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ABSTRACT

Stochastic Gradient Descent (SGD) is widely used in machine learning research.
In previous research, the convergence analyses of SGD under vanishing step-size
settings typically assumed that the step sizes satisfied the Robbins-Monro condi-
tions, which is to say, the sum of the step sizes was infinite, while the sum of
the squares of the step sizes was finite. In practical applications, a wider variety
of step sizes is often used, but these may not meet the Robbins-Monro step-size
conditions, thus lacking theoretical guarantees of convergence. To bridge the gap
between theory and practical application, this paper introduces a novel analyti-
cal method—the stopping time method based on probability theory—to explore
the asymptotic convergence of SGD under more relaxed step-size conditions. In
the non-convex setting, we prove that the almost sure convergence of the se-

quence of iterates generated by SGD when step sizes satisfy Zz;of € = +00

and Z:;Of €} < 400 for some p > 2. Compared to previous works, our analysis
eliminates the need to assume global Lipschitz continuity of the loss function, and
it also relaxes the requirement of global boundedness of the high-order moments
of the stochastic gradient to local boundedness. Additionally, we prove Lo con-
vergence without the need for assuming global boundedness of loss functions or
their gradients. The assumptions required for this work are the weakest among
studies with the same conclusions, thereby extending the applicability of SGD in
various practical scenarios where traditional assumptions may not hold.

1 INTRODUCTION

Stochastic Gradient Descent (SGD), originally presented in the seminal work [Robbins & Monro
(1951), stands as one of the most widely used optimization algorithms in the fields of machine
learning and deep learning, due to its simplicity and remarkable efficiency in handling large-scale
datasets (LeCun et al.| (2002); [Hinton| (2012); [Ruder| (2016))). Given these attributes, conducting
theoretical research, including convergence analyses, on the SGD is important, as it enables more
effective application. This includes understanding the optimal conditions for its use, how to adjust
parameters to achieve the best results (Jin et al.| (2022))), and determining when it outperforms other
optimization methods (Zhou et al.|(2020)).

The convergence analyses of SGD in vanishing step-size setting are mainly based on the Robbins-
Monro step—sizeﬂ conditions (Robbins & Monro, (1951)), which require the step-size to satisfy
summability conditions: Z;OT €; = +00 and Z:ff €2 < +o0. However, in practical use, a greater
variety of step-size is commonly chosen, which often fails to meet the Robbins-Monro step-size con-
ditions, thereby not providing the theoretical convergence guarantees. For example, when the step
sizes are €, = O(1/4/n), the theoretical results based on the Robbins-Monro step-size conditions
cannot verify its convergence, but it has achieved someempirical successes (Jin et al.| (2022)).

The focus of our work in this paper is to explores the convergence of the SGD under more relaxed
step-size conditions, in order to bridge the gap between theory and practical application. We sum-
marize the relevant background and our contributions as following.

' Also known as the learning rate
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Related Works. The initial proof of SGD trajectory convergence was attributed to the works of
Ljung| (1977); |[Ljung et al| (1987)), who established convergence results based on the assumption
that the trajectories of the iterates are bounded, i.e., sup;~ ||6:]] < +o0c (a.s.). However, it is im-
practical to verify this assumption in advance for real-world scenarios. As a result, in the literature
on stochastic approximation, the boundedness of SGD trajectories has remained a condition that is
often enforced manually, as seen in the works of |Benaim|(2006); Borkar & Borkar| (2008)); Kushner,
& Yin|(1997), and others. Consequently, theoretical findings that depend on this assumption may
hold limited applicability in practice. The ODE method of stochastic approximation, as introduced
by |Benveniste et al.| (2012)), is utilized in the work of Mertikopoulos et al.|(2020) to demonstrate the
convergence of SGD trajectories under more relaxed step-size conditions. This paper reveals that
the assumption of trajectory boundedness is inherently satisfied under several standard assumptions,
including the global uniform boundedness of the gradients of the loss function (i.e., Lipschitz
continuity of the loss function) and the global boundedness of the high-order moments of the
stochastic gradient. However, many straightforward optimization scenarios, such as those with the
squared loss function, do not meet the Lipschitz continuity criterion. Jin et al. (2022) analyzes
the convergence of SGD under relaxed Robbins-Monro step-size conditions, specifically when

Lof € = 400 and Z;Of ef” < 400, where 0 < § < % However, in this work, it is assumed
that the set of saddle points of the loss function is empty, and the set of stationary points of the loss
function consists of at most finitely many connected components. These assumptions are difficult
to verify in advance, thus limiting the application of this theory in practical engineering.

Our Contributions. This paper introduces a novel analytical method, the stopping time method
based on probability theory, to demonstrate the asymptotic convergence (i.e. almost sure conver-

gence and Ly convergence) of SGD under more relaxed step-size conditions (i.e., Zz;of € = 400
and 37 €? < o0 for some p > 2).

1. We demonstrate the almost sure convergence of the sequence of iterates generated by SGD with-
out directly assuming trajectory boundedness or the global Lipschitz continuity of the loss function,
assumptions that are necessary in the work of[Mertikopoulos et al.|(2020). Our method futher allows
us to limit the requirement of the global boundedness of the p-th moment of stochastic gradients to
a bounded region, which can be made arbitrarily small when p < 3.

2. Furthermore, we establish the Ly convergence of SGD under the same assumptions. It is impor-
tant to note that when the loss function is Lipschitz continuous, the almost sure convergence of SGD
indeed implies Lo convergence. This result can be readily obtained using the Lebesgue Dominated
Convergence Theorem. However, if the gradient of the loss function is unbounded, almost sure
convergence does not guarantee Lo convergence, as outlined in Remark [I] Therefore, proving the
Ly convergence of the SGD algorithm in this scenario is still an intriguing problem.

2 PRELIMINARIES

Problem Formulation: Suppose the model parameters are denoted by # € R? the problem of
interest is to minimize the loss function mingcga f(6).

Algorithm 1 Stochastic Gradient Descent (SGD)
Require: Initialize 6,
1: fort =1,2,...,N do
2 Compute the stochastic gradient g; < V f(0;;&;)
3: Update the parameter 0; 1 < 0; — ¢; - gy
4: end for

The SGD algorithm is shown in AlgorithmI] where €; denotes the step-size at the ¢-th iteration,
which can be constant or vary over time. In the ¢-th iteration, the stochastic gradient of the loss func-
tion is denoted as V f(6;;&;), which provides an unbiased estimate of the true gradient of the loss
function, denoted as V f(6;), based on the sampled random variables {{; };>1, which are mutually
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independent. In the subsequent analysis, we denote .%; := o (g1, ..., g:) as the o-algebra generated
by the stochastic gradients up to the ¢-th iteration , with %y := {Q, 0} and F, :== 0 (Ut>1 9}).

2.1 STEP-SIZE CONDITIONS

In our analysis, the sequence of step sizes {¢;} plays a crucial role in the convergence behavior
of the SGD. Different from the Robbins-Monro step-size conditions (i.e., Zfi 1€ = ~+oo and
Sorey €2 < 400), our step-size conditions shown in Settin are more general.

Setting 1 (Assumptions on the Step-size). Let {€;},>1 be a sequence of positive monotonic mon-
increasing real numbers representing the step sizes used in the optimization algorithm. The sequence
{€1}n>1 satisfies the following summability conditions:

+oo +oo
ZGtZOO, and Z€f<00 (forsomep>2).
t=1 t=1

These conditions allow for step sizes that do not necessarily satisfy the Robbins-Monro conditions
but are still effective in practice. For example, step sizes of the form ¢, = O(1/+/t), which achieve
near-optimal sample complexity O(InT'/ V/T) (where T is the total number of iterations), are in-
cluded in our step-size conditions despite violating the Robbins-Monro step-size conditions.

By relaxing the stringent requirements of the Robbins-Monro step-size conditions, our analysis ac-
commodates a broader class of step sizes, thereby enhancing the practical relevance of the theoretical
results presented in this work.

3 ASSUMPTIONS AND RESULTS

In this section, we will present the basic assumptions required for our proofs, as well as our two
main theorems.

3.1 ASSUMPTIONS

First, we state the assumptions related to the loss function f : R¢ — R used in our analysis.

