thm. 3.6 are still valid.

F.6 COMPARISONS BETWEEN STRATEGIC AND NON-STRATEGIC SITUATIONS

In this section, we show the absence of strategic behaviors may result in much more consistent
dynamics of at, qt,∆t as illustrated in Fig. 19. Thereby demonstrating the importance of studying
the retraining process when strategic behaviors are present.
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(a) Uniform data when r “ 0 and T is large: Group i
(left), Group j (right)
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(b) Gaussian data when r “ 0 and T is large: Group i
(left), Group j (right)
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(c) German Credit data when r “ 0 and T is large:
Group i (left), Group j (right)
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(d) Dynamics when all data is human-annotated (i.e,
r “ 1): Uniform data (left), Gaussian data (right).

Figure 13: Dynamics of at, qt,∆t on all datasets when r “ 0 and T is large or when all examples
are annotated by humans.
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(a) Uniform data with a different B : Group i (left),
Group j (right)
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(b) Gaussian data with a different B : Group i (left),
Group j (right)

Figure 14: Dynamics of at, qt,∆t on synthetic datasets. Except B, all other settings are the same as
the main experiments in Sec. 5.
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(a) Group i in Uniform data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(b) Group j in Uniform data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(c) Group i in Gaussian data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(d) Group j in Gaussian data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(e) Group i in German Credit data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(f) Group j in German Credit data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost

Figure 15: Dynamics of at, qt,∆t on all datasets.
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(a) refined retraining process for Group i in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(b) refined retraining process for Group j in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(c) refined retraining process for Group i in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(d) refined retraining process for Group j in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(e) refined retraining process for Group i in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(f) refined retraining process for Group j in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right).

Figure 16: Illustrations of refined retraining process on all 3 datasets.
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(a) Dynamics of unfairness in Uniform data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(b) Dynamics of ∆t in Uniform data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(c) Dynamics of unfairness in Gaussian data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(d) Dynamics of ∆t in Gaussian data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(e) Dynamics of unfairness in German Credit data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(f) Dynamics of ∆t in German Credit data : r “ 0.1 (left), 0.05 (middle) and 0 (right)

Figure 17: Dynamics of unfairness and ∆t of all datasets.
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(a) Noisy retraining process for Group i in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(b) Noisy retraining process for Group j in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(c) Noisy retraining process for Group i in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(d) Noisy retraining process for Group j in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(e) Noisy retraining process for Group i in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(f) Noisy retraining process for Group j in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right)

Figure 18: Illustrations of noisy retraining process on all 3 datasets.
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(a) Nonstrategic retraining process for Group i in Uniform data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(b) Nonstrategic retraining process for Group j in Uniform data: r “ 0.1 (left), 0.05
(middle) and 0 (right)

0 2 4 6 8 10 12 14 16
t

0.0

0.2

0.4

0.6

0.8

1.0
at
qt

Δt

0 2 4 6 8 10 12 14 16
t

0.0

0.2

0.4

0.6

0.8

1.0
at
qt

Δt

0 2 4 6 8 10 12 14 16
t

0.0

0.2

0.4

0.6

0.8

1.0
at
qt

Δt

(c) Nonstrategic retraining process for Group i in Gaussian data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(d) Nonstrategic retraining process for Group j in Gaussian data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(e) Nonstrategic retraining process for Group i in German Credit data: r “ 0.1 (left),
0.05 (middle) and 0 (right)
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(f) Nonstrategic retraining process for Group j in German Credit data: r “ 0.1 (left),
0.05 (middle) and 0 (right)

Figure 19: Illustrations of nonstrategic retraining process on all 3 datasets.
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G DERIVATIONS AND PROOFS

G.1 DERIVATION OF EQUATION 3

To derive qt :“ EStrQpStqs, we first refer to equation 2 to get |St| “ pt ` 1qN ` tK. Then, by
the law of total probability, the expected qualification rate of St equals to the weighted sum of the
expected qualification rate of St´1, So,t´1 and the expectation of ft´1pxq over Sm,t´1 as follows:

tN`pt´1qK
pt`1qN`tKESt´1

rQpSt´1qs ` N
pt`1qN`tK ` ESt´1

rApft´1, P
t´1s ` K

pt`1qN`tKESo,t´1
rQpSo,t´1qs

The second expectation is exactly the definition of at´1. Moreover, note that QpSo,t´1q “ QpSo,0q “

QpS0q “ q0 for any t ą 0, the third expectation is exactly q0, so the above equation is exactly
equation 3.

