
Online Variational Filtering and Parameter Learning

Andrew Campbell ∗ Yuyang Shi ∗ Tom Rainforth Arnaud Doucet
Department of Statistics, University of Oxford, UK

{campbell, yshi, rainforth, doucet}@stats.ox.ac.uk

Abstract

We present a variational method for online state estimation and parameter learning
in state-space models (SSMs), a ubiquitous class of latent variable models for
sequential data. As per standard batch variational techniques, we use stochastic
gradients to simultaneously optimize a lower bound on the log evidence with
respect to both model parameters and a variational approximation of the states’
posterior distribution. However, unlike existing approaches, our method is able
to operate in an entirely online manner, such that historic observations do not
require revisitation after being incorporated and the cost of updates at each time
step remains constant, despite the growing dimensionality of the joint posterior
distribution of the states. This is achieved by utilizing backward decompositions
of this joint posterior distribution and of its variational approximation, combined
with Bellman-type recursions for the evidence lower bound and its gradients.
We demonstrate the performance of this methodology across several examples,
including high-dimensional SSMs and sequential Variational Auto-Encoders.

1 Introduction

Many tasks in machine learning with time series data—such as video prediction [16, 27], speech
enhancement [35] or robot localization [9, 18, 28]—often need to be performed online. Online
techniques are also necessary in contexts as diverse as target tracking [4], weather prediction [13]
and financial forecasting [42]. A popular class of models for these sequential data are SSMs which,
when combined with neural network ideas, can also be used to define powerful sequential Variational
Auto-Encoders (VAEs); see e.g. [8, 15, 16, 30]. However, performing inference in SSMs is a
challenging problem and approximate inference techniques for such models remain an active research
area.

Formally, an SSM is described by a latent Markov process and an observation process. Even if the
model parameters are assumed known, online inference of the states of the latent process is a complex
problem known as filtering. Standard approximations such as the extended Kalman Filter (KF),
ensemble KF, and unscented KF can be used, but only provide an ad hoc Gaussian approximation to
the filter [13, 17, 37]. More generally, assumed density filtering techniques [3, 7, 32] can provide
other simple parametric family approximations. These approximate filtering methods can be used, in
turn, to develop online parameter learning procedures by either augmenting the state with the static
parameters or using gradient-based approaches. However, such approaches are notoriously unreliable
[19]. Particle Filtering (PF) methods, on the other hand, provide a more principled approach for
online state and parameter estimation with theoretical guarantees [11, 12, 19, 41], but the variance of
PF estimates typically scales exponentially with the state dimension [6].

Although they typically do not return consistent estimates, variational techniques provide an attractive
alternative for simultaneous state estimation and parameter learning which scales better to high-
dimensional latent states than PF, and are not restricted to simple parametric approximations. Many

∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

such methods have been proposed for SSMs over recent years, e.g. [2, 10, 20, 22, 23, 29, 33, 36].
However, they have generally been developed for batch inference where one maximizes the Evidence
Lower Bound (ELBO) for a fixed dataset. As such, they are ill-suited for online learning as, whenever
a new observation is collected, one would need to update the entire joint variational states distribution
whose dimension increases over time. Though a small number of online variational approaches have
been developed [30, 38, 45], these rely on significant restrictions of the variational family, leading to
approximations that cannot faithfully approximate the posterior distribution of the latent states.

The main contribution of this paper is a novel variational approach to perform online filtering and
parameter learning for SSMs which bypasses those restrictions. As per standard batch variational
inference, we simultaneously maximize an ELBO with respect to both model parameters and a
variational approximation of the joint state posterior. However, our method operates in an entirely
online manner and the cost of updates at each time step remains constant. Key to our approach
is a backward decomposition of the variational approximation of the states posterior, combined
with a representation of the ELBO and its gradients as expectations of value functions satisfying
Bellman-type recursions akin to those appearing in Reinforcement Learning (RL) [39].

2 Background

State-Space Models. SSMs are defined by a latentX -valued Markov process (xt)t≥1 and Y-valued
observations (yt)t≥1, which are conditionally independent given the latent process. They correspond
to the generative model

x1 ∼ µθ(x1), xt+1|xt ∼ fθ(xt+1|xt), yt|xt ∼ gθ(yt|xt),
where θ ∈ Rdθ is a parameter of interest and we consider hereX = Rdx . For yt := y1:t = (y1, ..., yt),
we thus have

pθ(x1:t, y
t) = µθ(x1)gθ(y1|x1)

∏t

k=2
fθ(xk|xk−1)gθ(yk|xk).

Assume for the time being that θ is known. Given observations (yt)t≥1 and parameter values θ, one
can perform online state inference by computing the posterior of xt given yt which satisfies

pθ(xt|yt) =
gθ(yt|xt)pθ(xt|yt−1)

pθ(yt|yt−1)
, pθ(xt|yt−1) =

∫
fθ(xt|xt−1)pθ(xt−1|yt−1)dxt−1, (1)

with pθ(x1|y0) := µθ(x1). The log evidence `t(θ) := log pθ(y
t) is then given by

`t(θ) =
∑t
k=1 log pθ(yk|yk−1), where pθ(yk|yk−1) =

∫
gθ(yk|xk)pθ(xk|yk−1)dxk. (2)

Here pθ(xk|yk) is known as the filtering distribution. While the recursion (1) and the sequential
decomposition (2) are at the core of most existing online state and parameter inference techniques
[19, 37, 45], we will focus here on the joint state posterior distribution, also known as the smoothing
distribution, of the states x1:t given yt and the corresponding representation of the log evidence

pθ(x1:t|yt) = pθ(x1:t, y
t)/pθ(y

t), `t(θ) = log pθ(y
t) = log

(∫
pθ(x1:t, y

t)dx1:t
)
.

