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Abstract

Current evaluation frameworks for foundation models rely on fixed, manually
curated benchmarks, limiting coverage of model capabilities. We propose Active
learning for Capability Evaluation, a scalable framework for automated fine-grained
evaluation. Our framework leverages language models to decompose domains into
semantically meaningful capabilities and generate diverse tasks, reducing human
effort. It models a subject model’s performance as a capability function over a
latent semantic space and applies active learning to prioritize the most informative
evaluations. This adaptive strategy enables cost-efficient discovery of strengths,
weaknesses, and failure modes that static benchmarks may overlook. Results show
that this evaluation yields a more complete picture of model capabilities.

1 Introduction

As foundation models expand in scale, rigorous evaluation of their capabilities is crucial. Evaluations
guide model selection, inform development, and ensure safety in high-stakes domains such as cyber-
security and healthcare. Most of the current evaluations rely on static, human-curated benchmarks
[1,2,3,4,5,6,7,8,9]. While valuable, such benchmarks lag behind the pace of model development.
In addition they overlook fine-grained skills, and are costly to create and maintain. Large Language
Models (LLM) enable a new paradigm: automated generation of semantically meaningful capabil-
ities and diverse tasks. However, scalability remains a bottleneck. A single domain may contain
thousands of capabilities, each requiring extensive tasks, making exhaustive evaluation, especially
of commercial models, expensive. We address this with a data-efficient approach based on active
learning. Instead of exhaustive coverage, we prioritize the most informative capabilities by reducing
uncertainty. A key notion here is the capability function, which maps latent capability representations
to a model performance score. Modeling this function allows interpolation across related capabilities
and principled selection of what to evaluate next.

We introduce Active Learning for Capability Evaluation (ACE), a framework for scalable, automated,
and fine-grained evaluation. ACE (1) uses LLMs to decompose domains into structured capabilities
and generate task sets, and (2) actively evaluates models by learning the capability function in
latent space and adaptively selecting informative capabilities. The codebase is available at https:
//anonymous .4open.science/r/ace-7EAF. Our contributions are: (i) A general framework
(ACE) combining LLM-based capability decomposition and task generation with active learning
for scalable evaluation. (ii) Extensive experiments in Mathematics with 78 capabilities and 8,500+
tasks, evaluating multiple open- and closed-source models and uncovering differences invisible to
aggregate metrics. (iii) Empirical evidence that the latent space constructed from pretrained text
encoders preserves semantic structure, enabling effective approximation of the capability function.
(iv) Validation of automatically generated tasks and verification outputs via manual inspection,
showing strong agreement with human labels.
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Figure 1: (a) The hierarchy of capabilities (b) The ACE pipeline

2 Active Learning for Capability Evaluation

2.1 Capability Hierarchy and Task Design

We first outline how to construct a domain-specific hierarchy of capabilities. Following the terminol-
ogy of [10], we refer to the model being evaluated as the subject model. To perform a fine-grained
evaluation of the subject model’s capabilities in a domain, we define a hierarchical structure over the
capabilities. In this hierarchy, a domain consists of multiple areas, and each area is further divided
into capabilities. For example, in Mathematics, areas include Algebra, Calculus, Geometry, etc.
Within the area of Algebra, capabilities may include Linear Equations, Factoring Expressions, etc.
This hierarchy is flexible and can include additional levels. Figure 1a illustrates this structure.

To evaluate a subject model on a given capability, we use a set of rasks. Each task consists of a
problem and a corresponding reference solution that serves as the ground truth for scoring. To ensure
a robust estimate of a model’s performance on a given capability, we evaluate it on a large set of tasks.
Capability-level scores are computed by aggregating individual task scores, typically using the mean.

To construct the capability hierarchy and tasks, our framework uses a powerful foundation model
termed the scientist model (following [10]). The scientist proposes domain areas, decomposes them
into capabilities, and generates tasks with reference solutions. To ensure correctness, we introduce a
verification step where another model reviews each reference solution. To ensure the reliability of
both the generated solutions and the verification step, we conduct a human inspection of the outputs
from the task generation and verification processes, which we detail in Section B.3. An abstract
overview of the pipeline is shown in Figure 1b.

2.2 Latent Modeling of Capabilities

We assume that capabilities in a domain are specified in a discrete space 7. For example, 7 could
be the text space, where each capability is described by a short natural language statement, such as
"linear equations" or "integration by parts." Since function approximation is challenging to perform
directly in 7", we instead map each capability description to a continuous latent space Z C R¢ using
a pretrained text encoder F : T — Z. The subject model’s performance on a capability z € Z is
modeled by a surrogate function f : Z — R*, where f(z) denotes the capability score, i.e., how
well the model performs on capability z. We refer to f as the capability function and assume it to be
smooth. This assumption aligns well with real-world LLM behavior, where related capabilities often
exhibit correlated performance [11, 12, 13].

A key requirement of our approach is that the encoder E preserves semantic relationships between
capabilities, i.e., similar capabilities in 7 should be mapped to nearby points in Z. This is crucial for
generalization and uncertainty modeling of the capability function f. In Section 3.2, we empirically
demonstrate that modern pretrained text encoders satisfy this requirement.