Assumption 3.1 (Assumptions on the Loss Function). Let f : R? — R be a d-times differentiable
function (the loss function). We impose the following conditions:

(a) Finite Lower Bound: There exists a real number f* € R such that
f(8) > f* forall ¢ RY,
(b) Lipschitz Continuous Gradient: The gradient mapping V f : R® — R< is Lipschitz con-
tinuous with Lipschitz constant L > 0; that is, for all 61,0 € R4,
[Vf(01) = Vf(02)] < Lj61 — 62|

(c) Corecivity: lim|jg| 4 f(0) = +00.

(d) Boundedness Near Critical Points: There exists two constants 1 > 0, C,, > 0 such that
the sublevel set containing points with small gradient norm is bounded above in function
value; explicitly,

{0 R ||VFO) <n} C{0€R|0) - £ <C,).

Item (a) and Item (b) are very classical assumption in stochastic optimization and have been widely
used in the analysis of SGD (see, e.g., Bottou| (2010); |Ghadimi & Lan| (2013))). These conditions
ensure that the loss function is bounded below and that its gradient does not change too rapidly,
which are essential properties for establishing convergence.

Unlike Mertikopoulos et al.| (2020), we do not require the loss function itself to be Lipschitz con-
tinuous, i.e., we do not impose any boundedness on the gradient. The appearance of Item (c) and
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Item (d) is mainly due to our step sizes not satisfying the Robbins-Monro conditions, so we need
to impose some restrictions on the behavior of the loss function at infinity to prevent the algorithm
from diverging to infinity, which are also uesd in Mertikopoulos et al.| (2020).

It is worth noting that, while Item (c) and Item (d) together are fully equivalent to the corecivity
and non-asymptotic flatness of the loss function as presented in Mertikopoulos et al.| (2020), i.e.,
lim inf g 5 4.0 |V £(0)]| > 0, in proving results such as that the trajectory of SGD is an asymptotic
pseudotrajectory of the corresponding gradient flow (see Appendix [A] for related definitions), we
only require Item (d). That is, as a standalone condition, Item (d) is weaker than the non-asymptotic
flatness condition in Mertikopoulos et al.| (2020), as it allows for the existence of infinitely distant
stationary points with finite function values.

Next, we specify the assumptions related to the stochastic gradient g, used in the SGD updates.

Assumption 3.2 (Assumptions on the Stochastic Gradient). Let {6;};>1 C R be a sequence of
iterates generated by SGD, and let {g;}1>1 C R? be the corresponding stochastic gradients. We
impose the following conditions on gy:

(a) Unbiasedness: Forallt > 1, Elg; | Zi—1] = V f(6,).
(b) Weak Growth Condition: There exists a constant G > 0 such that for all t > 1,
E [lgel* | Zi1] <G (IVFO)IP +1).

(c) Bounded 2p — 2-th Moment in a Bounded Region: (when p > 3) There exists a constant
Cp > C,, such that in the region where f(8) — f* < C,, the following holds for all t > 1:

2p—2
E[llg:*P72] < Mp 7,

where p is the same constant as in the step-size conditions (Setting[I)). This condition states
that in a neighborhood where the loss function values are bounded, the p-th moment of the
stochastic gradient g; is uniformly bounded.

(d) Bounded 2p — 2-th Moment Near Critical Points: (when 2 < p < 3) Alternatively, there
exists an arbitrarily small constant x > 0 such that whenever ||V f(0:)|| < z, the following
holds forallt > 1:

2p-2
E[llg:*?) <Mp 7, (2<p<3).

This condition states that near critical points (where the true gradient is small), the p-th
moment of the stochastic gradient g, is uniformly bounded. That is, when 2 < p < 3, we
only need the p-th moment to be bounded in an arbitrarily small region.

Items (a) and (b) are very classical assumptions in the analysis of SGD and stochastic optimization
algorithms. The assumption of unbiasedness of the stochastic gradient (Item (a)) is standard and has
been widely used in the literature (see, e.g.,[Bottou|(2010);|Ghadimi & Lan!(2013))). This assumption
ensures that, on average, the stochastic gradient points in the direction of the true gradient, which is
crucial for the convergence of the algorithm. The weak growth condition (Item (b)) is also common
in the analysis of SGD (e.g., Bottou et al.|(2018); [Nguyen et al.|(2018)). This condition controls the
variance of the stochastic gradient by relating its second moment to the norm of the true gradient.
It prevents the stochastic gradients from having excessive variance, which could otherwise hinder
convergence.

We require the higher-order p-th moment boundedness of the stochastic gradient because our step
sizes do not satisfy the Robbins-Monro conditions. We need the 2p — 2-th moment of the stochastic
gradient to be bounded.

However, directly assuming that the high order moment of the stochastic gradient is globally
bounded (as in Mertikopoulos et al.| (2020)) is unreasonable in our setting, where even the true
gradient V f(6;) can be unbounded. Fortunately, our new analysis method based on stopping time
techniques allows us to restrict the 2p — 2-th moment boundedness condition to a bounded loss
function value region. This leads to Item (c), where we only require the 2p — 2-th moment of
the stochastic gradient to be bounded in regions where the loss function values are below a certain
threshold.
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Moreover, if p < 3 in our step-size conditions, we can further relax the requirement by restricting
the 2p — 2-th moment boundedness to an arbitrarily small neighborhood around the critical points
(as in Item (c’)). This means we only need the 2p — 2-th moment of the stochastic gradient to be
bounded when the true gradient V f(6;) is small. This is a significant relaxation.

These assumptions collectively establish the foundational conditions under which we analyze the
convergence of the SGD in subsequent sections. Then we give our main results.

3.2 MAIN THEOREMS

We now present our main results, establishing the asymptotic convergence of SGD under the as-
sumptions outlined earlier.

Theorem 3.1 (Asymptotic Almost Sure Convergence of SGD). Let {6;},>1 C R? be the sequence
generated by SGD with initial point 0. Under Assumption[3.1] and Assumption[3.2|(When p > 3,
itemWs required; When 2 < p < 3, itemis required), and with the step sizes {€; }1>1 satisfying
Setting|l| the following holds:

Tim [VS(0)]| =0 as

This theorem shows that the gradients evaluated at the iterates converge to zero almost surely, indi-
cating that the algorithm approaches a critical point of the loss function along almost every trajectory.

Remark 1. (Almost Sure vs. Lo Convergence) As stated in the introduction, almost sure conver-
gence does not imply Lo convergence. To illustrate this, consider a sequence of random variables
{¢i}i>1 where P(¢, = 0) = 1 — 1/n? and P(¢; = n) = 1/n? According to the Borel-Cantelli
lemma, we have lim;_, o, (; = 0 a.s. However, it can be shown that E[|(;|?] = 1 for all n > 0.

Theorem 3.2 (Asymptotic L, Convergence of SGD). Let {0, }:>1 C R? be the sequence generated
by SGD with initial point 0y. Under the same assumptions as in Theorem 3.1} the following holds:

Jim E[[V£(6,)]?] = 0.

This result establishes convergence in the mean square sense, showing that the expected squared
norm of the gradients approaches zero as the number of iterations increases and indicating that the
convergence of gradient norms across different trajectories is uniform in the Lo norm of the random
variables.

In summary, these theorems demonstrate that under our relaxed conditions, SGD converges both
almost surely and in Ly to points where the gradient vanishes, even when the gradients may be
unbounded and the step sizes do not satisfy the traditional Robbins-Monro conditions.

Given the complexity of the complete proof, we provide an outline of the core ideas in the main text
using an analytical framework to streamline the exposition. This framework introduces the stopping
time techniques essential for establishing the convergence results. For the full detailed proof, the
reader is referred to the corresponding section in the appendix.

4 ANALYZING FRAMEWORK

In this section, we present our analysis framework for establishing the convergence of SGD under
the relaxed conditions described earlier. Our foundational method remains the Ordinary Differen-
tial Equation (ODE) method in stochastic approximation. Our main innovation lies in proving the
stability required in the ODE method under the conditions of unbounded gradients and non-Robbins-
Monro step-size, as well as in establishing asymptotic Lo convergence. These contributions are de-
tailed in Section @.1] Section[d.2]and Section4.3] The fundamental concepts and key results related
to stochastic approximation are provided in the Appendix[A] to which readers are referred for further
details. Here, we only present a classical proposition for determining asymptotic pseudotrajectories
in stochastic approximation.

Property 1 (Proposition 4.1 in [Benaim| (2000)). Let F' be a continuous globally integrable vector
field. Assume that
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Al : F is Lipschitz and bounded on a neighborhood of {xz; : n > 1}.