G.2 DERIVATION OF FACTORS INFLUENCING at, qt

As stated in Sec.2, we can get the factors influencing the evolution of at, qt by finding all sources
affecting P t

XY and the expectation of ftpxq over P t
X .

We first work out the sources influencing ft and the expectation of ftpxq over P tpXq:

• qt: since ft is trained with St, qt is a key factor influencing the classifier.
• δpDt,Fq : note that as retaining goes on, |St| is large enough. Thus, if ft fits St well with a low

error, the expectation of ftpxq over Dt
X should be close to qt, and all the difference is due to

the algorithmic bias. This claim is supported by Chapter 5.2 of Shalev-Shwartz & Ben-David
(2014), where the error of an ERM predictor is decomposed into the approximation error and
the estimation error. When the sample size is large and |F | is finite, the estimation error will be
arbitrarily small, leaving only the approximation error. The approximation error measures how
well F can approximate Dt, which is exactly the algorithmic bias δpDt,Fq.

• δtBR: we now know factors influencing the expectation of ftpxq over Dt
X , then the only left factor

is the ones accounting for the difference between Dt
X and P t

X . Note that only the best responses
of agents can change the marginal distribution PX . We then denote it as δtBR.

Then, with PXY known, P t
XY is only influenced by ft´1 (i.e., the agents’ best responses to the

classifier at t ´ 1). ft´1 is also dependent on the above factors. So we get all factors.

G.3 PROOF OF THEOREM 3.3

Let us begin by proving the following lemma:
Lemma G.1. Assume t ě 2 and the following conditions hold: (i) qt ą qt´1 ě qt´2; (ii) @x P X ,
Dt

Y |Xp1|xq ě Dt´1
Y |Xp1|xq; (iii) @x, sft´1pxq ě sft´2pxq. Let sft´1 “ ESt´1„Dt´1

XY
rft´1s, sft “

ESt„Dt
XY

rfts, we have the following results:

1. @x, sftpxq ě sft´1pxq.

2. There exists a non-zero measure subset of x values that satisfies the strict inequality.

Proof. We first prove (i). Note that we ignore the algorithm bias in Assumption 3.1, so ft, ft´1

are expected to model the conditional distributions Dt
Y |X , Dt´1

Y |X well. Therefore, sft´1 (resp. sft)
outputs 1 if Dt´1

Y |Xp1|xq (resp. Dt
Y |Xp1|xq) is larger than some threshold θ. Then, according to the

above condition (ii), @θ, if Dt´1
Y |Xp1|xq ą θ, Dt

Y |Xp1|xq ě Dt´1
Y |Xp1|xq ą θ. This demonstrates that

sft´1pxq “ 1 implies sftpxq “ 1 and (i) is proved.

Next, according to equation 2, if qt ą qt´1, this means Ey„Dt
Y

rys ą Ey„Dt
Y

rys. Since
Dt

Y “ Dt
X ¨ Dt

Y |X , either there exists at least one non-zero measure subset of x values satisfying
Dt

Y |Xp1|xq ą Dt´1
Y |Xp1|xq or Dt

X is more "skewed" to the larger values of x (because of monotonic
likelihood assumption 3.2). For the second possibility, note that the only possible cause for the
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feature distribution in the training dataset Dt
X to gain such a skewness is agents’ strategic behaviors.

However, since sft´1pxq ě sft´2pxq always holds, sft´1 sets a lower admission standard where some
x values that are able to best respond to sft´2 and improve will not best respond to sft´1, thereby
impossible to result in a feature distribution shift to larger x values while keeping the conditional
distribution unchanged. Thus, only the first possibility holds, and the lemma is proved.

Then we prove Theorem 3.3 using mathematical induction to prove a stronger version:

Lemma G.2. When t ą 1, qt ą qt´1, Dt
Y |Xp1|xq ě Dt´1

Y |Xp1|xq, sftpxq ě sft´1pxq, and finally
at ą at´1.

Proof. t starts from 2, but we need to prove the following claim: q1 is "almost equal" to q0, so are
D1

Y |X and D0
Y |X .

