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Abstract

We introduce AUTOGRAPH, a scalable autoregressive model for attributed graph
generation using decoder-only transformers. By flattening graphs into random
sequences of tokens through a reversible process, AUTOGRAPH enables modeling
graphs as sequences without relying on additional node features that are expensive
to compute, in contrast to diffusion-based approaches. This results in sampling
complexity and sequence lengths that scale optimally linearly with the number of
edges, making it scalable and efficient for large, sparse graphs. A key success factor
of AUTOGRAPH is that its sequence prefixes represent induced subgraphs, creating
a direct link to sub-sentences in language modeling. Empirically, AUTOGRAPH
achieves state-of-the-art performance on synthetic and molecular benchmarks, with
up to 100x faster generation and 3x faster training than leading diffusion models.
It also supports substructure-conditioned generation without fine-tuning and shows
promising transferability, bridging language modeling and graph generation to lay
the groundwork for graph foundation models.
Our code is available at https://github.com/BorgwardtLab/AutoGraph.

1 Introduction

Recent advancements in deep generative models have revolutionized various domains of artificial intel-
ligence, demonstrating remarkable capabilities in generating complex data types such as images [55],
natural language [7, 63, 64], and audio [17, 28]. These achievements have been primarily driven by
the development of advanced architectures or methods such as transformers and diffusion models,
alongside increasingly large-scale data resources. However, the generation of graph-structured data,
which is fundamental to numerous scientific applications including drug discovery [66, 44], protein
design [29], and program synthesis [5], remains a significant challenge. This disparity primarily
stems from the inherent complexity of preserving structural validity, maintaining invariance properties
within graphs, and achieving scalability in real-world graph generation tasks.

To this end, diffusion-based models have emerged as a promising direction for graph generation,
demonstrating effectiveness in synthesizing both classic unattributed graphs and molecules [34, 66].
These approaches typically implement a denoising process in discrete graph space, simultaneously
predicting edge connectivity and attributes. Yet, their practical applications are constrained by
fundamental scalability limitations. The requirement for full adjacency matrix operations imposes
quadratic memory complexity with respect to the number of nodes. Moreover, computing additional
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node features in each denoising step, such as spectral features, often involving cubic complexity,
further increases the computational overhead.

Autoregressive approaches represent an alternative paradigm, constructing graphs sequentially by
generating nodes and edges in a step-by-step manner [43, 71]. These models have demonstrated
strong performance in generating small to medium-sized graphs by leveraging their ability to maintain
structural validity through the generation process. Nevertheless, these models face inherent limitations:
their sequences are not composed of tokens and thereby require specialized architectures, primarily
based on recurrent neural networks, to process their complex ad-hoc sequential representations,
preventing them from directly leveraging the remarkable advances in large language models (LLMs).
Moreover, these specialized architectures often struggle with long-range dependencies and global
structural consistency, leading to significantly inferior performance compared to recent diffusion
models [66, 35]. This representational and architectural constraint not only limits their scalability but
also creates a growing performance gap as general-purpose LLMs continue to advance rapidly.

In light of these challenges, we introduce a novel paradigm that bridges the gap between graph
generation and LLMs through a graph-to-sequence transformation. Our approach advances previous
random walk-based methods by representing graphs as sequences of tokens while maintaining
their topological properties. Instead of requiring specialized architectures or operating directly on
graph structures, we propose a method to linearize graphs into random sequences that encode local
connectivity patterns. This transformation enables direct utilization of language models for graph
generation while achieving optimally linear complexity with respect to the number of edges in both
computational and memory requirements. Our approach effectively addresses the limitations of both
diffusion-based and autoregressive methods: it maintains structural validity while enabling efficient
scaling to large graphs and leveraging the powerful capabilities of modern language models.

Our work presents several technical contributions to the field of graph generation. (1) We introduce
the concept of segmented Eulerian neighborhood trails (SENTs), a specialized class of Eulerian trails
that permit breaks and incorporate neighborhood information. We establish sufficient conditions un-
der which they can be employed for effective graph generation. (2) We propose an efficient flattening
algorithm that transforms graphs into sequences and vice versa by sampling these SENTs, enabling
lossless sequence representation of graphs. (3) Our method, termed AUTOGRAPH, achieves state-of-
the-art (SOTA) performance across diverse synthetic and molecular graph generation benchmarks,
delivering a 100-fold generation and a 3-fold training speedup compared to diffusion-based models
while maintaining the ability to scale to graphs of possibly immense size. (4) Additionally, AUTO-
GRAPH demonstrates strong transfer learning capabilities and supports substructure-conditioned
generation without additional fine-tuning. Our work not only advances the field of graph generation
but also opens new avenues for applying LLMs to graph-centric tasks, paving the way for building
foundation models for graphs.

2 Methods

In this section, we present an approach to transforming graphs into sequences, enabling their modeling
akin to natural language. Our method hinges on a specialized class of random trail segments that
ensure complete graph coverage. We begin by introducing the concept of segmented Eulerian
trails (SET) and demonstrate theoretically why this representation alone is insufficient for effective
graph generation. Subsequently, we propose an extension of SET, namely the segmented Eulerian
neighborhood trail (SENT), which additionally incorporates neighborhood information alongside the
trails. We elucidate sufficient conditions for effective generation and develop an efficient sampling
strategy to obtain such SENTs. The section concludes with extensions and discusses how to model
the SENTs autoregressively using language models, thus bridging the gap between graph learning
and language modeling paradigms. An overview of AUTOGRAPH is illustrated in Figure 1, and
backgrounds and proofs are provided in Appendix C and D.

2.1 Segmented Eulerian Trail

To formalize our approach, we begin by introducing fundamental concepts in graph theory. Let V be
a set of vertices and E := V × V a set of edges. A graph is defined as a tuple G = (VG, EG), where
VG ⊆ V is a finite set of vertices and EG ⊆ VG × VG is the set of edges. For simplicity and without
loss of generality, we restrict our attention to undirected graphs without isolated vertices, where each
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Figure 1: Overview of AUTOGRAPH: (1) We use Algorithm 1 to sample a SENT s from the input
graph: s = (s1, s2) with s1 = ((v1, ∅), (v2, ∅), (v3, ∅)) and s2 = ((v5, {v2}), (v4, ∅)). (2) We
tokenize it by reindexing the vertices based on their first occurrence order in s and adding special
tokens (‘/’ represents breakage between segments, ‘<’ and ‘>’ indicate the start and end of a
neighborhood set). (3) We perform the next token prediction on the tokenized sequences using a
decoder-only transformer or any language model.

edge is represented as an unordered pair (u, v) for u, v ∈ V . We begin by defining the concept of a
trail in a graph:
Definition 2.1 (Walk and trail). A walk is a sequence of nodes connected by edges in G and a trail is
a walk in which all edges are distinct. Given a graph G, the set of trails in G is denoted as TG.

Next, we generalize the concept of trails beyond the context of a specific graph:
Definition 2.2 (Generalized trail). A generalized trail of length k is defined as a sequence of nodes
w := (w0, . . . , wk) ∈ V k+1 for k ≥ 0 s.t. (wi−1, wi) ̸= (wj−1, wj), ∀i, j ∈ [k] and i ̸= j.

The set of all generalized trails is denoted as T , noting that TG ⊆ T for any G. For a generalized
trail w ∈ T , we define Vw ⊆ V and Ew ⊆ E as the sets of vertices and edges traversed by w,
respectively, termed the generated sets of w. An Eulerian trail is a trail that visits every edge in a
graph exactly once. Such trails are of particular interest as they capture the complete topology of the
graph. However, the existence of an Eulerian trail depends on specific conditions related to vertex
degrees and connectivity [3]. To generalize this concept to arbitrary graphs, we introduce the notion
of trail segments:
Definition 2.3 (Segmented Eulerian trail (SET)). A segmented Eulerian trail (SET) in G is a sequence
of trail segments such that each edge is visited exactly once across all segments, and segments do
not need to be connected. Formally, a SET of size k in G is defined as s := (s1, . . . , sk) s.t.
si ∈ TG, and the generated edge sets of its segments form a partition of EG, i.e., ∪ki=1Esi = EG and
Esi ∩Esj = ∅,∀i, j ∈ [k], i ̸= j. Similarly, a SET (without relying on a specific graph) is defined as
a sequence of generalized trails whose generated edge sets are disjoint.

The set of all SETs in G is denoted as SG, and the set of all SETs is denoted as S. For a SET
s = (si)

k
i=1, we define the generated node and edge sets as Vs := ∪ki=1Vsi and Es := ∪ki=1Esi .

The graph Gs := (Vs, Es) is termed generated graph of s. It is easy to show that s is a SET in G if
Gs ≃ G. Moreover, SETs can be classified into equivalence classes based on graph isomorphism, as
formalized below:
Definition 2.4 (SET isomorphism). For any two SETs s, t ∈ S, we say they are isomorphic s ≃ t
if there is a bijection π : Vs → Vt between their generated node sets and π(s) = t where π applies
elementwise to all nodes in s.

This isomorphism partitions S into equivalence classes. Moreover, we have the following relationship
between SETs and graphs, relevant for our tokenization (Sec. 2.4):
Theorem 2.5. For any SETs s, t ∈ S , their generated graphs are isomorphic, i.e., Gs ≃ Gt, if s ≃ t.
Conversely, if two graphs G ≃ H , then for any SET s ∈ SG, there exists a SET t ∈ SH s.t. s ≃ t.

