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Abstract

Advances in Large Language Models (LLMs) have spurred a wave of LLM library
learning systems for mathematical reasoning. These systems aim to learn a reusable
library of tools, such as formal Isabelle lemmas [Paulson, 1994] or Python programs
that are tailored to a family of tasks. Many of these systems are inspired by the
human structuring of knowledge into reusable and extendable concepts [Ellis et al.,
2021], but do current methods actually learn reusable libraries of tools?
We study two library learning systems for mathematics which both reported in-
creased accuracy: LEGO-Prover [Wang et al., 2024a] and TroVE [Wang et al.,
2024b]. We find that function reuse is extremely infrequent on miniF2F [Zheng
et al., 2022] and MATH [Hendrycks et al., 2021]. Our followup ablation experi-
ments suggest that, rather than reuse, self-correction and self-consistency are the
primary drivers of the observed performance gains. Our code and data are available
at https://github.com/ikb-a/curious-case.

1 Introduction

Mathematical progress is made by building with, and building upon, the tools of those who came
before. Consequently, it is no surprise that there is research interest in developing systems that
can automatically learn such reusable mathematical tools. Recently, LLMs have enabled new tool-
learning methods with improved performance [Wang et al., 2024a,b, Zhang et al., 2024a, Yuan et al.,
2024] – but are these systems truly learning generalized, reusable knowledge or is performance
improved through other mechanisms? In this work, we study two prior systems: LEGO-Prover which
aims to learn reusable formal Isabelle lemmas, and TroVE which aims to learn reusable Python
functions. For both, our analysis of the model’s behaviour reveals that direct reuse is negligible.
Furthermore, we perform two ablation studies supporting our position that function reuse plays a
limited role in these systems’ improved mathematical reasoning.

2 Related Work

LLM library learning, i.e., creating and reusing tools, depends on LLMs’ ability to use tools. Prior
evaluations of tool-use (typically assuming tools as REST APIs) [Qu et al., 2024] included real-world
queries [Yan et al., 2024], dedicated test environments [Li et al., 2023], and metrics ranging from
LLM-as-a-judge [Guo et al., 2024] to tracking task-checkpoint completion [Lu et al., 2024].
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Table 1: Lemma reuse in LEGO-Prover released logs. Note that lemma reuse is very uncommon,
and no lemma reused twice. For each split, we report the number of problems solved, the number of
unique lemmas occurring in the PROVER’s input prompts, the number of lemmas reused verbatim
once, or more than once, and the number of lemmas whose name is reused once, or more than once.
A lemma is reused N times if it appears in N + 1 solutions (i.e., the initial use, and then N reuses).

Verbatim reused Name reused

Split Problems Solved Lemmas in Prompts 1 2+ 1 2+

valid+GPT 127 374 0 0 1 0
valid+Human 135 265 0 0 1 0
test+GPT 111 255 0 0 2 0
test+Human 122 339 1 0 2 0

In contrast, the evaluation of library learning systems has been limited. Accuracy is the metric of
choice [Wang et al., 2024a,b, Zhang et al., 2024a, Yuan et al., 2024], but cannot capture the extent
or quality of reuse: an excellent library is useless to a weak reasoner, and a powerful reasoner can
ignore a useless library and derive results from first principles. Prior attempts to evaluate library
learning have been limited to static measures of individual functions such as cyclomatic complexity
[McCabe, 1976, Zhang et al., 2024a] and abstract syntax tree depth [Wang et al., 2024b], or have
answered specific questions such as the ease of human verification [Wang et al., 2024b], accuracy
under domain transfer [Zhang et al., 2024a, Qian et al., 2023], or performance in the sub-problem of
refactoring ground truth solutions[Lin et al., 2024].

In this study, we evaluate two library learning systems for mathematical reasoning: LEGO-Prover,
and TroVE (see Sections 2.1 and 2.2). For a review of library learning systems, see Appendix A.

2.1 LEGO-Prover: Purpose & Architecture

LEGO-Prover consumes a set of proposed theorems to produce corresponding formal Isabelle
[Paulson, 1994] proofs. It was evaluated on the miniF2F [Zheng et al., 2022] dataset: each problem
was attempted 100 times, and the system obtained feedback from the Isabelle verifier after each
attempt. LEGO-Prover was designed to perform library learning. Using the term skills in place
of tools, Wang et al. [2024a] claimed that “LEGO-Prover enables LLMs to utilize existing skills
retrieved from the library” and “[m]odular and reusable skills are constantly added to the library
to enable tackling increasingly intricate mathematical problems.” LEGO-Prover performs library
learning via two LLM systems: 1) The PROVER which uses the library to create proofs, and 2) the
EVOLVER which iteratively refines the library. They communicate through shared databases, such as
the request db which stores proposed lemmas to be proven and added to library.

2.2 TroVE: Purpose & Architecture

TroVE is a “method for inducing a toolbox of reusable functions to use in solving programmatic
tasks,” designed to receive a stream of word problems without a ground truth or verifier [Wang et al.,
2024b]. For each problem, it attempts to produce a Python program that prints the correct solution.
TroVE’s mathematical reasoning was evaluated with the MATH dataset Hendrycks et al. [2021].
Each problem is considered once: an LLM generates 15 solutions, and the best is selected based on
self-consistency (i.e., majority vote) [Wang et al., 2023]. In generation, 5 solutions ignore the library
and directly generate a program (SKIP mode), 5 create a reusable helper function for inclusion in the
library (CREATE mode), and 5 use a function from the library (IMPORT mode).

3 Analysis of LEGO-Prover

We begin by analyzing the publicly released LEGO-Prover evaluation log files 1 [Wang et al., 2024a].
These logs are a subset of the unreleased PROVER logs corresponding to the final attempts on the

1https://github.com/wiio12/LEGO-Prover/blob/357672c7751cd0c84aff6bf72a3d1bf97614e81d/
result/lego_result.zip
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Figure 1: LEGO-Prover performance on a subset of the miniF2F validation split. The ablated model
cannot reuse lemmas and performs similarly. The shaded region is one standard deviation, capturing
variations in LLM output and race conditions.

successfully solved problems. Note that LEGO-Prover was evaluated on 4 data splits, and learned
over 20,000 lemmas overall [Wang et al., 2024a].

We find that only 1,233 lemmas (∼6%) are used in the final solving step (i.e., are inputs to the
PROVER). Of these, exactly one lemma is reused by the PROVER, and it is reused once (i.e.,
appears verbatim in two solutions). As the PROVER may be adjusting a lemma (e.g., paraphrasing,
commenting, etc...) we repeat the analysis, checking only for the lemma’s name. Again, lemma reuse
is rare, and no lemma is reused more than once (i.e., no lemma has its name appear in 3 or more
solutions). See Table 1 for details. For an example of verbatim vs. name use, see Appendix B.

