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Abstract

Current evaluation frameworks for foundation models rely on fixed, manually1

curated benchmarks, limiting coverage of model capabilities. We propose Active2

learning for Capability Evaluation, a scalable framework for automated fine-grained3

evaluation. Our framework leverages language models to decompose domains into4

semantically meaningful capabilities and generate diverse tasks, reducing human5

effort. It models a subject model’s performance as a capability function over a6

latent semantic space and applies active learning to prioritize the most informative7

evaluations. This adaptive strategy enables cost-efficient discovery of strengths,8

weaknesses, and failure modes that static benchmarks may overlook. Results show9

that this evaluation yields a more complete picture of model capabilities.10

1 Introduction11

As foundation models expand in scale, rigorous evaluation of their capabilities is crucial. Evaluations12

guide model selection, inform development, and ensure safety in high-stakes domains such as cyber-13

security and healthcare. Most of the current evaluations rely on static, human-curated benchmarks14

[1, 2, 3, 4, 5, 6, 7, 8, 9]. While valuable, such benchmarks lag behind the pace of model development.15

In addition they overlook fine-grained skills, and are costly to create and maintain. Large Language16

Models (LLM) enable a new paradigm: automated generation of semantically meaningful capabil-17

ities and diverse tasks. However, scalability remains a bottleneck. A single domain may contain18

thousands of capabilities, each requiring extensive tasks, making exhaustive evaluation, especially19

of commercial models, expensive. We address this with a data-efficient approach based on active20

learning. Instead of exhaustive coverage, we prioritize the most informative capabilities by reducing21

uncertainty. A key notion here is the capability function, which maps latent capability representations22

to a model performance score. Modeling this function allows interpolation across related capabilities23

and principled selection of what to evaluate next.24

We introduce Active Learning for Capability Evaluation (ACE), a framework for scalable, automated,25

and fine-grained evaluation. ACE (1) uses LLMs to decompose domains into structured capabilities26

and generate task sets, and (2) actively evaluates models by learning the capability function in27

latent space and adaptively selecting informative capabilities. The codebase is available at https:28

//anonymous.4open.science/r/ace-7EAF. Our contributions are: (i) A general framework29

(ACE) combining LLM-based capability decomposition and task generation with active learning30

for scalable evaluation. (ii) Extensive experiments in Mathematics with 78 capabilities and 8,500+31

tasks, evaluating multiple open- and closed-source models and uncovering differences invisible to32

aggregate metrics. (iii) Empirical evidence that the latent space constructed from pretrained text33

encoders preserves semantic structure, enabling effective approximation of the capability function.34

(iv) Validation of automatically generated tasks and verification outputs via manual inspection,35

showing strong agreement with human labels.36
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Figure 1: (a) The hierarchy of capabilities (b) The ACE pipeline

2 Active Learning for Capability Evaluation37

2.1 Capability Hierarchy and Task Design38

We first outline how to construct a domain-specific hierarchy of capabilities. Following the terminol-39

ogy of [10], we refer to the model being evaluated as the subject model. To perform a fine-grained40

evaluation of the subject model’s capabilities in a domain, we define a hierarchical structure over the41

capabilities. In this hierarchy, a domain consists of multiple areas, and each area is further divided42

into capabilities. For example, in Mathematics, areas include Algebra, Calculus, Geometry, etc.43

Within the area of Algebra, capabilities may include Linear Equations, Factoring Expressions, etc.44

This hierarchy is flexible and can include additional levels. Figure 1a illustrates this structure.45

To evaluate a subject model on a given capability, we use a set of tasks. Each task consists of a46

problem and a corresponding reference solution that serves as the ground truth for scoring. To ensure47

a robust estimate of a model’s performance on a given capability, we evaluate it on a large set of tasks.48

Capability-level scores are computed by aggregating individual task scores, typically using the mean.49

To construct the capability hierarchy and tasks, our framework uses a powerful foundation model50

termed the scientist model (following [10]). The scientist proposes domain areas, decomposes them51

into capabilities, and generates tasks with reference solutions. To ensure correctness, we introduce a52

verification step where another model reviews each reference solution. To ensure the reliability of53

both the generated solutions and the verification step, we conduct a human inspection of the outputs54

from the task generation and verification processes, which we detail in Section B.3. An abstract55

overview of the pipeline is shown in Figure 1b.56

2.2 Latent Modeling of Capabilities57

We assume that capabilities in a domain are specified in a discrete space T . For example, T could58

be the text space, where each capability is described by a short natural language statement, such as59

"linear equations" or "integration by parts." Since function approximation is challenging to perform60

directly in T , we instead map each capability description to a continuous latent space Z ⊂ Rd using61

a pretrained text encoder E : T → Z . The subject model’s performance on a capability z ∈ Z is62

modeled by a surrogate function f : Z → R+, where f(z) denotes the capability score, i.e., how63

well the model performs on capability z. We refer to f as the capability function and assume it to be64

smooth. This assumption aligns well with real-world LLM behavior, where related capabilities often65

exhibit correlated performance [11, 12, 13].66

A key requirement of our approach is that the encoder E preserves semantic relationships between67

capabilities, i.e., similar capabilities in T should be mapped to nearby points in Z . This is crucial for68

generalization and uncertainty modeling of the capability function f . In Section 3.2, we empirically69

demonstrate that modern pretrained text encoders satisfy this requirement.70

The capability space is large, making exhaustive evaluation infeasible. Even estimating scores on a71

subset is costly, since each requires generating hundreds of tasks and evaluating the subject model, re-72

sulting in substantial API calls. Fixed evaluation sets may also miss important capabilities. To address73

this, we employ active learning to adaptively select and score informative capabilities. In each round,74

we choose a candidate capability, obtain its score, and update f . We adopt Bayesian optimization75
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Figure 2: Model scores across different areas in Mathematics. The reported score for each area is the
average score of all capabilities within that area.

with Gaussian process (GP) regression, a principled framework widely used for global optimization76

under limited or expensive data [14, 15, 16, 17, 18]. A GP is denoted by f(x) ∼ GP(m(x), k(x,x′))77

[19], where m(x) = E[f(x)] and kernel k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. GPs sup-78

port active learning via posterior mean and variance estimates. Two classical approaches leverage79

posterior variance: (1) selecting the candidate with largest variance to maximize information gain80

[20], x∗ = argmaxx∈U V[f(x)], and (2) minimizing expected posterior variance over the input81

space [21], x∗ = argminx∈U Ey|x
[∫

V[f(x′)|D ∪ (x, y)]dx′] . Further GP background and details82

on these methods are provided in Appendix A.83

The embedding space of pretrained encoder is usually high-dimensional (e.g., 512-dimensional),84

making it challenging to perform regression. Hence, we apply a dimensionality reduction technique85

like t-SNE [22] or Principal Component Analysis (PCA). The resulting low-dimensional representa-86

tions enable efficient active learning: In each round we compute acquisition scores for all candidate87

capabilities, select the optimal candidate, and assess the subject model’s performance on it. The88

newly obtained (capability, score) pair then updates the GP model. Algorithm 1 in the Appendix89

formalizes this procedure.90

3 Experiments91

We evaluate ACE in the domain of Mathematics. All experiments use OpenAI’s o4-mini1 as the92

scientist model. We first prompt it to generate broad areas, then specific capabilities in a modified93