While a SET in G fully characterizes its structure, we show below the prefixes of the SET do not
necessarily describe the substructures of G, a critical property for effective autoregressive graph
generation.
Definition 2.6 (Flattening). The flattening of a sequence of sequences s is the concatenation of all its
sequences, denoted as ∥s.
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Definition 2.7 (Prefix of a SET). For s ∈ S, we call t a prefix of s if ∥t is a prefix of ∥s.

Lemma 2.8. For any graph G and SET s in G, the generated graph of any prefix of s is a subgraph
of G, but not necessarily an induced subgraph.

This result motivates us to extend the definition of generalized trails to incorporate the full structural
information of the induced subgraphs, rather than arbitrary subgraphs, to constrain the generation
space better and address long-range dependency challenges. Without this extension, dependencies
between neighboring nodes may span a long sequence of generation steps, making it more difficult
for the model to learn such dependencies. Empirically, we show that SET fails to generate structurally
valid graphs in Section 4.4.

2.2 Segmented Eulerian Neighborhood Trail

To make the prefixes of a SET encode richer information, we need to extend SET to contain
neighborhood information in a graph. Thus, we consider the following definitions:

Definition 2.9 (Neighborhood sequence). A neighborhood sequence is a sequence of tuples w :=
(w0, . . . , wk) where wi = (vi, Ai) with a node vi ∈ V and a neighborhood set Ai ⊆ V , ∀i ∈
{0, . . . , k}. w is called Hamiltonian if its node sequence n(w) := (v0, . . . , vk) has non-repeated
elements. w is called causal if Ai only contains visited nodes, i.e., Ai ⊆ {v0, . . . , vi−1} ∀i ∈ [k].

Definition 2.10 (Neighborhood trail). A neighborhood trail is a neighborhood sequence that satisfies
two conditions. (i) n(w) is a generalized trail. (ii) If we define the generated edge set of wi as
Ewi = {(vi, u) |u ∈ Ai}, the family {En(w), Ew1 , . . . , Ewk

} is pairwise disjoint. Its union is called
the generated edge set of w.

The set of all neighborhood trails is denoted by T N . For any w ∈ T N , we denote by Gw := (Vw, Ew)
the generated graph of w where Vw := (∪ki=1Ai) ∪ Vn(w) is the generated node set and Ew is the
generated edge set. Note that a generalized trail is a neighborhood trail with Ai = ∅,∀i. We extend
SET to incorporate neighborhood information:

Definition 2.11 (Segmented Eulerian neighborhood trail (SENT)). A segmented Eulerian neighbor-
hood trail (SENT) of size k is a sequence of neighborhood trails s := (s1, . . . , sk) with pairwise
disjoint generated edge sets, i.e., si ∈ T N and Esi ∩ Esj = ∅,∀i, j ∈ [k], i ̸= j.

Similarly to SETs, the generated graph of a SENT s is denoted by Gs = (Vs, Es). If a graph
G ≃ Gs, we say that s is a SENT in G. We denote by SN and SNG the set of SENTs and SENTs in
G. Analogously to SETs, we define an isomorphism over SN and obtain the same relationship as in
Thm. 2.5. A prefix of a SENT is defined similarly to that of a SET. We give below conditions to force
generated graphs of prefixes of a SENT to be induced subgraphs.

Definition 2.12 (Causal SENT). A SENT s is called causal if its flattening ∥s is causal.

Definition 2.13 (Hamiltonian and semi-hamiltonian SENT). A SENT s is called Hamiltonian if its
flattening ∥s is Hamiltonian. s is called semi-hamiltonian if s is Hamiltonian, or for any nodes visited
more than once, their occurrences after the first time should be in a start tuple of a neighborhood trail
and their associated neighborhood sets are empty.

Theorem 2.14. For any causal SENT s ∈ SN , the generated graph of any prefix t of s is an induced
subgraph of Gs if and only if s is semi-hamiltonian. In this case, s is called subgraph-induced.

Now let us find the conditions for a causal and Hamiltonian SENT. For any SENT s and a tuple
w := (v,A) in s, we denote by Vs(w) the set of nodes visited by s before w, excluding the node
linked to v through the trail if it exists. We have the following necessary and sufficient conditions:

Theorem 2.15. For s ∈ SNG , s is causal and Hamiltonian if and only if every tuple w := (v,Av) in ∥s
satisfies Av = NG(v) ∩ Vs(w). In this case, every node is visited exactly once. Moreover, s is causal
and semi-hamiltonian if and only if every tuple w := (v,Av) in s satisfies either Av = NG(v)∩Vs(w)
or Av = ∅.

This theorem offers a simple sufficient condition for subgraph-induced SENTs. We provide an
implementation in the following through a random path sampling strategy.
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2.3 Sampling Algorithm for SENT

Thm. 2.15 offers a simple strategy to sample a causal and Hamiltonian SENT: one needs to traverse
the graph and choose the neighborhood set as all neighbors of the current node that have been
visited. The traversing strategy could be achieved through a random path sampling or a depth-first
search. In Algorithm 1, we provide a sampling strategy based on random path sampling with breaks.
Complexity analysis. The length of a SENT, including the sizes of neighborhood sets (in other
words, tokenized SENT defined in Section 2.4), is bounded by the number of nodes and edges, as
each node and edge can be visited exactly once. Therefore, both the time and space complexity of
sampling a SENT from graph G are O(m) where m is the number of edges.

2.4 Tokenization of SENT

Algorithm 1 Causal and Hamiltonian SENT Sampling

Input: G = (V,E)
Output: A SENT s in G

1: Set of unvisited nodes U ← V
2: s← []
3: v ← RandomSample(U); U ← U \ {v}
4: t← [(v, ∅)] ▷ first neighborhood trail
5: while U ̸= ∅ do
6: if NG(v) ∩ U = ∅ then ▷ start a new trail
7: s.append(t)
8: v ← RandomSample(U); U ← U \ {v}
9: A← NG(v) ∩ (V \ U)

10: t← [(v,A)]
11: else ▷ sample the next node in the trail
12: u← RandomSample(NG(v) ∩ U)
13: U ← U \ {u}
14: A← (NG(u) \ {v}) ∩ (V \ U)
15: t.append((u,A))
16: v ← u

Previous works have explored related con-
cepts of sequences in graphs. For exam-
ple, You et al. [71] investigated causal
Hamiltonian neighborhood sequences gen-
erated through breadth-first search, while
Liao et al. [43], Goyal et al. [23] con-
structed SENT-like sequences using depth-
first search. However, neither of these
works interpreted these sequences as a lan-
guage. Here, we present a method to bridge
the gap between graph generation and lan-
guage modeling.

The tokenization process starts by map-
ping all isomorphic SENTs to the same se-
quence, by reindexing the vertices accord-
ing to their first occurrence order within
the sequence. Specifically, if we denote
this ordering function for a SENT s by
π : Vs → {1, . . . , |Vs|}, s is then re-
placed with its ordered representation π(s).
Thanks to the isomorphism property of SENT (Thm. 2.5), π(s) generates a graph isomorphic to Gs

while ensuring the obtained sequence is invariant to the node ordering of the input graph.

To convert an (ordered) SENT into a machine-readable sequence, we tokenize it into a sequence
of indices using special tokens. These tokens include symbols such as ‘ / ’ to indicate a breakage
between segments, and ‘<’ and ‘>’ to mark the start and end of a neighborhood set. Specifically, for
any s := (s1, . . . , sk) ∈ SN , we define the tokenization function Token as follows:

Token(s) := Token(s1) ∥ [ / ] ∥ · · · ∥ [ / ] ∥ Token(sk), where Token(si) := ∥w∈siToken(w),

and for each tuple w := (v,A) with the sorted set A = {u1, . . . , up} (due to the reindexing by π),
we define:

Token(w) := [v,<, u1, . . . , up,>] .

This process converts a SENT into a sequence of tokens that a language model can effectively model.
Using an equivalent form, the resulting tokenization induces a non-Markovian random walk in the
graph, incorporating additional virtual nodes labeled with the above special tokens (see Appendix C.2
for more details). Language modeling of SENTs aims to learn the state transition probabilities.

2.5 Extension to Attributed Graphs

Our method can be easily extended to graphs with categorical (or discretized) attributes by inserting
node and edge attributes in an interleaved fashion into the tokenized SENT sequence. Specifically,
let Lnode(v) and Ledge(u, v) be the attributes of a node v and an edge (u, v) respectively. Using the
same notation as above, we define for any si := (w1, . . . , wq) ∈ T N with wi = (vi, ·):

Token(si) := Token(w1) ∥ [Ledge(v1, v2)] ∥ Token(w2) ∥ · · · ∥ Token(wq),

Token(w) := [v, Lnode(v),<, Ledge(v, u1), u1, . . . , Ledge(v, up), up,>].
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2.6 Autoregressive Modeling of Tokenized SENTs

The sampling and tokenization of SENTs in graphs allows for transforming graphs into sequences,
which could be modeled by language models. Specifically, given a graph G represented as a SENT s,
which consists of a sequence of tokens (s1, . . . , sn), a standard language modeling objective is to
maximize the following log-likelihood:

p(s) =

n∑
i=1

log pθ(si | s1, . . . , si−1), (1)

where the conditional probability pθ is modeled using a neural network with parameters θ. The
architecture of the neural network can be any state-of-the-art sequence model.