Variational Inference. For general SSMs, the filtering and smoothing distributions as well as
the log evidence are not available analytically and need to be approximated. For data yt, standard
variational approaches use stochastic gradient techniques to maximize the following ELBO

Lt(θ, φ) := Eqφ(x1:t|yt)
[
log
(
pθ(x1:t, y

t)
/
qφ(x1:t|yt)

)]
≤ `t(θ). (3)

Maximizing this ELBO w.r.t. the parameter φ of the variational distribution qφ(x1:t|yt) corresponds
to doing variational smoothing while maximizing it w.r.t. θ corresponds to doing parameter learning.

As the true smoothing distribution satisfies pθ(x1:t|yt) = pθ(x1|yt)
∏t
k=2 pθ(xk|yt, xk−1), one typi-

cally uses qφ(x1:t|yt) = qφ(x1|yt)
∏t
k=2 q

φ(xk|yt, xk−1) for the variational smoothing distribution;
see e.g. [2, 20, 22, 43]. However this approach is not suitable for online variational filtering and
parameter learning. Firstly, the resulting marginal qφ(xt|yt) of qφ(x1:t|yt), approximating pθ(xt|yt),
is typically not available analytically. Secondly, when the new observation yt+1 is collected, this
approach would require recomputing an entirely new variational smoothing distribution with a di-
mension that increases with time. One can attempt to bypass this problem by restricting ourselves to
qφ(x1:t|yt) = qφ(x1|y1)

∏t
k=2 q

φ(xk|yk, xk−1) as per [30]. However, the switch from conditioning
on yt to yk prohibits learning an accurate approximation of pθ(x1:t|yt) as this formulation does not
condition on all relevant data.

2

3 Online Variational Filtering and Parameter Learning

Our online variational filtering and parameter estimation approach exploits a backward factorization
of the variational smoothing distribution qφ(x1:t|yt). The ELBO and its gradients w.r.t. θ and φ
are computed in an online manner as t increases by using a combination of ideas from dynamic
programming and RL, with a computational time that remains constant at each time step. To simplify
notation, henceforth we will write qφt (x1:t) = qφ(x1:t|yt).

3.1 Backward Decomposition of the Variational Smoothing Distribution

The key property that we will be exploiting is that pθ(x1:t|yt) satisfies

pθ(x1:t|yt) = pθ(xt|yt)
t−1∏
k=1

pθ(xk|yk, xk+1), pθ(xk|yk, xk+1) =
fθ(xk+1|xk)pθ(xk|yk)

pθ(xk+1|yk)
. (4)

Equation (4) shows that, conditional upon yt, (xk)tk=1 is a reverse-time Markov chain of initial
distribution pθ(xt|yt) and backward Markov transition kernels pθ(xk|yk, xk+1); see e.g. [12, 19].
Crucially the backward transition kernel at time k depends only on the observations until time k.

To exploit this, we consider a variational smoothing distribution of the form

qφt (x1:t) = qφt (xt)
∏t−1

k=1
qφk+1(xk|xk+1), (5)

where qφt (xt) and qφk+1(xk|xk+1) are variational approximations of the filtering distribution pθ(xt|yt)
and the backward kernel pθ(xk|yk, xk+1) respectively. Using (5), one now has

Lt(θ, φ) = `t(θ)− KL(qφt (xt)||pθ(xt|yt))

−
∑t−1

k=1
Eqφt (xk+1)

[
KL(qφk+1(xk|xk+1)||pθ(xk|yk, xk+1))

]
,

where KL is the Kullback–Leibler divergence and qφt (xk+1) is the marginal distribution of xk+1

under the variational distribution qφt (x1:t) defined in (5). Considering this variational distribution
thus makes it possible to learn an arbitrarily accurate variational approximation of the true smoothing
distribution whilst still only needing to condition on yk at time k and not on future observations.
Additionally, it follows directly from (5) that we can easily update qφt+1(x1:t+1) from qφt (x1:t) using

qφt+1(x1:t+1) = qφt (x1:t)m
φ
t+1(xt+1|xt), for mφ

t+1(xt+1|xt) :=
qφt+1(xt|xt+1)qφt+1(xt+1)

qφt (xt)
. (6)

Here mφ
t+1(xt+1|xt) can be viewed as an approximation of the Markov transition density

qφt+1(xt+1|xt) ∝ qφt+1(xt|xt+1)qφt+1(xt+1) but it is typically not a proper Markov transition density;
i.e.
∫
mφ
t+1(xt+1|xt)dxt+1 6= 1 as

∫
qφt+1(xt|xt+1)qφt+1(xt+1)dxt+1 6= qφt (xt).

Let us assume that qφk (xk) = qφkk (xk) and qφk (xk−1|xk) = qφkk (xk−1|xk), then (5) and (6) suggest
that we only need to estimate φt at time t as yt does not impact the backward Markov kernels prior
to time t. However, we also have to be able to compute estimates of ∇φLt(θ, φ) and ∇θLt(θ, φ) to
optimize parameters in a constant computational time at each time step, without having to consider
the entire history of observations yt. This is detailed in the next subsections where we show that the
sequence of ELBOs {Lt(θ, φ)}t≥1 and its gradients {∇θLt(θ, φ)}t≥1 and {∇φLt(θ, φ)}t≥1 can all
be computed online when using the variational distributions {qφt (x1:t)}t≥1 defined in (5).