Given these findings, there are only two possibilities by which LEGO-Prover may be performing
reuse: 1) indirect reuse (e.g., the learned tools are useful, reusable exemplars, rather than directly
used in the final solution), or 2) direct reuse occurs in the EVOLVER.

Instead, we hypothesize that reuse is not significantly boosting performance. We propose that self-
correction [Pan et al., 2023] via the request db is the main mechanism of action. Note that the PROVER
populates the request db by: 1) adding lemmas that the LLM suggests may be helpful sub-steps, and 2)
adding lemmas from solution attempts that Isabelle could not verify. The EVOLVER uses the request
db to modify existing tools to “aid in solving requests”, and to “resolv[e] decomposed sub-goals”
using the library [Wang et al., 2024a]. Thus, the performance gains may be due to a combination
of chain-of-thought [Wei et al., 2022] (through the PROVER’s proposal of helpful lemmas for the
EVOLVER to solve) and self-correction (through the EVOLVER’s retrying of failed lemmas).

To test whether any form of reuse is increasing performance, we ablate LEGO-Prover to remove
cross-problem sharing: each theorem is solved with its own independent state and databases. E.g.,
in place of a global request db, each problem now has its own independent request db. We evaluate
on a random size 12 subset of the validation split and use 50 attempts per problem. We perform our
ablation using OpenAI’s GPT-4o-mini as the original results were published using now deprecated
versions of GPT-3.5-Turbo; see Appendix E for full details of the ablation. Running 2 trials, we find
that the ablation’s performance is strong, solving only 1 question less than the baseline (see Figure 1).
Studying the problems solved by only the baseline, we find that only the simplest of the input lemmas
are possibly used (namely a2 ≥ 0 and ax2 + bx+ c = 0 ⇒ c = −(ax2 + bx); see Appendix C). It is
unclear as these facts are not treated as lemmas, and are given different justifications. This suggests
that: 1) the LLM may be too weak if it needs examples of basic facts 2) the LLM struggles at reuse
as it does not copy the given, verified, proofs.

4 Analysis of TroVE

As TroVE logs were not released, we re-ran TroVE on MATH, achieving accuracy within ±2%
(absolute) of reported (see Appendix, Table 3). Note that the TroVE library also learns import
statements; we ignore these in our analysis for two reasons. Firstly, our interest is in whether the
system learns and reuses non-trivial tools, unlike statements such as “import math” and “from
sympy import symbols”. Secondly, as TroVE includes the entire library as part of the IMPORT
prompt, and import statements are innately simple, it is impossible to determine whether an import
statement is included in the LLM output due to reuse, or the LLM’s innate knowledge.
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Table 2: TroVE performance on MATH for the ablation and the baseline. Mean and standard deviation
over 5 trials are reported. The variations arise from LLM output. † indicates that mean ablation
performance is significantly strictly higher than the baseline’s, at the Bonferroni-corrected 0.05 level,
using a 2-sample 1-sided Welch’s t-test (note, this test assumes approximate normality).

Accuracy on MATH test split

Model count geo inte num

TroVE Reproduced 0.236 ± 0.008 0.058 ± 0.004 0.120 ± 0.006 0.258 ± 0.007
No Reuse Ablation 0.250 ± 0.000† 0.050 ± 0.000 0.134 ± 0.014 0.290 ± 0.014†

Analyzing the logs, we find that TroVE’s final libraries only contain 15 learned functions, having
learned functions for only 3 of the 7 MATH subject test splits: counting, number, and pre-algebra.
No functions are learned in the algebra, geometry, intermediate algebra, or pre-calculus splits. Of the
15 learned functions, only 2 are reused in a correct solution: is_perfect_square(n) is reused in
one correct solution and is_prime(num) is reused in two correct solutions.

Given 3 successful reuses in 3,201 test questions, we believe that TroVE’s improvements over the base-
lines are not due to function reuse. Instead, we believe that ensembling and self-consistency are respon-
sible. To test this, we ablate the model by disabling IMPORT mode, but maintaining the 15 solution
attempts: we generate 8 solutions ignoring the library (i.e., SKIP mode) and 7 attempting to create a
helper function (i.e., CREATE mode). As in the original work we use CodeLlama-7b-Instruct-hf
[Rozière et al., 2023]; see Appendix F for the full ablation details. Ablating IMPORT mode prevents
reuse as the library never appears in the model’s input, thus also preventing library learning of import
statements. As to why this ablation could still be performant, prior work established the benefits
of self-consistency and increased sampling [Brown et al., 2024], and it’s known that library-less
tool-creation can boost performance by forcing abstract reasoning [Yuan et al., 2024].

We evaluate our ablated model on the intermediate_algebra test split (reportedly the largest per-
formance gain over non-reuse baselines), and the geometry, number, and count test splits. On the
intermediate_algebra, number, and count splits, our ablation exceeds the baseline’s performance, with
the improvement being statistically significant on two splits (See Table 2). On only the geometry split
does the base model perform slightly better, though the learned libraries only contains import state-
ments. From this we can conclude that library learning import statements can be slightly beneficial,
but only for certain domains. Typically, TroVE’s library learning degrades its performance.

5 Conclusions

In this study, we find that both TroVE and LEGO-Prover do not directly reuse the tools they learn.
Furthermore, the results of our ablations suggest that their performance gains cannot be solely
attributed to indirect reuse either.

We intend that this paper be a call for the better understanding of the limitations of current library
learning systems, and for improved evaluation. We show that accuracy is misleading in isolation: the
system’s reuse behaviour is paramount, and careful ablation is critical. Both papers studied made
sensible claims as the created systems were deliberately designed for library learning and were tested
against ablations that were not unreasonable – however they also relied heavily on accuracy as a
metric instead of directly observing the systems’ use of the library, and both chose ablations that in
hindsight were too aggressive. It is clear that, particularly for ablations of library learning systems,
minimal changes are preferable, and considerable thought should be put into other possible causes of
improvements. There is a clear need for a broadly applicable framework for the evaluation of library
learning specifically; this framework must rely on more than task accuracy and ablations to evaluate
library learning and reuse.

Finally, considering library learning for mathematics in general: are LLMs capable learning tools and
performing direct, verbatim reuse? Given that the observed improvements do not come from direct
reuse, would direct reuse actually improve systems for mathematical reasoning, or is it overly brittle
making soft reuse desirable? These important questions follow from our findings, and should inform
the design of future research into library learning systems.
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6 Limitations & Broader Impact

Due to resource constraints, our ablation studies could be more thorough. Most obviously, we only
study two models, and on two datasets. The LEGO-Prover ablation is not ideal, as library learning
is disadvantaged by operating on a subset of the questions; this was necessary due to resource
constraints. Another limitation is that LEGO-Prover’s databases are pre-loaded with the full dataset
of problems; consequently, the EVOLVERs are exposed to other problem statements – note, however,
that the impact on testing reuse is minimal. Firstly, the PROVER cannot attempt to solve any of these
other problems, thus the request db cannot gain pending lemmas related to other problems. Secondly,
under the ablated model, tasks cannot share lemmas – any performance gains would come from
having access to other sample problems instead of reuse.

