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ABSTRACT

The behaviour of natural and artificial agents is shaped by underlying reward sys-
tems, which signal rewards based on internal and external factors, driving reward-
oriented actions. However, real-world scenarios often impose constraints that
reward alone cannot capture. While existing inverse (constrained) reinforcement
learning methods can recover either rewards or constraints from demonstrations,
the simultaneous inference of both remains unexplored due to the complexity of
inference and the lack of knowledge of their relationship. To address this gap, we
propose a novel algorithm that simultaneously infers both rewards and constraints
within an adversarial learning framework, where both are updated through a policy
optimisation process guided by expert demonstrations. Crucial to this framework
is the introduction of the “reward-feasibility contrast prior,” a hypothesis that
correlates rewards and constraints. It is inspired by patterns observed in animal
behaviour (particularly meerkats), positing that states with high rewards nearby
are more likely to be associated with weaker feasibility (stronger constraints). Our
experiments on virtual robot control tasks with safety constraints and real-world an-
imal behaviour data with spatio-temporal causal constraints validate our proposed
framework’s effectiveness and the reward-feasibility contrast prior hypothesis. The
results show accurate recovery of rewards and constraints, reflected by strong
alignment with expert demonstrations and a low rate of constraint violations. Addi-
tionally, the performance improvement by embedding this prior into other inverse
constraint inference methods further confirms its general effectiveness.

1 INTRODUCTION

Understanding the motivations behind the behaviour of agents, particularly natural beings, and
designing intelligent agents that behave as desired are key desiderata in artificial intelligence, robotics,
neuroscience (Maia & Frank, 2011) and ethology (Mori et al., 2022). Inverse reinforcement learning
(IRL) (Ng & Russell, 2000) offers a framework for achieving this by recovering the underlying
reward function – often considered the most succinct representation of the objective of the behaviour
(Abbeel & Ng, 2004; Fu et al., 2018) – from demonstrations, making it a powerful tool for interpreting
behaviour and generating synthetic actions in real-world scenarios, such as robot control (Bogert &
Doshi, 2014; Kretzschmar et al., 2016) and animal behaviour modelling (Inga et al., 2017; Ashwood
et al., 2022). However, real-world behaviour is often constrained by factors beyond rewards, such
as avoiding hazards in robot navigation (Bogert & Doshi, 2018) or environmental and cognitive
limitations in humans and animals (Niv, 2009). These constraints cannot be fully captured by rewards
alone and must be considered alongside rewards to fully capture behaviour dynamics.

Inverse constrained reinforcement learning (ICRL) (Scobee & Sastry, 2019; Malik et al., 2021)
offers a promising approach for inferring constraints from demonstrations. However, most existing
ICRL methods rely on the assumption of known reward functions (Malik et al., 2021; Liu & Zhu,
2022), whereas real-world scenarios, such as animal behaviour modelling, often lack such reward
signals. While few approaches assume unknown rewards (Xu & Liu, 2024; Lindner et al., 2024), they
impose linear assumptions on the environment dynamics and reward functions, reducing the problem
to a linear programming-like formulation and involving convex optimisation, which significantly
limits their expressive power and applicability in real-world settings. As IRL and ICRL remain
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Figure 1: The proposed adversarial inverse reward-constraint learning framework simultaneously
updates reward and constraint functions through policy optimisation to reproduce demonstrations.
The reward-feasibility contrast prior, inspired by animal behaviour, emphasises that high rewards
often correlate with high constraints, shaping the correlation between them.

complementary: each inferring either complicated rewards or constraints but not both simultaneously,
which underscores the need for a unified approach.

Unifying IRL and ICRL presents two primary challenges. First, an efficient framework is needed
to infer both complex rewards and constraints simultaneously. While IRL and ICRL have practical
implementations individually (Fu et al., 2018; Malik et al., 2021), their mechanisms are not inherently
designed to handle unknown constraints or rewards, preventing their combined application. Second,
without prior knowledge of the correlations between constraints and rewards, there is a significant risk
of deriving counterfactual solutions that diverge from reality. For example, in behaviour modelling,
multiple reward-constraint combinations might explain the observed demonstrations, but not all align
with the true underlying dynamics.

To address the first challenge, we extend the adversarial IRL framework (Fu et al., 2018) to infer both
rewards and unknown constraints simultaneously. The adversary updates these components based on
agent-generated samples, while the agent’s policy is optimised using these updates, creating a more
integrated inference process. To tackle the second challenge, we investigate the correlations between
rewards and constraints in natural settings, focusing on meerkats due to their complex social structures
(Drewe et al., 2009; Madden et al., 2009; 2011). We extract spatiotemporal transitions from footage
data of a meerkat mob (Rogers et al., 2023), and our analysis reveals that long-distance movements,
despite being less feasible, are likely driven by high rewards. This observation forms the basis of
our hypothesis, the “reward-feasibility contrast prior.” This prior, independent of our proposed
framework, reflects the common understanding that higher rewards are often tied to greater risks
(Lopes, 1987). We formalise this prior as a regularisation term and integrate it into our framework.

Our primary contribution is a novel algorithm that unifies IRL and ICRL, which we name Adversarial
Inverse Reward-Constraint Learning (AIRCL) as illustrated in Figure 1. Unlike prior methods in
IRL and ICRL, AIRCL allows for the efficient and simultaneous inference of complex unknown
rewards and constraints (Section 5), while capturing their correlations through the reward-feasibility
contrast prior (Section 6). We evaluate AIRCL on simulated benchmark robot-control tasks with
safety constraints and real-world animal behaviour modelling tasks with spatio-temporal causal
constraints (Section 7). Our method effectively recovers reward functions and reveals underlying
constraints, evidenced by reproducing behaviours that closely match the demonstrated behaviours
while adhering to the inferred constraints. Experimental results confirm its effectiveness in modelling
natural and robot behaviours and its broad effectiveness. In addition, the performance improvement
of ICRL by embedding the proposed prior further confirms its versatility and general effectiveness.