METR2 format following [10], each with a name, description, and Python class specifying94

exemplar tasks, instructions, and scoring. Prompts are given in Appendix H.1 and H.2. For each95

capability we run the task generation pipeline to produce diverse problems. Each problem is solved96

using the capability’s instructions, and solutions are verified by an additional LLM pass to filter errors.97

The same o4-mini model is used for all task generation and verification (prompts in Appendix H.3).98

For evaluation, we adopt the Inspect framework [9], which executes tasks using capability-specific99

instructions and scoring. We use binary scoring: a solution is correct if it matches the ground truth100

(score=1) , otherwise incorrect (score=0). This procedure yields a benchmark of 78 capabilities101

across 10 areas, with 8,529 verified tasks. Full capability lists and scores are in Appendix D.2.102

3.1 Benchmarking LLMs in Mathematics103

To demonstrate ACE’s utility independent of active learning, we evaluate open- and closed-source104

models on all 78 mathematical capabilities. This establishes ACE’s ability to generate high-quality,105

domain-specific benchmarks supporting both broad and fine-grained assessment. Capability scores106

are averaged over tasks, and area scores over capabilities. Figure 2 reports performance of five107

1https://platform.openai.com/docs/models/o4-mini
2https://metr.org/
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Figure 3: Performance of active learning acquisition techniques. The left column shows the ground
truth values. The center column shows test error (root mean squared error), and the right column
shows test set average posterior standard deviation. Shaded areas indicate 95% confidence interval.

models across areas. Fine-grained capability-level results appear in Appendix D.2, with full results in108

Appendix C. These results highlight the value of structured, capability-based evaluation: even strong109

models exhibit distinct area-level strengths and weaknesses not visible in aggregate metrics.110

3.2 Semantic Relationships of Capabilities in Latent Space111

Reliable approximation of the capability function f(z) depends on whether the latent space Z112

preserves semantic relationships between capabilities. In particular, capabilities within the same area113

should be embedded close to each other in Z . This structure facilitates generalization and smooth114

function approximation. Two components influence the structure of the latent space: the text encoder,115

which maps natural language descriptions of capabilities to high-dimensional embeddings, and the116

dimensionality reduction technique used to project these embeddings into a lower-dimensional space.117

We study the effect of the text encoder in isolation and combined effect of the text encoder and118

dimensionality reduction on preserving the semantic relationship between capabilities. Detailed119

results are available in Appendix D.1. Our findings demonstrate that a strong text encoder paired120

with an appropriate dimensionality reduction method can effectively preserve semantic relationships121

between capabilities, which enables active learning and approximation of the capability function in a122

low-dimensional latent space.123

3.3 Evaluating Active Learning Acquisition Functions124

In Section 2.2, we introduced two variance-based acquisition functions for active learning with125

Gaussian processes: the MacKay’s method [20] (ALM), and the Cohn’s method [21] (ALC). We apply126

these strategies to the capability function approximation problem in Mathematics. The data comes127

from scoring the o3-mini subject model across 78 capabilities as described in Section 3.1. The128

full dataset is {(zi, si)}78i=1, where zi is the 2D t-SNE embedding of the i-th capability and si is129

the corresponding capability score. The dataset is split equally into training and test sets. The GP130

model is initialized with two randomly selected capabilities, and active learning is performed on131

the remaining training set. Figure 3 shows test set metrics. While both ALM and ALC show a similar132

trend in reducing RMSE, ALC is capable of reducing uncertainty more rapidly. We conducted this133

experiment with other subject models and observed similar results, which are available in Appendix F.134

These results demonstrate that active learning in the capability latent space, particularly the ALC135

variant, can be effective for learning the capability function.136

4 Conclusion137

This paper introduces ACE, a framework for scalable and structured evaluation of foundation models.138

ACE leverages the generative power of LLMs to construct semantically meaningful capability139

hierarchies and associated evaluation tasks for a target domain. It further employs active learning in a140

latent semantic space to efficiently estimate a model’s capability function and uncover strengths and141

weaknesses with minimal evaluation cost. A limitation of ACE is its reliance on a single scientist142

model. This raises questions about systematic biases in the evaluation process. To mitigate this143

we can employ a panel of diverse models to jointly generate and verify tasks, thereby reducing144

model-specific biases. As foundation models are increasingly deployed, the need for fine-grained,145

dynamic, and cost-effective evaluation will also grow. By integrating strong generative models with146

active learning, our framework lays the foundation for a robust and reliable evaluation paradigm.147
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Appendix252

A Active Learning with Gaussian Processes253

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint254

Gaussian distribution [19]. It is fully specified by a mean function m(x) = E[f(x)] and a covariance255

(kernel) function k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]:256

f(x) ∼ GP(m(x), k(x,x′))

Consider a regression task with training data D = {(xi, yi)}Ni=1 where yi = f(xi) + ϵi with257

ϵi ∼ N (0, σ2
n). For a test input x∗, the predictive distribution is Gaussian:258

p(f∗|x∗,D) = N (E[f∗],V[f∗]),

with predictive mean and variance:259

E[f∗] = k∗
⊤(K+ σ2

nI)
−1y (1)

V[f∗] = k(x∗,x∗)− k∗
⊤(K+ σ2

nI)
−1k∗, (2)

in which K is the kernel matrix with Kij = k(xi,xj), y = {y1, . . . , yN}, and k∗ =260

[k(x1,x∗), ..., k(xN ,x∗)]
⊤.261

The function-space view interprets the GP as defining a distribution over functions, where the kernel262

function encodes prior assumptions such as smoothness. A common choice is the squared exponential263

kernel:264

k(x,x′) = σ2
f exp

(
−||x− x′||2

2l2

)
.

GPs naturally lend themselves to active learning due to the availability of posterior mean and variance265

estimates. In particular two well-known approaches leverage GP posterior variance for active learning.266

[20] aims at maximizing the expected information gain by selecting the data where the model has267

maximum variance. This is performed by selecting points that maximize the posterior variance:268

x∗ = argmax
x∈U

V[f(x)], (3)

where U is the pool of unlabeled candidates. This is equivalent to maximizing the reduction in entropy269

H of the GP posterior:270

x∗ = argmax
x∈U

H[p(f |D)]− Ey|x[H[p(f |D ∪ (x, y))]].