A2 : Forall T >0,

k-1

Z’Yi+1Ui+1

i=t

t_lgTooA(uT) = t_1)1+moosup{ ck=t+1,...,m(r —l—T)} =0,

where T, 1= Z?Zl vi forn > 1, and m(t) ;= sup{k > 1,¢t > 11 }.
Then the interpolated process X is an asymptotic pseudotrajectory of the flow ¢ induced by F.

The specific meanings of the corresponding symbols in the theorem can be found in the detailed
explanations provided in Appendix

4.1 THE MAIN DIFFICULTY: PROVING THAT THE EXPECTED SUPREMUM OF THE LOSS
FUNCTION VALUES IS BOUNDED

We begin by verifying conditions A1 and A2 in Property I} thereby establishing that the trajectory of
SGD constitutes an asymptotic pseudotrajectory of the corresponding gradient flow. Subsequently,
leveraging the additional corecivity assumption, alongside Theorem 5.7 and Proposition 6.4 from
Benaim| (2006), we derive the asymptotic almost sure convergence. Building upon this result, we
invoke the Lebesgue’s Dominated Convergence theorem to establish asymptotic Lo convergence.
Specifically, we identify a function h € .Z,, such that E[h] < +oc and [|[Vf(6,)||> < h (vt > 1),
which guarantees the desired Ly convergence.

The main challenge of the proof lies in verifying condition Al and identifying a suitable Lebesgue
control function h. However, since we are considering corecivity and L-smooth loss functions, these
two challenges can actually be reduced to one: proving that E [supt>1( f0)—f *)] < +oo. We
present this as a key lemma below.

Lemma 4.1. Let {60, };>1 C R? be the sequence generated by SGD with initial point 0y. Under
Assumption [3.1] excluding Item (c), and Assumption [3.2](When p > 3, item|(c)|is required; When
2<p<3 itemis required), and with the step sizes {€; }1>1 satisfying Setting the following
inequality holds:

E [sup (0 f*)} < M < 10, M
>1

where M is a constant that depends only on the initial point 01 and the constants specified in the

assumptions.

It is worth noting that, if we were only concerned with verifying condition A1, we would only need
to prove the relatively weaker statement sup,~ (f(0:) — f*) < 400 a.s.. However, this result alone
is insufficient to establish Lo convergence.

Next, we will focus on explaining how to prove this lemma.

In the following analysis, we will frequently use a certain quantity. For convenience, we define it
here. We refer to

T
> E[elVi6)IP]
t=1

as the squared gradient variation.

Furthermore, we define
T

Y _E[ V(6]

t=1

as the m-order squared gradient variation.
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4.2 TRANSFORMING THE EXPECTATION OF THE LOSS FUNCTION SUPREMUM INTO
SQUARED GRADIENT VARIATIONS

Our approach is to first transform the expectation of the supremum of the loss function into the
expectation of the sum of the one-step squared gradient variations, as shown below (informal):

E | sup (f(0:) — f*)} =0(1)+0 (ZE [Hf(et)f*>cp€t||Vf(9t)||2]> :

1<t<T Py

For the case where 2 < p < 3, since C), is not defined in our assumptions, we set C, := C,, +-1. The
derivation of this equivalence is straightforward and can be found in the appendix, see Appendix [C.8§|
for the detailed steps.

Thus, it suffices to prove that the sum of the squared gradient variations on the right-hand side of the
above inequality is bounded.

4.3 OUR INNOVATION: STOPPING TIME ANALYSIS METHOD

We first present the full boundedness result for the gradient squared variation in the form of a lemma.

Lemma 4.2. Let {0;};>1 C R? be the sequence generated by SGD with initial point 8. Under

Assumption excluding Item (c), and Assumption[3.2|(when p > 3, use Item[(c)} when 2 < p < 3,
use Item|(d))), and with the step sizes {€; }+>1 satisfying Setting the following inequality holds:

+oo
> E [Tiy0,)— >0l V£(02)1] < Clp, Cy, Cp) < +o0, 2)

t=1

where C(p,C,,, Cy) is a constant that depends only on p,C,,C,, and the constants specified in
the assumptions. Since C, is not defined in Assumptions 3.2M(d) when 2 < p < 3, we define
Cp := Cy, + Lin this case.

The complete proof of this theorem is quite intricate, and we do not have sufficient space to provide
it in full in the main text. Below, we outline some key steps. The detailed proof can be found in

Appendix [C.6)and

We need to bound the following sum of squared gradient variations:

T
> E [To0)—przc, eI VFO)]
t=1

It is important to note that for the global sum of squared gradient variations,

T

S E (e V6],

t=1
it is not possible to prove boundedness under the non-Robbins-Monro step-size condition. However,
we only need to prove that the local sum of squared gradient variations is bounded when 6, is within
the event [f(6;) — f* > C,]. To handle this, we introduce stopping times. Specifically, for any
Cy < a < b < Cp, we construct the following sequence of stopping times based on when the loss
function f(6;) — f* first enters the interval defined by a and b.

mi=min{t > 1: f(6;) — f* >a}, o:=min{t > 7 : f(0;) — f* >b or f(6) — f" <a},
T3 i=min{t > 1o : f(0;) — f*F <a},...,
T3k—2 = min{t > 73,3 : f(0;) — f* > a},
Tagp—1 ;= min{t > 1359 : f(0;) — f* > b or f(0;) — f* <a},
Tag = min{t > 7ap_1 : f(0;) — f* < a}.
Based on certain stopping time techniques, we can establish the following inequality (informal):

734,71

E (IO " Vo))

t=73;—1,T

T3i,7—1
gO(E[W])JrO E (1D N Mgl | + R 3)

t=T3;—1,T
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In the above equation, the double-subscript stopping time 7 7 represents the truncated stopping

time 7, at the finite time 7, i.e., for any T' > 0, we define 7, 7 := 7, AT. The term I() denotes the
indicator function for the event [73,_1 7 < T3;7]. The term R; represents a negligible remainder,

which satisfies Z::f |R;| < +oc. For the precise form, see Eq. in the appendix.
By summing both sides of Eq. [3] with respect to ¢, we obtain (informal):

30,71 73i,7—1

+00 +o00 +oo
YEO Y e?nwwmflw (ZE[H“HeZ;_i,T)w SE|O Y @ el
=1 =1

t=T3i—1,T i=1 t=73i—1,T

“+o0
+) R (4)
i=1

Note that when the indicator function I = 1, it implies that 75;_; 7 < 73; 7, which further means
that 73;_1 is not truncated by 7" (since otherwise 73,_1, 7 = 73;, 7 = T, and that f(6,,, ,)— f* must
strictly exceed b (otherwise 73;,_1 = 73;). This implies that the sum on the left-hand side actually
equals the sum of the m-order squared gradient variations when 1 < ¢t < T and f(6;) — f* > b.
Thus, we can conclude (informal):

T
STE (Lyo,)-pesn € IVFO)? | < O (B [Las 00— 5~ <y gell]) +0<ZE )
t=1

+oo
+) R
i=1

One of the main challenges in the proof lies in handling the term O (Z:;Of E[1¢ )e"; ! ]> which

is difficult to summarize in just a few high-level remarks. Readers are referred to the full proof,
presented from Eq. 24]to Eq. [28]in Appendix [C.6] for a detailed explanation of how this term is
treated. In short, through the use of some probabilistic techniques, we can ultimately bound this
term as follows (informal):

(Z]E e 1T> < O (E [Tacson-s-<nier’ M7])

where M; := &,V f(0:) T (Vf(0:) — g;). In the region [a < f(0;) — f* < b], we can easily obtain
that n < ||V f(8,)|| < y/2LC),. Thus, we can further apply the weak growth condition (Assumption
(b)) to derive the following when [a < f(6;) — f* < b]:

E[lgl? | #1a] < G (1 o ) IV F60)2
and )
E[M?| F1a] < 2LC,G (1 n n) 21V (60,2

Based on the above steps, we can ultimately derive a recursive inequality between the m-order
squared gradient variation and the m + 1-order squared gradient variation.