2 RELATED WORK

Our work is grounded in inverse reinforcement learning (IRL) (Ng et al., 1999), which originates
from inverse optimal control (Kalman, 1964), where the goal is to identify the function optimised
by a given system governed by some known control law. In machine learning, IRL was formally
introduced by Ng & Russell (2000) and applied to imitation learning (Ho & Ermon, 2016), also
known as apprenticeship learning (Abbeel & Ng, 2004), to train agents that perform as well as human
experts. Compared to traditional imitation learning methods like behaviour cloning (Bain & Sammut,
1995) and Dataset Aggregation (DAgger) (Ross et al., 2011), which directly mimic behaviour, IRL
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offers better explainability and robustness, as the recovered reward function not only interprets agents’
motivations but also remains invariant to changes in environmental dynamics (Fu et al., 2018). Early
IRL approaches relied on margin optimisation and assumed linear reward functions (Syed & Schapire,
2007; Syed et al., 2008; Ratliff et al., 2006), though these were ill-defined due to the potential for
multiple reward functions explaining the same demonstrations. Maximum (causal) entropy (MaxEnt)
IRL (Ziebart et al., 2008; 2010) addressed this issue by selecting the reward function that maximises
the entropy of the distribution of demonstrations. Variants of MaxEnt IRL have been developed
for scenarios such as non-optimal demonstrations (Boularias et al., 2011), multi-objective settings
(Babes et al., 2011), and specific Markov decision processes (Dvijotham & Todorov, 2010), as well
as Bayesian (Ramachandran & Amir, 2007) and Gaussian process-based methods (Jin et al., 2015).
However, MaxEnt IRL is computationally challenging for large or continuous state spaces due to its
dependence on forward RL subroutines. Deep learning advancements, such as guided cost learning
(Finn et al., 2016b) and adversarial IRL (AIRL) (Finn et al., 2016a; Fu et al., 2018), resolved this
limitation through sampling-based approximations to MaxEnt IRL, which we also leverage in our
approach. Extensions to meta-learning (Yu et al., 2019b), multi-agent (Yu et al., 2019a), and many-
agent settings (Chen et al., 2023; 2024) have followed. However, these methods focus exclusively on
rewards, overlooking constraints. Our approach builds on this foundation, extending IRL to infer
both rewards and constraints, offering enhanced explainability and practical utility.

This paper is closely related to inverse constrained reinforcement learning (ICRL) (Liu et al., 2024),
which focuses on recovering unknown constraints from demonstrations. ICRL is the inverse problem
of constrained reinforcement learning (CRL) (Tessler et al., 2019), where the goal is to optimise
rewards while satisfying constraints related to safety (Garcıa & Fernández, 2015), security (Lei
et al., 2023; Zhang et al., 2023), fairness (Jabbari et al., 2017), or other considerations (Qin et al.,
2021). The ICRL problem was studied by Scobee & Sastry (2019) in discrete settings, with the term
ICRL introduced by Malik et al. (2021) for continuous state-action spaces. These and other works
(McPherson et al., 2021; Baert et al., 2023) use the MaxEnt IRL framework to identify constrained
state-action pairs. In addition to MaxEnt IRL, alternative methods include linear programming
(Lindner et al., 2024), robust optimisation (Xu & Liu, 2024), Bayesian methods (Papadimitriou et al.,
2022), and generative models (Xu & Liu, 2023), with some ICRL extensions addressing multi-agent
scenarios (Xu & Liu, 2024; Liu & Zhu, 2024). However, many ICRL approaches assume known or
linear reward functions, limiting their practical use in real-world applications. Our work overcomes
this limitation by enabling simultaneous inference of both rewards and constraints without these
restrictive assumptions.

Our research is also connected to the literature on human and animal behaviour modelling using
reinforcement learning, both in physical (Ashwood et al., 2020; Mori et al., 2022) and psychological
contexts (Niv, 2009; Maia & Frank, 2011; Gershman & Daw, 2017). Unlike previous studies focusing
on directly building reinforcement learning methods to reproduce human or animal-like behaviour,
our approach seeks to uncover intuitive clues about the correlation between rewards and constraints
from observed meerkat behaviour in their habitat. Specifically, from the phenomenon of relatively
frequent long-distance movements, we formalise the reward-feasibility contrast prior, which serves
as a critical regularisation component in our proposed framework.

3 PRELIMINARIES

3.1 INVERSE REINFORCEMENT LEARNING

Reinforcement learning (RL) is defined on a discrete-time Markov decision process (MDP) M =
(S,A, P, r, γ, T ), where S is the state space, A is the action space, P (s′|s, a) is the state transition
probability upon an action, r(s, a) ∈ R is the reward function, γ ∈ (0, 1) is the discount factor,
and T > 0 is the time horizon. A trajectory τ = (s0, a0, . . . , sT−1, aT−1) is a sequence of state-
action pairs, and its cumulative reward is denoted by r(τ) =

∑T−1
t=0 γtr(st, at). A policy π(a|s)

defines probabilistic action choices in a given state. Denote π(τ) =
∏T−1

t=0 P (st+1|st, at)π(at|st)
the probability of a trajectory under the policy π. Forward RL seeks to find an optimal policy that
maximises the expected return Jr(π) = Eτ∼π[r(τ)], but there might be more than one optimal policy.
Maximum Causal Entropy (MaxEnt) RL solves this ambiguity by augmenting the expected return
with a causal entropy (Ziebart et al., 2010) term H(π) = Eτ∼π[

∑T−1
t=0 −γt log π(at|st)], i.e., the
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objective is to find a policy to maximise Jr(π) + βH(π), which is more likely to be unique. Here,
β > 0 controls the relative importance of reward and entropy and, without loss of generality, it is
often assumed β = 1 (Yu et al., 2019b).