While we demonstrate that the performance gains in mathematical reasoning seen by TroVE and
LEGO-Prover cannot be attributed to the direct learning and reuse of tools, there is a very important
but subtly different question which remains unanswered: whether these systems are at all capable of
library learning. It is possible that these systems have the capacity to learn reusable functions and
lemmas, but the datasets do not provide the opportunity. Manually inspecting the MATH dataset,
our tentative conclusion is that the dataset is intrinsically not amenable to function learning with
Python – we suspect the questions are too diverse, with the shared components already being captured
by standard libraries. How this could be more formally demonstrated remains an important open
question that is beyond the scope of this work.

This work has no immediate societal impact, rather, it highlights current limitations and challenges
assumptions in this field. However, deploying tool-learning systems may carry a security risk from
executing LLM-generated code (we sandboxed TroVE). More generally, library learning systems are
self-improving through code generation, an approach that has raised concerns [Zelikman et al., 2023].
Unexpected behaviours may develop, thus requiring sandboxing and monitoring, at the very least.
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Appendix

A Extended Related Work

Current LLM-based library learning systems tend to fall into two main camps: systems designed for
general word problem solving, typically including mathematical reasoning and typically generating
Python functions (e.g., Cai et al. [2024], Yuan et al. [2024], Wang et al. [2024b]), and agentic systems
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designed to interact with a specific, complex environment (e.g., Wang et al. [2024c], Tan et al. [2024],
Wu et al. [2024], Zhang et al. [2024a], Zhao et al. [2024]).

Generally, such systems access the library via in-context learning (ICL); some place the entire library
in the context [Wang et al., 2024b, Zhang et al., 2024a], whereas others first use a semantic-similarity
retrieval step to allow for larger libraries. Yuan et al. [2024] in particular uses a retrieval system that
incorporates a LLM-generated description of the tool to be retrieved; LEGO-Prover behaves similarly
by having several phases where the system alternates between proposing useful tools to be added to
the library, attempting to create these tools, and possibly retrieving these tools.

These systems are typically bottom-up (iteratively developing a library over time), though a handful of
top-down approaches exist. These top-down approaches instead decompose a high-level description
of the tasks into reusable modules [Chen et al., 2024, Kuan et al., 2024, Zhao et al., 2024, Zhang
et al., 2024b]; to the best of the authors’ knowledge this approach is yet to be applied to mathematical
reasoning.

These LLM-based systems typically attempt to produce reusable tools via ICL: prompting the LLM
to generate “reusable functions”. In comparison, an older family of library learning work (e.g.,
Dreamcoder [Ellis et al., 2021] and LILO [Grand et al., 2024]) instead frame library learning as a
matter of compression. In principle a function that compresses a set of solutions must be broadly
applicable, and in practice a high-level function reduces the symbolic search space for program
induction. More generally, compression has been of long standing interest in the field of artificial
intelligence. Rendell [1983] defined conceptual knowledge as the ability to compress a raw space
of possibilities into useful classes, and there are long-standing connections between compression
and inductive reasoning. Framing inductive reasoning as the task of capturing the underlying pattern
in a provided substring for the purposes of prediction, Solomonoff [1964] formalized induction as
Bayesian reasoning under a prior favouring low Kolmogorov complexity. In other words, formalizing
the concept of Occam’s razor – that the simplest solution, that which can be highly compressed into a
short description, is more likely. For a recent treatise on the value of compression, specifically within
the area of mathematical reasoning, see Bengio and Malkin [2024].

Turing our attention to mathematics, deep learning in general and LLMs in particular have found
broad application in theorem proving [Li et al., 2024]. Considering library learning specifically, a
very closely related branch of work considers the problem of refactoring a collection of ground-
truth solutions into reusable components. ATG [Lin et al., 2024] and REFACTOR [Zhou et al.,
2024] train models to extract reusable formal lemmas from a provided set of ground-truth formal
proofs. Similarly, ReGAL [Stengel-Eskin et al., 2024] refactors ground-truth Python solutions for
the MATH dataset into a reusable library. These systems are valuable and may represent a better
first step towards reusable knowledge, but their dependence on ground-truth solutions prevents them
from being conventional library learning systems. In comparison, LEGO-Prover attempts to learn
reusable lemmas and produce formal proofs from only formal problem statements, and informal
natural language proofs – furthermore, Wang et al. [2024a] demonstrated that the latter could be
automatically generated by ChatGPT with only a small degradation in system performance.

B Example of Verbatim Use versus Name Use by LEGO-Prover

Figure 2 is an example of verbatim use where an input lemma to the PROVER is used verbatim in the
outputted solution.

In contrast, Figure 3 is an example of name use, where the name of the input lemma appears in the
solution. In this case, the contents of the lemma are similar, but have significant differences. Note
that an instance of verbatim use would, necessarily, also be an instance of name use.

A lemma is reused N times if it is used N + 1 times – i.e., if the lemma is used in N + 1 solutions.

C LEGO-Prover Solutions not Found by Reuse-Free Ablation

We performed two runs of the original model, in both cases it outperformed the ablation by solving
one additional problem. We present the found proofs and input lemmas in Figures 4 and 6. For
improved legibility, we also provide a typeset approximation in Figures 5 and 7. In addition to the
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PROVER input PROVER output

[... System prompt ...]

Here some useful skill for reference:
###### useful skill 1: ######
```isabelle
lemma step3:
  fixes x y ::real
  shows "x^2 + y^2 + (x^2 * y^2) + 1 \<ge> 1"
proof -
  have "x^2 + y^2 + (x^2 * y^2) + 1 - 1 = x^2 + 
y^2 + (x^2 * y^2)"
    by simp
  then have "x^2 + y^2 + (x^2 * y^2) + 1 - 1 \<ge> 
0"
    by simp
  then show ?thesis
    by simp
qed
```

###### useful skill 2: ######
```isabelle
lemma algebra_sqineq_2xyxysq:
  fixes x y :: real
  shows "x^2 + y^2 \<ge> 2 * x * y"
proof -
  have "(x - y)^2 \<ge> 0"
    by simp
  then have "x^2 - 2 * x * y + y^2 \<ge> 0"
    by (simp add: algebra_simps power2_diff)
  then have "x^2 + y^2 \<ge> 2 * x * y"
    by simp
  then show ?thesis
    by simp
qed
```

[... Additional skills and example problems ...]

## Problems
What is the least possible value of $(xy-1)^2+
(x+y)^2$ for real numbers $x$ and $y$?  
$\textbf{(A)} ~0\qquad\textbf{(B)} ~\frac{1}
{4}\qquad\textbf{(C)} ~\frac{1
}{2} \qquad\textbf{(D)} ~1 \qquad\textbf{(E)} Show 
that it is \textbf{(D)} ~1.