Firstly, according to the law of total probability, we can derive q1 as follows:

q1 “
N

2N ` K
¨ q0 `

N

2N ` K
¨ a0 `

K

2N ` K
¨ q0 (5)

The first and the third element are already multiples of q0. Also, we know Do
X “ PX . Then,

since δpDo,F is negligible and agents at t “ 0 have no chance to best respond, we have a0 “

EX„PX
rDo

Y |Xp1|xqs “ q0. Thus, a0 is also equal to q0, and the claim is proved. Still, as δpDo,F is
negligible, sf1 is the same as sf0.

Next, we can prove the lemma by induction:

1. Base case: Similar to Eq.5, we are able to derive q2 as follows:

q2 “
2N ` K

3N ` 2K
¨ q1 `

N

3N ` 2K
¨ a1 `

K

3N ` 2K
¨ q0 (6)

Based on the claim above, we can just regard q0 as q1. Then we may only focus on the second
term. Since q1 and q0 are "almost equal" and both distributions should satisfy the monotonic
likelihood assumption 3.2, we can conclude sf0, sf1 are "almost identical". Then the best responses
of agents to sf0 will also make them be classified as 1 by sf1, and this will directly ensure the
second term to be Apf1, P

1q ą Apf1, P q “ Apf0, P q. The "larger than" relationship is because
strategic best responses at the first round will only enable more agents to be admitted. Thus,
the first and the third term stay the same as q1 while the second is larger, so we can claim
q2 ą q1. Moreover, the difference between D2

XY and D1
XY are purely produced by the best

responses at t “ 1, which will never decrease the conditional probability of y “ 1. Thus,
D2

Y |Xp1|xq ě D1
Y |Xp1|xq. Together with sf1 “ sf0, all three conditions in Lemma G.1 are

satisfied. we thereby claim that for every x admitted by sf1, sf2pxq ě sf1pxq and there exists some
x satisfying the strict inequality. Note that P 1 is expected to be the same as P 2 since f1 “ f0.
Thus, Apf2, P

2q ą Apf1, P
2q “ Apf1, P

1q, which is a2 ą a1. The base case is proved.

2. Induction step: To simplify the notion, we can write:

qt “
tN ` pt ´ 1qK

pt ` 1qN ` tK
¨ qt´1 `

N

pt ` 1qN ` tK
¨ at´1 `

K

pt ` 1qN ` tK
¨ q0

“ At ¨ qt´1 ` Bt ¨ at´1 ` Ct ¨ q0

Note that qt´1 can also be decomposed into three terms:

qt´1 “
pt ´ 1qN ` pt ´ 2qK

tN ` pt ´ 1qK
¨ qt´2 `

N

tN ` pt ´ 1qK
¨ at´2 `

K

tN ` pt ´ 1qK
¨ q0

“ At´1 ¨ qt´1 ` Bt´1 ¨ at´2 ` Ct´1 ¨ q0
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Since the expectation in the second term is just at´1, and we already know at´1 ą at´2, we
know Bt ¨ at´1 ` Ct ¨ q0 ą Bt ¨ at´2 ` Ct ¨ q0. Note that Bt

Bt´1
“ Ct

Ct´1
, we let the ratio be

m ă 1. Then since Bt´1 ¨ at´2 ` Ct´1 ¨ q0 ą pBt´1 ` Ct´1q ¨ qt´1 due to qt´1 ą qt´2,
we can derive Bt ¨ at´1 ` Ct ¨ q0 ą m ¨ pBt´1 ` Ct´1q ¨ qt´1 “ pBt ` Ctq ¨ qt´1. Then
qt ą pAt ` Bt ` Ctq ¨ qt´1 “ qt´1. The first claim is proved. As at´1 ą at´2 and Do stays the
same, any agent will not have a less probability of being qualified in St compared to in St´1,
demonstrating Dt

Y |Xp1|xq ě Dt´1
Y |Xp1|xq still holds. And similarly, we can apply Lemma G.1 to

get sftpxq ě sft´1pxq and at ą at´1.

Now we already prove Lemma G.2, which already includes Theorem 3.3. We also want to note
here, the proof of Theorem 3.3 does not rely on the initial q0 which means it holds regardless of
the systematic bias.