Suppose the reward function is unknown, but we have a set of demonstrated trajectories sampled
from an unknown expert policy πE . Inverse RL (IRL) aims to infer a reward function such that when
integrated with M\ r (M without r), the optimal policy induced by the learned reward function will
generate the same behaviour as demonstrations. In MaxEnt RL, the probability of a trajectory p(τ)
will follow a power law w.r.t. r(τ), i.e., the probability of a trajectory p(τ) is proportional to the
exponential of r(τ) (Haarnoja et al., 2017), MaxEnt IRL (Ziebart et al., 2008; 2010) thus reduces to
the following maximum likelihood estimation problem for a parameterised reward function rθ:

pθ(τ) =
1

Zθ
exp(rθ(τ)), max

θ
Eτ∼πE

[log pθ(τ)] = Jθ(πE)− logZθ. (1)

Here, Zθ =
∫
exp(rθ(τ))dτ is the partition function of the trajectory distribution pθ(τ), which is

intractable to compute for large or continuous states-action spaces.

Finn et al. (2016a); Fu et al. (2018) introduced Adversarial IRL (AIRL) as a sampling-based approx-
imation to MaxEnt IRL. AIRL reframes the MaxEnt IRL problem using a generative adversarial
network setup (Goodfellow et al., 2014). It uses a discriminator Dθ (a binary classifier) and a
parameterised policy πω as an adaptive sampler. The discriminator is in a particular form:

Dθ(s, a) = exp(fθ(s, a))/(exp(fθ(s, a)) + πω(a|s)), (2)
where fθ will serve as the learned reward function. The update of Dθ is interleaved with the update
of πω: Dθ is trained to update the reward function by distinguishing between the trajectories sampled
from the expert and the adaptive sampler:

max
θ

Eτ∼πE
[logDθ(s, a)] + Eτ∼πω

[1− logDθ(s, a)], (3)

while πω is updated to maximise rewards with entropy: maxω Jθ(πω) + H(πω). At optimality,
Dθ(s, a) will converge to 0.5 for all (s, a) pairs and fθ will recover the true reward up to a constant,
under certain conditions (Fu et al., 2018).

3.2 INVERSE CONSTRAINED REINFORCEMENT LEARNING

Constrained RL (CRL) operates on a constrained MDP (CMDP) Mc = (S,A, P, r, γ, T, c, α)
that extends an MDP M with a cost function c : S × A → R and a budget α ≥ 0 (Altman,
2021). The goal is to find a policy that maximises rewards Jr(π) while ensuring the expected costs
Jc(π) = Eτ∼π[c(τ)] ≤ α, where c(τ) =

∑T−1
t=0 c(st, at). When α = 0, hard constraints apply

and all state-action pairs with non-zero (positive) costs are strickly prohibited to visit. The cost
function thus reduces to a binary function: c(s, a) ∈ {0, 1}, where 1 indicates any positive costs.
Hard constraints simplify optimisation while capturing safety or other broad constraints imposed by
physical laws. For α > 0, soft constraints allow limited violations within the budget α. Inverse CRL
(ICRL) aims to recover the cost function from expert demonstrations such that the optimal policy
under Mc \ c reproduces the demonstrations, typically assuming a known reward r. ICRL uses the
MaxEnt principle and focuses on hard constraints, introducing a feasibility function δϕ(s, a) ∈ {0, 1}
(1 for feasible and 0 for not) and reducing to the following problem:

pϕ(τ) =
1

Zϕ
exp(r(τ)) · δϕ(τ), max

ϕ
Eτ∼πE

[log pϕ(τ)] = max
ϕ

[log δϕ(τ)]− logZϕ. (4)

Here, δϕ(τ) =
∏T−1

t=0 δϕ(st, at) denotes the feasibility of a trajectory, i.e., τ is feasible if and
only if δϕ(st, at) = 1,∀t < T . The partition function Zϕ =

∫
exp(r(τ)) · δϕ(τ)dτ depends

only on the feasibility function parameter ϕ. A cost function can be obtained from δϕ(s, a) by
c(s, a) = 1− δϕ(s, a). For compatibility with gradient-based optimisation, in practice, ICRL often
models δϕ(s, a) as a continuous function in the range (0, 1) and uses a very small α, i.e., it solves a
soft version of the problem as an approximation to the hard version (Malik et al., 2021).

4 PROBLEM FORMULATION

Our goal is to integrate IRL and ICRL into a unified framework capable of inferring both unknown
rewards and constraints from demonstrations. We start by formalising the problem on CMDP Mc
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with hard constraints, following the ICRL convention. Suppose neither the reward nor cost function
is known, but we have a set of demonstrations DE = {τ} sampled from an expert policy πc

E . We aim
to infer both a reward function and a cost function, such that when integrated with Mc \ {r, c}, the
optimal policy reproduces the demonstrations. To achieve this, we introduce two key desiderata:

Desideratum 1. Simultaneous and efficient inference of rewards and constraints.
Desideratum 2. Prior knowledge of the correlations between rewards and constraints.

The first desideratum ensures efficient simultaneous inference of both rewards and constraints, while
the second incorporates prior knowledge of their relationship, embedding it into the inference process
to align with observed behaviours. Without this, inferred functions may deviate from the ground
truth. In Section 5, we address the first desideratum by developing an adversarial learning framework
for joint reward-constraint inference, and in Section 6, we embed insights from animal behaviour to
inform the reward-constraint correlations.

5 ADVERSARIALLY SIMULTANEOUS REWARD-CONSTRAINT INFERENCE

5.1 EXTENDING MAXENT IRL WITH TRAJECTORY-LEVEL FEASIBILITY FUNCTIONS

We build our model on CMDP while assuming both the reward and cost functions are unknown.
Following the ICRL convention, we consider hard constraints and use a binary feasibility function to
represent constraints. Previous ICRL methods define a feasibility function, δ(s, a), on state-action
pairs (Malik et al., 2021; Xu & Liu, 2023). However, intuitively, states/actions within a trajectory can
be causally related; one state/action may depend on or influence others, suggesting that constraints
may exist not only for individual states/actions but also among them. This implies that the overall
feasibility of a trajectory, δ(τ), is not simply the product of independent δ(st, at) evaluations, but
rather a more complex function that incorporates the sequence of those over time. To capture this
complexity, we use a feasibility function δ̄(τ) that operates directly at the trajectory level, providing
greater expressive power. We experimentally examine this trajectory-centre definition in Section 7.