3 Related Work

Autoregressive models for graph generation. Autoregressive models generate graphs by sequen-
tially adding nodes and edges. GraphRNN [71] pioneered this approach by framing graph generation
as a sequence prediction task, demonstrating the capacity of recurrent neural networks (RNNs) [15]
to capture complex structures. DeepGMG [42] introduced a probabilistic policy framework for
conditional generation, while GRAN [43] and BiGG [16] enhanced efficiency and scalability by
generating multiple nodes and edges in parallel. ANFM [40] leverages filtration to improve efficiency.

Recent research has focused on optimizing the generation order. Chen et al. [12] highlighted that the
ordering of node and edge additions impacts graph quality, and GraphARM [39] applied reinforcement
learning to dynamically refine this order. Goyal et al. [23] incorporated logical constraints to improve
domain-specific generation, and Bacciu et al. [1] proposed Bayesian reasoning to better capture graph
dependencies. BwR [18] and GEEL [32] investigated node ordering based on optimized bandwidth.

These models, while efficient on synthetic datasets, do not explicitly represent graphs as token
sequences, preventing direct application of LLM techniques. More significantly, their sequences
are not guaranteed to be subgraph-induced (see Thm. 2.14). In contrast, our approach enables
substructured-conditioned generation analogous to prompt-based generation in language models,
establishing a more fundamental connection between graph and language modeling paradigms.

Other graph generative models. Other graph generative models include variational, GAN-based,
flow-based, and diffusion-based approaches. GraphVAEs [38, 58] employ variational autoencoders
to learn latent representations, effectively generating small graphs but struggling with more complex
structures. GAN-based models, such as NetGAN [4] and SPECTRE [45], generate graphs by
modeling graph descriptors like random walks and spectral features. Flow-based methods such
as [57] have shown the ability to generate small molecular graphs.

Diffusion-based models iteratively refine noise into structured graphs through reverse diffusion
steps. Continuous diffusion models [51, 34] adapt denoising diffusion probabilistic models for graph
generation. To leverage graph sparsity and structure, discrete diffusion models [66, 39, 35, 69] have
been developed. However, a key challenge for these models is the slow sampling process due to the
long reverse diffusion chain. To mitigate this limitation, several efficient diffusion techniques have
been proposed, including EDGE [13], HiGen [36], ESGG [2], and Pard [73].

Random walks for graph learning. Random walks have been widely used in graph learning due to
their strong expressive power. GCKN [8] and RWGNN [50] utilize path and walk kernels to learn
graph representations. Several recent works [30, 67, 70] explicitly integrate random walk sequences
with positional encodings, inspiring subsequent methods such as CRaWL [62], NeuralWalker [10]
and RWNN [37]. GraphGPT [74] leverages Eulerian paths to improve graph property prediction.
Some graph transformers [48, 9] also leverage features based on random walks. Moreover, graph-to-
sequence representations have been used to assist LLMs in understanding graphs [22, 11]. Our work
explores sequence representations of graphs for graph generation, introducing a novel perspective on
combining random walks and language modeling for scalable graph generation.

4 Experiments

In this section, we evaluate the performance of AUTOGRAPH on several graph generation benchmarks,
including both small and large graphs, and synthetic and real-world molecular datasets. Our experi-
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Table 1: Benchmarking AUTOGRAPH on Planar and SBM
PLANAR GRAPHS STOCHASTIC BLOCK MODELS

ngraphs = 128, |V | = 64 ngraphs = 128, |V |max = 187, |V |avg ≈ 104

MODEL DEG. CLUS. ORBIT SPEC. RATIO VUN DEG. CLUS. ORBIT SPEC. RATIO VUN

TRAINING SET 0.0002 0.0310 0.0005 0.0038 1.0 – 0.0008 0.0332 0.0255 0.0027 1.0 –

GRAPHRNN [71] 0.0049 0.2779 1.2543 0.0459 638.5 0.0 0.0055 0.0584 0.0785 0.0065 3.5 5.0
GRAN [43] 0.0007 0.0426 0.0009 0.0075 2.1 0.0 0.0113 0.0553 0.0540 0.0054 5.0 25.0
SPECTRE [45] 0.0005 0.0785 0.0012 0.0112 2.6 25.0 0.0015 0.0521 0.0412 0.0056 1.8 52.5
EDGE [1] 0.0761 0.3229 0.7737 0.0957 490.9 0.0 0.0279 0.1113 0.0854 0.0251 12.7 0.0
GRAPHGEN [23] 0.0328 0.2106 0.4236 0.0430 257.3 7.5 0.0550 0.0623 0.1189 0.0182 20.5 5.0
BIGG [16] 0.0007 0.0570 0.0367 0.0105 20.4 5.0 0.0012 0.0604 0.0667 0.0059 2.0 10.0
DIGRESS [66] 0.0007 0.0780 0.0079 0.0098 6.1 77.5 0.0018 0.0485 0.0415 0.0045 1.8 60.0
GRUM [35] 0.0005 0.0353 0.0009 0.0062 1.8 90.0 0.0007 0.0492 0.0448 0.0050 1.5 85.0
GEEL [32] 0.0039 0.0013 0.0062 0.0234 9.5 0.0 0.0106 0.0616 0.0023 0.0381 7.3 5.0
ESGG [2] 0.0005 0.0626 0.0017 0.0075 2.5 95.0 0.0119 0.0517 0.0669 0.0067 5.4 45.0

AUTOGRAPH 0.0004 0.0605 0.0003 0.0064 1.5 87.5 0.0077 0.0519 0.0439 0.0040 3.4 92.5

ments compare its performance to several SOTA methods and particularly focus on evaluating the
following aspects: (1) We show its ability to generate relatively small graphs with a 100-fold inference
speedup compared to diffusion-based models while maintaining or even improving structural validity.
(2) We show its ability to scale to large graphs without loss of performance. (3) We demonstrate its
effectiveness in generating real-world graphs with attributes with a focus on molecular generation,
outperforming SOTA diffusion models. (4) We showcase its strong transfer capabilities and its ability
to perform substructure-conditioned generation without any additional fine-tuning. Additional details
on experimental settings and evaluation are provided in Appendix E.

Implementation details. We employ the LLaMA model with 12 layers and a hidden dimension
of 768 as our sequence model backbone across all experiments, aligning with the architecture of
GPT-2’s smallest variant [54]. Although prior works have used smaller models, we argue that our
approach still demonstrates better scalability and faster training and inference speeds compared to
diffusion models. For inference, we adopt the commonly used top-k sampling strategy [21]. Our
implementation leverages the Hugging Face framework [31], providing users with a flexible interface
to experiment with SOTA language models for graph generation.

Evaluation. For fair comparison, we align our evaluation methodology with established practices
from prior works [71, 45, 66]. Our evaluation compares generated samples against the test set using
maximum mean discrepancy (MMD) [24], computed across multiple graph descriptors: node degree
distributions (DEG.), clustering coefficients (CLUS.), orbit count statistics (ORBIT), and eigenvalue
spectra (SPEC.). As a reference, we also compute MMDs between the training and test sets and report
the average ratio between generated and training MMDs (RATIO) following Bergmeister et al. [2].

For synthetic datasets, we additionally assess model performance using the VUN metric, namely
the proportion of generated graphs that are simultaneously valid, unique, and novel compared to the
training graphs. Our efficiency analysis includes two measurements: inference speed, calculated as
the per-graph generation time when producing 1024 graphs, and training speed, measured as the time
required to achieve a VUN score of 75.0 for the Planar dataset and 60.0 for the SBM dataset. All
efficiency measurements are performed on a single NVIDIA H100 GPU.

For molecular generation datasets, we strictly follow the evaluation metrics used in DiGress [66] and
use the evaluation tools from the official codebase [53, 6]. More details are provided in App. E.2.

4.1 Comparison to State-of-the-Art Methods

We evaluate the performance of AUTOGRAPH compared to other SOTA graph generative models
using the standard setting without pre-training. The comparison partners include GraphRNN [71],
GRAN [43], SPECTRE [45], EDGE [13], GraphGen [23], BiGG [16], DiGress [66], GruM [35],
GEEL [32], and ESGG [2].

Small synthetic graph generation. We first evaluate our method on the small synthetic graph
datasets introduced by Martinkus et al. [45], including the Planar and SBM datasets. As shown
in Table 1, AUTOGRAPH demonstrates competitive MMDs while ranking second-best and best
in terms of VUN scores on the Planar and SBM datasets, respectively. Importantly, only GruM
and AUTOGRAPH exhibit strong structural validity (VUN ≥ 80.0) on the SBM dataset. Previous
state-of-the-art autoregressive models, particularly GEEL, completely fail on both datasets in terms
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Table 2: Benchmarking AUTOGRAPH on Proteins and Point Clouds. OOM indicates out of memory.
Note that for GEEL [32], we fail to reproduce their experiments on the Point Clouds dataset using
their official codebase.