T
> E |Tip)—p-sn e IVF 0P| < O (B [Tacpo)—p<tier* IV (0 +ZR

t=1

Using this recursive relation, we can ultimately iterate the squared gradient variation up to the [p]-
order squared gradient variation. The [p]-order squared gradient variation can then be straight-

forwardly shown to be bounded due to the step-size condition Zt 1 €/ < +oo. In this way, we
complete the proof of the boundedness of the squared variation. At this point, we have effectively
proven that E (sup,<,.(f(6¢) — f*)) is bounded by a constant independent of 7" (the details of
this independence can be found in Appendix [C.8] where the derivation of the relevant constants is
provided). Letting T' — +o0 and applying the Lebesgue’s Monotone Convergence theorem, we ob-
tain that E (supt>1 f0)—f *) is also controlled by this bound. With this, we have proven Lemma
[.2)and 4.1} We can now proceed to prove that the trajectory of SGD is an asymptotic pseudotrajec-
tory of the corresponding gradient flow.
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4.4 PROOF THAT THE TRAJECTORY OF SGD IS AN ASYMPTOTIC PSEUDOTRAJECTORY OF
THE CORRESPONDING GRADIENT FLOW

As before, we first present this result in the form of a lemma:

Lemma 4.3. Let {0, }:>1 C R? be the sequence generated by the Stochastic Gradient Descent
(SGD) algorithm with initial point 6y. Under Assumption|3. excluding Item (c), and Assumption
B2 (for p > 3, refer to Item|[(c)} for 2 < p < 3, refer to Item|[(d)), and with the step sizes se-
quence {€; }1>1 satisfying Semngl 1| the trajectory of SGD is an asymptotzc pseudotrajectory of the
corresponding gradient flow almost surely.

With Lemma [.2] and [4.T] already proven, the proof becomes straightforward. We now present the
complete proof here.

Proof. According to Lemma it is easy to see that sup, >, (f(0;) — f*) < 400 a.s. From Lemma

L we can easily deduce that sup,~, ||V f(6;)[|* < 2L sup;>, (f(6;) — f*) < 400 a.s. Therefore,
1t is straightforward to verify that Condition Al in Property [I] is satisfied. For condition A2, we
proceed by partitioning the analysis. Spec1ﬁcally, we have:

ZH( €; Vf )
E’L Vf - gz)

k—1

lim A(t,T)= lim sup { Z I(he(V£(0:) — gi)

t—+oo t—+oo ke(t,m(m+T)] i—t

Ine: (VO + lim sup
Z ) ) } t—+oo ke(t,m(m+T)] {

A/(t,T) A (t,T)

< lim sup
t=+00 ke (t,m(r+T)]

} |

where, when p > 3, I, is defined as the indicator function of the event [f(6;) — f* < C}], and when
2 < p < 3,1, is defined as the indicator function of the event [[|V f(6;)| < x]. Next, we handle T,
and Y5 separately. For T, we know that within the event where I sy = 1, the higher-order moments
are bounded. Thus, by applying Burkholder’s inequality, we obtain:

p—1
, \2p_9 Burkholder’s inequality m(r+T)—1 5 9
E[(AL7r)"7?] < Cyp—2E Z Liye; IV f(6:) — gill
1=t
-2
s . m(m+T)—1 p m(m+T)—1
Holder’s inequality _
02[)—2]E Z €; Z ]I(l)éf||Vf(91) — gi”zp 2
1=t 1=t
m(re+T)—1

2p—2
S CQp—QTMp ? Z 6?7

i=t

where C'y;,_» is a constant depend on 2p — 2. From the preceding inequality, we get that

2 ) 2p-2 +oo
Z]E wrr) P %] < CopoTM, ® Zef < +o0.
i=1

By the Borel-Cantelli lemma this proves that limg_, | A;CT =0, as., thatis lim; 4 A; =
0 as. Next, we handle Ay . It is easy to see that when the event correspondmg to Iy occurs,
IV £(6;)|] must have a lower bound. When p > 3, this lower bound is 7, and when 2 < p < 3, the
lower bound is x. We unify these cases by defining the lower bound as [,,. Then, we can proceed to
compute:

L . m(Te+T)—1
97 Doob’s inequality
) } < 4E ) I IV f(8:) — gil?

i=t

. . m(m+T)—1
weak growth condition with lower bound 1,, 1
2 6(145)5| X 1dIvse?
P

i=t
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that is
= " 2 1 = 2 2
S E[(Afrr)?] <46 (14 55 ) YE Lo VS 0)]]
k=1 p/ =1

e (1 + %) R [Iel|V0)]?], ifp >3

1G (14 &) ST E (219612 if2<p<s3.
Lemma[£2]and Lemma[B4]
< 400

By the Borel-Cantelli lemma this proves that limg_, 1 o AZT,T =0, as., thatislim; ;o0 AYp =
0 a.s. In conclusion, we can prove that lim;_, ; o A(¢,7) = 0 a.s., which verifies Condition A2 in
Property |1} Thus, we have proven that the trajectory of SGD is an asymptotic pseudotrajectory of
the corresponding gradient flow almost surely.

The combination of these results leads directly to the proof of Theorem [3.1]

4.5 PROOF OF THEOREM [3.1]

Proof. Under the given assumptions, f serves as a strict Lyapunov function for gradient flow, as
defined in [Benaim| (2006). Specifically, this implies that f(®;(x)) decreases monotonically in ¢
unless z is a stationary point of gradient flow. Moreover, according to Sard’s theorem (Sard, [1942;
Bates), |1993), the set f({0|V f(0) = 0}) of critical values has Lebesgue measure zero and an empty
topological interior. Consequently, by leveraging Theorem 5.7 and Proposition 6.4 from Benaim
Benaim| (2006), any precompact asymptotic pseudotrajectory of gradient flow converges to a con-
nected component X' where f remains constant. Lemma and corecivity in Assumption
ensures that the APTs of gradient flow induced by SGD are almost surely bounded, confirming our
conclusion. O

Finally, combined with the boundedness of the expected supremum as established in Lemma[d.1] we
can immediately apply the Lebesgue’s Dominated Convergence theorem to deduce Lo convergence
from almost sure convergence.

4.6 PROOF OF THEOREM[3.2]

Proof. Based on Lemma[d.1] we can derive the following inequality:

LemmalET]
] < +oo.

emma[B.]]
£ [sup V7 (0)]2] "€ 2LE [sup(£(6) ~ 1)
t>1 t>1

Then, using the almost sure convergence from Theorem[3.T|and Lebesgue’s Dominated Convergence
theorem, we can establish the mean-square convergence result, i.e., lim,, o, E ||V f(6,)]|> =0. O

5 OVERALL CONCLUSIONS

In this article, we employ a novel analytical method, called stopping time method, to explore
the asymptotic convergence of the SGD algorithm under more relaxed step-size conditions,
providing more step-size options with convergence guarantees for practical applications. This
work is distinguished by its minimal set of required assumptions, thereby broadening the scope
of SGD applications to practical scenarios where traditional assumptions may not apply. The
underlying philosophy of the stopping time method could potentially serve as a template for proving
the convergence of other related stochastic optimization algorithms, such as Adaptive Moment
Estimation (ADAM) Kingma) (2014) and Stochastic Gradient Descent with Momentum (SGDM)
Gitman et al.| (2019)), etc.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Sean M Bates. Toward a precise smoothness hypothesis in sard’s theorem. Proceedings of the
American Mathematical Society, 117(1):279-283, 1993.

Michel Benaim. Dynamics of stochastic approximation algorithms. In Seminaire de probabilites
XXXIII, pp. 1-68. Springer, 2006.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic ap-
proximations, volume 22. Springer Science & Business Media, 2012.

Vivek S Borkar and Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint,
volume 9. Springer, 2008.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT 2010: 19th International Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers, pp. 177-186. Springer, 2010.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223-311, 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341-2368, 2013.

Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of momentum
in stochastic gradient methods. Advances in Neural Information Processing Systems, 32, 2019.

Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In Neural Networks:
Tricks of the Trade: Second Edition, pp. 599-619. Springer, 2012.

Ruinan Jin, Xingkang He, Lang Chen, Difei Cheng, and Vijay Gupta. Revisit last-iterate conver-
gence of msgd under milder requirement on step size. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, pp. 36559-36570, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

HJ Kushner and GG Yin. Stochastic approximation algorithms and applications, vol. 35 of stoch.
modelling and appl. Prob., Springer-Verlag, New York, 1997.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9-50. Springer, 2002.

Lennart Ljung. Analysis of recursive stochastic algorithms. IEEE transactions on automatic control,
22(4):551-575, 19717.

Lennart Ljung et al. Theory for the user. System identification, 1987.

Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher. On the almost sure conver-
gence of stochastic gradient descent in non-convex problems. Advances in Neural Information
Processing Systems, 33:1117-1128, 2020.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtarik, Katya Scheinberg, and Martin
Takac. Sgd and hogwild! convergence without the bounded gradients assumption. In Interna-
tional Conference on Machine Learning, pp. 3750-3758. PMLR, 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22(3):400—407, 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Arthur Sard. The measure of the critical values of differentiable maps. Bulletin of the American
Mathematical Society, 48(12):883-890, 1942.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285-21296, 2020.

11



Under review as a conference paper at ICLR 2025

A STOCHASTIC APPROXIMATION

Stochastic Approximation (Benaim|(2006)): Let F : R? — R< be a continous map. Consider here
a discrete time process {x; };>1 living in R? (an algorithm) whose general for, can be written as

Tip1 — T = Vo1 (F(2) + Upgr) s (5)

where {v;};>1 is a given sequence of nonegative numbers such that > %7y, =
400 lim;_ 100y = 0, and U; € R are (deterministic or random) perturbation.

Interpolated Process (Benaim| (2006)): Let {z;};>1 be a sequence in R?, and let {y;};>1 be a
sequence of positive step sizes. Define the time sequence {7; };>1 by:
t—1

T = Z’yk7 with 7 = 0.
k=1

We define the interpolated process X : R, — R and the piecewise constant process X : R, — R?
by:
X(re+s)=as+ SM, and X (7, + s) = x4,
Yt+1
foralln € Nand 0 < s < ~41. Thatis, we call X the interpolated process of the sequence

{z¢}+>1. The "inverse" mapping of n — 7 is defined by the function m : Ry — N:
m(t) =sup{k > 1|t > 7}.
Asymptotic Pesudotrajectory (Benaim| (2006)): Given the ODE: & = F(z). A semiflow ® on a
metric space (M, d) is a continuous map
O:Ry x M — M,
(t,z) = D(t,z) = Dy(x),

where ®;(x) represents the position at time ¢ of the solution to the ODE starting from x. Unlike
previous methods, which are still based on the ODE approach within stochastic approximation, our

analysis is entirely grounded in a probabilistic method based on stopping times. This provides a new
perspective for addressing the convergence of SGD.

Then a continuous function Y : Ry — M is an asymptotic pesudotrajectory for this ODE if

lim sup d(X(t+h),®(X(t))) =0

forany T' > 0.

It is easy to observe that SGD is a standard stochastic approximation algorithm. We can express
SGD in the following form:

Orp1 =0t + e (=V f(0:) + V(0r) — gt) ,
where the corresponding parameter mappings are given by:

vy =0y, F(xy)=-Vf(0), Y41 =¢€, U1 =Vf(0)— g

B SUPPORTING LEMMAS

Lemma B.1. Suppose that f(z) is differentiable and lower bounded f* = inf,¢c gpa f(z) > —00
and V f () is Lipschitz continuous with parameter L > 0, then ¥ x € R, we have

IV (@)|]” < 2L(f(x) - ).

Lemma B.2 (Descent Lemma). Ler {0;} be the sequence generated by the SGD. Under Assumption
[3-1)1, the following inequality holds for all t > 1:

2
FOui) = 10 <~ V7@ + L g + M, ©
where My == ¢,V f(0;) T (Vf(0;) — gy).

12
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Lemma B.3. Let {0;},>1 C RY be the sequence generated by SGD with step sizes {¢;}¢>1. Under
Assumption@( Lipschitz Continuous Gradient), and the assumptions on the stochastic gradient

(Assumption , the following inequality holds for all integers n > 1, all time indices t > 0, and
forally > 0:
L i@ z>y - € IVFON? S Liwsenizsy - &' Ay, +Liws@nizsy - €' (Mea + M)
LG 1
+ 52 (145 ) Biososy - €IV SGIP @
where:

* Ay, := f(0:) — f(0:41) denotes the decrease in the loss function at iteration t.
o 14 is the indicator function of the event A, which equals 1 if A is true and 0 otherwise.

* M1 and My 5 are defined in Eq. 6]

Lemma B4. Let {0:};>1 C RY be the sequence generated by SGD with initial point 0 and a
step-size {€; }1>1 satisfying Setting I for 2 < p < 3. UnderAssumptlon excluding Item (c), and
Assumption[3.2] specifically using Item[(d)|for 2 < p < 3, the following inequality holds:
T
d_a T E[IVFO)I] < Cp) < +o0, ®)
t=1

where C(p) is a constant depending on p and the initial step size €.
Lemma B.5. Let {0;};>1 C R? be the sequence generated by the Stochastic Gradient Descent
(SGD) algorithm with the initial point 6. Under Assumption[3.1] excluding Item (c), and Assump-
tion[3.2)(when p > 3, refer to Item[(c]} when 2 < p < 3, refer to Item[(d)), and assuming the step
sizes sequence {e, }1>1 satisfies Setting the following inequality holds for any 6y > 0 (where for
2 < p < 3, since Assumptions[3.2M(d)|do not define Cy, we set Cy, := C,, + 1 in this case):

+oo

D E[As) < Clp,do) < +o0.

t=1
where o

Atso = (g —p-<c, | f(Oer1) — f(0:)] — 50)+
and C(p, 8o) is a constant depending on p, 0.
Lemma B.6. Let {0;};>1 C R? be the sequence generated by the Stochastic Gradient Descent
(SGD) algorithm with the initial point 6. Under Assumption[3.1] excluding Item (c), and Assump-
tion[3.2)(when p > 3, refer to Item[(c); when 2 < p < 3, refer to Item|(d)), and assuming the step
sizes sequence {€; };>1 satisfies Sem'ng the following inequality holds for any Cp, < a < b < C,
(where for 2 < p < 3, since Assumptions 3.2M(d)|do not define C, we set Cp, := C,, + 1 in this
case):
T

T
> E Iy, >0 IV L0 7] <C1(a, ) Y B [Tac po,)— pe<uier IV F(00)]]
t=1

+ CQ(a7b)7 9

o 1\ (2C,L L 1\ 8Ly
Cl(a7b>'_G<1+7]2>(b—a+2>+G(1+772)(b—a)2’

Cy(a,b) := aClelmT_ + (elmT_ + 1) C(p,(b—a)/2).

C PROOFS OF LEMMAS

C.1 THE PROOF OF LEMMA [B.1]

Proof. For Va € RY, we define function
[ —
o s{eeZ20)

[l — ]

13



Under review as a conference paper at ICLR 2025

where 2’ is a constant point such that 2’ — z is parallel to V f (). By taking the derivative, we obtain

-2\ -z 10
o w [ x—HHx’ ) (10)

To7— -zl ) |2/ —=|

gt)=v

Through the Lipschitz condition of V f (), we get Vt, to

T
/ / /
"t) —g'(ta)| = || V., s <x+t_m>—v o'a <x+t x_x> i
=gt |< iz Hla' — ] = o —2l) ) Il =]

vx-&-tf" f(:z:+t1” |) Vz_i_tr_m f<x+t2 - ” |H < Lty — tal.

= —z|| |/ —a||

[l" = wll

So ¢'(t) satisfies the Lipschitz condition, and we have infycr g(¢t) > inf,cpny f(z) > —oo. Let
g* = inf x erg(z), then it holds that for V t; € R,

9(0) — g* > g(0) — g(to)- (1)

By using the Newton-Leibniz’s formula, we get that

0 0 0
90) = glt0) = [ g(@da= [ (g(@) =g O)da+ [ oo
to to to
Through the Lipschitz condition of ¢’, we get that
0 0 1 )
90~ g(t0) = [ ~Lla=0da+ [ g(O)da =5 (5(0)"
to to 2L
Then we take a special value of ¢y. Let tg = —g’(0)/L, then we get
0 0 L
9(0) = glto) = ~ | Llalda+ [ g(0)dt = =50~ to)? +(0)(~to)
to to (12)
1, 2 1, 2 1, 2
= ——(d0)*+ = (g 0)° = = (g0
55 (0 0)" + 2(90)) = 5(9(0))
Substituting Eq. [T2]into Eq. [T1] we get
1 2

900) = 9" > 55 (4'(0)".
Due to g* > f* and (g’(O))2 = ||V £(z)]?, it follows that

IVf(@)|* <22(f(x) - 7).