Under the MaxEnt IRL framework with rθ(s, a) and δ̄ϕ(τ) ∈ {0, 1} being the parameterised reward
and trajectory-level feasibility functions, the generation process of trajectories induced by an optimal
policy can be characterised by the following distribution:

pθ,ϕ(τ) =
1

Zθ,ϕ
exp(rθ(τ)) · δ̄ϕ(τ), Zθ,ϕ =

∫
exp(rθ(τ)) · δ̄ϕ(τ) dτ. (5)

Given a set of expert demonstrations DE , the problem of inferring rθ and δ̄ϕ can be cast as a maximum
likelihood estimate problem w.r.t. the probability distribution pθ,ϕ(τ) defined above:

max
θ,ϕ

Eτ∼DE
[log(pθ,ϕ(τ))] = Eτ∼DE

[
rθ(τ) + log δ̄ϕ(τ)

]
− logZθ,ϕ. (6)

5.2 BUILDING THE ADVERSARIAL LEARNING FRAMEWORK

For efficiency, we want to adopt the idea of AIRL to recast the problem in Eq. (6) as optimising a
generative adversarial network and solve it by interchangeably updating a discriminator Dθ,ϕ and a
sampler qω,ϕ until Dθ,ϕ cannot distinguish between demonstrations and the behaviour generated by
qω,ϕ. Since we adopt a trajectory-level feasibility function, Dθ,ϕ should also be trajectory-centric
and we take a particular form for it, resembling its counterpart in AIRL:

Dθ,ϕ(τ) =
(
exp(fθ(τ)) · δ̄ϕ(τ)

) / (
exp(fθ(τ)) · δ̄ϕ(τ) + qω,ϕ(τ)

)
. (7)

The discriminator is trained to maximise the following objective to distinguish between the demon-
strated and generated trajectories:

Eτ∼πc
E
[logDθ,ϕ(τ)] + Eτ∼qω,ϕ

[log(1−Dθ,ϕ(τ))]. (8)

In principle, the sampler qω,ϕ can be any function approximator, such as a Gaussian process or a
neural network, that can predict the probability of a trajectory. Specifically, we use a form for qω,ϕ

that factorises the joint effect of both the policy and constraints in trajectory generation:

qω,ϕ(τ) = πω(τ) · δ̄ϕ(τ). (9)
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It generates a trajectory using the policy πω only if δ̄ϕ(τ) = 1, ensuring that the trajectory meets
the constraints, and only valid, constraint-compliant trajectories are sampled during training. This
form offers two key advantages: First, it simplifies optimisation by allowing the use of existing
forward RL methods to train πω to maximise entropy-regularised rewards: maxω Jθ(πω) +H(πω).
Second, since πω and δ̄ϕ are independent, δ̄ϕ cancels out in the discriminator Dθ,ϕ, leaving it to
dependent solely on the reward: Dθ(τ) = exp(fθ(τ))/(exp(fθ(τ)) + πω(τ)), reverting to its AIRL
form, which simplifies the calculation of gradients we will introduce below.

At optimality, Dθ(s, a) will converge to 0.5 for all (s, a) pairs, indicating that fθ will effectively
function as the reward. As a result, the trajectory sampler qω,ϕ(τ) = exp(fθ(τ)) · δ̄ϕ(τ) will approach
the optimal trajectory distribution pθ,ϕ(τ) in Eq. (5). This, in turn, leads to solving the target problem
in Eq. (6), achieving maximum likelihood estimation for reward-constraint inference.

5.3 SIMULTANEOUS REWARD-CONSTRAINT INFERENCE

To enable gradient-based updates for both the reward and feasibility functions, we follow the ICRL
approach by approximating hard constraints with a continuous feasibility function δ̄(τ) ∈ (0, 1), and
imposing a small budget α as the constraint for the discriminator objective in Eq. (8). Incorporating
this constraint into the objective results in the following Lagrangian:

Ldis(θ, ϕ, λ) = Eτ∼πc
E
[logDθ(τ)] + Eτ∼qω,ϕ

[log(1−Dθ(τ))]− λ(Eτ∼πω [δ̄ϕ(τ)]− α). (10)

Instead of iteratively updating the Lagrange multiplier λ using primal-dual methods, we fix λ = 1 to
take the budget term as a penalty, improving efficiency and simplifying Ldis(θ, ϕ, λ) to Ldis(θ, ϕ).

Taking the gradient of the final discriminator’s objective Ldis(θ, ϕ) w.r.t. the reward parameter θ and
estimate it on expert demonstrations DE and generated trajectories DS gives ∂

∂θLdis(θ, ϕ) =

Eτ∼DE

[(
1− exp(fθ(τ))

exp(fθ(τ)) + πω(τ)

)
∂fθ(τ)

∂θ

]
− Eτ∼DS

[
exp(fθ(τ))

exp(fθ(τ)) + πω(τ)

∂fθ(τ)

∂θ

]
. (11)

Similarly, the gradient of Ldis(θ, ϕ) w.r.t. the feasibility parameter ϕ can be estimated as

∂

∂ϕ
Ldis(θ, ϕ) = Eτ∼DS

[
πω(τ)

1 + exp(fθ(τ))/πω(τ)

∂δ̄ϕ(τ)

∂ϕ

]
− Eτ∼DP

[
∂δ̄ϕ(τ)

∂ϕ

]
, (12)

where DP is a set of trajectories sampled using the policy πω(τ). The detailed derivations of Eq. (11)
and Eq. (12) are given in Appendix A.