PROTEINS POINT CLOUDS
ngraphs = 587, |V |max = 500, |V |avg ≈ 258 ngraphs = 26, |V |max = 5037, |V |avg ≈ 1332

MODEL DEG. CLUS. ORBIT SPEC. RATIO DEG. CLUS. ORBIT SPEC. RATIO

TRAINING SET 0.0003 0.0068 0.0032 0.0005 1.0 0.0000 0.1768 0.0049 0.0043 1.0

GRAPHRNN [71] 0.0040 0.1475 0.5851 0.0152 62.1 OOM OOM OOM OOM OOM
GRAN [43] 0.0479 0.1234 0.3458 0.0125 77.7 0.0201 0.4330 0.2625 0.0051 19.1
SPECTRE [45] 0.0056 0.0843 0.0267 0.0052 12.5 OOM OOM OOM OOM OOM
EDGE [1] 0.1863 0.3406 0.6786 0.1075 274.5 0.4441 0.3298 1.0730 0.4006 104.7
GRAPHGEN [23] 0.0159 0.1677 0.3789 0.0181 58.1 OOM OOM OOM OOM OOM
BIGG [16] 0.0070 0.1150 0.4696 0.0067 50.1 0.0994 0.6035 0.3633 0.1589 38.2
DIGRESS [66] 0.0041 0.0489 0.1286 0.0018 16.2 OOM OOM OOM OOM OOM
GRUM [35] 0.0019 0.0660 0.0345 0.0030 8.2 OOM OOM OOM OOM OOM
GEEL [32] 0.2110 0.3753 0.1768 0.1689 287.9 – – – – –
ESGG [2] 0.0030 0.0309 0.0047 0.0013 4.7 0.0139 0.5775 0.0780 0.0055 6.8

AUTOGRAPH 0.0004 0.0244 0.0056 0.0013 2.3 0.0307 0.3031 0.0167 0.0171 3.0

of VUN scores, as they largely memorize some subset of the training data. It is worth noting that the
relatively low MMD ratio of AUTOGRAPH is expected, as we selected the best model based on the
VUN score. More results with error bars are provided in App. F.1.

Additionally, we assess the training and inference times of AUTOGRAPH against representative mod-
els, including DiGress, GRAN, and ESGG. As presented in Table 3, AUTOGRAPH is approximately
3 times faster during training and 100 times faster during inference compared to diffusion-based
models. This substantial speedup over diffusion-based models is even more pronounced than that
observed in other data modalities such as images [61].

Table 3: Time comparison of AUTOGRAPH to repre-
sentative models. OOT indicates the model never
reaches the target VUN.

DATASET TIME DIGRESS GRAN ESGG AUTOGRAPH

PLANAR
TRAINING 25.9H OOT 7.4H 6.2H (4.2×)
INFERENCE 2.84S 0.03S 4.60S 0.01S (284×)

SBM TRAINING 47.7H OOT OOT 13.8H (3.5×)
INFERENCE 13.05S 0.13S 30.0S 0.14S (93×)

Large graph generation. To understand the
scalability of AUTOGRAPH, we evaluate its
performance on the Proteins and Point Clouds
datasets used by Liao et al. [43]. The re-
sults, shown in Table 2, demonstrate that even
when using a context window shorter than the
longest sequence during training, AUTOGRAPH
achieves MMD ratios comparable to those ob-
served on the Planar and SBM datasets. Further-
more, AUTOGRAPH outperforms all existing
methods in terms of MMD ratio, achieving a
twofold or more improvement over the previous best model, ESGG. More significantly, while ESGG
was specifically designed for generating unattributed graphs, AUTOGRAPH demonstrates versatility
by being applicable to both unattributed and attributed graphs. Finally, previous state-of-the-art
autoregressive models, such as GEEL, again fail to achieve competitive performance on these datasets.

Molecular graph generation. We demonstrate the applicability of our method to generating real-
world attributed graphs, such as molecular structures. We evaluate AUTOGRAPH on the same datasets
used by DiGress [66], including QM9 (all atoms) [68], MOSES [53], and GuacaMol [6]. Following
the data splits and experimental setup from DiGress, we benchmark AUTOGRAPH against a variety
of SOTA models, including DiGress, VAE on SMILES [53], JT-VAE [33], GraphINVENT [47],
NAGVAE [41], LSTM and MCTS [6]. On the QM9 dataset (Table 12), AUTOGRAPH outperforms
DiGress across all metrics except uniqueness, showing its superiority for attributed graphs.

For the more challenging MOSES and GuacaMol datasets, AUTOGRAPH also demonstrates superior
performance, achieving higher validity and improved distributional alignment as measured by metrics
like FCD, as shown in Table 4. Notably, to our best knowledge, AUTOGRAPH is the first autoregres-
sive model for graphs to surpass diffusion-based approaches on these datasets. It is worth mentioning
that all metrics were computed using SMILES representations rather than molecular graphs. Due to
the non-reversible nature of converting SMILES to graphs and back, where approximately 20% of
molecules cannot be mapped back to their original SMILES [66], some discrepancies are introduced
when calculating these metrics. Despite these challenges, AUTOGRAPH achieves validity and FCD
scores comparable to SMILES-based methods.
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Table 4: Benchmarking AUTOGRAPH on the molecular generation datasets, more results in App. F.2.
AUTOGRAPH∗ was first pretrained on the PubChem-10M dataset [14].

MOSES
ngraphs = 1.58M, |V |max = 27, |V |avg ≈ 22

MODEL - TYPE VALID� UNIQUE� NOVEL� FILTERS� FCD� SNN�

VAE - SMILES 97.7 99.8 69.5 99.7 0.57 0.58
JT-VAE - FRAGMENTS 100 100 99.9 97.8 1.00 0.53
GRAPHINVENT - GRAPH 96.4 99.8 – 95.0 1.22 0.54
DIGRESS - GRAPH 85.7 100 95.0 97.1 1.19 0.52

AUTOGRAPH - GRAPH 87.4 100 85.9 98.6 0.91 0.55

GUACAMOL
ngraphs = 1.1M, |V |max = 88, |V |avg ≈ 28

MODEL - TYPE VALID� UNIQUE� NOVEL� KL DIV� FCD�

LSTM - SMILES 95.9 100 91.2 99.1 91.3
NAGVAE - GRAPH 92.7 95.5 100 38.4 0.9
MCTS - GRAPH 100 100 99.4 52.2 1.5
DIGRESS - GRAPH 85.2 100 99.9 92.9 68.0

AUTOGRAPH - GRAPH 91.6 100 97.7 97.5 79.2
AUTOGRAPH∗ - GRAPH 95.9 100 95.5 98.1 91.4

Table 5: Transfer performance on downstream tasks using AUTOGRAPH pre-trained on the NetworkX
dataset. Red and green colors indicate relative decreases and increases, respectively, compared to
AUTOGRAPH without pre-training.

DATASET DEG. CLUS. ORBIT SPEC. RATIO VUN (IMPROVEMENT)

NETWORKX 0.0016 0.0073 0.0068 0.0020 – –

PLANAR 0.0007 0.0811 0.0005 0.0061 2.2 95.0 (+7.5)
SBM 0.0099 0.0566 0.0854 0.0065 4.8 97.5 (+5)
PROTEINS 0.0002 0.0183 0.0038 0.0012 1.7 –
POINT CLOUDS 0.0154 0.2591 0.0076 0.0236 2.8 –

Furthermore, AUTOGRAPH demonstrates remarkable efficiency, with training times of less than
one day on both datasets, compared to up to one week for DiGress [66]. This substantial reduction
underscores AUTOGRAPH’s practical advantages in large-scale molecular graph generation tasks.

4.2 Transfer Performance of AUTOGRAPH

We evaluate the transferability of AUTOGRAPH by pre-training it on a large dataset of synthetic
graphs generated using NetworkX [26] and fine-tuning it on the unattributed graph datasets. Dataset
and experimental details are provided in Appendix E. As shown in Table 5, the pre-trained model
consistently outperforms the baseline on small synthetic datasets in terms of the VUN score, achieving
near-perfect validity. On larger graph datasets, the pre-trained model also surpasses the baseline
across MMD metrics, demonstrating its ability to generalize to more complex structures. However,
on small synthetic datasets, the pre-trained model shows a slight decline in MMD metrics compared
to the baseline. These findings highlight the potential of building foundation models for graph
generation and underscore the need for more comprehensive benchmarks beyond synthetic datasets.

We also test the transferability of AUTOGRAPH on molecular graphs, by pre-training it on the
PubChem-10M dataset [14] and fine-tuning on GuacaMol. The pre-trained model substantially
outperforms the baseline, as shown in Table 4.

4.3 Substructure Conditioned Generation

Table 6: Motif scaffolding

# MOTIF COPIES VALID UNIQUE NOVELTY

1 92.0 98.8 99.6
2 88.8 99.7 100.0
5 66.0 100.0 100.0

We explore the ability of AUTOGRAPH to perform
substructure-conditioned generation without requiring
fine-tuning. Given a subgraph S (which could represent
a functional motif of interest in drug discovery), we flat-
ten the subgraph into a SENT sequence and condition
the generation process on this sequence. This approach
guarantees that the generated graph will contain S as an
induced subgraph (Thm. 2.14). As a proof-of-concept, we follow the methodology of Vignac et al.
[66], Maziarz et al. [46] and generate molecular graphs starting from a specific motif, called 1,4-
Dihydroquinoline1, using the model pre-trained on the GuacaMol dataset. Our results in Table 6
demonstrate that this approach maintains similar validity, uniqueness, and novelty to unconditional
generation (Table 4). To further showcase the flexibility of this method, we test more extreme cases by
replicating the same motif multiple times before performing the conditional generation. While validity
decreases significantly when using an unrealistically large number of copies (e.g, 5), the model still
generates some visually plausible molecules (Appendix F.4), showing superior flexibility over Vignac
et al. [66]. These results highlight the potential of AUTOGRAPH for important applications in drug
discovery, particularly in motif scaffolding. Additional experiments on multiple but different motifs
are provided in App. F.4.