It is possible to perform optimization of Eq. 2 with respect to x∗ using, e.g., gradient ascent [23].271

The second method is motivated by minimizing the generalization error in terms of mean squared272

error (MSE). Using the bias-variance decomposition of MSE and making some assumptions with273

respect to the magnitude of bias, it can be shown that minimizing MSE can be approximated by274

choosing the candidate point that reduces the expected predictive variance over the entire input space275

[21]:276

x∗ = argmin
x∈U

Ey|x

[∫
V[f(x′)|D ∪ (x, y)]dx′

]
(4)

In practice the integration in Eq. 4 can be approximated by Monte Carlo or by calculating the variance277

over a holdout set.278

For GPs, both approaches can be approximated efficiently as the posterior covariance matrix can be279

updated incrementally using rank-1 updates [24]. The active learning process iteratively fits the GP280

to current labeled data, L, computes the acquisition score (Eq. 3 or 4) for all x ∈ U , selects x∗ that281

maximizes the acquisition score, queries for y∗ at x∗, and updates the labeled and candidate sets,282

L ← L ∪ {(x∗, y∗)}, U ← U \ {x∗}.283
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Algorithm 1: Active Capability Learning
Input:

Initial capability set C = {ci}Ni=1 generated by the scientist model
Pretrained encoder E : C → Rd

Dimensionality reduction method φ (e.g., PCA, t-SNE)
Evaluation module Evaluate() to score a capability
Active learning acquisition function α(·)
Target latent dimension d′ ≪ d

Initialization:
1. Encode all capabilities: Z = {E(ci)|ci ∈ C}
2. Reduce dimensionality: Z′ = φ(Z) ∈ RN×d′

3. Initialize training set D by randomly selecting a small number of capabilities (e.g., 2) from C
and scoring them using Evaluate()

// Active learning
while stopping conditions not met do

1. Fit GP model, f , on current D (non-parametric)
2. Compute acquisition scores: ∀z′i ∈ Z′ \ D, αi ← α(z′i; f)
3. Select the best candidate: j ← argmaxi αi

4. Obtain capability score: sj ← Evaluate(cj)
5. Update training set: D ← D ∪ {(z′j , sj)}

end
return D

B Additional Experiments284

B.1 Scientist Model Selection285

We evaluate leading OpenAI LLMs on 100 random tasks (or samples) from the MATH dataset [5]286

and select the LLM with the best performance. Given that o3-mini, o3, and o4-mini have comparable287

scores (as shown in Table 1), we choose o4-mini since it is the most recent and cost-effective option.288

gpt-4o gpt-4.1 o3-mini o3 o4-mini
MATH (100 tasks) 0.88 0.89 0.96 0.96 0.95

Table 1: Performance of leading OpenAI LLMs on 100 random tasks from the MATH dataset.

B.2 Performance Distribution Across MATH and Generated Benchmarks289

A key requirement for automating capability evaluation is that the tasks generated by the scientist290

model be both valid and discriminative with respect to subject model performance. To assess this,291

we conduct an experiment that compares a subject model performance on generated tasks to its292

performance on tasks from a human-curated benchmark dataset. We use the MATH dataset [5],293

which contains 12,500 high school competition-level problems labeled by area. There are seven294

major capability categories (areas) in MATH: Pre-algebra, Algebra, Number Theory, Counting295

and Probability, Geometry, Intermediate Algebra, and Pre-calculus. These categories serve as the296

capabilities for our comparison.297

For each capability (area), we extract the corresponding subset of problems from MATH and evaluate298

the subject model’s performance on them. Next, we prompt the scientist model to generate new299

tasks targeting the same capability. To ensure diversity and coverage, we instruct the scientist model300

(o4-mini) to generate problems of varying difficulty within each capability. We then evaluate the301

subject models on these problems. For each capability, we take the average of scores across all tasks302

(problems) to form the capability score. Results are shown in Table 2. In addition, Figure 4 shows the303

scatter plot of model performance on the MATH dataset capabilities vs synthetic tasks.304
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Figure 4: Comparing performance of models on the MATH dataset vs synthetic tasks. Stars indicate
average score across all capabilities.

For both subject models, comparing the distribution of capability scores across MATH and synthetic305

tasks reveals greater variation in capability scores on the synthetic benchmark. This suggests that306

our generated tasks span a broader range of problem types and difficulties within each capability.307

Consequently, the synthetic dataset provides a more nuanced and discriminative assessment of model308

strengths and weaknesses. These results support the viability of our framework as an effective tool309

for evaluating foundation models in a given domain, offering a potentially more revealing alternative310

to static, human-curated benchmarks.311

Capability (Area) o1 o3-mini
Synthetic MATH Synthetic MATH

Algebra 0.84 1.00 0.88 0.98
Counting & prob. 0.82 0.98 0.98 1.00
Geometry 0.85 0.93 0.90 0.95
Intermediate Algebra 0.75 0.95 0.85 0.95
Number Theory 0.80 1.00 0.90 1.00
Pre-algebra 0.97 1.00 0.95 0.97
Pre-calculus 0.78 0.80 0.80 0.93
Average score 0.83 0.95 0.89 0.97

Table 2: Comparison of Synthetic vs MATH task scores for capabilities of the MATH dataset using
o4-mini as the scientist model.

B.3 Manual Inspection of Tasks312

To evaluate the quality of the task generation pipeline and the reliability of the automated verification313

step, we conducted a manual inspection of a subset of tasks. Specifically, we randomly selected 12314

capabilities across three mathematical areas.3 For each capability, we sampled 15 tasks, resulting in a315

total of 180 problem–solution pairs. Each task’s problem, solution, and verification model output316

were manually reviewed by solving the problem and comparing the correct solution to the automated317

verification outcome.318

3Areas include: (1) Geometric and Spatial Reasoning, (2) Statistical and probabilistic analysis, and (3)
Symbolic and Analytical Mathematics. Capabilities include: Bayesian inference, Cross-section area, Eigen
problems, Hypothesis testing, Markov chain analysis, Multivariate integration, Multivariate distribution analysis,
ODE solving, Polyhedron net identification, Spatial puzzle cubes, Taylor series, and Transformational geometry.
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The results indicate a high degree of agreement between human and automated verification. Of the319

180 tasks, we observed the following confusion matrix: True Positives = 158, False Negatives = 14,320

False Positives = 1, and True Negatives = 7. This corresponds to a precision of 99.4%, recall of321

91.9%, and overall verification accuracy of 91.7%. These results support the conclusion that the322

automated pipeline for task generation and verification is reliable for evaluating model capabilities at323

scale. Despite strong performance in task generation, our inspection surfaced a few recurring issues324

that are important to address in future iterations of the framework:325

1. Rounding Errors. Infrequent but notable rounding inaccuracies occurred when intermediate326

numerical results were used in subsequent calculations. These rounding issues sometimes327

led to small deviations in final answers and highlight the need for improved numerical328

precision handling.329

2. Lack of Task Diversity. Many tasks within a capability were structurally or conceptually330

similar. Increasing task diversity—across difficulty levels and subtopics—would yield a331

more comprehensive assessment of model performance.332

3. Inter-Task Dependencies. Since multiple tasks were generated from a single prompt (to333

minimize repetition), some questions inadvertently referenced earlier tasks. Future prompts334

should explicitly enforce task independence to avoid this issue.335

4. Parsing Limitations. Some task-solving instructions required the model to output the final336

answer after an "ANSWER" keyword. The current parsing logic does not support multi-line337

answers, which can result in incomplete ground truth extraction and premature task rejection338

during verification. Improving parsing robustness would reduce unnecessary filtering of339

valid tasks.340

Addressing these issues will further enhance the robustness and reliability of automated task genera-341

tion and verification.342

B.4 Evaluating Active Learning Acquisition Functions343

In Section 2.2, we introduced two variance-based acquisition functions for active learning with344