6 REWARD-FEASIBILITY CONSTRAST PRIOR DRAWN FROM ANIMAL
BEHAVIOUR

While the adversarial learning framework facilitates the simultaneous and efficient inference of
rewards and constraints, it lacks the ability to incorporate prior knowledge about the correlation
between the two. This limitation can lead to inferred rewards and constraints deviating from the
ground truth. To address this, we seek insights from animal behaviour, particularly meerkats, due to
their complex social structures (Drewe et al., 2009; Madden et al., 2009; 2011), which offer a natural
context for understanding the reward-constraint relationship. By analysing footage of a meerkat mob
at a zoo (Rogers et al., 2023), we extract spatio-temporal transitions between different behaviours.
The overview of our data analysis is shown in Figure 2, with detailed procedures in Appendix B.

Our analysis reveals an interesting phenomenon: most behaviour transitions occur over short distances,
with transition frequencies decreasing as distance grows. However, an inflexion point emerges at
certain high distances, where transitions are more frequent than expected. This suggests that long-
distance movements, typically associated with low feasibility (high constraints), may occur due to
strong incentives (high rewards). We hypothesise that these movements are driven by high rewards,
which outweigh the constraints. This phenomenon, termed the “reward-feasibility contrast prior,”
reflects the common understanding that higher returns often come with greater risks.

Based on this hypothesised prior, we design a regularisation term for the discriminator objective:

C(θ, ϕ) = φ · Eτ∼DE∪DS

[
(fθ(τ)− δ̄ϕ(τ))

2
]
, (13)
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Figure 2: Illustrations, statistics and analysis of the meerkat behaviours. (a) An aerial view of the
meerkat’s habitat. (b) The habitat is divided into various areas shaded with different colours. (c) The
histogram of behaviour transition distances with its trend line and cumulative values. An inflexion
point is observed at a high distance, suggesting that long-distance transitions are likely driven by
higher rewards. (d) The average distance a meerkat moves during a behaviour transition. (e) The
relative frequency of transitions by the starting behaviour, highlighting two long-distance transitions
beyond the inflexion point with bold boxes. (f) Detailed illustrations with distance and relative
frequency values for two examples of long-distance transitions. (g) Numerical encoding for each
behaviour. Note that “moving to an area” is treated as a distinct behaviour because movement does
not always lead to reaching the intended destination. The meerkat may change course midway, stop,
or transition into a different behaviour before arriving.

where φ > 0 is a constant coefficient. It encourages rewards and feasibilities to be polarised,
enhancing their disparity. To enable gradient-based optimisation, it is framed as an expectation. Note
that this prior is independent of our proposed framework and can be embedded into existing inverse
constraint inference methods, such as ICRL, to enhance their performance, as evidenced by our
experimental results in the next section. In addition, drawing on (Malik et al., 2021), we incorporate
the following regularisation term to encourage the search for the minimum constraint that can match
the expert trajectory while avoiding overfitting during training: κ · Eτ∼DS

|1− δ̄ϕ(τ)|, where κ > 0
is the coefficient. As a summary, the entire training process is presented in Algorithm 1.

7 EXPERIMENTS

We aim to address two key questions through our experiments: (1) Can AIRCL accurately infer reward
functions and constraints from observed behaviour? (2) Can the reward-feasibility contrast prior be
generalised to other environments beyond animal behaviour modelling, and can it be integrated into
other algorithms to enhance their performance?

We evaluate AIRCL across various constrained environments, including a grid world with random
obstacles, three simulated robot control tasks with safety constraints using the MuJoCo physics

7
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Algorithm 1 Adversarial Inverse Reward-Constraint Learning

1: Input: Expert trajectories DE = {τ}. Initial parameters of fθ(τ), δ̄ϕ(τ) and πω(τ).
2: repeat
3: Generate set of sampled trajectories DS using the sampler qω,ϕ(τ) = πω(τ) · δ̄ϕ(τ).
4: Generate set of sampled trajectories DP using the policy πω(τ).
5: Update θ to increase Ldis(θ, ϕ) with gradients ∂

∂θLdis (θ, ϕ) estimated on DE and DS .
6: Update ϕ to increase Ldis(θ, ϕ) with gradients ∂

∂ϕLdis (θ, ϕ) estimated on DS and DP .
7: Update ω by using the forward RL methods with the reward function rθ(τ).
8: until Convergence or manual termination
9: Output: Reward function fθ(τ), feasibility function δ̄ϕ(τ) and policy πω(τ).

engine (Liu et al., 2022), and real-world social animal behaviour modelling (Rogers et al., 2023),
which exhibit spatio-temporal causal constraints (Gendron et al., 2023). We compare our method
against the following state-of-the-art imitation learning, IRL and ICRL methods:

• Generative Adversarial Constraint Learning (GACL) (Liu et al., 2022) follows the
design of Generative Adversarial Imitation Learning (Ho & Ermon, 2016), training a policy
that mirrors expert behaviour while inferring constraints using a modified reward model,
r′(s, a) = r(s, a) + log δ(s, a), where infeasible actions/states are penalised with −∞.

• Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018) uses an adversarial
process to learn robust reward functions against changes in environment dynamics.

• (Variational) Inverse Constrained Reinforcement Learning (ICRL∗) is our implemen-
tation, combining the efficient optimisation of vanilla ICRL (Malik et al., 2021) with the
ability of Variational ICRL (Liu et al., 2022) to infer the distribution of feasibility p(δ|s, a),
capturing the epistemic uncertainty. We achieve this by removing the small budget constraint
α in ICRL and inferring a continuous feasibility function δ(s, a) ∈ (0, 1), allowing for a
more flexible feasibility distribution. Note that ICRL∗ requires known reward functions.

We also introduce variations of ICRL∗ and AIRCL to assess the generality of the reward-constraint
contrast prior, the expressiveness of trajectory-level feasibility, and the advantages over linear as-
sumption methods (Lindner et al., 2024): ICRL with the contrast prior (ICRL+prior), AIRCL without
the contrast prior (AIRCL−prior), AIRCL with linear reward and constraint functions (AIRCLlinear),
and AIRCL with the state-action-level feasibility function (AIRCLsa). We use proximal policy opti-
misation (PPO) (Schulman et al., 2017) for policy optimisation in all methods. Key hyperparameters
and architecture details are provided in Appendix D.