C.2 THE PROOF OF LEMMA [B.2]

Proof. We compute f(0:11)— f(6:). According to the L-smooth condition, we obtain the following
estimate:

L
FOrs1) = F(00) < V() (01— 00) + 5 16010 — 01
L 2
=~ VS(0) g+ 5 ol

Lé?
= —e|[ VSO + eV F(0,) T (VF(0:) — g0) +7t|\gt\|2~

M

We complete the proof. ]

14
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C.3 THE PROOF OF LEMMA [B.3]

Proof. For any y > 0, we multiply both sides of Eq. [6|by the indicator function I}y f(g,)|2>y- This
represents considering the derived properties of Eq. |6l when the event {||V f(6,)||*> > y} occurs.
Specifically, we have:

v s@n 2>y (fOer1) = F(0:)) < —Livsnp>y - €l VF O+ Tjw o025y M
—_—

+ ]I|\Vf(9t)\|2>yLT€%HgtH2~ (13)
After simplification, we obtain:
Liv o025y - €IV F O < Tywro)zsyd s + Iivien 2>y M
+ HHVf(@t)H2>yL2 lge . (14)
For any n > 1, we multiply both sides of the above inequality by €/* ', and we obtain:
Livrooesy - € IVF O <Lvsoyesver  Ar + Twronpsyer’ M

e 2
v s>y —g—lgell” (15)

C.4 THE PROOF OF LEMMA [B 4]

Proof. For this goal, we multiply both sides of the descent inequality obtained in Lemma [B.2] by

ef _2, and noting that €, > €, 1, we obtain:

_ _ _ Le} _
iy (F(Brea) = F*) = e 2(F(60) = f*) < =/ IV IO + %Ilgtll2 +e M.

We take the expectation on both sides of the above inequality and then sum over the index ¢ from 1
to 400, which gives us:

Zet IV FO)IP] < &2 (f(6r) - Zet E[VF@)]* + 72% EV () +1)
t=1
b2 LG 2, LG =
SEO) - )+ Z EIVFO)I*+ =5 ) e
t=1 t=1
< 00,
where Tj is an index representing the largest index satisfying €} 1< L—zcef It is clear from
lim; 4 o, €; = O that Ty must exist and is a constant. With this, we prove this lemma. O

C.5 THE PROOF OF LEMMA [B.3]

Proof. We will prove this conclusion in two cases. First, we consider the case when p > 3. We have

L) —p+ <y (FOer1) = F(82) = Ty~ o<, V. (0e) T (Bo1 — 6:)
= Ty(0,)— =<, VI (0) T (Ors1 — 0;)
+ Hf(Qt)—f*<Cp(Vf(9£f,) - Vf(@t))T(0t+1 —6).
Taking absolute values on both sides, we obtain:
Lo <0p [FOrs1) = F(O)] < Tpo)— - <0, IVF O - 10641 = b
+ 10— <0, IVF(Oc,) = V(O - 10141 — 0]

15
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L-Smooth 9 9

< Tyon-pr<c, € VO gell + Lpo,) - <o, Leg | 9l
Lemmal[B1]

L0, =< €68/ 2LC|lgell + Tpco,)— =<, Lei Nl 9211

AM-GM inequality ¢ C
g h <1+5> Ly, p-ec, ol (6)

Next, we apply Young’s inequality to continue the expansion, which gives us:
3
Lo -se<c, 1fOer1) = (O] < 200+ Calyo0) - o<, ¢ llge”

< 0o + CsIg(6,)—+<c, €t l19e ]I,

where

that is

(Tpcor)—s=<cy 1f(Orr1) = F(O)] = d0) . < Cs Lo, =<, €t ll9elI”- (17

Based on Setting[T] we can conclude that

—+oo —+oo
S E (I so<c, [ Ora) = FO)] = 80) | < Co, My 3 € < +ox.
t=1 t=1

Now, let us consider the case when 2 < p < 3. In this scenario, the assumptions we use are
Assumption[3.2] ~ (c’). Under this assumption, through Lemma[B.4] we have:

T
STETE[IV0)]?] < Clp) = Clp, &) < +o0, (18)

t=1

where C(p) is a constant depend on p. Then we use the results from Eq. and continue the
derivation, yielding:

1) C
Lo, <c, |f(Oey1) — f(61)] < 20 (1 + 5:) Llto,)—f-<c, € llgell?

50 Cp
5 <1 + 6) L{#(0,)— f*<ColnlIV £00)l <e €2 19e ]l

+

c
(1 + 55> LIj5(0,)- f+<C,)n01v £ (00 1> €2 19¢I?

o
< 8o+ (1 + 5;’) LIjf(0,)— £+ <o)V £ 00 <l 19e1?

+ Caollipo0) - = <cinvseo=der g7 (19)
Then we can get
400 1 +00
> B [(t00-se<c, 110e) — 100 ~30)] < (14 ) (14 %) 20+ Cay >
= C(p,do) < 400
With this, we complete the proof.
O
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C.6 THE PROOF OF LEMMA [B.6]

Proof. For any C;, < a < b < C), (where we set C;, = C), + 1if 2 < p < 3), we construct the
following stopping time sequence based on the relationship between f(6;) — f* and the positions of
a and b:
7 c=min{t > 1: f(6,) — f* > a}, 7o :=min{t > 7 : f(6,) — f* >b or f(6,) — f* <a},
T3i=min{t > 7o : f(0) — f* <a},...,
T3g—o := min{t > 13p_3 : f(6;) — f* > a},
Tap—1 ;= min{t > 1359 : f(0;) — f* > b or f(0;) — f* <a},
Tag = min{t > 7ap_1 : f(0;) — f* < a}.
Next, for any T > 1, we define the truncated stopping time as 7,, 7 := 7, A T. Then, by applying

Lemma [B.3| with = 7 on the interval [75,_1 1,73, 7) when 73,_1 7 < 73;7, we obtain that
Vite [7’31‘_177“, T3i,T) when T3i—1,T < T3i,T> there is:

199 po 250 - € IV F O STOLws02ner ™ Ag + T po2snet ™ Me
m—+1
; €
+ H(Z)]Inw(et)u%ntT||9t||2a
where IV := I, | ;. s, ,]- Summing the indices ¢ in the above inequality from 73;_1 7 to 73; 7—1
under the event [73,_1 7 < T3; 7], we obtain:

T3i,7—1 T3i,7—1

1D N ivgeopesq - e IVFO? <TD S Liopeoesacr Ay,
t=T3i—1,T t=T3i—1,T
735,17 —1

IO Y Lo Esaet My
t=73;—1,T

L TSi,T_l

+ 519 Y Lvseoesn 6 ol

t=73;—1,T

It is easy to see that the event [75,_1 7 < 73, 7| is equivalent to [r3;_1 < T| N [135-1 < T734].
Therefore, when I, | ;. <7, ;] = 1, we have Iyys,)|>y = 1 forallt € [13,_1,7,73:,7). Asa
result, we can remove the indicator function I}y s, )| >y from both sides of the above inequality,
yielding:

T3i,7—1 T3i,7—1 T3i,7—1
103 IV IO Y @t w10 Y g
t=T3;—1,T t=T3;—1,T t=T3;—1,T
T3:,7—1
LG N =
+ (1)1 Y Ve
N t=T3;—1,T
@ Tt
ST (fOr i) = F)+ID > M,
t=T3;—1,T
I 734,71
+5I0 > @ el (20)
t=T3i—1,T

In step (a), the transformation is mainly applied to the first term on the left-hand side of the corre-
sponding inequality. We have:

T3i,7—1 T3i,7—1
103 @A, <10 3T (g (F(0) ~ 1) — e (f(0en) - 7))
t=T3;_1,T t=T3;—1,T

< H(i)ezz;ll,q" (f(eTSi—l,T) - ‘f*)

17
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Taking the expectation on both sides of Eq. 20| we obtain:

T34, 7—1
B[O 3 & Vf6n)2| <E [0 (f(Brrn) = 1)
t=T3;—1,T
O 1,1
T3i,7—1

+E(IO > M

t=T3i—1,T

©;,1,2

T34, 7—1

193" e gl - @1

t=T3i—1,T

L L
2

First, let’s handle ©; 7 1. According to the definition of stopping times, when I; = 1, that is, when
T3i—1,7 < T3;,7, we have f(0r,,_, 1) — f* < b < (), that means:
@i,T,l <bHE [H(i)ez;llyfl} +E IZTSi—l,Tflyl]
< (b + 1) E[H(i)] +E [Z7'3i—1,T_171} ) (22)

where memfl,l defined in Lemma Then we aim to address ©; 7 2. Upon observation, it is
evident that for any n, k, the stopping time 7, satisfies the following additional property: [7;, = n] €
Fyn—1. This implies that the preceding time, 7;, — 1, is also a stopping time. Therefore, for ©; 7 2.