The capability space is large, making exhaustive evaluation infeasible. Even estimating scores on a
subset is costly, since each requires generating hundreds of tasks and evaluating the subject model, re-
sulting in substantial API calls. Fixed evaluation sets may also miss important capabilities. To address
this, we employ active learning to adaptively select and score informative capabilities. In each round,
we choose a candidate capability, obtain its score, and update f. We adopt Bayesian optimization
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Figure 2: Model scores across different areas in Mathematics. The reported score for each area is the
average score of all capabilities within that area.

with Gaussian process (GP) regression, a principled framework widely used for global optimization
under limited or expensive data [14, 15, 16, 17, 18]. A GP is denoted by f(x) ~ GP(m(x), k(x,x"))
[19], where m(x) = E[f(x)] and kernel k(x,x’) = E[(f(x) — m(x))(f(x") — m(x))]. GPs sup-
port active learning via posterior mean and variance estimates. Two classical approaches leverage
posterior variance: (1) selecting the candidate with largest variance to maximize information gain
[20], x* = argmax,;, V[f(x)], and (2) minimizing expected posterior variance over the input
space [21], x* = argmin, ¢,y Eyjx [ [ V[f(x')|D U (x,y)]dx] . Further GP background and details
on these methods are provided in Appendix A.

The embedding space of pretrained encoder is usually high-dimensional (e.g., 512-dimensional),
making it challenging to perform regression. Hence, we apply a dimensionality reduction technique
like t-SNE [22] or Principal Component Analysis (PCA). The resulting low-dimensional representa-
tions enable efficient active learning: In each round we compute acquisition scores for all candidate
capabilities, select the optimal candidate, and assess the subject model’s performance on it. The
newly obtained (capability, score) pair then updates the GP model. Algorithm 1 in the Appendix
formalizes this procedure.

3 Experiments

We evaluate ACE in the domain of Mathematics. All experiments use OpenAl’s o4-mini' as the
scientist model. We first prompt it to generate broad areas, then specific capabilities in a modified
METR’ format following [10], each with a name, description, and Python class specifying
exemplar tasks, instructions, and scoring. Prompts are given in Appendix H.1 and H.2. For each
capability we run the task generation pipeline to produce diverse problems. Each problem is solved
using the capability’s instructions, and solutions are verified by an additional LLM pass to filter errors.
The same o4-mini model is used for all task generation and verification (prompts in Appendix H.3).
For evaluation, we adopt the Inspect framework [9], which executes tasks using capability-specific
instructions and scoring. We use binary scoring: a solution is correct if it matches the ground truth
(score=1) , otherwise incorrect (score=0). This procedure yields a benchmark of 78 capabilities
across 10 areas, with 8,529 verified tasks. Full capability lists and scores are in Appendix D.2.

3.1 Benchmarking LLMs in Mathematics

To demonstrate ACE’s utility independent of active learning, we evaluate open- and closed-source
models on all 78 mathematical capabilities. This establishes ACE’s ability to generate high-quality,
domain-specific benchmarks supporting both broad and fine-grained assessment. Capability scores
are averaged over tasks, and area scores over capabilities. Figure 2 reports performance of five

"https://platform.openai.com/docs/models/o4-mini
’https://metr.org/
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Figure 3: Performance of active learning acquisition techniques. The left column shows the ground
truth values. The center column shows test error (root mean squared error), and the right column
shows test set average posterior standard deviation. Shaded areas indicate 95% confidence interval.

models across areas. Fine-grained capability-level results appear in Appendix D.2, with full results in
Appendix C. These results highlight the value of structured, capability-based evaluation: even strong
models exhibit distinct area-level strengths and weaknesses not visible in aggregate metrics.

3.2 Semantic Relationships of Capabilities in Latent Space

Reliable approximation of the capability function f(z) depends on whether the latent space Z
preserves semantic relationships between capabilities. In particular, capabilities within the same area
should be embedded close to each other in Z. This structure facilitates generalization and smooth
function approximation. Two components influence the structure of the latent space: the text encoder,
which maps natural language descriptions of capabilities to high-dimensional embeddings, and the
dimensionality reduction technique used to project these embeddings into a lower-dimensional space.
We study the effect of the text encoder in isolation and combined effect of the text encoder and
dimensionality reduction on preserving the semantic relationship between capabilities. Detailed
results are available in Appendix D.1. Our findings demonstrate that a strong text encoder paired
with an appropriate dimensionality reduction method can effectively preserve semantic relationships
between capabilities, which enables active learning and approximation of the capability function in a
low-dimensional latent space.

3.3 Evaluating Active Learning Acquisition Functions

In Section 2.2, we introduced two variance-based acquisition functions for active learning with
Gaussian processes: the MacKay’s method [20] (ALM), and the Cohn’s method [21] (ALC). We apply
these strategies to the capability function approximation problem in Mathematics. The data comes
from scoring the 03-mini subject model across 78 capabilities as described in Section 3.1. The
full dataset is {(2,5;)}/5,, where z; is the 2D t-SNE embedding of the i-th capability and s; is
the corresponding capability score. The dataset is split equally into training and test sets. The GP
model is initialized with two randomly selected capabilities, and active learning is performed on
the remaining training set. Figure 3 shows test set metrics. While both ALM and ALC show a similar
trend in reducing RMSE, ALC is capable of reducing uncertainty more rapidly. We conducted this
experiment with other subject models and observed similar results, which are available in Appendix F.
These results demonstrate that active learning in the capability latent space, particularly the ALC
variant, can be effective for learning the capability function.