3.2 Forward recursion for the ELBO

We start by presenting a forward-only recursion for the computation of {Lt(θ, φ)}t≥1. This recursion
illustrates the parallels between variational inference and RL and is introduced to build intuition.
Proposition 1. The ELBO Lt(θ, φ) satisfies for t ≥ 1

Lt(θ, φ) = Eqφt (xt)[V
θ,φ
t (xt)] for V θ,φt (xt) := Eqφt (x1:t−1|xt)

[
log
(
pθ(x1:t, y

t)
/
qφt (x1:t)

)]
,

3

with the convention V θ,φ1 (x1) := rθ,φ1 (x0, x1) := log(pθ(x1, y1)/qφ1 (x1)). Additionally, we have

V θ,φt+1(xt+1) =Eqφt+1(xt|xt+1)
[V θ,φt (xt) + rθ,φt+1(xt, xt+1)], where (7)

rθ,φt+1(xt, xt+1) := log
(
fθ(xt+1|xt)gθ(yt+1|xt+1)

/
mφ
t+1(xt+1|xt)

)
. (8)

All proofs are given in Appendix C. Proposition 1 shows that we can compute Lt(θ, φ), for t ≥ 1,
online by recursively computing the functions V θ,φt using (7) and then taking the expectation of V θ,φt

w.r.t. qφt (xt) to obtain the ELBO at time t. Thus, given V θ,φt , we can compute V θ,φt+1 and Lt+1(θ, φ)
using only yt+1, with a cost that remains constant in t.

This type of recursion is somewhat similar to those appearing in RL. We can indeed think of the
ELBO Lt(θ, φ) as the expectation of a sum of “rewards” rθ,φk given in (8) from k = 1 to k = t which
we compute recursively using the “value” function V θ,φt . However, while in RL the value function is
given by the expectation of the sum of future rewards starting from xt, the value function defined
here is the expectation of the sum of past rewards conditional upon arriving in xt. This yields the
required forward recursion instead of a backward recursion. We expand on this link in Section 4 and
Appendix A.3.

3.3 Forward recursion for ELBO gradient w.r.t. θ

A similar recursion can be obtained to compute {∇θLt(θ, φ)}t≥1. This recursion will be at the core
of our online parameter learning algorithm. Henceforth, we will assume that regularity conditions
allowing both differentiation and the interchange of integration and differentiation are satisfied.

Proposition 2. The ELBO gradient∇θLt(θ, φ) satisfies for t ≥ 1

∇θLt(θ, φ) = Eqφt (xt)[S
θ,φ
t (xt)], where Sθ,φt (xt) := ∇θV θ,φt (xt).

Additionally, if we define sθt+1(xt, xt+1) := ∇θrθ,φt+1(xt, xt+1) = ∇θ log fθ(xt+1|xt)gθ(yt+1|xt+1)
then

Sθ,φt+1(xt+1) = Eqφt+1(xt|xt+1)

[
Sθ,φt (xt) + sθt+1(xt, xt+1)

]
. (9)

Proposition 2 shows that we can compute {∇θLt(θ, φ)}t≥1 online by propagating {Sθ,φt }t≥1 using
(9) and taking the expectation of the vector Sθ,φt w.r.t. qφt (xt) to obtain the gradient at time t. Similar
ideas have been previously exploited in the statistics literature to obtain a forward recursion for the
score vector ∇θ`t(θ) so as to perform recursive maximum likelihood parameter estimation; see e.g.
[19, Section 4]. In this case, one has ∇θ`t(θ) = Epθ(xt|yt)[Sθt (xt)] where Sθt satisfies a recursion
similar to (9) with qφt+1(xt|xt+1) replaced by pθ(xt|yt, xt+1).

3.4 Forward recursion for ELBO gradient w.r.t. φ

We finally establish forward-only recursions for the gradient of the ELBO w.r.t. φ which will allow
us to perform online variational filtering. We consider here the case where, for all k, qφk (xk) =

qφkk (xk) and qφk (xk−1|xk) = qφkk (xk−1|xk) so Lt(θ, φ) = Lt(θ, φ1:t) and V θ,φt (xt) = V θ,φ1:t

t (xt).
At time step t, we will optimize w.r.t. φt and hold all previous φ1:t−1 constant. Our overall
variational posterior (5) is denoted qφ1:t

t (x1:t). The alternative approach where φ is shared through
time (amortization) is investigated in Appendix D.

Since the expectation is taken w.r.t. qφ1:t

t (x1:t) in Lt, optimizing φt is slightly more difficult than
for θ. However, we can still derive a forward recursion for the φ gradients and we will leverage
the reparameterization trick to reduce the variance of the gradient estimates; i.e. we assume that
xt(φt; εt) ∼ qφtt (xt) and xt−1(φt; εt−1, xt) ∼ qφtt (xt−1|xt) when εt−1 ∼ λ(ε), εt ∼ λ(ε).

Proposition 3. The ELBO gradient∇φtLt(θ, φ1:t) satisfies for t ≥ 1

∇φtLt(θ, φ1:t) = ∇φtEqφtt (xt)
[V θ,φ1:t

t (xt)] = Eλ(εt)[∇φtV
θ,φ1:t

t (xt(φt; εt))].