## Informal proof
Step 1: Expand the expression $(xy-1)^2+(x+y)^2$ 
to obtain $x^2+2xy+y^2+x^2y^2-2xy+1$.
Step 2: Simplify the expression to 
$x^2+y^2+x^2y^2+1$.
Step 3: Observe that all squares are nonnegative, 
so the minimum value of the expression is 1.
Step 4: Show that the minimum value of 1 can be 
achieved when $x=y=0$.

## Formal statement
```isabelle
theorem amc12a_2021_p7:
  fixes x y ::real
  shows "1 \<le> ((x * y) - 1)^2 + (x + y)^2"
  apply (auto simp:algebra_simps power2_eq_square)
```

## Proof

```isabelle
theory amc12a_2021_p7
  imports Complex_Main
begin

(* lemma 1. A lemma that shows the distribution 
properties of real numbers will be helpful for 
step 1, which requires this lemma to expand the 
equation *)
lemma step1:
  fixes x y :: real
  shows "(x * y - 1)^2 + (x + y)^2 = x^2 + 2 * x * 
y + y^2 + x^2 * y^2 - 2 * x *
 y + 1"
  by (simp add: power2_eq_square algebra_simps)

(* lemma 2. A lemma that shows the properties of 
quadratic equation will be useful for step 2, 
which requires this lemma to simplify the equation 
*)
lemma step2:
  fixes x y ::real
  shows "x^2 + 2 * x * y + y^2 + x^2 * y^2 - 2 * x 
* y + 1 = x^2 + y^2 + x^2 * y^2 + 1"
proof -
  have "x^2 + 2 * x * y + y^2 + (x^2 * y^2) - 2 * 
x * y + 1 = x^2 + y^2 + (x^2 * y^2) + 1"
    by (simp add: algebra_simps)
  then show ?thesis
    by simp
qed

(* lemma 3. A lemma that shows the properties of 
quadratic equation will be useful for step 3, 
which requires this lemma to conclude the equation 
*)
lemma step3:
  fixes x y ::real
  shows "x^2 + y^2 + (x^2 * y^2) + 1 \<ge> 1"
proof -
  have "x^2 + y^2 + (x^2 * y^2) + 1 - 1 = x^2 + 
y^2 + (x^2 * y^2)"
    by simp
  then have "x^2 + y^2 + (x^2 * y^2) + 1 - 1 \<ge> 
0"
    by simp
  then show ?thesis
    by simp
qed

(* formal statement copy from the input *)
theorem amc12a_2021_p7:
  fixes x y ::real
  shows "1 \<le> ((x * y) - 1)^2 + (x + y)^2"
  apply (auto simp:algebra_simps power2_eq_square)
  using step1 step2 step3 by auto

end
```

This is the proof for the given problem.

Figure 2: Example of verbatim reuse by the LEGO-Prover. The input lemma is reproduced exactly in
the PROVER’s output.
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PROVER input PROVER output

[... System prompt ...]

Here some useful skill for reference:
###### useful skill 1: ######
```isabelle
theorem algebra_2rootspoly_apatapbeq2asqp2ab:
  fixes a b :: complex
  shows "(a+a) * (a+b) = 2 * a^2 + 2 * (a*b)"
proof -
  have "(a+a) * (a+b) = (a+a)*a + (a+a)*b"
    by (simp add: distrib_left)
  also have "... = 2*a^2 + 2*a*b"
    by (metis calculation distrib_left 
mult.commute mult_2 numeral_2_eq_2 
power2_eq_square)
  finally show ?thesis
    by simp
qed
```

###### useful skill 2: ######
```isabelle
lemma multi_distrib_complex:
  fixes a b c d :: complex
  shows "(a + b) * (c + d) = a * c + a * d + b * c 
+ b * d"
  by (simp add: distrib_left distrib_right)
```

###### useful skill 3: ######
```isabelle
lemma algebra_1_generalized:
  fixes a b :: nat
  shows "a^2 + 2*a*b + b^2 = (a+b)^2"
  by (smt (z3) ab_semigroup_add_class.add_ac(1) 
add.assoc add.commute add.left_commute power2_sum)
```

[... Additional skills and example problems ...]

## Problems
Simplify $(a-1)(a+1)(a+2) - (a-2)(a+1).$ Show that 
it is a^3 + a^2.

## Informal proof
Step 1: Expand the expression $(a-1)(a+1)(a+2) - 
(a-2)(a+1)$ by multiplying the binomials.
Step 2: Simplify the expression to obtain $(a^2-1)
(a+2)-(a-2)(a+1)$.
Step 3: Expand further to get $(a^3 + 2a^2 - a - 
2) - (a^2 -a -2)$.
Step 4: Combine like terms to simplify the 
expression to $a^3 + a^2$.
Step 5: Conclude that the simplified expression is 
equal to $a^3 + a^2$.

## Formal statement
```isabelle
theorem mathd_algebra_568:
  fixes a :: real
  shows "(a-1) * (a+1) * (a+2) - (a-2) * (a+1) = 
a^3 + a^2"
```

## Proof

```isabelle
theory mathd_algebra_568
  imports Complex_Main
begin

(* Lemma 1: Distributive property of 
multiplication to simplify the main equation *)
lemma algebra_1_generalized:
  fixes a b c :: real
  shows "(a - b) * (a + c) = a^2 + a * c - b * a - 
b * c"
  by (simp add: algebra_simps)

(* formal statement copy from the input *)
theorem mathd_algebra_568:
  fixes a :: real
  shows "(a-1) * (a+1) * (a+2) - (a-2) * (a+1) = 
a^3 + a^2"
proof -
  (* Step 1: Expand the expression $(a-1)(a+1)
(a+2) - (a-2)(a+1)$ by multiplying the binomials. 
*)
  have c0: "(a-1) * (a+1) * (a+2) - (a-2) * (a+1) 
= (a^2 - 1) * (a+2) - (a-2) * (a+1)"
    by (simp add: algebra_simps)

  (* Step 2: Simplify the expression to obtain $
(a^2-1)(a+2)-(a-2)(a+1)$. *)
  have c1: "(a^2 - 1) * (a+2) - (a-2) * (a+1) = 
(a^3 + 2*a^2 - a - 2) - (a^2 - a - 2)"
    using algebra_1_generalized[of "a^2" 1 2] 
algebra_1_generalized[of "a" 2 1]

    by (simp add: algebra_simps)

  (* Step 3: Expand further to get $(a^3 + 2a^2 - 
a - 2) - (a^2 -a -2)$ *)
  have c2: "(a^3 + 2*a^2 - a - 2) - (a^2 - a - 2) 
= a^3 + a^2"
    by simp

  (* Step 4: Combine like terms to simplify the 
expression to $a^3 + a^2$. *)
  show ?thesis using c0 c1 c2
    by simp
qed

end
```

Figure 3: Example of name reuse by the LEGO-Prover. Only the name of the input lemma needs to
be reproduced exactly in the output. In this case, the body of the input lemma has been significantly
adjusted. Note Figure 2 is also an example of name reuse, as the input lemma’s name appears in the
solution (in that particular case, along with the rest of the lemma).
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Table 3: TroVE performance on MATH. For comparison with Wang et al. [2024b], all reported
numbers are best over 5 trials. Variation between trials arises from the stochastic sampling of the
underlying LLM.