G.4 PROOF OF PROPOSITION 3.4

We prove the proposition by considering two extreme cases:

(i) When K
N Ñ 0, this means we have no decision-maker annotated sample coming in each round and

all new samples come from the deployed model. We prove limtÑ8 at “ 1 by contradiction: firstly,
by Monotone Convergence Theorem, the limit must exist because at ą at´1 and at ă 1. Let us
assume the limit is a ă 1. Then, since K “ 0, when t Ñ 8, qt will also approach a, this means the
strategic shift δtBR approaches 0. However, this shift only approaches 0 when all agents are accepted
by ft´1 because otherwise there will be a proportion of agents benefiting from best responding to
ft´1 and result in a larger qt`1 Thus, the classifier at t ` 1 will admit more people and the stability is
broken. This means the only possibility is limtÑ8at´1 “ 1 and produces a conflict.

(ii) When K
N Ñ 8, the problem shrinks to retrain the classifier to fit Do

XY , this will make at “ a0.

Thus, there exists some threshold λ, when K
N ă λ, limtÑ8at “ 1. In practice, the λ could be very

small.

G.5 PROOF OF THEOREM 3.5

Firstly, since P t
XY differs from PXY only because agents’ best respond to ft, we can write qt “ q0`rt

where rt is the difference of qualification rate caused by agents’ best responses to ft. Qualitatively, rt
is completely determined by two sources: (i) the proportion of agents who move their features when
they best respond; (ii) the increase in the probability of being qualified for each agent. Specifically,
each agent that moves its features increases its probability of being qualified from its initial point to a
point at the decision boundary of ft. For an agent with initial feature x and improved feature x˚, its
improvement can be expressed as Upxq “ PY |Xp1|x˚q ´ PY |Xp1|xq.

Next, denote the Euclidean distance between x and the decision boundary of ft as dx,t. Noticing
that the agents who will choose to move their features to best respond should have distances within
a threshold C to the decision boundary no matter where the boundary is (Lemma 2 in Levanon &
Rosenfeld (2022)), we can express the total improvement at t as follows:

Iptq “

ż

dx,tďC

PXpxq ¨ Upxq dx (7)

According to the proof of Theorem 3.3, all agents with feature vector x who are admitted by f0 will
be admitted by ft (t ą 0), making all agents who possibly improve must belong to J . Since FX and
PY |Xp1|xq are both convex and non-decreasing in J , PXpxq, Upxq are non-decreasing in J . Then
note that ft always lies below ft´1, therefore, for each agent who improves at t having feature vector
xi,t, we can find an agent at t ´ 1 with corresponding xi,t´1 such that both PXpxi,t´1q ą PXpxi,tq

and Upxi,t´1q ą Upxi,tq. This will ensure Iptq ă Ipt ´ 1q. Thus, qt decreases starting from 1.

Generally, equation 7 reveals that if PXpxq ¨ Upxq is convex in J ,qt decreases. This illustrates Prop.
3.5 gives a sufficient condition which is much easier to verify.
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G.6 PROOF OF THEOREM 3.6

• µpDo, P q ě 0: according to Def. 2.1, a0 “ EPX
rDo

Y |Xp1|xqs ą EPX
rPY |Xp1|xqs “ QpP q “

q0. Now that a0 ´ q0 ě 0. Based on Thm. 3.3 and Thm. 3.5, at is increasing, while q0 is
decreasing, so ∆t is always increasing.

• µpDo, P q ă 0: similarly we can derive a0 ´ q0 ă 0, so ∆0 “ |a0 ´ q0| “ q0 ´ a0. So while
a0 ´ q0 is still increasing, ∆t will first decrease. Moreover, according to Prop. 3.4, if K

N is small
enough, ∆t will eventually exceed 0 and become larger again. Thus, ∆t either decreases or first
decreases and then increases.

G.7 PROOF OF THEOREM 4.1

Assume the acceptance rate of group i and group j at time t are ait, a
j
t , and the unfairness measured

by DP is just |ait ´ ajt | at time t. Since the conditions in Prop. 3.4 and Thm. 3.5 are satisfied for both
groups, ait, a

j
t will both approach 1 if applying the original retraining process.