Gaussian processes. MacKay’s method [20], denoted by ALM, selects the candidate with the highest345

posterior variance. Cohn’s method [21], denoted by ALC, selects the candidate expected to yield the346

largest overall reduction in posterior variance across the input space. In our implementation, this is347

approximated by averaging posterior variance over the entire set of unused candidate points.348

We first evaluate these acquisition strategies on a synthetic toy problem: approximating the target349

function f(x) = sin(20πx) exp(−5x) over the interval x ∈ [0, 1]. The candidate set consists of 32350

points sampled uniformly from the domain with a noisy label y = f(x) + ϵ, where ϵ ∼ N (0, 0.1).351

The GP model is initially fit on two randomly selected candidates; the remaining points are used for352

active learning. We repeat the experiment 200 times to compute confidence intervals for both root353

mean squared error (RMSE) and average posterior standard deviation. These metrics are evaluated on354

a test set of 1000 equidistant points. Results, shown on the top row of Figure 5, demonstrate that ALC355

outperforms ALM, achieving more rapid reductions in both prediction error and model uncertainty.356

Next, we apply the same strategies to the capability function approximation problem in Mathematics.357

The data comes from scoring the o3-mini model across 78 capabilities as described in Section 3.1.358

The full dataset is {(zi, si)}78i=1, where zi is the 2D t-SNE embedding of the i-th capability and si is359

the corresponding capability score of o3-mini. The dataset is split equally into training and test sets.360

As before, the GP model is initialized with two randomly selected capabilities, and active learning is361

performed on the remaining training set. Figure 5 (bottom row) shows test set metrics. While both362

ALM and ALC show a similar trend in reducing RMSE, ALC is capable of reducing uncertainty more363

rapidly. We conducted this experiment with other subject models and observed similar results, which364

are available in Appendix F.365

While this experiment used a relatively small set of capabilities, the results demonstrate that active366

learning in the capability latent space, particularly using total variance reduction as the acquisition367

function (ALC), can be effective when the latent space preserves semantic structure. Active learning is368

especially valuable when the number of capabilities is large and exhaustive evaluation is infeasible due369

to budget or computational constraints. Although our focus here was on variance-based acquisition370

functions for approximating the capability function, other acquisition strategies can be chosen to371
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Figure 5: Performance of active learning acquisition techniques. Top: the toy problem, bottom:
the Mathematics capability dataset with o3-mini as the subject model. The left column shows the
ground truth function and values. The center column plots show test error (root mean squared error),
and the right column plots show test set average posterior standard deviation. Shaded areas indicate
95% confidence interval.
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Figure 6: Average scores of 9 LLMs on 10 areas.

meet other objectives. For example, if the goal is to identify the capabilities on which a subject model372

excels, the Upper Confidence Bound (UCB) acquisition function [25] may be a more appropriate373

choice.374

C Additional Benchmark Results375

Figure 6 shows the average LLM scores across 10 areas for 9 LLMs.376
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Figure 7: The heatmap illustrating the cosine similarity matrix of capability embeddings. The
diagonal red squares show the intra-group similarity between capabilities within the same area.

D Capability Details377

In this section, we provide details on the generated capabilities, their embeddings used in our method,378

and LLM scores evaluated on each capability.379

D.1 Studying the Semantic Relationship of Capabilities in Latent Space380

We first study the effect of the text encoder in isolation. Using the OpenAI381

text-embedding-3-small model4 (512-dimensional output), we embed a subset of 20 capabilities382

sampled from 5 mathematical areas. Each embedding is generated by concatenating the name, area,383

and description fields of the capability as input to the encoder. We compute the pairwise cosine384

similarity matrix between capabilities. As the heatmap in Figure 7 shows, capability embeddings385

within the same area have higher cosine similarity compared to the capabilities in other areas. The386

results demonstrate that the encoder meaningfully captures semantic similarity between capabilities.387

Next, we assess the combined effect of the text encoder and dimensionality reduction. We embed all388

78 capabilities using the same encoder and project the resulting representations into a 2D latent space389

using either t-SNE or PCA. Figure 8 shows the resulting distributions. Both techniques preserve390

coarse structure, but t-SNE produces more distinct clusters for capabilities within each area.391

D.2 Capability Scores392

In this section, Table 3 details the full list of capabilities with their respective areas.393

4https://platform.openai.com/docs/guides/embeddings/
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Figure 8: Two-dimensional representation of Mathematics capabilities using t-SNE (left) and PCA
(right). Each point corresponds to a capability, and colors indicate high-level areas. Stars indicate the
mean of capability representations for each area.

Area Capability Name claude-3-7
-sonnet o3-mini gemini-2.0

-flash o1-mini Meta-Llama-3.1
-70B-Instruct

Algebra

abstract algebra 0.91 0.97 0.92 0.09 0.87
algebraic anequalities 0.81 0.76 0.85 0.64 0.50
complex algebra 0.75 0.57 0.66 0.23 0.61
exponential and
logarithmic equations 0.45 0.50 0.37 0.19 0.28

functional equations 0.59 0.55 0.46 0.38 0.20
nested radical
simplification 0.56 0.86 0.61 0.68 0.32

nonlinear systems 0.85 0.88 0.95 0.57 0.60
parameter conditions 0.64 0.61 0.57 0.40 0.37
symmetric polynomials 0.90 0.96 0.83 0.01 0.48
polynomial factorization 0.95 0.94 0.97 0.44 0.87

Calculus
and
Real
Analysis

advanced improper
integrals 0.52 0.54 0.47 0.41 0.36

calculus of variations 0.89 0.87 0.70 0.89 0.44
epsilon delta limits 0.41 0.58 0.36 0.58 0.18
fourier series analysis 0.44 0.75 0.78 0.62 0.41
integral calculus 0.87 0.81 0.85 0.58 0.70
lebesgue integration 0.39 0.46 0.13 0.69 0.05
limits and continuity 0.67 0.64 0.47 0.23 0.49
multivariable calculus 0.93 0.77 0.83 0.44 0.71
real analysis proofs 0.81 0.78 0.80 0.65 0.44
series and sequences 0.76 0.66 0.66 0.27 0.55
single variable
differentiation 0.90 0.88 0.86 0.57 0.81

Geometry
and
Trigonometry

analytic geometry circles 0.84 0.80 0.80 0.59 0.66
circle inversion geometry 0.52 0.75 0.46 0.76 0.03
complex plane geometry 0.44 0.77 0.47 0.71 0.13
conic sections properties 0.85 0.88 0.83 0.88 0.50
geometric transformations 0.87 0.87 0.88 0.16 0.66
projective geometry 0.59 0.58 0.33 0.81 0.02
three d geometry volumes 0.98 1.00 0.97 0.34 0.59
trigonometric equations
nonlinear 0.80 0.87 0.32 0.87 0.37

trigonometric identities
simplification 0.94 0.96 0.95 0.58 0.83

vector geometry 0.73 0.73 0.60 0.56 0.42

Arithmetic
and
Number
Theory

arithmetic functions 0.94 0.87 0.78 0.97 0.68
chinese remainder 0.65 0.86 0.39 0.95 0.03
continued fractions 0.28 0.56 0.56 0.59 0.24
egyptian fractions 0.53 0.73 0.61 0.70 0.05
gcd lcm valuations 0.78 0.80 0.91 0.93 0.73