1https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Dihydroquinoline
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Table 7: Comparison of sequence model architectures on the Planar dataset.
ARCHITECTURE DEG. CLUS. ORBIT SPEC. RATIO VUN

GPT-2 0.0004 0.0720 0.0010 0.0053 1.8 85.0
MAMBA 0.0002 0.0429 0.0014 0.0087 1.6 55.0
LLAMA 0.0005 0.0651 0.0005 0.0056 1.6 90.0
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Figure 2: Ablation experiments. Left: the effect of top-k sampling on the Planar and SBM datasets.
Right: the validation loss and VUN scores when using SET and SENT on the Planar dataset.

4.4 Ablation Experiments

In this study, we aim to understand the effectiveness of the key components in AUTOGRAPH.

Comparison of sequence model architectures. AUTOGRAPH provides a novel framework for
evaluating the capability of current LLM architectures in graph generation and, more broadly, in
structural reasoning tasks. In Table 7, we compare several state-of-the-art architectures on the Planar
dataset, including GPT-2 [54], Mamba [25], and LLaMA [63]. While all models achieve comparable
MMD ratios, transformer-based architectures, particularly LLaMA, demonstrate significantly better
performance in terms of VUN scores compared to state-space models. These findings highlight the
potential of AUTOGRAPH to serve as a valuable benchmark for assessing sequence/language models’
capabilities in graph generation tasks.

Effect of top-k sampling. A key advantage of AUTOGRAPH over diffusion-based approaches is the
flexibility to apply top-k sampling [21] during inference, which can improve generation quality. As
shown on the left of Figure 2, a smaller k improves the VUN score on the Planar dataset, whereas it is
not beneficial on the SBM dataset. In contrast, increasing k generally improves MMD ratios on both
datasets. These results suggest that top-k sampling can be optimized based on dataset characteristics.
In our experiments, we select the best k that maximizes the VUN score for small synthetic datasets
and minimizes the validation MMD ratios for other datasets. This flexibility allows practitioners to
select k based on specific performance criteria they aim to prioritize.

Comparison of SET and SENT. As discussed in Section 2, SENT is preferred over SET for graph
generation, as incorporating neighborhood information is essential to ensure structural coherence. To
empirically validate this, we compare the performance of SENT and SET on the Planar dataset and
present the training curves on the right of Figure 2. Consistent with our theoretical analysis, SET fails
to produce high-validity graphs, resulting in a VUN score close to zero, whereas SENT successfully
generates valid planar graphs.

5 Conclusion

We proposed AUTOGRAPH, a scalable and efficient autoregressive model for attributed graph genera-
tion that handles large graphs while maintaining high quality. Our approach enables substructure-
conditioned generation without additional fine-tuning and demonstrates promising transfer capa-
bilities. Crucially, AUTOGRAPH establishes the first fundamental connection between graph and
language modeling–where graphs are losslessly represented as token sequences, and prefixes in these
sequences serve as meaningful patterns in both paradigms–representing a significant step toward
applying language modeling techniques to graph generation and broader graph learning challenges.

Limitations. While AUTOGRAPH demonstrates strong scalability on current graph generation
benchmarks, we acknowledge that the datasets used in our study remain relatively small-scale
compared to those used in pre-training LLMs. To push the boundaries of more powerful graph
generative models or eventually foundation models for graphs, we draw the community’s attention to
building more comprehensive graph generation benchmarks and well-curated pre-training datasets.

10



Acknowledgements

The authors thank Dr. Till Hendrik Schulz, Philip Hartout, and Błażej Banaszewski for their insightful
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of the paper (regardless of whether the code and data are provided or not)?
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Guidelines:
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to make their results reproducible or verifiable.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the full code and documentation upon publication.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details are provided in Appendix E.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: While reporting error bars is not yet standard in the field of graph generation,
we report the error bars on small synthetic datasets in Appendix F.1 to mitigate the impact
of small test sample size.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computing details are provided in Appendix E.3. Runtime to reproduce some
experiments is given in Section 4.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both aspects in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work focuses on generative modeling for general graphs, but does not
release ready-to-use models for real-world applications.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the code, data, and models used in this study (see
Appendix E.1).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new NetworkX dataset and its generation is fully documented in Ap-
pendix E.1. It conforms with the License of the NetworkX library.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix provides both theoretical and experimental materials. It is organized as follows:
Section A provides additional background on sequence models. Section B provides a discussion
about the broader impact of this work. Section C provides additional details and remarks on our
method. Section D provides proofs for the theorems presented in the main manuscript. Section E
provides experimental details. Section F provides additional quantitative and qualitative results.

A Background on Sequence Model Architectures

Our sequence model architectures are fully based on established natural language models. In particular,
we consider three prominent models, including GPT-2 [54], LLaMA [63, 64], and Mamba [25] to
demonstrate the effectiveness of our approach. Notably, our methodology is not restricted to these
specific models; it can be applied to any sequence or language model.

GPT-2. GPT-2 represents one of the earliest large language models based on the transformer
architecture [65]. The model employs pre-normalization with LayerNorm, the GeLU activation
function, and absolute positional embeddings to encode token positions in sequences. These design
choices laid the foundation for many subsequent models.

LLaMA. LLaMA [63, 64] builds upon the transformer framework with several key enhancements.
It incorporates pre-normalization through RMSNorm [72] and employs the SwiGLU activation
function [56]. Additionally, LLaMA replaces absolute positional embeddings with rotary positional
embeddings [59], enabling better generalization to longer sequences.

Mamba. Mamba [25] is a state-space model (SSM) that maps input sequences to outputs using
continuous-time dynamics. It introduces a selection mechanism that dynamically controls how input
data flows into hidden states, making the model parameters adaptive to time and data. This innovation
enables Mamba to achieve superior performance compared to other SSMs across various tasks.

B Broader Impacts

Our research focuses on advancing the algorithmic development of graph generative models, strongly
emphasizing their responsible and ethical application in specialized fields. In domains such as drug
discovery and synthetic biology, ensuring the trustworthiness and appropriate use of our methods
is essential to prevent potential misuse. Through our experiments, we showcase the potential of
our approach in these fields, underscoring its promise to deliver meaningful societal benefits while
acknowledging the need to address potential risks.

C Additional Details about AUTOGRAPH

C.1 Background on Graph Theory

We provide additional background on graph theory necessary for the definitions and theories of SETs
and SENTs. The background is largely based on Diestel [19].

We first give the formal definition of graph isomorphism:
Definition C.1 (Graph isomorphism). An isomorphism of graphs G and H is a bijection between the
vertex sets of G and H: π : VG → VH such that any two vertices u and v of G are adjacent in G if
and only if π(u) and π(v) are adjacent in H , i.e., (u, v) ∈ EG if and only if (π(u), π(v)) ∈ EH .

Graph isomorphism is an equivalence relation on graphs and as such it partitions the class of all
graphs into equivalence classes. A set of graphs isomorphic to each other is called an isomorphism
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class of graphs. It is worth noting that our SENT isomorphism also partitions the class of all SENTs
into equivalence classes in a similar fashion.

We also provide the formal definition of induced subgraph:
Definition C.2 (Induced subgraph). An induced subgraph of a graph is another graph, formed from a
subset of the vertices of the graph and all of the edges, from the original graph, connecting pairs of
vertices in that subset. Formally, let S ⊆ VG be any subset of vertices of G := (VG, EG). Then, the
induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the
edges in EG that have endpoints in S. That is, for any two vertices u, v ∈ S, (u, v) ∈ EG[S] if and
only if (u, v) ∈ EG.

C.2 Remarks on Tokenized SENTs

In Section 2.4, we showed that an (ordered) SENT can be converted into a sequence of tokens. Here,
we extend this idea by interpreting the tokenized sequence as a random walk on a slightly modified
graph. We first introduce an alternative tokenization scheme that is equivalent to the one described
earlier but offers enhanced interpretability. The proposed tokenization remains largely unchanged
except for how tuples are handled. For each w = (v,A) with A = {u1, . . . , up}, we now define

Token(w) := [v,<, u1,<, u2 . . . ,<, up,>] .

We now detail how to modify the original graph G: we introduce three virtual nodes, labeled /, <,
and > respectively. These virtual nodes are connected to all other virtual nodes and original nodes
in the graph. This modification ensures that for any non-special token in the tokenized sequence,
its subsequent token can either be one of its neighbors or one of the virtual nodes (/, <, or >).
Consequently, each token has a direct connection to the node corresponding to the current token,
and the language model amounts to learning the state transition functions for these random walks.
Since these random walks are non-Markovian, this perspective further justifies our choice of using
autoregressive models instead of one-step generative models. Furthermore, as random walks are
random sequences on graphs, sampling random walks amounts to sampling from those random
sequences.