7.1 GRID WORLD

To preliminarily validate AIRCL, we test it in a 6×6 grid world environment to evaluate its ability
to recover the reward and feasibility functions. The environment, shown in Figure 3, includes five
obstacles, and the agent’s goal is to reach the destination from the start without hitting obstacles
while minimising distance. Following (Xu & Liu, 2023), we add a 1% chance of random actions to
introduce stochasticity into the agent’s behaviour.

We evaluate the algorithm’s effectiveness in recovering rewards and constraints using the follow-
ing two metrics: (1) Reward-Constraint Accuracy (RCAcc): Following (Gleave et al., 2022),
we evaluate the accuracy of recovered rewards and constraints by the discriminator’s ability to
differentiate expert and generated trajectories. A value closer to 1 indicates that the restored re-
ward function, feasibility function, and policy enhance the discriminator’s judgment accuracy. It is
calculated by RcAcc = Eτ∼DE

[1τ predicted to be true]. (2) Constraint Violation Rate (VioRate):
It measures the proportion of timestamps where predefined constraints are violated in generated
trajectories. A lower rate indicates better adherence to constraints. Note that our AIRCL uses the
sampler qω,ϕ(τ) = πω(τ)δ̄ϕ(τ) to generate trajectories. We calculate this constraint violation rate by
ViolRate = 1

NT

∑N
i=1

∑T−1
t=0 1violation at (st,at) of τi .

After 10 independent trials, we measure the discriminator accuracy and constraint violation rate
for AIRCL and baseline methods. Table 1 presents the average and standard deviation for these
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Grid World Swimmer Walker Inverse Pendulum

Figure 3: In the grid world, dark grids are obstacles, and the yellow line shows the optimal trajectory.
In MuJoCo virtual robot control tasks, Swimmer and Walker have restricted torque, and Inverse
Pendulum has prohibited positions. Constraints are unknown to agents before training.

Table 1: Discriminator accuracy and constraint violation rates across grid world and robot tasks.

Method Reward-Constraint Accuracy Constraint Violation Rate

Grid World Swimmer Walker Pendulum Grid World Swimmer Walker Pendulum

AIRL 0.625±0.078 0.500±0.100 0.501±0.001 0.553±0.054 0.095±0.026 0.614±0.035 0.936±0.006 0.321±0.281
GACL 0.828±0.056 0.635±0.104 0.755±0.043 0.565±0.128 0.073±0.026 0.623±0.007 0.942±0.002 0.432±0.151
ICRL∗ – – – – 0.055±0.046 0.626±0.028 0.940±0.001 0.405±0.213
ICRL∗

+prior – – – – 0.051±0.039 0.605±0.013 0.940±0.003 0.400±0.221
AIRCL 0.829±0.026 0.769±0.131 0.506±0.011 0.851±0.131 0.071±0.036 0.589±0.030 0.936±0.005 0.214±0.244
AIRCL−prior 0.635±0.201 0.744±0.100 0.510±0.013 0.635±0.201 0.081±0.036 0.589±0.027 0.938±0.006 0.234±0.222
AIRCLlinear 0.805±0.019 0.768±0.109 0.512±0.009 0.806±0.169 0.079±0.020 0.621±0.006 0.936±0.003 0.214±0.132
AIRCLsa 0.820±0.027 0.753±0.082 0.508±0.008 0.658±0.195 0.082±0.042 0.627±0.030 0.939±0.004 0.348±0.218

metrics. AIRCL outperforms other methods except for two ICRL∗ variants, with GACL showing
slightly inferior results, answering the question (1). The superior performance of ICRL∗ is expected
due to its access to ground-truth rewards. AIRCL significantly outperforms AIRL in both metrics,
demonstrating strong constraint recovery abilities in discrete environments. Removing the prior led to
declines in both metrics, highlighting its importance in AIRCL and thus answering the question (2).

7.2 ROBOT CONTROL

We test AIRCL and baseline algorithms in the MuJoCo environment using three robotic control tasks:
Swimmer, Walker, and Inverse Pendulum, which are designed in (Liu et al., 2022) as benchmarks for
ICRL. Safety constraints, such as torque and position constraints, are introduced, as shown in Figure 3.
To simulate real-world uncertainties, random noise is added, and each experiment is repeated ten
times with different random seeds, with results summarised in Table 1.

We use the same evaluation metrics as in grid worlds. In general, all methods demonstrate decreased
performance on robot tasks compared to grid worlds, due to the more complex dynamics in robotic
environments. For question (1), AIRCL outperforms the baselines in most tasks, particularly in the
Inverse Pendulum, showing strong constraint adherence and generalisation capabilities compared
to GACL. However, in the Walker task, the complex dynamics result in lower performance across
all algorithms, though AIRCL still demonstrates competitive constraint adherence. For question
(2), the reward-feasibility contrast prior proves effective, as ICRL∗ with the prior outperforms the
version without it. Additionally, AIRCL’s non-linear reward functions and trajectory-level feasibility
offer clear advantages over simpler, linear models, especially in more complex environments. This
underscores the benefits of trajectory-level feasibility and non-linear reward functions. In the Walker
task, the model without the prior performs better, highlighting the limitation that the prior may not be
applicable in every setting, especially in environments where such polarisation between rewards and
constraints does not align with the task dynamics.