4 Conclusion

This paper introduces ACE, a framework for scalable and structured evaluation of foundation models.
ACE leverages the generative power of LLMs to construct semantically meaningful capability
hierarchies and associated evaluation tasks for a target domain. It further employs active learning in a
latent semantic space to efficiently estimate a model’s capability function and uncover strengths and
weaknesses with minimal evaluation cost. A limitation of ACE is its reliance on a single scientist
model. This raises questions about systematic biases in the evaluation process. To mitigate this
we can employ a panel of diverse models to jointly generate and verify tasks, thereby reducing
model-specific biases. As foundation models are increasingly deployed, the need for fine-grained,
dynamic, and cost-effective evaluation will also grow. By integrating strong generative models with
active learning, our framework lays the foundation for a robust and reliable evaluation paradigm.
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Appendix

A Active Learning with Gaussian Processes

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint
Gaussian distribution [19]. It is fully specified by a mean function m(x) = E[f(x)] and a covariance
(kernel) function k(x,x") = E[(f(x) — m(x))(f(x") — m(x))]:

f(x) ~ GP(m(x), k(x,x"))

Consider a regression task with training data D = {(x;,v;)}Y., where y; = f(x;) + ¢ with
e; ~ N(0, o2 ). For a test input x., the predictive distribution is Gaussian:

p(f*‘X*,D) :./\/(E[f*],V[f*]),

with predictive mean and variance:

E[f.] = k. (K+o;D)y ()
Vif = k(xex.) -k (K+02D) 'k, )

in which K is the kernel matrix with K;; = k(x;,x;), y = {y1,...,yn}, and k, =
[k(xlvx*)v"'7k(XN7X*)]T

The function-space view interprets the GP as defining a distribution over functions, where the kernel
function encodes prior assumptions such as smoothness. A common choice is the squared exponential

kernel:
N 2 |Ix —x'[|?

GPs naturally lend themselves to active learning due to the availability of posterior mean and variance
estimates. In particular two well-known approaches leverage GP posterior variance for active learning.
[20] aims at maximizing the expected information gain by selecting the data where the model has
maximum variance. This is performed by selecting points that maximize the posterior variance:

x* = argmax V[f(x)], 3)
xeu

where U is the pool of unlabeled candidates. This is equivalent to maximizing the reduction in entropy
H of the GP posterior:

X" = argg/l{axH[p(ﬂD)] - Eylx[H[p<f|D U (X7 y))]]

It is possible to perform optimization of Eq. 2 with respect to x* using, e.g., gradient ascent [23].

The second method is motivated by minimizing the generalization error in terms of mean squared
error (MSE). Using the bias-variance decomposition of MSE and making some assumptions with
respect to the magnitude of bias, it can be shown that minimizing MSE can be approximated by
choosing the candidate point that reduces the expected predictive variance over the entire input space
[21]:

x* = argminE, [/ V[f(x")|D U (x,y)]dx’ 4)
xeu

In practice the integration in Eq. 4 can be approximated by Monte Carlo or by calculating the variance

over a holdout set.

For GPs, both approaches can be approximated efficiently as the posterior covariance matrix can be
updated incrementally using rank-1 updates [24]. The active learning process iteratively fits the GP
to current labeled data, £, computes the acquisition score (Eq. 3 or 4) for all x € U, selects x* that
maximizes the acquisition score, queries for y* at x*, and updates the labeled and candidate sets,
L+ LU{(x*y")} U+ U\ {x*}.
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Algorithm 1: Active Capability Learning

Input:
Initial capability set C = {¢;}¥; generated by the scientist model
Pretrained encoder E : C — RY
Dimensionality reduction method ¢ (e.g., PCA, t-SNE)
Evaluation module Evaluate () to score a capability
Active learning acquisition function «(+)
Target latent dimension d’ < d

Initialization:

1. Encode all capabilities: Z = {E(c¢;)|c; € C}

2. Reduce dimensionality: Z' = ¢(Z) € RV*?'

3. Initialize training set D by randomly selecting a small number of capabilities (e.g., 2) from C
and scoring them using Evaluate ()

// Active learning
while stopping conditions not met do
1. Fit GP model, f, on current D (non-parametric)
2. Compute acquisition scores: Vz, € Z’' \ D, o; + a(z}; f)
3. Select the best candidate: j <— arg max; o
4. Obtain capability score: s; <— Evaluate(c;)
5. Update training set: D < D U {(z}, s;)}
end
return D

B Additional Experiments

B.1 Scientist Model Selection

We evaluate leading OpenAI LLMs on 100 random tasks (or samples) from the MATH dataset [5]
and select the LLM with the best performance. Given that 03-mini, 03, and 04-mini have comparable
scores (as shown in Table 1), we choose o4-mini since it is the most recent and cost-effective option.

gpt-4o0  gpt-4.1 03-mini 03  o4-mini
MATH (100 tasks)  0.88 0.89 0.96 0.96 0.95

Table 1: Performance of leading OpenAI LLMs on 100 random tasks from the MATH dataset.

B.2 Performance Distribution Across MATH and Generated Benchmarks

A key requirement for automating capability evaluation is that the tasks generated by the scientist
model be both valid and discriminative with respect to subject model performance. To assess this,
we conduct an experiment that compares a subject model performance on generated tasks to its
performance on tasks from a human-curated benchmark dataset. We use the MATH dataset [5],
which contains 12,500 high school competition-level problems labeled by area. There are seven
major capability categories (areas) in MATH: Pre-algebra, Algebra, Number Theory, Counting
and Probability, Geometry, Intermediate Algebra, and Pre-calculus. These categories serve as the
capabilities for our comparison.