Best-of-5 accuracy on MATH test split

Model count geo inte num

TroVE, Reported 0.26 0.08 0.11 0.25
TroVE Reproduced (ours) 0.24 0.06 0.13 0.27
TroVE, Reported CREATE-only ablation 0.14 0.06 0.05 0.16
No Reuse Ablation (ours) 0.25 0.05 0.15 0.31

Table 4: LEGO-Prover hyperparameters

Hyperparameter value

Solution attempts per problem (num_attempts) 50
Number of PROVER processes (num_prover) 3
Number of EVOLVER processes (num_evolver) 8
Temperature (temperature) 0.7

observations in the main paper, it should be noted that there is redundancy among the retrieved
lemmas – deduplication and retrieval of lemmas remain areas for improvement.

D TroVE MATH reproduction

See table 3 for the best-of-five accuracies reported by TroVE, and achieved by our reproduction of
their results.

E LEGO-Prover Hyperparameters and Experiment Details

At the time of publication, the LEGO-Prover logs released by Wang et al. [2024a] and
used in our analysis are available at https://github.com/wiio12/LEGO-Prover/blob/
357672c7751cd0c84aff6bf72a3d1bf97614e81d/result/lego_result.zip.

LEGO-Prover is built on OpenAI’s GPT-3.5-Turbo and the 2022 release of the Isabelle
proof assistant, specifically using its abilities as a proof verifier. Note that due to
the deprecation of the LLMs originally used by LEGO-Prover (gpt-3.5-turbo-0301,
gpt-3.5-turbo-0613, gpt-3.5-turbo-16k, gpt-3.5-turbo-16k-0613,
gpt-3.5-turbo-16k, gpt-3.5-turbo-16k-0613), we upgrade the underlying LLM from
GPT-3.5-Turbo to GPT-4o-mini.

We use the default LEGO-Prover hyperparameters, except for the number of retry attempts which,
following Wang et al. [2024a]’s ablations, we reduce to 50. See Table 4 for details.

Note that the LEGO-Prover is initialized with a seed library of tools, and our ablation retains this
initialization. The core claim we aim to disprove is that the model’s performance gains predominantly
come from reusable lemmas, and our ablation prevents any cross-task reuse.

The specific 12 problems chosen uniformly at random for our ablation study
are: aime_1991_p6.json, algebra_2varlineareq_xpeeq7_2xpeeq3_eeq11_xeqn4.json,
amc12a_2008_p15.json, amc12a_2013_p8.json, amc12a_2021_p7.json, amc12b_2002_p3.json,
amc12b_2003_p9.json, mathd_algebra_31.json, mathd_algebra_109.json, mathd_algebra_116.json,
mathd_numbertheory_149.json, and numbertheory_sqmod4in01d.json

Note that LEGO-Prover requires both the problem statement, and an informal natural lan-
guage proof for conversion. We use the same human-generated informal proofs as Wang
et al. [2024a]. The authors bundled said informal proofs inside of the miniF2F .json files
listed above, available for download from https://github.com/wiio12/LEGO-Prover/tree/
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Input Lemmas Final Proof

###### useful skill 1: ######
lemma quadratic_root_substitution:
  fixes a b c k x :: real
  assumes "a * x^2 + b * x + c = 0"
  shows "c = - (a * x^2 + b * x)"
proof -
  obtain lhs where eq: "lhs = a * x^2 + b * x + c" 
using assms by simp
  have "lhs = 0" using assms by (metis eq)
  thus ?thesis by (simp add: eq)
qed

###### useful skill 2: ######
lemma sqrt_limit_general:
  fixes x :: real
  assumes "n > 0" "k > 0" "k = sqrt(x + k)"
  shows "x = k^2 - k"
proof -
  have "k^2 = x + k" using assms(3) by (smt 
(verit) assms(2) less_eq_real_def real_sqrt_le_iff 
real_sqrt_pow2_iff real_sqrt_zero)
  then show ?thesis by auto
qed

###### useful skill 3: ######
lemma sqrt_difference:
  fixes a b :: real
  assumes "a >= 0" "b >= 0"
  shows "sqrt a - sqrt b = (a - b) / (sqrt a + 
sqrt b)"
proof -
  have "sqrt a - sqrt b = (sqrt a + sqrt b) * 
(sqrt a - sqrt b) / (sqrt a + sqrt b)"
    by (metis add.left_cancel 
add_cancel_right_right add_le_same_cancel2 
assms(1) assms(2) 
cancel_comm_monoid_add_class.diff_cancel 
dual_order.eq_iff eq_divide_eq mult.commute 
nonzero_mult_div_cancel_right 
real_sqrt_eq_zero_cancel_iff real_sqrt_ge_0_iff 
real_sqrt_le_0_iff real_sqrt_zero)
  also have "... = (a - b) / (sqrt a + sqrt b)"
    by (smt (verit) assms(1) assms(2) 
divide_cancel_right real_sqrt_le_mono 
real_sqrt_less_mono real_sqrt_mult_self 
square_diff_square_factored)
  finally show ?thesis
    by (simp add: field_simps)
qed

###### useful skill 4: ######
lemma sqrt_limit_generalized:
  fixes x :: real
  assumes "k = sqrt(x + k)" "k > 0"
  shows "x = k^2 - k"
proof -
  have "k^2 = x + k" using assms by (metis 
add.commute real_sqrt_ge_0_iff real_sqrt_ge_zero 
real_sqrt_gt_0_iff real_sqrt_pow2 
verit_comp_simplify1(3) zero_le_mult_iff 
zero_le_square)
  hence "x = k^2 - k" by simp
  thus ?thesis by auto
qed

theory mathd_algebra_116
  imports Complex_Main
begin
(* lemma 1: A lemma to calculate the square of a difference *)
lemma square_of_difference:
  fixes a b :: real
  shows "(a - b)^2 = a^2 - 2 * a * b + b^2"
proof -
  have "a - b = a + -b" by simp
  then show ?thesis by sos
qed

(* formal statement copy from the input *)
theorem mathd_algebra_116:
  fixes k x :: real
  assumes h0 : "x = (13 - sqrt 131) / 4"
    and h1 : "2 * x^2 - 13 * x + k = 0"
  shows "k = 19/4"
proof -
  (* Step 1: Substitute x into the quadratic equation to 
express it in terms of k *)
  have "2 * x^2 - 13 * x + k = 0" using h1 by simp
  then have "k = 13 * x - 2 * x^2" by simp