Continued on next page
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Area Capability Name claude-3-7
-sonnet o3-mini gemini-2.0

-flash o1-mini Meta-Llama-3.1
-70B-Instruct

modular exponentiation 0.30 0.65 0.56 0.72 0.03
prime_factorization 0.86 0.98 0.86 0.94 0.56
quadratic residues 0.67 0.58 0.61 0.66 0.53
special numbers 0.96 1.00 0.95 1.00 0.73
zeckendorf representation 0.75 0.31 0.56 0.06 0.70

Probability
and
Statistics

bayesian inference 0.30 0.32 0.28 0.13 0.20
distribution moments 0.98 0.97 0.91 0.93 0.87
markov chain probabilities 0.52 0.54 0.55 0.43 0.30
probability paradoxes 0.71 0.78 0.74 0.41 0.50
statistical hypothesis testing 0.16 0.19 0.10 0.19 0.12
survival analysis 0.33 0.35 0.37 0.35 0.30

Differential
Equations
and
Dynamical
Systems

boundary value
eigenvalue problems 0.81 0.69 0.83 0.40 0.29

nonlinear systems
lyapunov 0.59 0.45 0.55 0.20 0.09

second order
homogeneous
linear ode

0.98 0.99 0.98 0.93 0.95

Discrete
Mathematics
and
Combinatorics

combinatorial designs 0.86 0.56 0.88 0.37 0.72
eulerian trail 0.98 1.00 0.94 0.05 0.75
generating functions 0.86 0.95 0.88 0.02 0.58
graph coloring 0.88 1.00 1.00 0.02 0.62
inclusion exclusion 0.88 0.92 0.83 0.03 0.53
recurrence relations 0.93 0.97 0.89 0.18 0.79
stirling numbers second kind 0.02 0.17 0.04 0.11 0.01

Linear
Algebra

eigenvalues and
eigenvectors 0.89 0.68 0.64 0.33 0.43

jordan normal form 0.90 0.84 0.87 0.55 0.33
matrix inversion
and determinant 0.88 0.84 0.96 0.19 0.82

orthogonality and
projections 0.82 0.79 0.82 0.39 0.58

quadratic forms 0.43 0.33 0.26 0.13 0.04
rank and nullspace 0.99 0.80 0.69 0.76 0.03
singular value decomposition 0.66 0.73 0.68 0.10 0.20
vector spaces and subspaces 0.81 0.80 0.66 0.42 0.50

Math Logic and
Proof Techniques

epsilon delta proofs 0.85 0.86 0.86 0.67 0.48
model construction 1.0 1.0 1.0 1.0 1.0
natural deduction proofs 1.0 1.0 1.0 1.0 1.0
predicate logic formalization 1.0 1.0 1.0 1.0 1.0
proof by contradiction 1.0 1.0 1.0 1.0 1.0
proof by induction 1.0 1.0 1.0 1.0 1.0
propositional logic translation 0.85 0.91 0.83 0.92 0.83

Numerical
Analysis
and
Computational
Mathematics

conditioning and stability 0.64 0.45 0.60 0.39 0.41
eigenvalue methods 0.86 0.95 0.83 0.31 0.83
fast fourier transform 0.71 0.79 0.88 0.25 0.6
monte carlo error analysis 0.60 0.5 0.44 0.30 0.37
numerical integration 0.46 0.3 0.16 0.09 0.18
numerical optimization 0.77 0.83 0.85 0.48 0.29

E Compute Resources394

We used paid APIs to access the scientist LLM as well as subject LLMs from OpenAI, Google,395

and Anthropic. Open source models that are used as subject LLMs are hosted on internal cluster.396

Specifically, we used 1 A40 GPU for Meta-Llama-3.1-8B-Instruct, 2 A100s GPUs for Meta-Llama-397

3.1-70B-Instruct, and 4 A100s for Cohere Command R+, with 10 GPU hours per GPU for all these398

open source models.399
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F Complete Results for Evaluating Active Learning Acquisition Functions400

Section B.4 compared the performance of ALC and ALM acquisition functions using o3-mini as401

the subject model. Figure 9 presents additional results for other subject models.402

G Related Work403

There is a clear trend toward automating and scaling up LLM evaluation. Traditional benchmarks404

like BIG-bench [7], HELM [26], TruthfulQA [27], and MMLU [28] established the importance of405

diverse, rigorous evaluation, but are inherently static, limited to predefined tasks, and suffer from data406

contamination [29]. Automated evaluation approaches range from model-assisted test generation407

[30, 31] to automatic evaluation with graph and tree construction [32, 33, 34, 30] to fully autonomous408

task discovery and generation [10, 35], uncovering failures and interesting capabilities that a fixed409

benchmark might miss.410

Most automatic evaluation approaches rely on heuristics or predefined objectives like "difficulty",411

"safety issues", or "knowledge gaps" [35, 33, 36] or objectives defined by evaluation functions [37],412

maximizing these objectives by probing the areas of prior mistakes. Some methods focus specifically413

on automatic assessment of ethical capabilities [38, 39] or automated red-teaming methods [40].414

Unlike our approach, most of these approaches rely on existing datasets or benchmarks, selecting or415

altering existing prompts based on their specific evaluation goals.416

Active learning for sample generation as explored in [41] focuses on targeted data generation with417

LLMs and employs active learning with clustering to guide the generation towards rare but critical418

cases. The sampling strategy is based on the uncertainty of the active learner. Active learning has419

also been adopted in several works focusing on sample-efficient labeling, reducing annotation costs420

in classification tasks [42, 43]. [36] focuses on evaluation efficiency by introducing an RL-based421

policy for selecting a representative subset of evaluation prompts from existing benchmarks. This422

approach models dependencies among examples, allowing it to estimate performance on the full set423

from a chosen subset.424

H Prompts425

H.1 Capability Area Generation Prompts426

Capability Area Generation User Prompt
427

You are an expert in designing capabilities to assess the abilities of large language models (LLMs).
Identify num_areas broad and diverse areas for capability generation for the domain domain.
Each area should cover num_capabilities_per_area capabilities, which will be generated in
the next step. The areas should be relevant to the domain domain, should be high level and should
not overlap with each other.

Respond precisely in the following format:

RESPONSE JSON:

{
"area_0": <STR>,
"area_1": <STR>,
...

}
428
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Figure 9: Performance of active learning acquisition techniques. Each row shows test error (RMSE)
and posterior uncertainty (standard deviation) for a model. Shaded areas indicate 95% confidence
interval.
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H.2 Capability Generation Prompts429

Capability Generation System Prompt
430

You are an expert in designing capabilities to assess the abilities of large language models (LLMs).
Your goal is to create novel, diverse capabilities that can reveal the breadth and depth of LLMs’
skills within the specified domain. You will be particularly rewarded for uncovering capabilities
that could reveal surprising abilities or failures of LLMs. Valid capabilities will be added to a
capability archive. In each generation, previously accepted capabilities for the specified domain
will be provided as context.