For each capability (area), we extract the corresponding subset of problems from MATH and evaluate
the subject model’s performance on them. Next, we prompt the scientist model to generate new
tasks targeting the same capability. To ensure diversity and coverage, we instruct the scientist model
(0o4-mini) to generate problems of varying difficulty within each capability. We then evaluate the
subject models on these problems. For each capability, we take the average of scores across all tasks
(problems) to form the capability score. Results are shown in Table 2. In addition, Figure 4 shows the
scatter plot of model performance on the MATH dataset capabilities vs synthetic tasks.
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Figure 4: Comparing performance of models on the MATH dataset vs synthetic tasks. Stars indicate
average score across all capabilities.

For both subject models, comparing the distribution of capability scores across MATH and synthetic
tasks reveals greater variation in capability scores on the synthetic benchmark. This suggests that
our generated tasks span a broader range of problem types and difficulties within each capability.
Consequently, the synthetic dataset provides a more nuanced and discriminative assessment of model
strengths and weaknesses. These results support the viability of our framework as an effective tool
for evaluating foundation models in a given domain, offering a potentially more revealing alternative
to static, human-curated benchmarks.

- ol 03-mini
Capability (Area) Synthetic MATH | Synthetic MATH
Algebra 0.84 1.00 0.88 0.98
Counting & prob. 0.82 0.98 0.98 1.00
Geometry 0.85 0.93 0.90 0.95
Intermediate Algebra 0.75 0.95 0.85 0.95
Number Theory 0.80 1.00 0.90 1.00
Pre-algebra 0.97 1.00 0.95 0.97
Pre-calculus 0.78 0.80 0.80 0.93
Average score 0.83 0.95 0.89 0.97

Table 2: Comparison of Synthetic vs MATH task scores for capabilities of the MATH dataset using
04-mini as the scientist model.

B.3 Manual Inspection of Tasks

To evaluate the quality of the task generation pipeline and the reliability of the automated verification
step, we conducted a manual inspection of a subset of tasks. Specifically, we randomly selected 12
capabilities across three mathematical areas.® For each capability, we sampled 15 tasks, resulting in a
total of 180 problem—solution pairs. Each task’s problem, solution, and verification model output
were manually reviewed by solving the problem and comparing the correct solution to the automated
verification outcome.

3Areas include: (1) Geometric and Spatial Reasoning, (2) Statistical and probabilistic analysis, and (3)
Symbolic and Analytical Mathematics. Capabilities include: Bayesian inference, Cross-section area, Eigen
problems, Hypothesis testing, Markov chain analysis, Multivariate integration, Multivariate distribution analysis,
ODE solving, Polyhedron net identification, Spatial puzzle cubes, Taylor series, and Transformational geometry.
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The results indicate a high degree of agreement between human and automated verification. Of the
180 tasks, we observed the following confusion matrix: True Positives = 158, False Negatives = 14,
False Positives = 1, and True Negatives = 7. This corresponds to a precision of 99.4%, recall of
91.9%, and overall verification accuracy of 91.7%. These results support the conclusion that the
automated pipeline for task generation and verification is reliable for evaluating model capabilities at
scale. Despite strong performance in task generation, our inspection surfaced a few recurring issues
that are important to address in future iterations of the framework:

1. Rounding Errors. Infrequent but notable rounding inaccuracies occurred when intermediate
numerical results were used in subsequent calculations. These rounding issues sometimes
led to small deviations in final answers and highlight the need for improved numerical
precision handling.

2. Lack of Task Diversity. Many tasks within a capability were structurally or conceptually
similar. Increasing task diversity—across difficulty levels and subtopics—would yield a
more comprehensive assessment of model performance.

3. Inter-Task Dependencies. Since multiple tasks were generated from a single prompt (to
minimize repetition), some questions inadvertently referenced earlier tasks. Future prompts
should explicitly enforce task independence to avoid this issue.

4. Parsing Limitations. Some task-solving instructions required the model to output the final
answer after an "ANSWER" keyword. The current parsing logic does not support multi-line
answers, which can result in incomplete ground truth extraction and premature task rejection
during verification. Improving parsing robustness would reduce unnecessary filtering of
valid tasks.

Addressing these issues will further enhance the robustness and reliability of automated task genera-
tion and verification.

B.4 Evaluating Active Learning Acquisition Functions

In Section 2.2, we introduced two variance-based acquisition functions for active learning with
Gaussian processes. MacKay’s method [20], denoted by ALV, selects the candidate with the highest
posterior variance. Cohn’s method [21], denoted by ALC, selects the candidate expected to yield the
largest overall reduction in posterior variance across the input space. In our implementation, this is
approximated by averaging posterior variance over the entire set of unused candidate points.

We first evaluate these acquisition strategies on a synthetic toy problem: approximating the target
function f(x) = sin(20mx) exp(—5x) over the interval « € [0, 1]. The candidate set consists of 32
points sampled uniformly from the domain with a noisy label y = f(z) + €, where € ~ N(0,0.1).
The GP model is initially fit on two randomly selected candidates; the remaining points are used for
active learning. We repeat the experiment 200 times to compute confidence intervals for both root
mean squared error (RMSE) and average posterior standard deviation. These metrics are evaluated on
a test set of 1000 equidistant points. Results, shown on the top row of Figure 5, demonstrate that ALC
outperforms ALM, achieving more rapid reductions in both prediction error and model uncertainty.