7.3 MEERKAT BEHAVIOUR MODELLING

Our study aims to model the social behaviours of meerkats by exploring the causal relationships
driving their actions in a controlled environment. The meerkat behaviour recognition dataset (Rogers
et al., 2023), comprising twenty 12-minute annotated videos, provides a comprehensive view of the
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Figure 4: The causal constraint discrepancies between trajectories generated using three generative
adversarial learning algorithms: AIRL, GACL, AIRCL, and real trajectories. These discrepancies are
quantified using the PCMCI algorithm and represented by heatmaps. Lighter colours indicate smaller
discrepancies in state transitions. The horizontal and vertical axes represent the codes for 25 initial
states and 25 destination states, which can be looked up in Figure 2.

meerkats’ actions at each timestep. A major challenge in behaviour modelling is identifying the true
constraints that govern these actions, especially when the behavioural dynamics are influenced by
hidden causal factors. To address this, we utilise the PCMCI algorithm (Runge et al., 2019) to detect
causal relationships in time-series data. The strength of these relationships is visualised through
heatmaps, which help us assess the actual behavioural constraints imposed on the meerkats’ actions.
By generating behavioural trajectories using three different generative adversarial algorithms (GACL,
AIRL, and AIRCL), we employ PCMCI to analyse the causal structures within these trajectories.
These generated causal heatmaps are then compared to those derived from real meerkat data. Detailed
justifications for using PCMCI and the original causal constraint heatmaps are given in Appendix C.
We exclude ICRL∗ variants from our analysis due to their reliance on ground-truth rewards, which
are unavailable in real-world animal behaviour scenarios, making them unsuitable for this context.

The resulting heatmaps, presented in Figure 4, reveal the similarity between the generated causal
constraints and those observed in the actual data. A comparison of the absolute differences between
the generated and real causal constraints provides a clear picture of each algorithm’s performance.
AIRCL consistently demonstrates smaller deviations from the ground-truth constraints, indicating
its effectiveness in capturing the underlying causal relationships more accurately than both GACL
and AIRL. Although minor discrepancies are observed in certain state transitions, AIRCL still
achieves superior constraint recovery overall, particularly in modelling complex behavioural patterns.
The ablation study, where we remove the reward-constraint contrast prior, further emphasises the
critical role of this prior in improving constraint recovery. The absence of the prior leads to more
significant deviations, especially in key transitions, underscoring its importance for capturing subtle
causal relationships in the behaviour of animals like meerkats. These findings demonstrate AIRCL’s
strength in recovering causal relationships in complex behavioural data, making it a promising tool
for advancing the accuracy of behaviour prediction models in real-world scenarios.

8 CONCLUSION

In this work, we introduce AIRCL, a method for simultaneously inferring both unknown reward and
constraint functions from expert demonstrations. We demonstrate AIRCL’s effectiveness in both
simulated robotic tasks with continuous states and actions, as well as real-world animal behaviour
modelling, where it outperforms baseline methods in reward-constraint recovery and causal inference.
The proposed reward-feasibility contrast prior, inspired by animal behaviour, proves critical, as its
removal often leads to significant performance decline.

In a broader context, our results highlight the importance of integrating prior knowledge into inverse
reward-constraint inference, as it significantly improves constraint recovery, though a prior may not
be applicable in every setting. AIRCL’s success across diverse tasks suggests the potential for broader
applications, particularly in complex, high-dimensional environments. Future work could explore
extending AIRCL to more diverse scenarios, enhancing its generalisation and scalability.
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A DETAILED DERIVATION OF THE GRADIENTS OF DISCRIMINATOR’S
OBJECTIVE FUNCTION

We present the detailed derivation of gradients of the discriminator objective in Eq. (10). Note that
we exclude the regularisation terms introduced in Section. 6, whose gradients are straightforward to
calculate. Since the reward parameter θ is only involved in the first and second terms of Ldis(θ, ϕ),
its gradient w.r.t. θ is calculated by:

∂

∂θ
Ldis(θ, ϕ) =

∂

∂θ
Eτ∼πc

E
[logDθ(τ)] +

∂

∂θ
Eτ∼qω,ϕ

[log(1− logDθ(τ))]

=
∂

∂θ
Eτ∼DE

[
log

exp(fθ(τ))

exp(fθ(τ)) + πω(τ)

]
+

∂

∂θ
Eτ∼DS

[
log

πω(τ)

exp(fθ(τ)) + πω(τ)

]
= Eτ∼DE

[
∂

∂θ
fθ(τ)−

∂

∂θ
log(exp(fθ(τ)) + πω(τ))

]
−

Eτ∼DS

[
∂

∂θ
log(exp(fθ(τ)) + πω(τ))

]
= Eτ∼DE

[(
1− exp(fθ(τ))

exp(fθ(τ)) + πω(τ)

)
∂

∂θ
fθ(τ)

]
−

Eτ∼DS

[
exp(fθ(τ))

exp(fθ(τ)) + πω(τ)

∂

∂θ
fθ(τ)

]
.

(14)

The feasibility function parameter ϕ is only involved in the second and third terms of Ldis(θ, ϕ), and
thus its gradient w.r.t. ϕ is calculated by:

∂

∂ϕ
Ldis(θ, ϕ) =

∂

∂ϕ
Eτ∼qω,ϕ

[log(1−Dθ(τ))]−
∂

∂ϕ
Eτ∼πω

[
δ̄ϕ(τ)− α

]
=

1

|DS |

|DS |∑
i=1

[
log(1−Dθ(τi))

∂

∂ϕ
qω,ϕ(τi)

]
− Eτ∼DP

[
∂δ̄ϕ(τ)

∂ϕ

]

=
1

|DS |

|DS |∑
i=1

[
πω(τi)

exp(fθ(τi)) + πω(τi)

∂

∂ϕ
πω(τi)δ̄ϕ(τi)

]
− Eτ∼DP

[
∂δ̄ϕ(τi)

∂ϕ

]
= Eτ∼DS

[
πω(τ)

1 + exp(fθ(τ))/πω(τ)

∂

∂ϕ
δ̄ϕ(τ)

]
− Eτ∼DP

[
∂

∂ϕ
δ̄ϕ(τ)

]
.