4

Additionally, one has

∇φt+1
V
θ,φ1:t+1

t+1 (xt+1(φt+1; εt+1))

= Eλ(εt)
[
T θ,φ1:t

t (xt(φt+1; εt, xt+1(φt+1; εt+1)))
dxt(φt+1; εt, xt+1(φt+1; εt+1))

dφt+1

+ ∇φt+1
r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1(φt+1; εt+1)), xt+1(φt+1; εt+1))
]
,

where T θ,φ1:t

t (xt) := ∂
∂xt

V θ,φ1:t

t (xt) satisfies the forward recursion

T
θ,φ1:t+1

t+1 (xt+1) = Eλ(εt)
[
T θ,φ1:t

t (xt(φt+1; εt, xt+1))
∂xt(φt+1; εt, xt+1)

∂xt+1

+ ∇xt+1
r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1), xt+1)
]
. (10)

Here, dxt(φt+1;εt,xt+1(φt+1;εt+1))
dφt+1

, ∂xt(φt+1;εt,xt+1)
∂xt+1

are Jacobians of appropriate dimensions.

3.5 Estimating the ELBO and its Gradients

As we consider the case qφk (xk) = qφkk (xk), qφk (xk−1|xk) = qφkk (xk−1|xk), we have Sθ,φt (xt) =

Sθ,φ1:t

t (xt). At time t we optimize φt and hold φ1:t−1 constant. Practically, we are not able to
compute in closed-form the functions V θ,φ1:t

t (xt), Sθ,φ1:t

t (xt) and T θ,φ1:t

t (xt) appearing in the
forward recursions of Lt(θ, φ1:t),∇θLt(θ, φ1:t) and∇φLt(θ, φ1:t) respectively. However, we can
exploit the above recursions to approximate these functions online using regression as is commonly
done in RL. We then show how to use these gradients for online filtering and parameter learning.

We approximate Sθ,φ1:t+1

t+1 with Ŝt+1. Equation (9) shows that Ŝt+1 can be learned using Ŝt

through regression of the simulated dataset2 {xit+1, Ŝt(x
i
t) + sθt+1(xit, x

i
t+1)} with (xit, x

i
t+1)

i.i.d.∼
q
φt+1

t+1 (xt, xt+1) for i = 1, ..., N (see Appendix A.1 for derivation). We can use neural networks to
model Ŝt or Kernel Ridge Regression (KRR). Note that the use of KRR to estimate gradients for
variational learning has recently been demonstrated by [26].

We similarly approximate T θ,φ1:t+1

t+1 with T̂t+1. As before, we can model T̂t+1 using neural networks
or KRR. We use recursion (10) and T̂t to create the following dataset for regression3{

xit+1, T̂t(xt(φt+1; εit, x
i
t+1))

∂xt(φt+1;ε
i
t,x

i
t+1)

∂xit+1
+∇xit+1

r
θ,φt:t+1

t+1 (xt(φt+1; εit, x
i
t+1), xit+1)

}
,

where xit+1 ∼ q
φt+1

t+1 (xt+1) and εit ∼ λ(ε) for i = 1, ..., N . The choice of the distribution over the
inputs, xit+1, for each simulated dataset is arbitrary but it will determine where the approximations
are most accurate. We choose qφt+1

t+1 (xt+1) to best match where we expect the approximations to be
evaluated, more details are given in Appendix A.1.

Note that if one is interested in computing online an approximation of the ELBO, we can again
similarly approximate V θ,φ1:t

t (xt) using regression to obtain V̂t(xt) by leveraging (7). We will call
the resulting approximate ELBO the Recursive ELBO (RELBO). We could also then differentiate
V̂t(xt) w.r.t. xt to obtain an alternative method for estimating T θ,φ1:t

t and optimizing φt. However, as
we are ultimately interested in accurate gradients, this approach does not exploit the readily available
gradient information during the regression stage.

By approximating T θ,φ1:t+1

t+1 with T̂t+1 and Sθ,φ1:t+1

t+1 with Ŝt+1, we introduce some bias into our
gradient estimates. We can trade bias for variance by using modified recursions; e.g.

S
θ,φ1:t+1

t+1 (xt+1) = E
q
φt−L+2:t+1
t (xt−L+1:t|xt+1)

[
S
θ,φ1:t−L+1

t−L+1 (xt−L+1) +
∑t
k=t−L+1 s

θ
k+1(xk, xk+1)

]
.

As L increases, we will reduce bias but increase variance. Such ideas are also commonly used in RL
but we will limit ourselves here to using L = 1.

2We define Ŝ0 := 0, xi0 := ∅, sθ1(x0, x1) = ∇θ logµθ(x1)gθ(y1|x1) and qφ1
1 (x0, x1) := qφ1

1 (x1).
3Similarly, we define T̂0 := 0, xi0 := ∅ and rθ,φ0:1

1 as in Proposition 1.

5

Algorithm 1: Online Variational Filtering and Parameter Learning.
for t = 1, . . . , T do

Initialize φt e.g. φt ← φt−1

/* Update φt using M stochastic gradient steps */
for m = 1, . . . ,M do

Sample xit−1, x
i
t ∼ qφtt (xt−1, xt) using reparameterization trick for i = 1, ..., N

φt ← φt + γm
1
N

∑N
i=1{T̂t−1(x

i
t−1)

dxit−1

dφt
+∇φtrt(xit−1, x

i
t)}

end
/* Update T̂t(xt) and Ŝt(xt) as in Section 3.5 */

T̂t(xt)
regression← T̂t−1(xt−1)

∂xt−1

∂xt
+∇xtrt(xt−1, xt).

Ŝt(xt)
regression← Ŝt−1(xt−1) + s

θt−1
t (xt−1, xt).