Next, we apply the same strategies to the capability function approximation problem in Mathematics.
The data comes from scoring the 03-mini model across 78 capabilities as described in Section 3.1.
The full dataset is {(2;, ;) }/2,, where 2; is the 2D t-SNE embedding of the i-th capability and s; is
the corresponding capability score of 03-mini. The dataset is split equally into training and test sets.
As before, the GP model is initialized with two randomly selected capabilities, and active learning is
performed on the remaining training set. Figure 5 (bottom row) shows test set metrics. While both
ALM and ALC show a similar trend in reducing RMSE, ALC is capable of reducing uncertainty more
rapidly. We conducted this experiment with other subject models and observed similar results, which
are available in Appendix F.

While this experiment used a relatively small set of capabilities, the results demonstrate that active
learning in the capability latent space, particularly using total variance reduction as the acquisition
function (ALC), can be effective when the latent space preserves semantic structure. Active learning is
especially valuable when the number of capabilities is large and exhaustive evaluation is infeasible due
to budget or computational constraints. Although our focus here was on variance-based acquisition
functions for approximating the capability function, other acquisition strategies can be chosen to

11
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Figure 5: Performance of active learning acquisition techniques.

Active Learning Iteration

Top: the toy problem, bottom:

the Mathematics capability dataset with 03-mini as the subject model. The left column shows the
ground truth function and values. The center column plots show test error (root mean squared error),
and the right column plots show test set average posterior standard deviation. Shaded areas indicate
95% confidence interval.
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Figure 6: Average scores of 9 LLMs on 10 areas.

meet other objectives. For example, if the goal is to identify the capabilities on which a subject model
excels, the Upper Confidence Bound (UCB) acquisition function [25] may be a more appropriate
choice.

C Additional Benchmark Results

Figure 6 shows the average LLM scores across 10 areas for 9 LLMs.
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Figure 7: The heatmap illustrating the cosine similarity matrix of capability embeddings.

diagonal red squares show the intra-group similarity between capabilities within the same area.

D Capability Details

In this section, we provide details on the generated capabilities, their embeddings used in our method,

and LLM scores evaluated on each capability.

D.1 Studying the Semantic Relationship of Capabilities in Latent Space

We first study the effect of the text encoder in isolation. Using the OpenAl
text-embedding-3-small model* (512-dimensional output), we embed a subset of 20 capabilities
sampled from 5 mathematical areas. Each embedding is generated by concatenating the name, area,
and description fields of the capability as input to the encoder. We compute the pairwise cosine
similarity matrix between capabilities. As the heatmap in Figure 7 shows, capability embeddings
within the same area have higher cosine similarity compared to the capabilities in other areas. The
results demonstrate that the encoder meaningfully captures semantic similarity between capabilities.

Next, we assess the combined effect of the text encoder and dimensionality reduction. We embed all
78 capabilities using the same encoder and project the resulting representations into a 2D latent space
using either t-SNE or PCA. Figure 8 shows the resulting distributions. Both techniques preserve
coarse structure, but t-SNE produces more distinct clusters for capabilities within each area.

D.2 Capability Scores

In this section, Table 3 details the full list of capabilities with their respective areas.

*https://platform.openai.com/docs/guides/embeddings/

13


https://platform.openai.com/docs/guides/embeddings/

t-SNE Embedding

PCA Embedding

40

*

Algebra

Calculus and Real Analysis
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Numerical Analysis and
Computational Mathematics

Linear Algebra

Mathematical Logic and Proof
Techniques

Figure 8: Two-dimensional representation of Mathematics capabilities using t-SNE (left) and PCA
(right). Each point corresponds to a capability, and colors indicate high-level areas. Stars indicate the

mean of capability representations for each area.