  (* Step 2: Calculate 2 * x^2 *)
  have "x^2 = ((13 - sqrt 131) / 4)^2" 
    using h0 by blast
  then have "x^2 = (13 - sqrt 131)^2 / 16" 
    by (simp add: power2_eq_square)
  then have "2 * x^2 = 2 * (13 - sqrt 131)^2 / 16" 
    by simp
  then have "2 * x^2 = (13 - sqrt 131)^2 / 8" 
    by simp

  (* Step 3: Expand (13 - sqrt 131)^2 *)
  have "(13 - sqrt 131)^2 = 169 - 26 * sqrt 131 + 131" 
    using square_of_difference[of 13 "sqrt 131"] by simp
  then have "(13 - sqrt 131)^2 = 300 - 26 * sqrt 131" 
    by simp

  (* Step 4: Substitute back to find 2 * x^2 *)
  have "2 * x^2 = (300 - 26 * sqrt 131) / 8" 
    by (metis \<open>(13 - sqrt 131)\<^sup>2 = 300 - 26 * sqrt 
131\<close> \<open>2 * x\<^sup>2 = (13 - sqrt 131)\<^sup>2 / 
8\<close>)

  (* Step 5: Calculate 13 * x *)
  have "13 * x = 13 * ((13 - sqrt 131) / 4)" 
    using h0 by simp
  then have "13 * x = (169 - 13 * sqrt 131) / 4" 
    by simp

  (* Step 6: Adjust the expression for k *)
  have "k = (169 - 13 * sqrt 131) / 4 - (300 - 26 * sqrt 
131) / 8" 
    using `k = 13 * x - 2 * x^2` by (metis \<open>13 * x = 
(169 - 13 * sqrt 131) / 4\<close> \<open>2 * x\<^sup>2 = (300 
- 26 * sqrt 131) / 8\<close> diff_add_cancel diff_diff_eq 
diff_diff_eq2 diff_zero divide_numeral_1 eq_diff_eq 
eq_iff_diff_eq_0 frac_eq_eq mult.commute mult.left_commute 
mult_2_right mult_eq_0_iff mult_numeral_1_right 
nonzero_mult_div_cancel_right power2_eq_square 
right_diff_distrib' zero_neq_numeral)

  (* Step 7: Combine the fractions *)
  have "k = (169 - 13 * sqrt 131) / 4 - (300 - 26 * sqrt 
131) / 8" 
    by (metis \<open>k = (169 - 13 * sqrt 131) / 4 - (300 - 26 
* sqrt 131) / 8\<close>)
  then have "k = (2 * (169 - 13 * sqrt 131) - (300 - 26 * sqrt 
131)) / 8" 
    by (simp add: field_simps)
  
  (* Step 8: Simplify the combined expression *)
  have "2 * (169 - 13 * sqrt 131) = 338 - 26 * sqrt 131" 
    by simp
  then have "k = (338 - 26 * sqrt 131 - 300 + 26 * sqrt 131) / 
8" 
    by (smt (verit) \<open>k = (2 * (169 - 13 * sqrt 131) - 
(300 - 26 * sqrt 131)) / 8\<close>)
  then have "k = (338 - 300) / 8" by simp
  thus ?thesis by simp
qed
end

Figure 4: LEGO-Prover input lemmas (left) and found proof (right). The proof proves that ∀k ∈ R : if
x = (13−

√
131)/4 and 2x2−13x+k = 0 then k = 19/4. See Figure 5 for a typeset approximation,

and commentary of LEGO-Prover’s use (and failure to use) the input lemmas.
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Input Lemmas Output Proof
Useful skill 1:
∀a, b, c, k, x ∈ R :
ax2 + bx+ c = 0 ⇒ c = −(ax2 + bx)
Demonstrates: assms, simp, (metis eq),
(simp add: eq)

Useful skill 2:
∀x ∈ R : n > 0, k > 0
k =

√
x+ k ⇒ x = k2 − k

Demonstrates: assms, (smt (verit)
assms(2) less eq real def real sqrt le iff
real sqrt pow2 iff real sqrt zero), auto

Useful skill 3:
∀a, b ∈ R :

√
a−

√
b = (a− b)/(

√
a+

√
b)

Demonstrates: (metis add.left cancel
add cancel right right add le same cancel2
assms(1) assms(2) can-
cel comm monoid add class.diff cancel
dual order.eq iff eq divide eq
mult.commute nonzero mult div cancel right
real sqrt eq zero cancel iff real sqrt ge 0 iff
real sqrt le 0 iff real sqrt zero),
(smt (verit) assms(1) assms(2) di-
vide cancel right real sqrt le mono
real sqrt less mono real sqrt mult self
square diff square factored), (simp add:
field simps)

Useful skill 4:
∀x ∈ R : k =

√
x+ k, k > 0 ⇒ x = k2 − k

Demonstrates: assms, (metis add.commute
real sqrt ge 0 iff real sqrt ge zero
real sqrt gt 0 iff real sqrt pow2
verit comp simplify1(3) zero le mult iff
zero le square), simp, auto

Define Lemma square of difference:
∀a, b ∈ R : (a− b)2 = a2 − 2ab+ b2

Proof of Lemma:
a− b = a+ (−b)
Method: simp
Lemma square of difference follows using method sos

Define theorem mathd algebra 116:
∀k ∈ R :
Assume x = (13−

√
131)/4

Assume 2x2 − 13x+ k = 0
Then: k = 19/4
Proof:
2x2 − 13x+ k = 0
k = 13x− 2x2

Method: simp

x2 = ((13−
√
131)/4)2

Method: blast

x2 = (13−
√
131)2/16

Method: (simp add: power2 eq square)

2x2 = 2(13−
√
131)2/16

2x2 = (13−
√
131)2/8

Method: simp

(13−
√
131)2 = 169− 26

√
131 + 131

Method: using lemma square of difference and sos

(13−
√
131)2 = 300− 26

√
131

Method: simp

2x2 = (300− 26
√
131)/8

Method: (metis \<open>(13 - sqrt 131)\<ˆsup>2 = 300 - 26 * sqrt
131\<close>\<open>2 * x\<ˆsup>2 = (13 - sqrt 131)\<ˆsup>2 / 8\<close>)

13x = 13((13−
√
131)/4)

13x = (169− 13
√
131)/4

Method: simp

k = (169− 13
√
131)/4− (300− 26

√
131)/8

Method: (metis \<open>13 * x = (169 - 13 * sqrt 131) / 4\<close>\<open>2
* x\<ˆsup>2 = (300 - 26 * sqrt 131) / 8\<close>diff add cancel
diff diff eq diff diff eq2 diff zero divide numeral 1 eq diff eq eq iff diff eq 0
frac eq eq mult.commute mult.left commute mult 2 right mult eq 0 iff
mult numeral 1 right nonzero mult div cancel right power2 eq square
right diff distrib’ zero neq numeral)

k = (169− 13
√
131)/4− (300− 26

√
131)/8

Method: (metis \<open>k = (169 - 13 * sqrt 131) / 4 - (300 - 26 * sqrt 131) /
8\<close>)

k = (2(169− 13
√
131)− (300− 26

√
131))/8

Method: (simp add: field simps)
2(169− 13

√
131) = 338− 26

√
131

Method: simp

k = (338− 26
√
131− 300 + 26

√
131)/8

Method: (smt (verit) \<open>k = (2 * (169 - 13 * sqrt 131) - (300 - 26 * sqrt
131)) / 8\<close>)

k = (338− 300)/8
Method: simp. Theorem follows.