T35, 7—1
% m—1
Oire=E [E|IV > M| Fr, 1
t=T3i—1,T
[ T35, 7—1 17
i m—1
=E[I9E| > & 'M|Fr, 1
t=T3i—1,T
T35, 7—1

Doob’s Sw@ed theorem

E H(l) E Z G;n_l E[Mt|yt—l] yTSi—l,T_l
t=T3i—1,T

=0

We combine the estimates related to ©; 7o from the above expression with those related to ©; 11
in Eq. 22] and substitute both back into Eq. 21] we obtain:

T34, 7—1
E |1® Z eV F(6)]2 SclEm(”eﬁ;ll,T]JfE [Ar_ir-11]
t=T3;—1,T
I 734,17 —1
+t3 193" " gl (23)
t=T3i—1,T

where
CL:=b+1.

Next, we will address the first term in the above inequality. Here, we examine the properties of
I,. When I, = 1, we have the event [73,_1 7 < 73, 7|. This implies that both [73,_1 < 73;] and
[T3i—1 < T hold simultaneously. Consequently, based on the definition of the stopping sequence,
we obtain:

Hi(f(QTSi—l,T) - f*) > ]Ilb
This implies that

I; (f(HTSifl,T) - f(973i72,T71)) > ]Il(b - CL). (24
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That is to say,

]Ii (ETC;TLT (f(eTSifl,T) - f*) - 67’3711 (f(e‘l'm'fz,T*l) - f )) > ]I em 1 (b - a‘)
Since f(0r,,_, —1) — [* < a, we easily obtain:
Hi<673?71 T(f(eTSifl,T) _f*) _ezz,Tfl(f(eTSiflT*l) _f ) +a‘( 7'31 2,7—1 67—3@2—1,T))

m—1

> H (67'31_11 T(f(eTSi—l,T) - f*) - 67’3?71,7“ (f(eTSi—Z,T*]-) - f*))

m=1
>Tie,”  r(b—a).

m—1
We use the Descent Lemma (Lemma ) to bound €Tsf_1,T( f(973i71.T) — ) -
m—1 ) )
67’3?-2,7171(-}0(073«;_2,7"—1) - f*), yleldlng:

mo1 m—1

Lo p(b—a) < Li(entnr (FOrrn) = F) = eny oy (F(rgpp1) = £)

7n 1 m—1

+a( 7'3» 2,7—1 67’3?711))

T3i—1,7—1

m—1 m—1 m—1
<L Y &® (fbur1) = f0)) tale, o1~ enin)
t=T3;—2,T
m—1 . m—1 b—a

. 2 . 2 P
+ ]IleTai,fz,T—1A7'3i72-,T*17(b*a)/2 + ]L‘eTS'i—lvT 9

m—=1 nf m—1

We multlply both sides of the above inequality by €-,7_, ,, and noting €, , , < ¢, * , we get:

L;e™ b—a m—1 Tsi—1,7 -1 m—1 m—1
i 7( m_1

U”# <Le.  r Z € % (f(Or1) — F(O0) + i€y Ary s o1 (0—a)2

t=T3i—2,T

71 m—1

+612 Ha( T3i—2,7—1 67’3?711)

T3i—1,7—1 T3i—1,7—1
Lemma L - . m—1
m+1 2 2
S D DI S VRS P D
t=T3;—2,T t=73;_2,7—1
m—1 m—1 m—1 m—1__
2 2 p 2
+ € Hia(e-,—mfzj_l - 67’37‘,—1,T) + ]Iiel AT&‘—Z,T*L(b*a)/Q
. . T3i—1,7—1 m—1
AM-GM inequality [, ’ (b — a)e
m+1 2 T3i—1,1
< Lig > Mlal* + L—
t=T3i—2,T
2
T3i—1,7—1
1 m—1
+ Hlm E Et 2 Mt
t=T3;—2,T
m—1 m—1 m—1__
pl Pl 2
+ Hia(eTgi,gnyl - 67'31'—1,T) + ]Iiel Aquj_QyT—17(b—(l)/2' (25)
This implies that the following equation holds:
1 T 1 T 1 2
;™™ (b . a) I 3i—1,T— 1 si-ir—l
T3i—1,1 § : m+1 2 E T3
f <]Iz§ € ||gtH +Hlm €4 Mt
t=T3i—2,1T t=T3;—2,T

m—=1 m—1 m—1
m—1 1
+ I a‘( 73 _or—1 ET:Si—l,T) + HiEI AT3«;—2,T*1»(5*!1)/2'

Taking the expectation on both sides of the above inequality and scaling the indicator function I; on
the right side to 1, we obtain:

b—a I T3i—1,7—1 1 T3i—1,7—1 s 2

- -1 1 2 )

T E Len 7] < SEl X @Ml |+ —El > a7 M
t=T3i—2,T t=73;_2,17—1
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m—1 mfl —
2
7'31 2,7—1 67—37. 1, T} + €1 ]E rTgL 2,7—1,(b— a)/2}

T3i—1,7—1

L
<SELS @al?

t=T3i—2,T

T3i—2,7—1
7n m—1
Z D, o’ M
t=1

—|—aIE[

2

m—1 m—1 m—1

2 2 2
+ aE[ETSi—Q,T - 673«;71,7“] =+ €1

E [ZTBi—Z,T_L(b_a)/2:|

@ I, T3i—1,7—1

SSE| Y @l

t=T3i—2,T
T3i—1,7—1 T3i—2,7—1
m 1 2 m—1 2
§ : M: S
t=1 t=1
nz 1 m—1 m—1
2
+GE[ 731 2r—1 — €rg} 1T}+61 Er73l 2,7—1,(b— a)/2}
L T3i—1,7—1 1 T3i—1,7—1
— m+1 2 m—13rs2
=-E E e gl | + E E e M
2 b—a
t:T3i72 T t:T3i72,T
mfl m—=1 m—
2
+aEle 7—31 2r—1 " €rap_1, T} + € ]E |Z7—31172,T_11(b_a)/2} : (26)

Now let us explain step (a). Since it has been shown earlier that 7,,  — 1 is also a stopping time, we
know from Doob’s stopping theorem that the following stopped process

Tn,7—1
m—1
2 a;
E €t Mtafrﬂ,,T—l )

t=1

is still a martingale. Thus, we can easily derive:

1 T3i—1,7—1 S T3i—2,7—1 1
ST i

t=1 t=1
1 |i3i1,T1 S 2 1 T3i—2,7—1 - 2
- El ) &° Mt] — E[ > etth]
b—a ~ b—a P
1 T3i—1,7—1 1 T3i—2,7—1
:b_&]E[ > e;”lel—b_aE[ > e;’“ME].
t=1 t=1
Substituting Eq[26] back into Eq. 23] we obtain:
T3i,7—1 T3i—1,7—1 T3i—1,7—1
, ' 20 . 4C :
(%) 2 1 m4+1 2 e m—1y,2
EI Z IV L0 “a E Z & lgell” | + b—a)? E Z e M
t=T3i—1,T t=T3i—2,T t=T3i—2,T

m—1 m—1 m—1

Pl 3
+aCh E [7—3, 2 r—1 67'31—1,T]+61

E [ZTSi—z,T*L(b*a)/Z]

o I 734,17 —1

+ E [ATSi—l,T_Ll} + 5 H(Z) Z m-HHg H2

t=T3i—1,T
We sum both sides of the above inequality over the index ¢, yielding:

T34, 7—1

400 20 I, I +oo T3i—1,7—1

A m 1 m
DEI > ¢ ||Vf<et>|2]s(ba+2)ZE > @ gl
=1

t=T3;—1,T

=1 t=73i_2,T
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+<>o T3i—1,7—1
401

2P E e M?
— a

t=T3i—2,T

+a01ef%+(ele+1)0( (b-a)/2), @D

where C(p, (b — a)/2) shown in Lemma|[B.5] Noting the following identity:

400 T3i—1,7—1 T
Yo D E=) Tucsoy-s<uk
i=1t=73;—2,T t=1

we can simplify Eq. [27]to:

T T
" L
D_E | Tion—s->0e; ||Vf<ot>|2] < ( -~ 2) 2 E [Tacson -yt ol
t=1 t=1
107 & .
T a2 B Ma<so0-r- <ol M7
t=1
m—1 —
+aCie; 2 + (61 24 1) C(p, (b—a)/2). (28)

Since both a and b are greater than C,, accordmg to Assumption [3.1) ~ [(d)} we know that when
a < f(6;) — f* < b, it holds that ||V £(6;)||* > n>. Thus, we can transform the first two terms on
the right side of the above inequality as follows:

201L L
<b—1a >ZE Ta<s@o-o<nier” " llgel’]

20,L | L da
G<1+77 ) ( 1 )ZE Ta<so)-r-<net VO
t=1

and

401 - m—1 2
G—a)2 > E [Lacson-s-<nier” M7
t=1

1\ 8LC; m
=G (1 " 772> (b— a1)2 Y E [Tacs@o-re<ne IV 0] -
t=1

Substituting the above two inequalities back into Eq. 28] we obtain:

T T
> E [Ipon)-p- >0 €/ IV £ (0] <C1(a, ) Y T E [Tac pi0,)— pe<iier IV F(0)]1%]
t=1 t=1
+ CQ (a7 b)7 (29)

where

cran=c(1) (2 2) 1+ 2

m—1

Cs(a,b) == aChe, ” +(12 + )0( (b—a)/2).
With this, we complete the proof.