C.3 Remarks on Model Inference

The model inference is straightforward following the same process as LLMs such as LLaMA [63, 64].
An alternative way is to enforce the semantic correctness of the generated sequences of tokens by
adjusting the logits at a certain token to obey the semantic rule of the tokenization. For instance, the
token ‘>’ can only occur after a token ‘<’ or no special tokens can appear right after /. We manually
implemented these transition constraints and incorporated them into the inference. We compared
this strategy with the constraint-free counterpart. Surprisingly, our experiments demonstrate that the
constraint-free variant could always generate semantically correct tokenized SENTs and perform
similarly to the one with the transition constraints. Therefore, we did not use any transition constraints
during the inference in our experiments.

D Proofs

In this section, we provide proof for the theorems stated in the manuscript.
Theorem 2.5. For any SETs s, t ∈ S , their generated graphs are isomorphic, i.e., Gs ≃ Gt, if s ≃ t.
Conversely, if two graphs G ≃ H , then for any SET s ∈ SG, there exists a SET t ∈ SH s.t. s ≃ t.

Proof of Theorem 2.5. By definition of the isomorphism between s and t, there exists a bijection
π : Vs → Vt s.t. π(s) = t. Now if u, v ∈ Vs are adjacent in Gs, i.e., (u, v) ∈ Es, then (π(u), π(v)) is
an edge visited by π(s) = t, thus (π(u), π(v)) ∈ Et. Similarly, the reverse is also true. Consequently,
Gs ≃ Gt.

Now assume that G ≃ H with an isomorphism π and s ∈ SG. It is easy to show that π(s) is also a
SET and its generated graph Gπ(s) = H . By taking t = π(s), we obtain the result.

Lemma 2.8. For any graph G and SET s in G, the generated graph of any prefix of s is a subgraph
of G, but not necessarily an induced subgraph.
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Proof of Lemma 2.8. Assume that t is a prefix of s. Then Vt ⊆ Vs = VG and Et ⊆ Es. However,
Gt is not necessarily an induced subgraph of Gs. We consider the following counter-example:
s = ((1, 2, 3, 4, 1, 3)), Vs = {1, 2, 3, 4}, and Es = {(1, 2), (2, 3), (3, 4), (1, 4), (1, 3)}. Let t =
((1, 2, 3, 4, 1)). t is clearly a prefix of s, but its generated graph is not an induced subgraph of Gs as
its generated edge set does contain (1, 3).

Theorem 2.14. For any causal SENT s ∈ SN , the generated graph of any prefix t of s is an induced
subgraph of Gs if and only if s is semi-hamiltonian. In this case, s is called subgraph-induced.

Proof of Theorem 2.14. Let us first introduce some notations. We denote by Rs the sequence of the
start tuples across all neighborhood trails in s, which is also a neighborhood sequence. By definition
of semi-hamiltonian, the occurrences after the first time of a node in s should be in Rs. We denote by
n(s) the associated node sequence of SENT s, i.e., n(s) := n(∥s).
Let us first assume that s is semi-hamiltonian.

Assume that t is a prefix of s. It is easy to show that Gt is a subgraph of Gs. Now assume that
u, v ∈ Vt s.t. (u, v) ∈ Es, we want to show that (u, v) ∈ Et. There are two cases:

1) Assume that u, v ∈ n(t). Since s is semi-hamiltonian, n(s) \ n(t) either does not contain u or v,
or even if one of them, say u ∈ n(s) \ n(t), we have u ∈ n(Rs) and its associated neighborhood set
is empty. In both cases, the edge (u, v) does not belong to the generated edge set of the neighborhood
subsequence after ∥t. By the disjointness of the generated edge sets of s, it can only be included in
the generated edge set of t, we thus have (u, v) ∈ Et.

2) Assume that one of them, say u /∈ n(t). There exists a neighborhood set A in a tuple of ∥t such as
u ∈ A. Since t is causal, we have u ∈ n(t) which contradicts the assumption.

In all the above cases, we have (u, v) ∈ Et.

Now let us assume that the generated graph of any prefix of s is an induced subgraph of Gs.

Let us prove that s is semi-hamiltonian by contradiction. Assume that there exist two tuples in ∥s with
the same nodes si = (v,Ai) and sj = (v,Aj) with i < j. There are two cases: 1) sj /∈ Rs. A tuple
(u,Au) exists one step before sj in the same neighborhood trail. We consider the prefix t ending at
(u,Au). We have v, u ∈ Vt and (u, v) ∈ Es, but (u, v) /∈ Et, by the disjointness of s and since (u, v)
is visited at sj after t. 2) sj /∈ Rs and Aj ̸= ∅. Since s is causal, there exists su := (u,Au) before sj
s.t. u ∈ Aj . We consider the prefix t ending at exactly this tuple. We have u, v ∈ Vt and (u, v) ∈ Es,
but (u, v) /∈ Et, by the disjointness of s and since (u, v) is an edge visited at (v,Aj) after t.

Theorem 2.15. For s ∈ SNG , s is causal and Hamiltonian if and only if every tuple w := (v,Av) in ∥s
satisfies Av = NG(v) ∩ Vs(w). In this case, every node is visited exactly once. Moreover, s is causal
and semi-hamiltonian if and only if every tuple w := (v,Av) in s satisfies either Av = NG(v)∩Vs(w)
or Av = ∅.

Proof of Theorem 2.15. Let us first assume that for any tuple w := (v,Av) in ∥s, Av = NG(v) ∩
Vs(w). Since Av ⊆ Vs(w) which is a subset of the set of visited nodes, s is causal. Now we prove
s is Hamiltonian by contradiction. Assume that there exist two tuples in ∥s, su := (u,Au) and a
later visited one sv := (v,Av) s.t. u = v. Then, Av = NG(v) ∩ Vs(sv) = NG(u) ∩ Vs(sv) should
contain the node visited before that is a neighbor of u (either through a trail or the neighborhood set
of u), denoted by u′. Thus, the edge (u, u′) has been visited twice, which contradicts the disjointness
of s.

Assuming that Av = NG(v) ∩ Vs(w) or Av = ∅ for any tuple (v,Av) in s, we can also prove s is
semi-hamiltonian by contradiction. Assume that there exist two tuples in ∥s, su := (u,Au) and a later
visited one sv := (v,Av) s.t. u = v and Av ̸= ∅. Then, Av = NG(v) ∩ Vs(sv) = NG(u) ∩ Vs(sv)
by assumption. And using the same argument as above, we have a contradiction.

Now assume that s is causal and Hamiltonian. Let us prove the other direction by contradiction. There
exists a tuple w := (v,Av) in s s.t. Av ̸= NG(v)∩Vs(w). As s is causal, Av ⊆ Vs(w). Av ⊆ NG(v)
as s ∈ SNG . Thus, Av ⊂ NG(v) ∩ Vs(w), which means that there exists u ∈ NG(v) ∩ Vs(w) and
u /∈ Av. Hence, (u, v) ∈ EG and u is visited before v. However, as u /∈ Av, (u, v) ∈ EG, and s is
Hamiltonian, there exists a tuple (u,Au) in ∥s s.t. v ∈ Au. By causality of s, v is visited before u,
which contradicts the fact that s is Hamiltonian.
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Assuming that s is causal and semi-hamiltonian. Let us prove the other direction by contradiction.
There exists a tuple w := (v,Av) in s s.t. Av ̸= NG(v) ∩ Vs(w) and Av ̸= ∅. Using the same
arguments as above, there exists (u, v) ∈ EG, and u is visited before v. However, as u /∈ Av and
(u, v) ∈ EG, s should visit the edge (u, v) at some point. Since s is semi-hamiltonian, if s visits
again u, v they can only be the first nodes and their associated neighborhood sets are empty. Hence,
there is no means for s to visit (u, v) after v, leading to a contradiction.

E Experimental Details

E.1 Datasets

We provide details of the datasets used in our experiments. we adopt the standard train/validation/test
splits provided in the original sources. The statistics about the datasets are summarized in Table 8.

Small synthetic graphs: Planar and SBM. Both of these datasets are from Martinkus et al.
[45]. The Planar dataset consists of 200 planar graphs with 64 nodes each, generated via Delaunay
triangulation on points uniformly sampled in the unit square. The SBM dataset contains 200 graphs
comprising 2 to 5 communities, with each community having between 20 and 40 nodes. An edge
is placed between two nodes with probability 0.3 if they belong to the same community, and 0.05
otherwise. We follow the same splits as Martinkus et al. [45].

Large graphs: Proteins and Point Clouds. The Proteins dataset includes graph representations
(contact maps) of proteins from Dobson and Doig [20]. In these graphs, each node represents an
amino acid, and an edge connects two nodes if their corresponding amino acids are within 6 angstroms
of each other. We use the same data splits as Liao et al. [43]. The Point Clouds dataset, also from
Liao et al. [43], consists of 41 point clouds of household objects [49]. As many of these graphs are
disconnected, we retain only the largest connected component of each, following Bergmeister et al.
[2], and again employ the splits used by Liao et al. [43].

QM9. The QM9 dataset, from Wu et al. [68], comprises small molecules with up to nine heavy
atoms (carbon, oxygen, nitrogen, and fluorine). In this work, we adopt the more challenging setting
proposed by Vignac et al. [66], where hydrogen atoms are modeled explicitly, and we follow the
same data splits as in that reference.

MOSES and GuacaMol. The MOSES and GuacaMol datasets are obtained from the respective
benchmark tools of Polykovskiy et al. [53] and Brown et al. [6]. Both consist of drug-like molecules,
with those in GuacaMol typically being larger on average. For each dataset, we convert generated
molecular graphs to SMILES using the code from Jo et al. [34], which permits partial charges. We
employ the standard data splits provided by the corresponding benchmarks.