(15)

B MEERKAT DATA PROCESSING

To obtain the meerkat behaviour, two GoPro Max cameras are set on the back wall of the enclosure,
one focusing on the replica termite mound in the centre of the enclosure and the other overlooking
the foraging area and entrance to the enclosure, which are hubs of activity (Figure 5). For example,
the mound is a popular area for guarding behaviour, and the foraging area is popular when meerkats
are looking for food. The cameras are set to automatically record videos every 12 minutes, and the
contents recorded are filtered, which exclude the fragments that include visitors. Videos with many
individuals, social interactions, and other interesting behaviours were selected for the annotation
(Figure 6). During the annotation process, the computer vision annotation tool CVAT version 2.3
is utilised to sign the behaviour in the videos. Besides, masking techniques are used to protect the
privacy of visitors and maintain the vision information of human activities at the same time. The adult
and baby meerkat are annotated specifically in the dataset, with annotators using a small bounding
box to note the baby meerkat’s positions relative to the adults. Through multiple checks as well as
using scripts to automatically detect the error, the accuracy and the consistency of the annotations are
ensured (Rogers et al., 2023).

In our research, the dataset is organised according to the unique identifiers of individual meerkats, and
every meerkat’s behaviour is recorded over different timestamps. Specifically, the information of each
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Camera view of the entrance and forag-
ing area

Camera view of the mound and backside
of the enclosure

Figure 5: Example images of the camera views.

Allogrooming. Carrying a pup. Digging. Foraging.

Grooming. High sitting/standing. Interacting with an object. Interacting with a human.

Interacting with a pup. Low sitting/standing. Lying. Moving.

Playfighting. Raised guarding. Sunbathing.

Figure 6: Examples of the meerkat behaviours.

timestamp includes four different parts: the identifier, the scene the meerkat is located in, the action
and the three-dimensional coordinate point. In order to uniform the length of time series for analysis,
we process the dataset, retaining only complete sequences of every 30 timestamps as independent
trajectories, and delet those with fewer than 30 timestamps. This method can not only simplify
the structure of data but also facilitate further analysis. Through this data processing approach, we
construct a meerkat dataset that includes both state and action information in each timestamp.

We divide each area based on meerkat’s activity range and labelled each area with a unique colour to
distinguish its scope, as shown in Figure 8. After obtaining the Meerkat’s behavioural dataset, we
analyse the transition frequency of each area and observe that in certain areas, the activity frequency is
particularly high (Figure 7). We are inspired by this to explore whether meerkat’s various behaviours
are driven by certain causal constraints.

C CAUSAL STRUCTURE DISCOVERY IN MEERKAT BEHAVIOUR

PCMCI Algorithm is designed to detect and quantify causal relationships in large-scale nonlinear time
series datasets (Runge et al., 2019). Combined with the linear or non-linear conditional independence
tests and causal discovery algorithm, PCMCIA can effectively improve the ability to recognise ground
truth causal relationships. For example, in the meerkat behaviour dataset characterised by time series
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Frequency heatmap of the entrance and
foraging area

Frequency heatmap of the mound and
backside of the enclosure

Figure 7: The frequency of meerkat activity in various regions corresponds to the heatmap from the
camera perspective. The areas where meerkat is frequently active are highlighted.

Regional division of the entrance and
foraging area

Regional division of the mound and
backside of the enclosure

Figure 8: Referring to Figure 2 in the main text, we have labelled blocks of different colours for each
area to visually illustrate the division of meerkat activity zones.

data, PCMCI can be used to analyse the causal effects between state transitions, in case to reflect the
interaction between states. In this context, behaviour transitions with higher causality might have
lower constraints, while those with lower causality could show stronger constraints. This indicates
that even if some state transitions offer high rewards, there may be a large cost to take the action.

In the application of PCMCI to analyse the meerkat behaviour dataset, the output is a directed graph
of all states, where the colour of each edge represents the causal strength between the starting state
and ending state. Considering that there are a total of 25 states, using the directed graph may cause
visual confusion and make it difficult to clearly display the relationships between states. Therefore,
we select heatmap to present the result of the PCMCI algorithm, and colour variations are used to
display the causal strength between different states, therefore allowing a clearer display of causal
differences (Figure 9).

D EXPERIMENT SETTINGS

We utilise the open-source library from Gleave et al. (2022), which provides high-quality, reliable,
and modular implementations of various reinforcement learning and imitation learning algorithms.
Built on Stable Baseline 3 (Raffin et al., 2021), the imitation library offers accurate experimental
baselines, allowing us to easily train and compare a range of algorithms. We extend the library
by incorporating our algorithm and modifying specific methods related to generative adversarial
algorithms to support the implementation of a trajectory-based discriminator as our design.

In addition, we refer to the constrained environments and benchmarking methods designed by Liu
et al. (2022) to evaluate our algorithm and baselines based on metrics of discriminator accuracy and
constraint violation rate. Each constraint is customly designed to ensure that the agent performs safe
and controlled actions within the defined parameters.

Furthermore, we set unique hyperparameters for each environment, optimising the algorithm’s
efficiency while avoiding overfitting. All important hyperparameters are listed in Table 2.
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Figure 9: Causal strength for each state transition, as the ground truth constraints. Please note that in
our experiments, we recorded the differences between the causal constraints of trajectories generated
by each algorithm and the truth constraints.

Table 2: The hyperparameters of each environment, note that hidden units in each layer are reported
for network architecture.

GRIDWORLD SWIMMER WALKER INVERSEPENDULUM MEERKAT

EXPERT TRAJECTORY 70 50 50 50 2182
SAMPLED TRAJECTORY 70 50 50 50 2182
HORIZON 10 500 500 100 30
REWARD NETWORK 32, 32 32, 32 32, 32 32, 32 32, 32
FEASIBILITY NETWORK 32, 32 32, 32 32, 32 32, 32 32, 32
BATCH SIZE 700 2500 2500 1000 500
LEARNING RATE 0.0005 0.0005 0.0005 0.0005 0.0005
PPO CLIP RANGE 0.1 0.1 0.1 0.1 0.1
COEFFICIENT (φ, κ) 0.001, 0.001 0.001, 0.001 0.001, 0.001 0.001, 0.001 0.001, 0.001
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