Each capability should be designed according to the METR Standard, which requires the following
Python format:
class Capability:

@staticmethod
def repr_tasks() -> dict[str, dict]:

# Returns a mapping from task ids to arbitrary data that is
# specific to each capability.
# Each capability should contain 3 distinct tasks
# in the dictionary, labelled "1", "2" and "3".
# Each task should be a dictionary with the following keys:
# - "problem": The problem or question text.
# - "answer": The expected answer to the problem.
# ... implementation ...

@staticmethod
def get_instructions(t: dict) -> str:

# This method should return a string containing
# initial capability instructions.
# ... implementation ...

@staticmethod
def score(t: dict, submission: str) -> float | None:

# ‘score‘ is called after the subject model submits a solution.
# Return 0 on failure and 1 on success.
# Throwing an exception will result in a score of 0.
# ... implementation ...

The following points should be considered while designing the Capability class:
1. The instructions should enforce the final answer in the form "ANSWER: $ANSWER"

ONLY for those capabilities that expect a short and objective answer. It should not be
part of instructions for capabilities with long-form, detailed and subjective answers for
e.g. explanations, proofs, essays, etc.

2. If the instructions enforces the final answer in the form "ANSWER: $ANSWER", then
the score function should first call a helper function to parse the submission string and
extract the answer:

def parse_submission(submission: str) -> str:
# Parse the submission string to extract the answer
# based on the "ANSWER" keyword.
# Return an empty string if no match is found.

3. The score function should use a helper function that uses LLM as a judge to score the
submission:

def evaluate_with_llm_judge(
submission: str,
target: str,

) -> bool:
# Evaluate the submission using an LLM judge.

431
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4. DO NOT re-implement the parse_submission() or evaluate_with_llm_judge()
helper functions.

Respond precisely in the following format, including the JSON start and end markers:

THOUGHT: <THOUGHT>

RESPONSE JSON:
{

"capability_0": <JSON>,
"capability_1": <JSON>,
...

}
In <THOUGHT>, briefly think and reason about what kind of capability you want to propose. In
<JSON>, provide a JSON response of the new capability with the following fields:

- "name": A concise, descriptive label (lowercase, no spaces, e.g.,
math_competition_algebra).

- "description": A clear explanation of what the capability entails (e.g., The capability
consists of challenging competition mathematics problems in algebra).

- "domain": The domain to which the capability belongs to (e.g., math, physics, etc.).
- "class": The fully implemented Python code for the Capability class. This should be

easily human-readable.
Do not download additional data from the internet or access the file system.

Be creative and design capabilities that can distinguish between models with varying levels of
expertise, but ensure that the capability remains relevant to the domain. Also ensure that the
proposed capabilities ARE DISTINCT compared to the existing capabilities. Names of all existing
capabilities will be provided.

Your response will be automatically parsed so ensure it adheres to the specified format.
432

Capability Generation User Prompt
433

A sample capability JSON is provided below. The names of all existing capabilities are also
provided.

Sample capability:
sample_capability_json

Existing capability names:
prev_capabilities

Generate num_gen_capabilities new, interesting capabilities for the "capability_area"
area within the domain domain.

434
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H.3 Task Generation Prompts435

Task Generation System Prompt
436

You are an expert in designing tasks for a given capability. The name, description, domain and
a few sample tasks for the capability will be provided. You will be particularly rewarded for
designing diverse tasks spanning a wide range of difficulty levels for the given capability.

Respond precisely in the following format, including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON:
{

"task_1": <STR>,
"task_2": <STR>,
...

}
In <THOUGHT>, briefly think and reason about what kind of tasks you want to propose.
In <STR>, provide a string containing the task text.

Be careful to make sure that all proposed tasks are unique. Also ensure that all tasks are within the
scope of the given capability. If the text includes mathematical symbols or equations, ensure they
are appropriately formatted using LaTeX. Ensure the single backlash "\" included in a LateX
string is escaped as "\\". For example, the LaTeX string "\[2x+ 3 = 11\]" should be formatted
as "\\[2x+ 3 = 11\\]" in the task text.

Your response will be automatically parsed so ensure it adheres to the specified format.
437

Task Generation User Prompt
438

Design tasks for the following capability:

Name: capability_name
Description: capability_description
Domain: capability_domain
Sample tasks:
capability_sample_tasks

Generate num_gen_tasks new tasks for the given capability.
439

Task Solver System Prompt
440

You are an expert in completing tasks for the capability_name capability in the
capability_domain domain. Complete the given task by carefully following the provided
instructions.

441
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Task Verifier System Prompt
442

You are an expert in evaluating answers to problems for the capability_domain domain. Your
goal is to determine whether the provided answer correctly and completely solves the given
problem. You must carefully analyze the problem and the answer, and provide a judgement along
with your reasoning.

Respond precisely in the following format:

THOUGHT: <THOUGHT>
JUDGEMENT:
<JUDGEMENT>

In <THOUGHT>, briefly explain your reasoning process for evaluating the answer.
In <JUDGEMENT>, respond with "yes" if the answer correctly and completely solves the
problem, otherwise respond with "no".

Be objective and thorough in your evaluation. Ensure that your reasoning is clear and directly
supports your judgement.

443

Task Verifier User Prompt
444

Evaluate the following problem and answer for the capability_name capability in the
capability_domain domain:

Problem: problem
Answer: answer

Determine if the answer correctly and completely solves the problem. Provide your reasoning and
judgement.

445
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NeurIPS Paper Checklist446

1. Claims447

Question: Do the main claims made in the abstract and introduction accurately reflect the448

paper’s contributions and scope?449

Answer: [Yes]450

Justification: The claims made in the abstract and introduction accurately reflect the paper’s451

contributions and scope. Supporting evidence is provided in detail in Sections 2 and 3.452

Guidelines:453

• The answer NA means that the abstract and introduction do not include the claims454

made in the paper.455

• The abstract and/or introduction should clearly state the claims made, including the456

contributions made in the paper and important assumptions and limitations. A No or457

NA answer to this question will not be perceived well by the reviewers.458

• The claims made should match theoretical and experimental results, and reflect how459

much the results can be expected to generalize to other settings.460

• It is fine to include aspirational goals as motivation as long as it is clear that these goals461

are not attained by the paper.462

2. Limitations463

Question: Does the paper discuss the limitations of the work performed by the authors?464

Answer: [Yes]465

Justification: We discuss the limitations of the work in Section 4.466

Guidelines:467

• The answer NA means that the paper has no limitation while the answer No means that468

the paper has limitations, but those are not discussed in the paper.469

• The authors are encouraged to create a separate "Limitations" section in their paper.470

• The paper should point out any strong assumptions and how robust the results are to471

violations of these assumptions (e.g., independence assumptions, noiseless settings,472

model well-specification, asymptotic approximations only holding locally). The authors473

should reflect on how these assumptions might be violated in practice and what the474

implications would be.475

• The authors should reflect on the scope of the claims made, e.g., if the approach was476

only tested on a few datasets or with a few runs. In general, empirical results often477

depend on implicit assumptions, which should be articulated.478

• The authors should reflect on the factors that influence the performance of the approach.479