PubChem-10M. PubChem-10M is a subset of about 10M molecules from PubChem curated
by Chithrananda et al. [14].

NetworkX. We generate the graphs using the generators from the NetworkX library2 [26], cate-
gories including “Classic”, “Lattice”, “Small”, “Random Graphs”, “Geometric”, “Trees”, “Commu-
nity”, “Social Networks”. We ensure that this dataset does not contain any graphs in the downstream
datasets. The summary of the code for generating these graphs is provided in Table 9. Notably, the
largest graph has up to 5999 nodes.

E.2 Evaluation Metrics

We follow Martinkus et al. [45] and Vignac et al. [66] in comparing our model’s performance with
other graph generative approaches. Specifically, we measure the maximum mean discrepancy (MMD)
between the generated and test graphs for degree distribution, clustering coefficient, orbit counts, and
spectrum. As a reference, we also compute these metrics on the training set and report the mean ratio
across all properties as a global indicator of statistical discrepancy between the generated samples

2https://networkx.org/documentation/stable/reference/generators.html
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Table 8: Dataset statistics
DATASET ngraphs |V |max |V |avg |E|max |E|avg

TRAIN VAL TEST

UNATTRIBUTED GRAPHS
PLANAR 128 32 40 64 64 181 178
SBM 128 32 40 187 104 1129 500
PROTEINS 587 147 184 500 258 1575 646
POINT CLOUDS 26 7 8 5037 1332 10886 2971

ATTRIBUTED GRAPHS
QM9 97734 20042 13055 29 18 28 19
MOSES 1584663 176225 176074 27 22 31 23
GUACAMOL 1118633 69926 209654 88 28 88 30

PRE-TRAINING UNATTRIBUTED GRAPHS
NETWORKX 24957 2516 — 5999 459 5999 751

Table 9: Summary of the code for generating graphs in the NetworkX dataset
GENERATOR ngraphs PYTHON CODE

CATEGORY: CLASSIC
BALANCED TREE 10 nx.balanced_tree(2, np.random.randint(4, 10))
BARBELL GRAPH 100 nx.barbell_graph(np.random.randint(3, 31), np.random.randint(41))
BINOMIAL TREE 10 nx.binomial_tree(np.random.randint(2, 9))
COMPLETE GRAPH 10 nx.complete_graph(np.random.randint(3, 31))
CIRCULAR LADDER GRAPH 300 nx.circular_ladder_graph(np.random.randint(10, 501))
CYCLE GRAPH 2000 nx.cycle_graph(np.random.randint(10, 6001))
DOROGOVTSEV GOLTSEV MENDES GRAPH 5 nx.dorogovtsev_goltsev_mendes_graph(np.random.randint(2, 7))
LADDER GRAPH 500 nx.ladder_graph(np.random.randint(10, 1001))
LOLLIPOP GRAPH 200 nx.lollipop_graph(np.random.randint(3, 21), np.random.randint(10, 51))
STAR GRAPH 200 nx.star_graph(np.random.randint(10, 501))
TURAN GRAPH 100 nx.turan_graph(np.random.randint(10, 41), 2)
WHEEL GRAPH 100 nx.wheel_graph(np.random.randint(10, 201))

CATEGORY: LATTICES
GRID 2D GRAPH 400 nx.grid_2d_graph(np.random.randint(5, 31), np.random.randint(5, 31))
TRIANGULAR LATTICE GRAPH 400 nx.triangular_lattice_graph(np.random.randint(5, 41), np.random.randint(5, 41))

CATEGORY: SMALL
ALL BUT THE LCF GRAPH 1 (EACH) nx.{method}()

CATEGORY: RANDOM GRAPHS
ERDOS RENYI GRAPH 4000 nx.erdos_renyi_graph(np.random.randint(20, 101), 0.2)
RANDOM REGULAR GRAPH 2000 nx.random_regular_graph(np.random.randint(3, 11), np.random.choice([20,30,...,500]))
BARABASI ALBERT GRAPH 4000 nx.barabasi_albert_graph(np.random.randint(20, 501), np.random.randint(2, 6))
RANDOM LOBSTER 4000 nx.random_lobster(80, 0.7, 0.7)

CATEGORY: GEOMETRIC
RANDOM GEOMETRIC GRAPH 3000 nx.random_geometric_graph(np.random.choice([20,30,...,100]), 0.3)
WAXMAN GRAPH 2000 nx.waxman_graph(np.random.choice([50,100,150,...,300]))

CATEGORY: TREES
RANDOM UNLABELED TREE 1000 nx.random_unlabeled_tree(np.random.randint(20, 501))

CATEGORY: COMMUNITY
CONNECTED CAVEMAN GRAPH 300 nx.connected_caveman_graph(np.random.randint(10, 101), np.random.randint(2, 5))
WINDMILL GRAPH 300 nx.windmill_graph(np.random.randint(10, 101), np.random.randint(2, 5))

CATEGORY: SOCIAL NETWORKS
ALL SOCIAL NETWORKS 1 (EACH) nx.{method}()

and test samples. Note that for the Point Clouds dataset, which is defined by a k-nearest-neighbor
structure, the degree MMD is always zero and is therefore excluded from the mean ratio. While we
utilize these metrics to maintain consistency with previous research, we acknowledge their limitations,
particularly regarding arbitrary kernel hyperparameter selection, as highlighted by O’Bray et al.
[52], Thompson et al. [60]. In short, MMD measures the distributional similarity between generated
and real graphs. Lower MMD scores indicate that the generated graphs’ statistics (e.g., degree,
clustering coefficients) more closely match the training data.

We additionally track uniqueness and novelty: uniqueness is the fraction of generated graphs that are
not isomorphic to each other, and novelty is the fraction of generated graphs that are not isomorphic
to any training graph.

Below, we describe additional metrics specific to each dataset.

Planar and SBM. Following Martinkus et al. [45], we report a validity score for synthetic datasets.
For Planar graphs, it verifies whether the generated graphs remain planar; for SBM graphs, it measures
how likely they are to be generated under the original SBM parameters. We integrate validity, novelty,
and uniqueness into a single metric, VUN, which measures the fraction of generated graphs that are
simultaneously valid, novel, and unique. In short, VUN assesses sample quality.
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QM9. For QM9, we report the validity, uniqueness, and novelty defined for general molecules, as
described in the following paragraph. We also report atom stability and molecule stability as defined
by Hoogeboom et al. [27] and Vignac et al. [66].

MOSES and GuacaMol. Since MOSES [53] and GuacaMol [6] are benchmarking platforms, each
comes with its own suite of metrics, which we use to evaluate our model. These include:

• Validity: Proportion of molecules passing basic valency checks.

• Uniqueness: Proportion of generated molecules with distinct SMILES strings (indicating
non-isomorphic structures).

• Novelty: Proportion of generated molecules not present in the training set.

• Filter score: Proportion of molecules passing the same filters used to create the test set.

• Fréchet ChemNet Distance (FCD): Similarity measure between generated and training
sets based on learned neural embeddings.

• SNN: Similarity to the nearest neighbor, computed via Tanimoto distance.

• Scaffold similarity: Comparison of Bemis–Murcko scaffold frequencies.

• KL divergence: Differences in the distributions of various physicochemical descriptors.

E.3 Computing Details

We implemented our sequence models using the model hub of Hugging Face. Users can easily test
their preferred sequence or language models using our code. Experiments were conducted on a shared
computing cluster with various CPU and GPU configurations, including 16 NVIDIA H100 (80GB)
GPUs. Each experiment was allocated resources on a single GPU, along with 8 CPUs and up to
48GB of system RAM. The run-time of each model was measured on a single NVIDIA H100 GPU.

E.4 Hyperparameters

Unlike prior studies that adjust model sizes across datasets, we maintain a consistent model architec-
ture and size throughout all experiments, specifically using the small GPT configuration (768 hidden
dimensions, 12 layers, 12 attention heads). Training hyperparameters are aligned with established
practices from popular LLMs such as GPT-3 [7] and LLaMA [63]. We fix the context length to
2048 and use a batch size of 128 if possible, otherwise 64 for larger graphs. In particular, we
employ the AdamW optimizer with a gradient clipping threshold of 1.0, a weight decay of 0.1, and a
learning rate schedule with a linear warmup followed by cosine decay, peaking at 6e-4. The AdamW
hyperparameters are set to β = (0.9, 0.95). Due to the small dataset sizes of previous benchmarks,
we tune the only training hyperparameter dropout in {0, 0.5}, and find the model achieves better
validation loss with the value of 0.5 on the small synthetic datasets. Each model was trained for
200000, 400000, or 800000 iterations, depending on the dataset size.

Inference hyperparameters, including k (top-k sampling) and τ (temperature), are reported in Table 10
and analyzed in detail in Section F.5.