At first, ait ă ajt . If the decision-maker applies refined retraining process on group i, ait will be
relatively consistent since the first round of training. But ajt keeps increasing. So after some rounds
of training, ait will be approximately equal to ajt . However, if the decision maker keeps retraining, ait
will be larger than ajt and approach 1, resulting in the unfairness first decreasing and then increasing.
Though this implicitly assumes the changes are continuous, the experiments in Sec. 5 verify that the
discrete situations indeed display the same nature.

G.8 PROOF OF PROPOSITION D.6

Firstly, S0 “ So,0 and S1 “ S0 Y So,1 Y Sm,0. Obviously, the first two sets are drawn from Do
XY .

Consider Sm,0, since it is now produced by labeling features from PX “ Do
X with Do

Y |X , Sm,0 is
also drawn from Do

XY . Thus, D1
Y |X “ Do

Y |X .

Then we prove the cases when t ą 1 using mathematical induction as follows:

1. Base case: We know S2 “ S1 Y So,2 Y Sm,1. The first two sets on rhs are drawn from Do
XY .

The labeing in the third set is produced by Φ1pxq “ D1
Y |X “ Do

Y |X . Thus, the base case is proved.

2. Induction step: St “ St´1 Y So,t Y Sm,t´1. Similarly, we only need to consider the third set. But
Note that Φtpxq “ Dt´1

Y |X “ Do
Y |X , the induction step is easily completed.

G.9 PROOF OF PROPOSITION D.2

At round t, we know Ait
θi
t

ą Ajt

θj
t

. To reach demographic parity, the acceptance rates need to be the

same, so at least one of the following situations must happen: (i) rθit ą θit and rθjt ą θjt ; (ii) rθit ă θit
and rθjt ă θjt ; (iii) rθit ă θit and rθjt ă θjt . Next we prove that (i) and (ii) cannot be true by contradiction.

Suppose (i) holds, then we can find θ
j

t ă θjt such that ℓpθ
j

t ,S
j
t q P

`

ℓpθjt ,S
j
t q, ℓprθjt ,S

j
t q

˘

and

Ajt

θ
j
t

P
`

Ajt

θj
t

, Ait
θi
t

˘

. We can indeed find this θ
j

t because ℓ, A are continuous w.r.t. θ. Now noticing that

Ait
rθi
t

“ Ajt
rθj
t

ą Ajt

θj
t

but Ajt

θ
j
t

ă Ajt

θj
t

, we will know we can find θ
i

t P
`

θit,
rθit

˘

to satisfy demographic

parity together with θ
j

t . Since PY |Xp1|xq satisfies monotonic likelihood and θit is the optimal point,

ℓpθ
i

t,Si
tq ă ℓprθit,Si

tq must hold. Thus, pθ
i

t, θ
j

t q satisfy demographic parity and have a lower loss than
prθit,

rθjt q. Moreover, the pair satisfies (iii), which produces a conflict.

Similarly, we can prove (ii) cannot hold by contradiction, thereby proving (iii) must hold.
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(a) Uniform data with a different B : Group i (left),
Group j (right)
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(b) Gaussian data with a different B : Group i (left),
Group j (right)

Figure 20: Error bar version of Fig. 14.

Although all our theoretical results are expressed in terms of expectation, we provide error bars for all
plots in the main paper, App. E and F if randomness is applicable. All following figures demonstrate
expectations as well as error bars (˘ 1 standard deviation). Overall, the experiments have reasonable
standard errors. However, experiments in the Credit Approval dataset Quinlan (2017) (Fig. 33)
incur larger standard errors, which is not surprising because the dataset violates several assumptions.
Finally, note that we conduct 50-100 randomized trials for every experiment and we should expect
much lower standard errors if the numbers of trials become large.
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Figure 21: Error bar version of Fig. 4
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(a) at, qt, ∆t for group i (left) and j (right)
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(b) unfairness (left) and classifier bias ∆t (right)

Figure 22: Error bar version of Fig. 5
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(a) at, qt, ∆t for group i (left) and j (right)
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(b) unfairness (left) and classifier bias ∆t (right)

Figure 23: Error bar version of Fig. 6
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(a) at, qt, ∆t for group i (left) and j (right)
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Figure 24: Error bar version of Fig. 9