claude-3-7

.. gemini-2.0

. . Meta-Llama-3.1

Area Capability Name —sonnet 03-mini flash 0l-mini 70B-Instruct
abstract algebra 0.91 0.97 0.92 0.09 0.87
algebraic anequalities 0.81 0.76 0.85 0.64 0.50
complex algebra 0.75 0.57 0.66 0.23 0.61
cxponential and 045 050 037 0.9 0.28
ogarithmic equations
Algebra functional equations 0.59 0.55 0.46 0.38 0.20
nested radical
o . 0.56 0.86 0.61 0.68 0.32
simplification
nonlinear systems 0.85 0.88 0.95 0.57 0.60
parameter conditions 0.64 0.61 0.57 0.40 0.37
symmetric polynomials 0.90 0.96 0.83 0.01 0.48
polynomial factorization 0.95 0.94 0.97 0.44 0.87
advanced improper 052 054 047 041 0.36
integrals
Calculus calculus of variations 0.89 0.87 0.70 0.89 0.44
and epsilon delta limits 0.41 0.58 0.36 0.58 0.18
Real fourier series analysis 0.44 0.75 0.78 0.62 0.41
Analvsis integral calculus 0.87 0.81 0.85 0.58 0.70
yst lebesgue integration 0.39 0.46 0.13 0.69 0.05
limits and continuity 0.67 0.64 0.47 0.23 0.49
multivariable calculus 0.93 0.77 0.83 0.44 0.71
real analysis proofs 0.81 0.78 0.80 0.65 0.44
series and sequences 0.76 0.66 0.66 0.27 0.55
singlo variable 090 088 086 057 0.81
ifferentiation
analytic geometry circles 0.84 0.80 0.80 0.59 0.66
circle inversion geometry 0.52 0.75 0.46 0.76 0.03
complex plane geometry 0.44 0.77 0.47 0.71 0.13
Geometr conic sections properties 0.85 0.88 0.83 0.88 0.50
and y geometric transformations 0.87 0.87 0.88 0.16 0.66
Trigonometr projective geometry 0.59 0.58 0.33 0.81 0.02
y three d geometry volumes 0.98 1.00 0.97 0.34 0.59
trigonometric equations 080 087 032 087 0.37
nonlinear
trigonometric identities 094 096 095 058 0.83
simplification
vector geometry 0.73 0.73 0.60 0.56 0.42
arithmetic functions 0.94 0.87 0.78 0.97 0.68
chinese remainder 0.65 0.86 0.39 0.95 0.03
continued fractions 0.28 0.56 0.56 0.59 0.24
Arithmetic egyptian fractions 0.53 0.73 0.61 0.70 0.05
and gcd Iem valuations 0.78 0.80 0.91 0.93 0.73
Number Continued on next page
Theory
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.- claude-3-7 .. gemini-2.0 . . Meta-Llama-3.1
Area Capability Name _sonnet 03-mini = flash ol-mini ~70B-Instruct
modular exponentiation 0.30 0.65 0.56 0.72 0.03
prime_factorization 0.86 0.98 0.86 0.94 0.56
quadratic residues 0.67 0.58 0.61 0.66 0.53
special numbers 0.96 1.00 0.95 1.00 0.73
zeckendorf representation 0.75 0.31 0.56 0.06 0.70
bayesian inference 0.30 0.32 0.28 0.13 0.20
Probabilit distribution moments 0.98 0.97 0.91 0.93 0.87
and y markov chain probabilities 0.52 0.54 0.55 0.43 0.30
Statistics probability paradoxes 0.71 0.78 0.74 0.41 0.50
statistical hypothesis testing 0.16 0.19 0.10 0.19 0.12
survival analysis 0.33 0.35 0.37 0.35 0.30
Differential boundary value 081 069 083 040 0.29
Equations eigenvalue problems
and i"’“h“ear systems 059 045 055 020 0.09
. yapunov
Dynamical
Svstem. second order
ystems homogeneous 0.98 0.99 0.98 0.93 0.95
linear ode
combinatorial designs 0.86 0.56 0.88 0.37 0.72
Di eulerian trail 0.98 1.00 0.94 0.05 0.75
iscrete . .
. generating functions 0.86 0.95 0.88 0.02 0.58
Mathematics .
and graph coloring 0.88 1.00 1.00 0.02 0.62
Combinatorics inclusion exclusion 0.88 0.92 0.83 0.03 0.53
recurrence relations 0.93 0.97 0.89 0.18 0.79
stirling numbers second kind 0.02 0.17 0.04 0.11 0.01
cigenvalues and 089 068 064 033 0.43
eigenvectors
jordan normal form 0.90 0.84 0.87 0.55 0.33
matrix inversion
and determinant 0.88 0.84 0.96 0.19 0.82
]Xlnear orthogonality and 08 079 08 039 0.58
gebra projections
quadratic forms 0.43 0.33 0.26 0.13 0.04
rank and nullspace 0.99 0.80 0.69 0.76 0.03
singular value decomposition 0.66 0.73 0.68 0.10 0.20
vector spaces and subspaces 0.81 0.80 0.66 0.42 0.50
epsilon delta proofs 0.85 0.86 0.86 0.67 0.48
Math Logic and model construction 1.0 1.0 1.0 1.0 1.0
Proof Techniques  natural deduction proofs 1.0 1.0 1.0 1.0 1.0
predicate logic formalization 1.0 1.0 1.0 1.0 1.0
proof by contradiction 1.0 1.0 1.0 1.0 1.0
proof by induction 1.0 1.0 1.0 1.0 1.0
propositional logic translation ~ 0.85 0.91 0.83 0.92 0.83
Numerical conditioning and stability 0.64 0.45 0.60 0.39 0.41
Analvsis eigenvalue methods 0.86 0.95 0.83 0.31 0.83
and y fast fourier transform 0.71 0.79 0.88 0.25 0.6
Computational monte carlo error analysis 0.60 0.5 0.44 0.30 0.37
Mathimatics numerical integration 0.46 0.3 0.16 0.09 0.18
) numerical optimization 0.77 0.83 0.85 0.48 0.29

s« E Compute Resources

395 We used paid APIs to access the scientist LLM as well as subject LLMs from OpenAl, Google,
396 and Anthropic. Open source models that are used as subject LLMs are hosted on internal cluster.
s97  Specifically, we used 1 A40 GPU for Meta-Llama-3.1-8B-Instruct, 2 A100s GPUs for Meta-Llama-
398 3.1-70B-Instruct, and 4 A100s for Cohere Command R+, with 10 GPU hours per GPU for all these
399 open source models.
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F Complete Results for Evaluating Active Learning Acquisition Functions

Section B.4 compared the performance of ALC and ALM acquisition functions using o3-mini as
the subject model. Figure 9 presents additional results for other subject models.