For example, a facial recognition algorithm may perform poorly when image resolution480

is low or images are taken in low lighting. Or a speech-to-text system might not be481

used reliably to provide closed captions for online lectures because it fails to handle482

technical jargon.483

• The authors should discuss the computational efficiency of the proposed algorithms484

and how they scale with dataset size.485

• If applicable, the authors should discuss possible limitations of their approach to486

address problems of privacy and fairness.487

• While the authors might fear that complete honesty about limitations might be used by488

reviewers as grounds for rejection, a worse outcome might be that reviewers discover489

limitations that aren’t acknowledged in the paper. The authors should use their best490

judgment and recognize that individual actions in favor of transparency play an impor-491

tant role in developing norms that preserve the integrity of the community. Reviewers492

will be specifically instructed to not penalize honesty concerning limitations.493

3. Theory assumptions and proofs494

Question: For each theoretical result, does the paper provide the full set of assumptions and495

a complete (and correct) proof?496

Answer: [NA]497
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Justification: The paper does not consist of any theoretical proofs.498

Guidelines:499

• The answer NA means that the paper does not include theoretical results.500

• All the theorems, formulas, and proofs in the paper should be numbered and cross-501

referenced.502

• All assumptions should be clearly stated or referenced in the statement of any theorems.503

• The proofs can either appear in the main paper or the supplemental material, but if504

they appear in the supplemental material, the authors are encouraged to provide a short505

proof sketch to provide intuition.506

• Inversely, any informal proof provided in the core of the paper should be complemented507

by formal proofs provided in appendix or supplemental material.508

• Theorems and Lemmas that the proof relies upon should be properly referenced.509

4. Experimental result reproducibility510

Question: Does the paper fully disclose all the information needed to reproduce the main ex-511

perimental results of the paper to the extent that it affects the main claims and/or conclusions512

of the paper (regardless of whether the code and data are provided or not)?513

Answer: [Yes]514

Justification: Section 3 covers all the details for reproducing the results. Specifically, Section515

?? describes the process for generating capabilities, corresponding tasks and task evaluation,516

with the associated prompts in Appendix H. All the steps are implemented and easily517

executable in our released code.518

Guidelines:519

• The answer NA means that the paper does not include experiments.520

• If the paper includes experiments, a No answer to this question will not be perceived521

well by the reviewers: Making the paper reproducible is important, regardless of522

whether the code and data are provided or not.523

• If the contribution is a dataset and/or model, the authors should describe the steps taken524

to make their results reproducible or verifiable.525

• Depending on the contribution, reproducibility can be accomplished in various ways.526

For example, if the contribution is a novel architecture, describing the architecture fully527

might suffice, or if the contribution is a specific model and empirical evaluation, it may528

be necessary to either make it possible for others to replicate the model with the same529

dataset, or provide access to the model. In general. releasing code and data is often530

one good way to accomplish this, but reproducibility can also be provided via detailed531

instructions for how to replicate the results, access to a hosted model (e.g., in the case532

of a large language model), releasing of a model checkpoint, or other means that are533

appropriate to the research performed.534

• While NeurIPS does not require releasing code, the conference does require all submis-535

sions to provide some reasonable avenue for reproducibility, which may depend on the536

nature of the contribution. For example537

(a) If the contribution is primarily a new algorithm, the paper should make it clear how538

to reproduce that algorithm.539

(b) If the contribution is primarily a new model architecture, the paper should describe540

the architecture clearly and fully.541

(c) If the contribution is a new model (e.g., a large language model), then there should542

either be a way to access this model for reproducing the results or a way to reproduce543

the model (e.g., with an open-source dataset or instructions for how to construct544

the dataset).545

(d) We recognize that reproducibility may be tricky in some cases, in which case546

authors are welcome to describe the particular way they provide for reproducibility.547

In the case of closed-source models, it may be that access to the model is limited in548

some way (e.g., to registered users), but it should be possible for other researchers549

to have some path to reproducing or verifying the results.550

5. Open access to data and code551
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Question: Does the paper provide open access to the data and code, with sufficient instruc-552

tions to faithfully reproduce the main experimental results, as described in supplemental553

material?554

Answer: [Yes]555

Justification: We are releasing our code, with clear instructions on running the scripts,556

included with this submission. Provided code includes the whole framework implementation557

with scripts to reproduce capabilities and tasks. We are using one publicly available dataset,558

under an MIT license, as a part of our evaluation, which is detailed and cited in Appendix559

B.2.560

Guidelines:561

• The answer NA means that paper does not include experiments requiring code.562

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/563

public/guides/CodeSubmissionPolicy) for more details.564

• While we encourage the release of code and data, we understand that this might not be565

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not566

including code, unless this is central to the contribution (e.g., for a new open-source567

benchmark).568

• The instructions should contain the exact command and environment needed to run to569

reproduce the results. See the NeurIPS code and data submission guidelines (https:570

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.571

• The authors should provide instructions on data access and preparation, including how572

to access the raw data, preprocessed data, intermediate data, and generated data, etc.573

• The authors should provide scripts to reproduce all experimental results for the new574

proposed method and baselines. If only a subset of experiments are reproducible, they575

should state which ones are omitted from the script and why.576

• At submission time, to preserve anonymity, the authors should release anonymized577

versions (if applicable).578

• Providing as much information as possible in supplemental material (appended to the579

paper) is recommended, but including URLs to data and code is permitted.580

6. Experimental setting/details581

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-582

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the583

results?584

Answer: [Yes]585

Justification: Experimental setup is explained in Section 3 which includes discussions around586

design choices and hyper-parameters. All the hyper-parameters necessary for reproduction587

of results are also included with our code.588

Guidelines:589

• The answer NA means that the paper does not include experiments.590

• The experimental setting should be presented in the core of the paper to a level of detail591

that is necessary to appreciate the results and make sense of them.592

• The full details can be provided either with the code, in appendix, or as supplemental593

material.594

7. Experiment statistical significance595

Question: Does the paper report error bars suitably and correctly defined or other appropriate596

information about the statistical significance of the experiments?597

Answer: [Yes]598

Justification: Our main results include error bars to show the significance of the approach.599

See Figure 3. More details on the confidence intervals are discussed in Section B.4.600

Guidelines:601

• The answer NA means that the paper does not include experiments.602
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-603

dence intervals, or statistical significance tests, at least for the experiments that support604

the main claims of the paper.605

• The factors of variability that the error bars are capturing should be clearly stated (for606

example, train/test split, initialization, random drawing of some parameter, or overall607

run with given experimental conditions).608

• The method for calculating the error bars should be explained (closed form formula,609

call to a library function, bootstrap, etc.)610

• The assumptions made should be given (e.g., Normally distributed errors).611

• It should be clear whether the error bar is the standard deviation or the standard error612

of the mean.613

• It is OK to report 1-sigma error bars, but one should state it. The authors should614

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis615

of Normality of errors is not verified.616

• For asymmetric distributions, the authors should be careful not to show in tables or617

figures symmetric error bars that would yield results that are out of range (e.g. negative618

error rates).619

• If error bars are reported in tables or plots, The authors should explain in the text how620

they were calculated and reference the corresponding figures or tables in the text.621