F Additional Results

F.1 Additional Results on Synthetic Datasets

Due to the small number of samples in the Planar and SBM datasets, we observe significant variances
in evaluation metrics. In order to mitigate the impact of the small test samples on the evaluation,
we use trained models to generate samples with 10 different seeds and report the average metrics
and error bars for DiGress, ESGG, and our AUTOGRAPH. For DiGress and ESGG, we use either
pretrained models released by the authors, if available, or our reproduced models using their officially
released code repository. As shown in Table 11, the variances appear reasonable, and the conclusions
remain the same.
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Table 10: Inference hyperparameters for each dataset.
W/O PRE-TRAINING W/ PRE-TRAINING

DATASET TOP-k TEMPERATURE τ TOP-k TEMPERATURE τ

PLANAR 10 1.0 30 0.9
SBM 60 1.0 150 1.0
PROTEINS 40 1.0 30 1.05
POINT CLOUDS 60 1.0 20 0.9
NETWORKX 120 1.0 — —

QM9 5 1.0 — —
MOSES 5 1.0 — —
GUACAMOL 5 1.0 — —

Table 11: Performances on the Planar and SBM datasets with error bars

(a) Planar

MODEL DEG. CLUS. ORBIT SPEC. RATIO VUN

DIGRESS 0.0003±0.0002 0.0415±0.0081 0.0056±0.0028 0.0078±0.0010 3.8±1.4 79.0±6.0
ESGG 0.0006±0.0004 0.0434±0.0154 0.0101±0.0073 0.0091±0.0018 6.3±4.0 90.5±5.6
AUTOGRAPH 0.0004±0.0003 0.0533±0.0083 0.0005±0.0004 0.0066±0.0009 1.6±0.5 80.3±6.8

(b) SBM

MODEL DEG. CLUS. ORBIT SPEC. RATIO VUN

DIGRESS 0.0013±0.0009 0.0501±0.0009 0.0393±0.0104 0.0053±0.0007 1.6±0.3 66.0±5.6
ESGG 0.0468±0.0096 0.0554±0.0013 0.0699±0.0051 0.0085±0.0011 15.3±3.1 16.0±4.7
AUTOGRAPH 0.0081±0.0051 0.0525±0.0015 0.0687±0.0138 0.0048±0.0011 3.9±1.6 88.3±4.7

F.2 Additional Results on molecular generation datasets

Due to space constraints, we provide results on the QM9 dataset in Table 12, and additional metrics
on the MOSES dataset in Table 13. It is worth noting that all results on MOSES and GuacaMol
were obtained using the benchmarking tools from the original works, which might rely on outdated
packages. For instance, using the latest FCD package gives a FCD score of 94.7 for the pre-trained
AUTOGRAPH.

Our results on all three benchmarks demonstrate the immense potential of AUTOGRAPH for molecular
generation. The fact that AutoGraph, by learning from graph data alone, can achieve validity scores
competitive with these specialized models is a strong demonstration of its learning capabilities.
It successfully infers the complex, implicit rules of molecular construction. Furthermore, some
models, such as MCTS a search-based method, that guarantee 100% validity do so at the cost of poor
distributional similarity (e.g., a low FCD score). From a practical perspective, one can easily reject
invalid graphs to achieve near-perfect validity while generating over-simplified and basic molecules
that have low distributional similarity (FCD score) with the training data, which is of low practical
interest. AutoGraph achieves a superior overall balance.

Table 12: Benchmarking AUTOGRAPH on the QM9 dataset
QM9 WITH HYDROGEN ATOMS

ngraphs = 100K, |V |max = 29, |V |avg ≈ 18

MODEL VALID� UNIQUE� NOVEL� ATOM STABLE� MOL STABLE�

DIGRESS 95.4 97.6 33.4 98.1 79.8

AUTOGRAPH 97.7 96.7 45.5 98.6 87.3
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Table 13: Benchmarking AUTOGRAPH on the MOSES dataset
MOSES

ngraphs = 1.58M, |V |max = 27, |V |avg ≈ 22

MODEL TYPE VALID� UNIQUE� NOVEL� FILTERS� FCD� SNN� SCAF�

VAE SMILES 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE FRAGMENTS 100 100 99.9 97.8 1.00 0.53 10
GRAPHINVENT GRAPH 96.4 99.8 – 95.0 1.22 0.54 12.7
DIGRESS GRAPH 85.7 100 95.0 97.1 1.19 0.52 14.8

AUTOGRAPH GRAPH 87.4 100 85.9 98.6 0.91 0.55 10.2
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Figure 3: Comparison of AUTOGRAPH with and without pre-training on the Planar dataset with
50000 training steps. The model with pre-training converges clearly faster than the model without
pre-training.

F.3 Transfer Performance of AUTOGRAPH

We provide here additional results for the transfer learning of AUTOGRAPH. We compare the training
curves of AUTOGRAPH models with and without pre-training on the Planar datasets in Figure 3. The
result suggests that the model with pre-training converges clearly faster.

For the transfer experiment on molecular generation, we first pre-train AUTOGRAPH on the PubChem-
10M dataset [14], and then fine-tune it on the GuacaMol dataset. In this experiment, we use richer
node attributes including atom types, total number of hydrogens, and formal charges.

F.4 Substructure Conditioned Generation

As presented in Section 4.3, we test more extreme cases by replicating the same motif multiple times
before initiating the conditional generation. Figure 4, 5, and 6 demonstrate non-curated samples
generated by AUTOGRAPH (trained on the GuacaMol dataset without any additional fine-tuning)
conditioned on p copies of the same motif, where p = 1, 2, 5 respectively.

To further showcase the flexibility of AUTOGRAPH, we conduct the same experiments for two
different motifs: 1,4-Dihydroquinoline3 and 3-(Trifluoromethyl)aniline4. This is a very relevant
problem in drug discovery, usually termed linker design. The validity, uniqueness, and novelty for
1024 samples are respectively 97.4, 81.4, and 99.9. Visual examples are given in Figure 7.

F.5 Additional Ablation Experiments

Impact of model size. Table 14 and Figure 8 compare the impact of model size. Larger models
demonstrate better VUN scores. In this work, we use LLaMA-s in all our experiments to balance the
trade-off between performance and speed.

3https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Dihydroquinoline
4https://pubchem.ncbi.nlm.nih.gov/compound/3-_Trifluoromethyl_aniline
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Motif:

Figure 4: Substructure conditioned generation on one copy of the motif 1_4-Dihydroquinoline.

Motif:

2 ×

Figure 5: Substructure conditioned generation on two copies of the motif 1_4-Dihydroquinoline.

F.6 Visualization of Graphs Generated by AUTOGRAPH

F.6.1 Results without Pre-training

We provide visualization of non-curated samples generated by AUTOGRAPH without pre-training
on all datasets in Figure 9, 10, 11, 12, 13, 14, and 15. The results on NetworkX are illustrated
in Figure 16. Node colors in unattributed graphs represent the eigenvectors associated with the
second-smallest eigenvalues of the graph Laplacian.
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Motif:

5 ×

Figure 6: Substructure conditioned generation on five copies of the motif 1_4-Dihydroquinoline.

Table 14: Comparison of model size on the Planar dataset
MODEL # PARAMS CONFIGURATION DEG. CLUS. ORBIT SPEC. RATIO VUN

LLAMA-XS 25.2M 6 LAYERS, 512 DIMS -0.0001 0.0570 0.0006 0.0063 1.0 60.0
LLAMA-S 113M 12 LAYERS, 768 DIMS 0.0005 0.0651 0.0005 0.0056 1.6 90.0
LLAMA-M 402M 24 LAYERS, 1024 DIMS 0.0001 0.0340 0.0013 0.0064 1.4 82.5

F.6.2 Results with pre-training

We provide visualization of non-curated samples generated by AUTOGRAPH with pre-training (on
the NetworkX dataset) trained on the non-attributed datasets including Planar, SBM, Proteins, and
Point Clouds, illustrated in Figure 17, 18, 19, 20.
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Motifs:

Figure 7: Substructure conditioned generation on two different motifs: 1_4-Dihydroquinoline and
3-(Trifluoromethyl)aniline.
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Figure 8: Comparison of model size on the Planar dataset: VUN score vs training steps. LLaMA-m
appears to suffer from overfitting and LLaMA-xs appears to suffer from underfitting.
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Figure 9: Non-curated samples generated by AUTOGRAPH (without pre-training) trained on the
Planar dataset.

Figure 10: Non-curated samples generated by AUTOGRAPH (without pre-training) trained on the
SBM dataset.
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Figure 11: Non-curated samples generated by AUTOGRAPH (without pre-training) trained on the
Proteins dataset.

Figure 12: Non-curated samples generated by AUTOGRAPH (without pre-training) trained on the
Point Clouds dataset.
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Figure 13: Non-curated samples generated by AUTOGRAPH (without pre-training) trained on the
QM9 dataset.

Figure 14: Non-curated samples generated by AUTOGRAPH (without pre-training) trained on the
MOSES dataset.
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Figure 15: Non-curated samples generated by AUTOGRAPH (without pre-training) trained on the
GuacaMol dataset.
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Figure 16: Non-curated samples generated by AUTOGRAPH trained on the NetworkX dataset.
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Figure 17: Non-curated samples generated by AUTOGRAPH (with pre-training on the NetworkX
dataset) trained on the Planar dataset.

Figure 18: Non-curated samples generated by AUTOGRAPH (with pre-training on the NetworkX
dataset) trained on the SBM dataset.
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Figure 19: Non-curated samples generated by AUTOGRAPH (with pre-training on the NetworkX
dataset) trained on the Proteins dataset.

Figure 20: Non-curated samples generated by AUTOGRAPH (with pre-training on the NetworkX
dataset) trained on the Point Clouds dataset.
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