G Related Work

There is a clear trend toward automating and scaling up LLM evaluation. Traditional benchmarks
like BIG-bench [7], HELM [26], Truthful QA [27], and MMLU [28] established the importance of
diverse, rigorous evaluation, but are inherently static, limited to predefined tasks, and suffer from data
contamination [29]. Automated evaluation approaches range from model-assisted test generation
[30, 31] to automatic evaluation with graph and tree construction [32, 33, 34, 30] to fully autonomous
task discovery and generation [10, 35], uncovering failures and interesting capabilities that a fixed
benchmark might miss.

Most automatic evaluation approaches rely on heuristics or predefined objectives like "difficulty",
"safety issues", or "knowledge gaps" [35, 33, 36] or objectives defined by evaluation functions [37],
maximizing these objectives by probing the areas of prior mistakes. Some methods focus specifically
on automatic assessment of ethical capabilities [38, 39] or automated red-teaming methods [40].
Unlike our approach, most of these approaches rely on existing datasets or benchmarks, selecting or
altering existing prompts based on their specific evaluation goals.

Active learning for sample generation as explored in [41] focuses on targeted data generation with
LLMs and employs active learning with clustering to guide the generation towards rare but critical
cases. The sampling strategy is based on the uncertainty of the active learner. Active learning has
also been adopted in several works focusing on sample-efficient labeling, reducing annotation costs
in classification tasks [42, 43]. [36] focuses on evaluation efficiency by introducing an RL-based
policy for selecting a representative subset of evaluation prompts from existing benchmarks. This
approach models dependencies among examples, allowing it to estimate performance on the full set
from a chosen subset.

H Prompts

H.1 Capability Area Generation Prompts

Capability Area Generation User Prompt

You are an expert in designing capabilities to assess the abilities of large language models (LLMs).
Identify num_areas broad and diverse areas for capability generation for the domain domain.
Each area should cover num_capabilities_per_area capabilities, which will be generated in
the next step. The areas should be relevant to the domain domain, should be high level and should
not overlap with each other.

Respond precisely in the following format:

RESPONSE JSON:
{

"area_0": <STR>,
"area_1": <STR>,
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Figure 9: Performance of active learning acquisition techniques. Each row shows test error (RMSE)
and posterior uncertainty (standard deviation) for a model. Shaded areas indicate 95% confidence
interval.
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H.2 Capability Generation Prompts

Capability Generation System Prompt

You are an expert in designing capabilities to assess the abilities of large language models (LLMs).
Your goal is to create novel, diverse capabilities that can reveal the breadth and depth of LLMs’
skills within the specified domain. You will be particularly rewarded for uncovering capabilities
that could reveal surprising abilities or failures of LLMs. Valid capabilities will be added to a
capability archive. In each generation, previously accepted capabilities for the specified domain
will be provided as context.

Each capability should be designed according to the METR Standard, which requires the following
Python format:

class Capability:

@staticmethod

def repr_tasks() -> dict[str, dict]:

# Returns a mapping from task ids to arbitrary data that is

specific to each capability.
Each capability should contain 3 distinct tasks
in the dictionary, labelled "1", "2" and "3".
Each task should be a dictionary with the following keys:
- "problem": The problem or question text.
- "answer": The expected answer to the problem.
implementation ...

HHE H HF HHEFH

@staticmethod

def get_instructions(t: dict) -> str:
# This method should return a string containing
# initial capability instructions.
# ... implementation ...

O@staticmethod
def score(t: dict, submission: str) -> float | None:
# ‘score is called after the subject model submits a solution.
# Return O on failure and 1 on success.
# Throwing an exception will result in a score of 0.
# ... implementation ...

The following points should be considered while designing the Capability class:

1. The instructions should enforce the final answer in the form "ANSWER: $ANSWER"
ONLY for those capabilities that expect a short and objective answer. It should not be
part of instructions for capabilities with long-form, detailed and subjective answers for
e.g. explanations, proofs, essays, etc.

2. If the instructions enforces the final answer in the form "ANSWER: SANSWER", then
the score function should first call a helper function to parse the submission string and
extract the answer:

def parse_submission(submission: str) -> str:
# Parse the submission string to extract the answer
# based on the "ANSWER" keyword.
# Return an empty string if no match is found.

3. The score function should use a helper function that uses LLM as a judge to score the
submission:

def evaluate_with_llm_judge(
submission: str,
target: str,

) -> bool:

# Evaluate the submission using an LLM judge.
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4. DO NOT re-implement the parse_submission() or evaluate_with_1lm_judge ()
helper functions.

Respond precisely in the following format, including the JSON start and end markers:
THOUGHT: <THOUGHT>

RESPONSE JSON:

{
"capability_0": <JSON>,
"capability_1": <JSON>,

}

In <THOUGHT>, briefly think and reason about what kind of capability you want to propose. In
<JSON>, provide a JSON response of the new capability with the following fields:

- "name": A concise, descriptive label (lowercase, no spaces, e.g.,
math_competition_algebra).

- "description": A clear explanation of what the capability entails (e.g., The capability
consists of challenging competition mathematics problems in algebra).

- "domain": The domain to which the capability belongs to (e.g., math, physics, etc.).

- "class": The fully implemented Python code for the Capability class. This should be
easily human-readable.

Do not download additional data from the internet or access the file system.