/* Update θ using a stochastic gradient step */
Sample xit−1, x

i
t ∼ qφtt (xt−1, xt), x̃it−1 ∼ q

φt−1
t−1 (xt−1) for i = 1, ..., N

θt ← θt−1 + ηt
1
N

∑N
i=1{Ŝt−1(x

i
t−1) + s

θt−1
t (xit−1, x

i
t)− Ŝt−1(x̃

i
t−1)}

end

3.6 Online Parameter Estimation

Assume, for the sake of argument, that one has access to the log evidence `t(θ) and that the
observations arise from the SSM with parameter θ?. Under regularity conditions, the average log-
likelihood `t(θ)/t converges as t→∞ towards a function `(θ) which is maximized at θ?; see e.g.
[12, 41]. We can maximize this criterion online using Recursive Maximum Likelihood Estimation
(RMLE) [19, 24, 40, 41] which consists of updating the parameter estimate θ using

θt+1 = θt + ηt+1

(
Epθ0:t (xt,xt+1|yt+1)[St(xt) + sθtt+1(xt, xt+1)]− Epθ0:t−1

(xt|yt)[St(xt)]
)
. (11)

The difference of two expectations on the r.h.s. of (11) is an approximation of the gradient of the
log-predictive log pθ(yt+1|yt) evaluated at θt. The approximation is given by ∇ log pθ0:t(y

t+1) −
∇ log pθ0:t−1(yt) with the notation ∇ log pθ0:t(y

t+1) corresponding to the expectation of the sum
of terms sθkk+1(xk, xk+1) w.r.t. the joint posterior states distribution defined by using the SSM with
parameter θk at time k + 1.

We proceed similarly in the variational context and update the parameter using

θt+1 =θt+ηt+1

(
E
q
φt+1
t+1 (xt,xt+1)

[
Ŝt(xt)+sθtt+1(xt, xt+1)

]
−E

q
φt
t (xt)

[
Ŝt(xt)

])
.

Here Ŝt(xt) approximates St(xt) satisfying St+1(xt+1) := E
q
φt+1
t+1 (xt|xt+1)

[St(xt)+sθtt+1(xt, xt+1)].

We compute Ŝt as in Section 3.5 with a simulated dataset using Ŝt−1 and θt−1.

Putting everything together, we summarize our method in Algorithm 1 using a simplified notation
to help build intuition, a full description is given in Appendix A.2. It is initialized using initial
parameters φ1, θ0. We re-iterate the algorithm’s computational cost does not grow with t. We
need only store fixed size T̂ and Ŝ models as well as the most recent φt and θt parameters. When
performing backpropagation, T̂ and Ŝ summarize all previous gradients, meaning we do not have to
roll all the way back to t = 1. Therefore, we only incur standard backpropagation computational
cost w.r.t. φt and θ. To scale to large dx, we can use mean field qφtt (xt), qφtt (xt−1|xt) keeping costs
linear in dx.

4 Related Work

As mentioned briefly in Section 3.2, our recursive method has close links with RL, which we make
explicit here. In ‘standard’ RL, we have a value function and corresponding Bellman recursion given
by

V RL
t (st) := E

[
T∑
k=t

r(sk, ak)

]
, V RL

t (st) = Est+1,at

[
r(st, at) + V RL

t+1(st+1)
]
, (12)

6

where (st, at) is the state-action pair at time t. Whereas the RL value function summarizes future
rewards and so recurses backward in time, our ‘value’ function summarizes previous rewards and
recurses forward in time. Writing this using the state-action notation, one obtains

Vt(st) := E

[
t∑

k=1

r(sk, ak)

]
, Vt+1(st+1) = Eat+1,st [r(st+1, at+1) + Vt(st)] . (13)

Note we have defined an anti-causal graphical model, with st depending on st+1 and at+1. If we
further let st = xt, at = xt−1 ∼ qφt (xt−1|xt), P (st|st+1, at+1) = δ(st = at+1) and r(st, at) =
r(xt, xt−1) as in equation (8), then the recursion in equation (13) for Vt corresponds to the recursion
in equation (7) and LT = EqφT (xT) [VT (xT)]. We then differentiate this recursion with respect to θ
and xt+1 to get our gradient recursions (9) and (10) respectively. Full details are given in Appendix
A.3. A similar correspondence between state actions and successive hidden states was also noted
in [43] which explores the use of RL ideas in the context of variational inference. However, [43]
exploits this correspondence to propose a backward in time recursion for the ELBO of the form (12)
initialized at the time of the last observation of the SSM. When a new observation is collected at
the next time step, this backward recursion has to be re-run which would lead to a computational
time increasing linearly at each time step. In [20], the links between RL and variational inference are
also exploited. The likelihood of future points in an SSM is approximated using temporal difference
learning [39], but the proposed algorithm is not online.

To perform online variational inference, [45] proposes to use the decomposition (2) of the log evidence
`t(θ) and lower bound each term log pθ(yk|yk−1) appearing in the sum using

Eqφk (xk−1,xk)

[
log

fθ(xk|xk−1)gθ(yk|xk)pθ(xk−1|yk−1)

qφk (xk−1, xk)

]
≤ log pθ(yk|yk−1). (14)

Unfortunately, the term on the l.h.s. of (14) cannot be evaluated unbiasedly as it relies on the
intractable filter pθ(xk−1|yk−1) so [45] approximates it by pθ(xk−1|yk−1) ≈ qφk−1(xk−1) to obtain
the following Approximate ELBO (AELBO) by summing over k:

L̃t(θ, φ1:t) =
∑t

k=1
Eqφk (xk−1,xk)

[
log rθ,φk (xk−1, xk)

]
. (15)

Additionally, [45] makes the assumption qφk (xk−1, xk) = qφk−1(xk−1)qφk (xk) and we will refer to
(15) in this case as AELBO-1. While [16] does not consider online learning, their objective is actually
a generalization of [45], with qφk (xk−1, xk) = qφk (xk)qφk (xk−1|xk), and we will refer to (15) in this
case as AELBO-2. It can be easily shown that AELBO-2 is only equal to the true ELBO given in
Proposition 1 in the (unrealistic) scenario where qφk (xk) = pθ(xk|yk) for all k. Moreover, in both
cases the term pθ(xk−1|yk−1) is replaced by qφk−1(xk−1), causing a term involving θ to be ignored
in gradient computation. The approach developed here can be thought of as a way to correct the
approximate ELBOs computed in [16, 45] in a principled manner, which takes into account the
discrepancy between the filtering and approximate filtering distributions, and maintains the correct
gradient dependencies in the computation graph. Finally [44] relies on the PF to do online variational
inference. However the variational approximation of the filtering distribution is only implicit as its
expression includes an intractable expectation and, like any other PF technique, its performance is
expected to degrade significantly with the state dimension [6].