1Figure 5: A typset approximation of LEGO-Prover input lemmas (left) and found proof (right). The
proof proves that ∀k ∈ R : if x = (13 −

√
131)/4 and 2x2 − 13x + k = 0 then k = 19/4. See

Figure 4 for the original Isabelle lemmas and proof. Note that skill 1 may have been indirectly used
in rewriting 2x2 − 13x+ k = 0 as k = 13x− 2x2. Skills 2, 3 and 4 do not seem to be used directly
or indirectly; furthermore skills 2 and 4 are the same lemma. Their use of smt and metis may have
encouraged the prover to use these same tools.
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Input Lemmas Final Proof

Here some useful skill for reference:

###### useful skill 1: ######
lemma nonneg_square:
  fixes a :: real
  shows "a^2 \<ge> 0"
proof -
  have "a^2 = a * a" by (simp add: 
power2_eq_square)
  thus ?thesis by (simp add: mult_nonneg_nonneg)
qed

###### useful skill 2: ######
lemma square_non_negative:
  fixes a :: real
  shows "a^2 >= 0"
proof -
  have "a^2 = a * a" by sos
  then show ?thesis by auto
qed

###### useful skill 3: ######
lemma square_sum_nonneg:
  fixes x y :: real
  shows "x^2 + y^2 \<ge> 0"
  by (simp)

###### useful skill 4: ######
lemma min_sum_of_squares:
  fixes x y :: real
  shows "x^2 + y^2 >= 0"
proof -
  have "x^2 >= 0" by auto
  moreover have "y^2 >= 0" by auto
  ultimately have "x^2 + y^2 >= 0 + 0" by (simp 
add: add_nonneg_nonneg)
  thus "x^2 + y^2 >= 0" by simp
qed

theory amc12a_2021_p7
  imports Complex_Main 
begin

(* Lemma: The expression can be expressed in terms 
of squares to show its non-negativity. *)
lemma expression_nonneg:
  fixes x y :: real
  shows "((x * y) - 1)^2 + (x + y)^2 >= 1"
proof -
  (* Step 1: Define the expression we want to 
minimize as \( E = (xy - 1)^2 + (x + y)^2 \). *)
  let ?E = "((x * y) - 1)^2 + (x + y)^2"
  
  (* Step 2: Expand the expression \( E \): \( (xy 
- 1)^2 + (x + y)^2 \) *)
  have "((x * y) - 1)^2 = (x^2 * y^2 - 2 * x * y + 
1)" by sos
  have "(x + y)^2 = x^2 + 2 * x * y + y^2" by sos

  (* This simplifies to: \( E = x^2y^2 + x^2 + y^2 
+ 1 \) *)
  have "?E = (x^2 * y^2 - 2 * x * y + 1) + (x^2 + 
2 * x * y + y^2)"
    by sos

  (* Thus, we have: \( E = x^2 * y^2 + x^2 + y^2 + 
1 \) *)
  have "?E = x^2 * y^2 + x^2 + y^2 + 1" by sos

  (* Step 3: Recognize that \( x^2y^2 \), \( x^2 
\), and \( y^2 \) are all non-negative. *)
  have "x^2 * y^2 >= 0" by auto
  have "x^2 >= 0" by auto
  have "y^2 >= 0" by auto

  (* Therefore, the minimum value of \( E \) 
occurs when each of these terms is minimized. *)
  (* The minimum occurs when \( x = 0 \) and \( y 
= 0 \). *)
  have "?E >= 1" by sos

  (* Step 4: Set \( x = 0 \) and \( y = 0 \) to 
achieve the minimum: \( E(0, 0) = 1 \). *)
  have "?E = 1" when "x = 0" and "y = 0" 
    using that by auto

  (* Step 5: Conclude that the least possible 
value of \( E \) is \( 1 \). *)
  thus ?thesis by sos
qed

(* formal statement copy from the input *)
theorem amc12a_2021_p7:
  fixes x y ::real
  shows "1 \<le> ((x * y) - 1)^2 + (x + y)^2"
  apply (auto simp:algebra_simps power2_eq_square)
  using expression_nonneg by sos
  
end

Figure 6: LEGO-Prover input lemmas (left) and found proof (right). The proof proves that ∀x, y ∈
R : 1 ≤ (xy − 1)2 + (x + y)2. See Figure 7 for a typeset approximation, and commentary of
LEGO-Prover’s use (and failure to use) the input lemmas.
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Input Lemmas Output Proof
Useful skill 1: ∀a ∈ R : a2 ≥ 0
Demonstrates: (simp add: power2 eq square), (simp add:
mult nonneg nonneg)

Useful skill 2: ∀a ∈ R : a2 ≥ 0
Demonstrates: sos, auto

Useful skill 3: ∀x, y ∈ R : x2 + y2 ≥ 0
Demonstrates: simp

Useful skill 4: ∀x, y ∈ R : x2 + y2 ≥ 0
Demonstrates: auto, (simp add: add nonneg nonneg), simp

Define Lemma expression nonneg:
∀x, y ∈ R : (xy − 1)2 + (x+ y)2 ≥ 1
Proof of Lemma:
Let E = (xy − 1)2 + (x+ y)2

(xy − 1)2 = (x2y2 − 2xy + 1)
(x+ y)2 = x2 + 2xy + y2

E = (x2y2 − 2xy + 1) + (x2 + 2xy + y2)
E = x2y2 + x2 + y2 + 1
Method: sos

x2y2 ≥ 0
x2 ≥ 0
y2 ≥ 0
Method: auto

E ≥ 1
Method: sos

E = 1 when x, y = 0
Method: auto

Lemma expression nonneg follows using method sos

Define theorem amc12a 2021 p7:
∀x, y ∈ R : 1 ≤ (xy − 1)2 + (x+ y)2

Proof:
Follows Lemma.
Method: sos, applying (auto simp:algebra simps
power2 eq square)

2

Figure 7: Typeset approximation of LEGO-Prover input lemmas (left) and found proof (right).
See Figure 6 for the original Isabelle lemmas and proof. The proof proves that ∀x, y ∈ R : 1 ≤
(xy − 1)2 + (x + y)2. Skills 1 and 2 are the same; the fact that x2 ≥ 0 is used, though the exact
proof differs from the lemmas. Skills 3 & 4 are also the same, though they do not seem to be used.