Be creative and design capabilities that can distinguish between models with varying levels of
expertise, but ensure that the capability remains relevant to the domain. Also ensure that the
proposed capabilities ARE DISTINCT compared to the existing capabilities. Names of all existing
capabilities will be provided.

Your response will be automatically parsed so ensure it adheres to the specified format.
432

Capability Generation User Prompt
433

A sample capability JSON is provided below. The names of all existing capabilities are also
provided.

Sample capability:
sample_capability_json

Existing capability names:
prev_capabilities

Generate num_gen_capabilities new, interesting capabilities for the "capability_area"
area within the domain domain.

434
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436

437

438

439

440

441

H.3 Task Generation Prompts

Task Generation System Prompt

You are an expert in designing tasks for a given capability. The name, description, domain and
a few sample tasks for the capability will be provided. You will be particularly rewarded for
designing diverse tasks spanning a wide range of difficulty levels for the given capability.

Respond precisely in the following format, including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON:

{
"task_1": <STR>,
"task_2": <STR>,

}

In <THOUGHTS>, briefly think and reason about what kind of tasks you want to propose.
In <STR>, provide a string containing the task text.

Be careful to make sure that all proposed tasks are unique. Also ensure that all tasks are within the
scope of the given capability. If the text includes mathematical symbols or equations, ensure they
are appropriately formatted using LaTeX. Ensure the single backlash "\" included in a LateX
string is escaped as "\ \". For example, the LaTeX string "\[2z + 3 = 11\]" should be formatted
as "\\[2z + 3 = 11\\]" in the task text.

Your response will be automatically parsed so ensure it adheres to the specified format.

Task Generation User Prompt

Design tasks for the following capability:

Name: capability_name

Description: capability_description
Domain: capability_domain

Sample tasks:
capability_sample_tasks

Generate num_gen_tasks new tasks for the given capability.

Task Solver System Prompt

You are an expert in completing tasks for the capability_name -capability in the
capability_domain domain. Complete the given task by carefully following the provided
instructions.
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444

445

Task Verifier System Prompt

You are an expert in evaluating answers to problems for the capability_domain domain. Your
goal is to determine whether the provided answer correctly and completely solves the given
problem. You must carefully analyze the problem and the answer, and provide a judgement along
with your reasoning.

Respond precisely in the following format:

THOUGHT: <THOUGHT>
JUDGEMENT:
<JUDGEMENT>

In <THOUGHTS>, briefly explain your reasoning process for evaluating the answer.
In <JUDGEMENT?>, respond with "yes" if the answer correctly and completely solves the
problem, otherwise respond with "no".

Be objective and thorough in your evaluation. Ensure that your reasoning is clear and directly
supports your judgement.

Task Verifier User Prompt

Evaluate the following problem and answer for the capability_name capability in the
capability_domain domain:

Problem: problem
Answer: answer

Determine if the answer correctly and completely solves the problem. Provide your reasoning and
judgement.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope. Supporting evidence is provided in detail in Sections 2 and 3.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the work in Section 4.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not consist of any theoretical proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3 covers all the details for reproducing the results. Specifically, Section
?? describes the process for generating capabilities, corresponding tasks and task evaluation,
with the associated prompts in Appendix H. All the steps are implemented and easily
executable in our released code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We are releasing our code, with clear instructions on running the scripts,
included with this submission. Provided code includes the whole framework implementation
with scripts to reproduce capabilities and tasks. We are using one publicly available dataset,
under an MIT license, as a part of our evaluation, which is detailed and cited in Appendix
B.2.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setup is explained in Section 3 which includes discussions around
design choices and hyper-parameters. All the hyper-parameters necessary for reproduction
of results are also included with our code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our main results include error bars to show the significance of the approach.
See Figure 3. More details on the confidence intervals are discussed in Section B.4.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details on the compute resources are included in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work adheres to all items under NeurIPS code of ethics while applicable.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed potential positive impacts of our work, in particular in
evaluating capabilities of foundation models in safety-critical domains.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release new models or datasets that can pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have clearly indicated which language models are used in the framework
and the experiments. We have also respected their terms of use. We are using one publicly
available dataset, under an MIT license, as a part of our evaluation, which is detailed and
cited in Appendix B.2.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have released our codebase and the link to the anonymous repository is
provided in the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work did not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work did not involve research with human subjects.

Guidelines:
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758 * The answer NA means that the paper does not involve crowdsourcing nor research with
759 human subjects.

760 * Depending on the country in which research is conducted, IRB approval (or equivalent)
761 may be required for any human subjects research. If you obtained IRB approval, you
762 should clearly state this in the paper.

763 * We recognize that the procedures for this may vary significantly between institutions
764 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
765 guidelines for their institution.

766 * For initial submissions, do not include any information that would break anonymity (if
767 applicable), such as the institution conducting the review.

768 16. Declaration of LLM usage

769 Question: Does the paper describe the usage of LLMs if it is an important, original, or
770 non-standard component of the core methods in this research? Note that if the LLM is used
77 only for writing, editing, or formatting purposes and does not impact the core methodology,
772 scientific rigorousness, or originality of the research, declaration is not required.

773 Answer: [Yes]

774 Justification: Using LLMs is a core part of our framework and we have extensively discussed
775 it throughout the paper.

776 Guidelines:

777 * The answer NA means that the core method development in this research does not
778 involve LLMs as any important, original, or non-standard components.

779 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
780 for what should or should not be described.
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