5 Experiments

5.1 Linear Gaussian State-Space Models

We first consider a linear Gaussian SSM for which the filtering distributions can be computed using
the KF and the RMLE recursion (11) can be implemented exactly. Here the model is defined as

fθ(xt|xt−1) = N (xt;Fxt−1, U), gθ(yt|xt) = N (yt;Gxt, V),

where F ∈ Rdx×dx , G ∈ Rdy×dx , U ∈ Rdx×dx , V ∈ Rdy×dy , θ = {F,G}. We let

qφtt (xt) = N
(
xt;µt, diag(σ2

t)
)
, qφtt (xt−1|xt) = N

(
xt−1;Wtxt + bt, diag(σ̃2

t)
)
,

7

1 2 3 4 5 6 7 8 9
Time step

103

102

101

100

10−1

10−2

10−3KL
(q

(x
t−

1:
t)|

|p
θ(x

t−
1:

t|y
t)

(a)

0 25k 50k
Time step

0.00

0.05

0.10

0.15

0.20

M
ea

n
Ab

so
lu

te
 E

rro
r

F
Ours
AELBO-1
AELBO-2
RMLE

0 25k 50k
Time step

0.00

0.05

0.10

0.15

0.20 G

(b)

Figure 1: (a) KL(qφtt (xt−1, xt)||pθ(xt−1, xt|yt)) vs time step of the SSM. Between each time step,
we plot the progress of the KL over 5000 iterations of inner loop φt optimization. (b) Mean Absolute
Error for model parameters F (left) and G (right) vs time step (AELBO-1 off the scale).

with φt = {µt, log σt,Wt, bt, log σ̃t}. When fθ(xt|xt−1) is linear Gaussian and we use a Gaussian
for qφt−1

t−1 (xt−1), we can select qφtt (xt−1|xt) ∝ fθ(xt|xt−1)q
φt−1

t−1 (xt−1) as noted in [34]. In this
experiment however, we aim to show our full method can converge to known ground truth values
hence still fully parameterize qφtt (xt−1|xt) as well as setting the matrices F,G,U, V to be diagonal,
so that pθ(xt|yt) and pθ(xt−1|yt−1, xt) are in the variational family.

For dx = dy = 10, we first demonstrate accurate state inference by learning φt at each time
step whilst holding θ fixed at the true value. We represent T̂t(xt) non-parametrically using KRR.
Full details for all experiments are given in Appendix B.4 Figure 1a illustrates how, given extra
computation, our variational approximation comes closer and closer to the ground truth, the accuracy
being limited by the convergence of each inner stochastic gradient ascent procedure. We then consider
online learning of the parameters F and G using Algorithm 1, comparing our result to RMLE and a
variation of Algorithm 1 using AELBO-1 and 2 (see Section 4). Our methodology converges much
closer to the analytic baseline (RMLE) than AELBO-2 [16] and exhibits less variance, even though
the variational family is sufficiently expressive for AELBO-2 to learn the correct backward transition.
In addition, we find that AELBO-1 [45] did not produce reliable parameter estimates in this example,
as it relies on a variational approximation that ignores the dependence between xk−1 and xk. As
expected, our method performs slightly worse than the analytic RMLE, as inevitably small errors will
be introduced during stochastic optimization and regression.

5.2 Chaotic Recurrent Neural Network

We next evaluate the performance of our algorithm for state estimation in non-linear, high-dimensional
SSMs. We reproduce the Chaotic Recurrent Neural Network (CRNN) example in [44], but with
state dimension dx = 5, 20, and 100. This non-linear model is an Euler approximation of the
continuous-time recurrent neural network dynamics

f(xt|xt−1) = N
(
xt;xt−1 + ∆τ−1 (−xt−1 + γW tanh(xt−1)) , U

)
,

and the observation model is linear with additive noise from a Student’s t-distribution. We compare
our algorithm against ensemble KF (EnKF), bootstrap PF (BPF), as well as variational methods using
AELBO-1 and AELBO-2. We let qφtt (xt−1|xt) = N (xt−1; MLPφtt (xt), diag(σ̃2

t)) and qφtt (xt) =
N
(
xt;µt, diag(σ2

t)
)

where we use a 1-layer Multi-Layer Perceptron (MLP) with 100 neurons for
each qφtt (xt−1|xt). We generate a dataset of length 100 using the same settings as [44], and each
algorithm is run 10 times to report the mean and standard deviation. We also match approximately the
computational complexity for all methods. From Table 1, we observe that the EnKF performs poorly
on this non-linear model, while the PF performance degrades significantly with dx, as expected.
Among variational methods, AELBO-1 does not give as accurate state estimation, while AELBO-2
and our method achieve the lowest error in terms of RMSE. However, our method achieves the
highest ELBO; i.e. lowest KL between the variational approximation and the true posterior since

4Code available at https://github.com/andrew-cr/online_var_fil

8

https://github.com/andrew-cr/online_var_fil

θ is fixed - an effect not represented using just the RMSE. We confirm this is the case in Appendix
B.2 by comparing our variational filter means µt against the ‘ground truth’ posterior mean for
dx = 5 computed using PF with 10 million particles. Furthermore, our method is also able to
accurately estimate the true ELBO online. Figure 2a shows that our online estimate of the ELBO,
RELBO (Section 3.5), is very close to the true ELBO, whereas AELBO-2 is biased and consistently
overestimates it. Further, AELBO-1 is extremely loose meaning its approximation of the joint state
posterior is very poor.