8. Experiments compute resources622

Question: For each experiment, does the paper provide sufficient information on the com-623

puter resources (type of compute workers, memory, time of execution) needed to reproduce624

the experiments?625

Answer: [Yes]626

Justification: Details on the compute resources are included in Appendix E.627

Guidelines:628

• The answer NA means that the paper does not include experiments.629

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,630

or cloud provider, including relevant memory and storage.631

• The paper should provide the amount of compute required for each of the individual632

experimental runs as well as estimate the total compute.633

• The paper should disclose whether the full research project required more compute634

than the experiments reported in the paper (e.g., preliminary or failed experiments that635

didn’t make it into the paper).636

9. Code of ethics637

Question: Does the research conducted in the paper conform, in every respect, with the638

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?639

Answer: [Yes]640

Justification: This work adheres to all items under NeurIPS code of ethics while applicable.641

Guidelines:642

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.643

• If the authors answer No, they should explain the special circumstances that require a644

deviation from the Code of Ethics.645

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-646

eration due to laws or regulations in their jurisdiction).647

10. Broader impacts648

Question: Does the paper discuss both potential positive societal impacts and negative649

societal impacts of the work performed?650

Answer: [Yes]651

Justification: We have discussed potential positive impacts of our work, in particular in652

evaluating capabilities of foundation models in safety-critical domains.653
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Guidelines:654

• The answer NA means that there is no societal impact of the work performed.655

• If the authors answer NA or No, they should explain why their work has no societal656

impact or why the paper does not address societal impact.657

• Examples of negative societal impacts include potential malicious or unintended uses658

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations659

(e.g., deployment of technologies that could make decisions that unfairly impact specific660

groups), privacy considerations, and security considerations.661

• The conference expects that many papers will be foundational research and not tied662

to particular applications, let alone deployments. However, if there is a direct path to663

any negative applications, the authors should point it out. For example, it is legitimate664

to point out that an improvement in the quality of generative models could be used to665

generate deepfakes for disinformation. On the other hand, it is not needed to point out666

that a generic algorithm for optimizing neural networks could enable people to train667

models that generate Deepfakes faster.668

• The authors should consider possible harms that could arise when the technology is669

being used as intended and functioning correctly, harms that could arise when the670

technology is being used as intended but gives incorrect results, and harms following671

from (intentional or unintentional) misuse of the technology.672

• If there are negative societal impacts, the authors could also discuss possible mitigation673

strategies (e.g., gated release of models, providing defenses in addition to attacks,674

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from675

feedback over time, improving the efficiency and accessibility of ML).676

11. Safeguards677

Question: Does the paper describe safeguards that have been put in place for responsible678

release of data or models that have a high risk for misuse (e.g., pretrained language models,679

image generators, or scraped datasets)?680

Answer: [NA]681

Justification: We do not release new models or datasets that can pose such risks.682

Guidelines:683

• The answer NA means that the paper poses no such risks.684

• Released models that have a high risk for misuse or dual-use should be released with685

necessary safeguards to allow for controlled use of the model, for example by requiring686

that users adhere to usage guidelines or restrictions to access the model or implementing687

safety filters.688

• Datasets that have been scraped from the Internet could pose safety risks. The authors689

should describe how they avoided releasing unsafe images.690

• We recognize that providing effective safeguards is challenging, and many papers do691

not require this, but we encourage authors to take this into account and make a best692

faith effort.693

12. Licenses for existing assets694

Question: Are the creators or original owners of assets (e.g., code, data, models), used in695

the paper, properly credited and are the license and terms of use explicitly mentioned and696

properly respected?697

Answer: [Yes]698

Justification: We have clearly indicated which language models are used in the framework699

and the experiments. We have also respected their terms of use. We are using one publicly700

available dataset, under an MIT license, as a part of our evaluation, which is detailed and701

cited in Appendix B.2.702

Guidelines:703

• The answer NA means that the paper does not use existing assets.704

• The authors should cite the original paper that produced the code package or dataset.705
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• The authors should state which version of the asset is used and, if possible, include a706

URL.707

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.708

• For scraped data from a particular source (e.g., website), the copyright and terms of709

service of that source should be provided.710

• If assets are released, the license, copyright information, and terms of use in the711

package should be provided. For popular datasets, paperswithcode.com/datasets712

has curated licenses for some datasets. Their licensing guide can help determine the713

license of a dataset.714

• For existing datasets that are re-packaged, both the original license and the license of715

the derived asset (if it has changed) should be provided.716

• If this information is not available online, the authors are encouraged to reach out to717

the asset’s creators.718

13. New assets719

Question: Are new assets introduced in the paper well documented and is the documentation720

provided alongside the assets?721

Answer: [Yes]722

Justification: We have released our codebase and the link to the anonymous repository is723

provided in the paper.724

Guidelines:725

• The answer NA means that the paper does not release new assets.726

• Researchers should communicate the details of the dataset/code/model as part of their727

submissions via structured templates. This includes details about training, license,728

limitations, etc.729

• The paper should discuss whether and how consent was obtained from people whose730

asset is used.731

• At submission time, remember to anonymize your assets (if applicable). You can either732

create an anonymized URL or include an anonymized zip file.733

14. Crowdsourcing and research with human subjects734

Question: For crowdsourcing experiments and research with human subjects, does the paper735

include the full text of instructions given to participants and screenshots, if applicable, as736

well as details about compensation (if any)?737

Answer: [NA]738

Justification: Our work did not involve crowdsourcing or research with human subjects.739

Guidelines:740

• The answer NA means that the paper does not involve crowdsourcing nor research with741

human subjects.742

• Including this information in the supplemental material is fine, but if the main contribu-743

tion of the paper involves human subjects, then as much detail as possible should be744

included in the main paper.745

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,746

or other labor should be paid at least the minimum wage in the country of the data747

collector.748

15. Institutional review board (IRB) approvals or equivalent for research with human749

subjects750

Question: Does the paper describe potential risks incurred by study participants, whether751

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)752

approvals (or an equivalent approval/review based on the requirements of your country or753

institution) were obtained?754

Answer: [NA]755

Justification: Our work did not involve research with human subjects.756

Guidelines:757
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• The answer NA means that the paper does not involve crowdsourcing nor research with758

human subjects.759

• Depending on the country in which research is conducted, IRB approval (or equivalent)760

may be required for any human subjects research. If you obtained IRB approval, you761

should clearly state this in the paper.762

• We recognize that the procedures for this may vary significantly between institutions763

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the764

guidelines for their institution.765

• For initial submissions, do not include any information that would break anonymity (if766

applicable), such as the institution conducting the review.767

16. Declaration of LLM usage768

Question: Does the paper describe the usage of LLMs if it is an important, original, or769

non-standard component of the core methods in this research? Note that if the LLM is used770

only for writing, editing, or formatting purposes and does not impact the core methodology,771

scientific rigorousness, or originality of the research, declaration is not required.772

Answer: [Yes]773

Justification: Using LLMs is a core part of our framework and we have extensively discussed774

it throughout the paper.775

Guidelines:776

• The answer NA means that the core method development in this research does not777

involve LLMs as any important, original, or non-standard components.778

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)779

for what should or should not be described.780
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