357672c7751cd0c84aff6bf72a3d1bf97614e81d/data/full_data/valid at the time of pub-
lication.

Note that the mean and standard deviation in Figure 1 are calculated using Python 3.8.9, numpy
1.22.2, numpy.mean() and numpy.std().

Our experiments were run on an internal cluster, running one trial at a time. Each trial used 180
GB of RAM, 50 CPU cores, OpenAI credits, and ran within 24 hours. We upper bound the total
compute time required to run our LEGO-Prover experiments at 96 hours. The full project required
more compute than the experiments reported as one trial failed due to an out-of-memory error. Based
on Wang et al. [2024a]’s estimate of $300 per trial, we estimate the cost in OpenAI credits of our
experiments to be $7.38 per trial as we run half the number of attempts and one twentieth the number
of questions. Under this estimate, the total cost of all our experiments is ∼$30.

Our code is modified from the released LEGO-Prover code base, available at https://github.
com/wiio12/LEGO-Prover [Wang et al., 2024b], released under an MIT License. Evaluation is
done using the miniF2F Zheng et al. [2022] dataset, available at https://github.com/openai/
miniF2F/tree/main, which was released under the Apache License Version 2.0.

Our code is documented and released, alongside the generated LEGO-Prover logs. It is a minor
modification to the existing code base, and there is no training stage or new limitations. The code is
released under the same license as the parent repository.

F TroVE Hyperparameters and Experiment Details

TroVE uses CodeLlama-7b-Instruct-hf [Rozière et al., 2023] interacting with the Python3
interpreter. We use the hyperparameters specified in the paper, outlined in Table 5. The same
hyperparameters are used for the ablation, and our reproduction of baseline TroVE.

The mean and standard deviation of our 5 experiment runs are reported in Table 2. They are calculated
using Python 3.8.9, numpy 1.22.2, numpy.mean() and numpy.std(). The 2-sided t-test reported the
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Table 5: TroVE hyperparameters

Hyperparameter value

Library trim frequency (trim_steps) 500
Solution execution timeout in seconds (exec_timeout) 100
top-p (top_p) 0.95
Samples per prompt (num_return_sequences) 5
Temperature (temperature) 0.6
Max decode length (max_new_tokens) 512

same table is performed using the same version of Python, scipy 1.8.1, scipy.stats.ttest_ind(),
with the settings equal_var=False and alternative=’less’.

Our experiments were run on an internal cluster, running up to 4 trials at once. Each trial used 1 Nvidia
A40 GPU, 64 GB of RAM, 16 CPU cores, and ran within 12 hours. Smaller datasets completed more
quickly. We upper bound the total compute time required to run our TroVE experiments at 480 hours.
The full project required more compute than the experiments reported as we also tried running TroVE
with quantized CodeLlama, CodeLlama 13B and 70B, and GPT-4o-mini.

Our code is modified from the released TroVE code base, available at https://github.com/
zorazrw/trove [Wang et al., 2024b], which was released under the CC-BY-SA-4.0 license. Evalua-
tion is done using the MATH Hendrycks et al. [2021] dataset, available at https://github.com/
hendrycks/math, which was released under an MIT License.

Our code is documented and released, alongside the generated TroVE logs. It is a minor modification
to the existing code base, and there is no training stage or new limitations. The code is released under
the same license as the parent repository.

F.1 Additional TroVE experiments

We also ran baseline TroVE using the larger CodeLlama 13B model, and found similar results with
very little direct function use. The key difference with the 7B model was that a single function was
learned for the geometry split, but it was never reused in a correct solution.

We also attempted to run baseline TroVE using the 70B model, however we discarded the results
as the LLM’s ethical safeguards were frequently tripped (e.g., giving reasons such as “it is not
appropriate or ethical to provide assistance with academic assignments or graded exercises”).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We analyze LEGO-Prover logs and ablate the model in Section 3, and we
analyze the TroVE logs and ablate the model in Section 4. In both cases we find little direct
reuse, and our ablation performs similarly.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6. Primary limitations are scope (2 models and 2 datasets), and
resource constraints on the ablations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work is empirical.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Hyperparameters are reported in Appendices E and F, the TroVE and LEGO-
Prover codebases are publicly available as are the MATH and miniF2F datasets, our ablations
are described in Sections 3 and 4, and we release our code, logs, and log analysis code.
As to the underlying LLMs, TroVE uses open source CodeLlama, and our LEGO-Prover
ablation runs on a much smaller dataset to reduce the OpenAI API costs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As explained in the previous question on reproducibility, we release our code
along with the logs analyzed. Furthermore, the core TroVE and LEGO-Prover code bases are
already publicly available, and can be easily modified to implement the ablations described.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters are in Sections E and F, there is no training data, and the
TroVE test set is the same as Wang et al. [2024b], and the LEGO-Prover test set a subset
of that used in Wang et al. [2024a]. The exact problems used in the subset are listed in the
same section as the hyperparameters.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the LEGO-Prover ablation, error regions of 1 standard deviation are
displayed in Figure 1, the caption states that the source of variation is the LLM output and
race conditions within the system; the method used to compute mean and standard deviation
(numpy) is stated in Appendix E. For the TroVE ablation, we report the mean and standard
deviation in Table 2. The best-of-five accuracy is reported in the Appendix, Table 3) so
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that our values are comparable to those reported in Wang et al. [2024b]. Both tables state
that variation arises from sampling from the LLM. The method used to compute mean and
standard deviation (numpy) is stated in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Outlined in Appendix E for the LEGO-Prover experiments, and Appendix F
for the TroVE experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no human subjects, to the best of our knowledge there are no data
concerns, or immediate societal impact or harms (the possible future risks from deploying
tool-learning systems, and the precautions that should be taken in future research in self-
improving systems are outlined in Section 6), and to the best of our knowledge our work is
reproducible and legal.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We do not anticipate any immediate societal impact or harms, but we do
discuss the possible future risks from deploying tool-learning systems, and the precautions
that should be taken in future research in self-improving systems in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We present ablations of already publicly available models (LEGO-Prover
and TroVE), neither of which we believe has a higher risk for misuse than the constituent
publicly available LLM.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of TroVE [Wang et al., 2024b], LEGO-Prover [Wang et al.,
2024a], the MATH dataset [Hendrycks et al., 2021], and miniF2F [Zheng et al., 2022] are
all cited in the abstract. The URLs and licenses are stated in Appendices E and F.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is documented and released, alongside the log files used in our
analysis. As new assets are minor modifications to existing code bases with no training or
new limitations, we simply state as much in Appendices E and F; the code will be released
under the same license as the parent repositories.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects was done.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There were no human study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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