0 2 4 6 8 10 12 14 16
t

0.0

0.2

0.4

0.6

0.8

1.0

at
qt

Δt

0 2 4 6 8 10 12 14 16
t

0.0
0.2
0.4
0.6
0.8
1.0

at
qt

Δt

(a) Gaussian: at, qt, ∆t for group i (left) and j (right)
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(b) German: at, qt, ∆t for group i (left) and j (right)

Figure 25: Error bar version of Fig. 7

0 2 4 6 8 10 12 14 16
t

0.0
0.2
0.4
0.6
0.8
1.0

at
qt

Δt

0 2 4 6 8 101214161820
t

0.0
0.2
0.4
0.6
0.8
1.0

at
qt

Δt

(a) Uniform data when r “ 0 and T is large: Group i
(left), Group j (right)
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(b) Gaussian data when r “ 0 and T is large: Group i
(left), Group j (right)
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(c) German Credit data when r “ 0 and T is large:
Group i (left), Group j (right)
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(d) Dynamics when all data is human-annotated (i.e,
r “ 1) on synthetic datasets.

Figure 26: Error bar version of Fig. 13
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(a) Group i in Credit Approval data: r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(b) Group j in Credit Approval data: r “ 0.1 (left), 0.05 (middle) and 0 (right)

Figure 27: Error bar version of Fig. 11
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(a) Group i in Uniform data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(b) Group j in Uniform data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost

0 2 4 6 8 10 12 14 16
t

0.0

0.2

0.4

0.6

0.8

1.0

at

qt

t

0 2 4 6 8 10 12 14 16
t

0.0
0.2
0.4
0.6
0.8
1.0

at
qt

Δt

0 2 4 6 8 10 12 14 16
t

0.0
0.2
0.4
0.6
0.8
1.0

at
qt

Δt

0 2 4 6 8 10 12 14 16
t

0.0
0.2
0.4
0.6
0.8
1.0

at
qt

Δt

(c) Group i in Gaussian data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(d) Group j in Gaussian data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(e) Group i in German Credit data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost
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(f) Group j in German Credit data : r “ 0.3, 0.1, 0.05, 0 from the leftmost to the rightmost

Figure 28: Error bar version of Fig. 15.
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(a) refined retraining process for Group i in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(b) refined retraining process for Group j in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(c) refined retraining process for Group i in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(d) refined retraining process for Group j in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(e) refined retraining process for Group i in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(f) refined retraining process for Group j in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right).

Figure 29: Error bar version of Fig. 16
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(a) Dynamics of unfairness in Uniform data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(b) Dynamics of ∆t in Uniform data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(c) Dynamics of unfairness in Gaussian data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(d) Dynamics of ∆t in Gaussian data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(e) Dynamics of unfairness in German Credit data : r “ 0.1 (left), 0.05 (middle) and 0 (right)
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(f) Dynamics of ∆t in German Credit data : r “ 0.1 (left), 0.05 (middle) and 0 (right)

Figure 30: Error bar version of Fig. 17
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(a) Noisy retraining process for Group i in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(b) Noisy retraining process for Group j in Uniform data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(c) Noisy retraining process for Group i in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(d) Noisy retraining process for Group j in Gaussian data: r “ 0.1 (left), 0.05 (middle)
and 0 (right)
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(e) Noisy retraining process for Group i in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(f) Noisy retraining process for Group j in German Credit data: r “ 0.1 (left), 0.05
(middle) and 0 (right)

Figure 31: Error bar version of Fig. 18
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(a) Nonstrategic retraining process for Group i in Uniform data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(b) Nonstrategic retraining process for Group j in Uniform data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(c) Nonstrategic retraining process for Group i in Gaussian data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(d) Nonstrategic retraining process for Group j in Gaussian data: r “ 0.1 (left), 0.05
(middle) and 0 (right)
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(e) Nonstrategic retraining process for Group i in German Credit data: r “ 0.1 (left),
0.05 (middle) and 0 (right)
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(f) Nonstrategic retraining process for Group j in German Credit data: r “ 0.1 (left),
0.05 (middle) and 0 (right)

Figure 32: Error bar version of Fig. 19
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(a) Dynamics of unfairness in Credit Approval data: r “ 0.1 (left), 0.05 (middle) and 0
(right)
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(b) Dynamics of ∆t in Credit Approval data: r “ 0.1 (left), 0.05 (middle) and 0 (right)

Figure 33: Error bar version of Fig. 12
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