Using this CRNN problem, we also investigate the penalty we pay for our online method. At time t,
we train qφtt (xt), q

φt
t (xt−1|xt) and hold qφkk (xk−1|xk), k < t fixed. This is because all information

to learn the true factor pθ(xk−1|yk−1, xk) is available at time k as it does not depend on future
observations. However, when pθ(xk−1|yk−1, xk) is not in the variational family (as in this CRNN
example), qφkk (xk−1|xk) will aim to be most accurate in the regions of xk in which it is typically
evaluated. The evaluation distribution over xk does depend on future variational factors and so could
shift over time. This may result in learning a different variational joint qφ1:t

t (x1:t) between when
using our online ELBO and when just using the full offline ELBO (3). We quantify this difference by
training the same joint variational distribution using either our online ELBO or the offline ELBO (3).
Figure 2b plots the final mean and standard deviations of the marginals of the trained qφ1:t

t (x1:t) in
both cases. We see that these quantities are very close, suggesting this effect is not an issue on this
example. This may be due to the evaluation distribution over xk not changing a significant enough
amount to cause appreciable changes in the learned variational factors. We show this result holds
over dimensions and seeds in Appendix B.2.

0 20 40 60 80 100
Time step

−40

−30

−20

−10

0

EL
BO

RELBO (ours)
AELBO-1
AELBO-2

Ours True ELBO
AELBO-1 True ELBO
AELBO-2 True ELBO

(a)

0 20 40 60 80 100
Time step

0.0

0.4

0.8

1.2

True hidden state
Online
Offline

(b)
Figure 2: (a) Estimates and true values of the ELBO on the Chaotic RNN task. RELBO uses KRR
for V̂t whilst for the other methods we use eq. (15). (b) Comparison between joint variational
distributions trained online and offline on the CRNN task. The colored lines show the mean of
qφ1:t

t (x1:t) whilst the shaded region represent ±1 std. The true hidden state is also shown in black.

5.3 Sequential Variational Auto-Encoder

We demonstrate the scalability of our method on a sequential VAE application. In this problem, an
agent observes a long sequence of frames that could, for example, come from a robot traversing a
new environment. The frames are encoded into a latent representation using a pre-trained decoder.
The agent must then learn online the transition dynamics within this latent space using the single
stream of input images. The SSM is defined by

fθ(xt|xt−1) = N (xt; NNfθ (xt−1), U), g(yt|xt) = N (yt; NNg(xt), V),

where dx = 32, NNfθ is a residual MLP and NNg a convolutional neural network. NNfθ is learned
online whilst NNg is fixed and is pre-trained on unordered images from similar environments using
the standard VAE objective [21]. We perform this experiment on a video sequence from a DeepMind
Lab environment [5] (GNU GPL license). We use the same qφtt parameterization as for the CRNN
but with a 2 hidden layer MLP with 64 neurons. KRR is used to learn T̂t whereas we use an MLP for
learning Ŝt. We found that MLPs scale better than KRR as dθ is high. Our online algorithm is run
on a sequence of 4000 images after which we probe the quality of the learned NNfθ . The results are

9

Table 1: Root Mean Squared Error between filtering mean and true state and the average true ELBO
for the 5 methods in varying dimensions on the Chaotic RNN task.

dx EnKF BPF AELBO-1 AELBO-2 Ours

5
Filter RMSE 0.1450±0.0026 0.1026±0.0001 0.1284±0.0035 0.1035±0.0012 0.1032±0.0005

ELBO (nats) - - -220.52±6.2768 -30.944±2.2928 -15.845±1.7385

Time per step 1.0998 0.9268 1.5067 2.2270 2.6899

20
Filter RMSE 0.1541±0.0016 0.1092±0.0014 0.1355±0.0012 0.1086±0.0004 0.1082±0.0003

ELBO (nats) - - -928.80±10.463 -393.68±3.9053 -340.36±3.9730

Time per step 5.1879 3.8932 2.3587 2.7000 3.5935

100
Filter RMSE 0.1571±0.0017 0.2493±0.0122 0.1239±0.0006 0.1070±0.0001 0.1068±0.0001

ELBO (nats) - - -4247.9±20.905 -2069.7±11.814 -1794.7±5.4173

Time per step 6.4546 4.6184 3.2697 4.5539 5.9263

(a) Before training

(b) After training

Figure 3: Frames predicted by rolling out NNfθ from two different starting points, before and after
training. Between each frame, 3 transition steps are taken. Before training, no meaningful change is
predicted but after training NNfθ predicts plausible movements.

shown in Figure 3. Before training, NNfθ predicts no meaningful change but after training it predicts
movements the agent could realistically take. We quantify this further in Appendix B.3 by showing
that the approximate average log likelihood `t(θ)/t computed using Monte Carlo increases through
training, thereby confirming our method can successfully learn high-dimensional model parameters
of the agent movement in a fully online fashion.