C.7 THE PROOF OF LEMMA [4.2]

Proof. Since C,, < C), (and when 2 < p < 3, we set C, = C,, + 1), we can always insert [p]
([p] = min{n € Z | n > p}) distinct and equidistant real numbers between C,, and C,, such
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that C,) < app) < appj—1 < --- < ay < Cp. Now, using Lemma@wuh the parameters set as
a = ag41,b=ag, andm = k; we obtain the followmg inequality:

T T

> B [Ip 00—+ >an € IV FO) P SCrlansr, ar) D E [Ty ys < po0)— - <anter IV FO)]]
t=1 t=1

+ 02(ak+17ak)7 (30)
Since we clearly have
T

T
> E Marsi<sor—r<ater VO] <D E [Tr00-s-sansaier IV O]
t=1

t=1
we can derive the following inequality:
T T

Y E (L) ro>anet VO] <Crlanty,an) D E Lo o sanaget IV F(60)]1]
t=1 t=1

+ Co(ags1,ak). a3n

Next, we define
T

Qr = ZE 00—+ >ant€e [V F O] -
t=1
It can be seen that Eq. [3T]actually implies the following recursive inequality:

Qr<C1(ak+1,ar)Qr+1 + C2(akt1, ar). (32)
By iterating the above recursive inequality from index k = 1 to k = [p] — 2, we obtain:

[p1—2 [p]—2

k
< | ] Cilaisr,ai) | Q-1+ Z (HC1(ai+17a¢)> Colaktr,ak).  (33)
i=1 i=

Finally, by setting k¥ = [p] — 1 in Eq. [30] we obtain:

T
Qrp1-1<C1(app1; app-1) Z E [H[ahﬂ <f(0r)—f*<apy —1)]6tm IV £(0:) HQ}
=1

+ Ca(arp); app)-1)

Lemmal[B1l e
< 2LCCrlagsapn 1) D €PN+ Calagg ap 1) (34)
t=1

Substituting the above result back into Eq. [33] we obtain:

[p]—2 400
Q< | I Cilaipra) <2L0p01(arp],arp]_1)Zetm +02(amvarm—1)>

i=1 =1
[p]—2

+ Z (H Cl(am,ai)) Co(art1,ax) := C(p, Cy, Cp) < +o0. (35)

Since +_1 €} < 400, we conclude that Zt 1 e{p 1 < +o0. It can be seen that the right-hand side

of Eq. |35]is a constant that depends only on p, C), and C},. We denote this constant by C'(p, Cy,, C,,).
Next, we revert to the original expression for ()1, and we obtain:

T
STE [Ty - > IVF0)]%] < Clo, Cp C).

t=1
Next, we take the limit as 7' — +o0 and apply the Lebesgue’s Monotone Convergence theorem,
yielding:

+oo

D E [y >anel VFGIP] < O, Cy. Cy)-

t=1
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Due to a; < Cp, we have

+oo
> R I - ezl VF0)?] < Clp, Cy, Cp).

t=1

With this, we complete the proof.

O
C.8 THE PROOF OF LEMMA [4.T]
Proof. Itis easy to see that, for any 7' > 1, and M := max{f(61) — f*,Cp}, we have
| s (700~ )] <& [l coyr0- a0 sup (700 )]
1<t<T = 1<t<T
+E I, = f su 0,) — f*
{ Piicr(FO0=F)>M SUP (f(0) — 1 )}
<M+E |:Hsup1<t<T(f(9t)f*)>M Sup (f(et) - f*):l : (36)
= 1<t<T

Qr

Next, we focus on the {27 on the right-hand side of the above inequality, specifically considering
the case where sup, <, (f(6:) — f*) > M. Since we restrict the interval to be between 1 and T,
it follows that the supremum can indeed be attained, and it is simply the maximum value. Let 0+
denote the point where this maximum is attained. Moreover, since M is chosen to be greater than
the initial value f(#;) — f*, we can certainly find ¢** := max{t < t* : f(6;) — f* < M}. We can
then proceed with the following derivation:

Qr =B Lup,, r(r00->m sup (f(0) = f*)}

1<t<T

= E [Laupyc,crtr00-171>01 (F(8) = £7)]

=E .Hsup1St<T(f(9t)—f*)>M (f(Op=r) — f*)}

. . _
+E | Tup, ., g (£(80)— F)> MN[0 )— o <Cy) D, | [(Brp1) = F(62)]
L t=t** |
Qr1
) . _
+E | Lsupy .y or (70— £ > MINLF O 20 D 1 Ocrn) = F(0)]
L t=t** |
Q.o
<M +Qr1+Qrp. 37

Next, we first compute |f(0;41) — f(6:)|, and we obtain:

|f(Or 1) — f(01)] IV F(0c,) T (Br1 — 04)]
= [V£(0:) " (O31 — 00) + (Vf(0c,) = VF(0:) " (Ber1 — 61)]
SAVEO)NOe 1 — Ocll + IV f(Oc,) — V(O 1011 — 04l
IV O — O0ll + L60s1 — 04
=e&l[V(0)llg:ll + Llgel?,

where 0, is a point between 6,1 and ;. Next, we can compute Q0 ; and {27 5. For Q7 1, we have:

Lagrange’s Mea_n Value theorem

Qrp <1+E H[suplgm(f(at>—f*)>M]n[f<ef,w)—f*<cp15t**,1}
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t*—1
+ B | Tsupy <o er (700~ F)> M o) fr<Cyl D, 1 (Brr) = f(9t)]
t=t**+1
T J—
<1+ ZE[At] + ZE (L0, - s>, | f(Brr1) — f(00)]]
t=1 t=1
T ) .
<1+ ZE[At] + <\/é (1 + 77> + Le1 G (1 + 772>) ZE [Hf(9t)—f*20p€t||vf(9t)H2]
t=1 t=1

<1+C(p,1)+ (\/5 (1 + ;) + LeiG (1 + ;)) C(p,Cy, Cp).

The definitions of C(p,1) and C(p, Cy, Cp) can be found in Lemma [B.5|and Lemma 4.2} respec-
tively. As for Q7 o, we have:

T
Qrs < ZE W) ==, | F (Or11) — F(62)]]

t=1

< (\/é <1 + 717) + LeG (1 + 7712)> > R [Tpo0)—przc, e V(0]

< (\/5 (1 + 717) +LetG (1 + 7712)> 2(119, Cy, Cyp).

The definitions of C'(p, C,,, C},) can be found in Lemma Substituting the above estimates for
Q71 and Q7 5 back into Eq. we obtain the estimate for {)7. Then, substituting {27 back into Eq.
[36] we obtain:

E { sup (f(6;) — f*)} <142M+C(p,1)+2 <\/5 (1 + 717) + Le1G <1 + 7712>) C(p,Cy, Cp).

1<t<T

It can be seen that the right-hand side of the above inequality is a constant independent of 7", and
sup;<; <7 (f(0:)— f*) is a monotonically increasing sequence. Therefore, by the Lebesgue’s Mono-
tone Convergence theorem, we obtain:

1 1
E [sup (f(0y) — f*)] <1+42M+C(p,1)+2 <\/5 (1 + n) +LeG (1 - 172)> C(p,Cy, Cyp)

t>1
< +00.

With this, we complete the proof.
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