6 Discussion

We have presented a novel online approach for variational state estimation and parameter learning. In
our experiments, this methodology outperforms standard filtering approaches for high dimensional
SSMs and is also able to learn online high dimensional model parameters of a neural network in
a sequential VAE. However, it is not without its limitations. As with any stochastic variational
inference technique, we can only obtain an accurate posterior approximation if the variational family
is expressive enough and our stochastic gradient method finds a reasonable minimum. We also
need to use flexible function approximators to keep the bias in our gradient estimates small. Finally,
although our method is online, it can be quite computationally expensive in absolute terms as it
requires solving an optimization problem and solving a regression task for each time step.

To reduce this computational cost, one can amortize the optimization cost for φ by learning a
network taking a representation of observations up to now, yt, and outputting qφt as illustrated in
Appendix D. Further work will investigate ways to also amortize the cost of function regression
across time through a meta-learning strategy. From a theoretical point of view, it would be useful to
establish conditions under which the proposed variational filter is exponentially stable and to study
the asymptotic properties of the parameter learning procedure.

10

Acknowledgments and Disclosure of Funding

The authors are grateful to Adrien Corenflos, Desi Ivanova and James Thornton for their com-
ments. Andrew Campbell acknowledges support from the EPSRC CDT in Modern Statistics and
Statistical Machine Learning (EP/S023151/1). Arnaud Doucet is partly supported by the EPSRC
grant EP/R034710/1. He also acknowledges support of the UK Defence Science and Technology
Laboratory (DSTL) and EPSRC under grant EP/R013616/1. This is part of the collaboration between
US DOD, UK MOD and UK EPSRC under the Multidisciplinary University Research Initiative.

References
[1] Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B.,

and de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In Advances
in Neural Information Processing Systems.

[2] Archer, E., Park, I. M., Buesing, L., Cunningham, J., and Paninski, L. (2016). Black box varia-
tional inference for state space models. In International Conference on Learning Representations
Workshop Track.

[3] Azimi-Sadjadi, B. and Krishnaprasad, P. (2005). Approximate nonlinear filtering and its applica-
tion in navigation. Automatica, 41(6):945–956.

[4] Beard, M., Vo, B. T., and Vo, B.-N. (2020). A solution for large-scale multi-object tracking.
IEEE Transactions on Signal Processing, 68:2754–2769.

[5] Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq, A.,
Green, S., Valdés, V., Sadik, A., et al. (2016). DeepMind lab. arXiv preprint arXiv:1612.03801.

[6] Bengtsson, T., Bickel, P., Li, B., et al. (2008). Curse-of-dimensionality revisited: Collapse of the
particle filter in very large scale systems. In Probability and Statistics: Essays in Honor of David
A. Freedman, pages 316–334. Institute of Mathematical Statistics.

[7] Brigo, D., Hanzon, B., and LeGland, F. (1998). A differential geometric approach to nonlinear
filtering: the projection filter. IEEE Transactions on Automatic Control, 43(2):247–252.

[8] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., and Bengio, Y. (2015). A recurrent
latent variable model for sequential data. In Advances in Neural Information Processing Systems.

[9] Corenflos, A., Thornton, J., Deligiannidis, G., and Doucet, A. (2021). Differentiable particle
filtering via entropy-regularized optimal transport. In International Conference on Machine
Learning.

[10] Courts, J., Hendriks, J., Wills, A., Schön, T. B., and Ninness, B. (2021). Variational state and
parameter estimation. In IFAC Symposium on System Identification.

[11] Del Moral, P. (2004). Feynman-Kac Formulae: Genealogical and Interacting Particle Systems
with Applications. Springer.

[12] Douc, R., Moulines, E., and Stoffer, D. (2014). Nonlinear Time Series: Theory, Methods and
Applications with R Examples. CRC Press.

[13] Evensen, G. (2009). Data Assimilation: The Ensemble Kalman Filter. Springer Science &
Business Media.

[14] Fellows, M., Mahajan, A., Rudner, T. G., and Whiteson, S. (2019). VIREL: A variational
inference framework for reinforcement learning. In Advances in Neural Information Processing
Systems.

[15] Fraccaro, M., Sønderby, S. K., Paquet, U., and Winther, O. (2016). Sequential neural models
with stochastic layers. In Advances in Neural Information Processing Systems.

[16] Gregor, K., Papamakarios, G., Besse, F., Buesing, L., and Weber, T. (2019). Temporal difference
variational auto-encoder. In International Conference on Learning Representations.

11

[17] Ito, K. and Xiong, K. (2000). Gaussian filters for nonlinear filtering problems. IEEE Transac-
tions on Automatic Control, 45(5):910–927.

[18] Jonschkowski, R., Rastogi, D., and Brock, O. (2018). Differentiable particle filters: End-to-end
learning with algorithmic priors. In Robotics: Science and Systems.

[19] Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J., and Chopin, N. (2015). On particle
methods for parameter estimation in state-space models. Statistical Science, 30(3):328–351.

[20] Kim, G.-H., Jang, Y., Yang, H., and Kim, K.-E. (2020). Variational inference for sequential
data with future likelihood estimates. In International Conference on Machine Learning.

[21] Kingma, D. and Welling, M. (2014). Auto-encoding variational Bayes. In International
Conference on Learning Representations.

[22] Krishnan, R. G., Shalit, U., and Sontag, D. (2017). Structured inference networks for nonlinear
state space models. In AAAI Conference on Artificial Intelligence.

[23] Le, T. A., Igl, M., Rainforth, T., Jin, T., and Wood, F. (2018). Auto-encoding sequential Monte
Carlo. In International Conference on Learning Representations.

[24] LeGland, F. and Mevel, L. (1997). Recursive estimation in hidden Markov models. In
Proceedings of the 36th IEEE Conference on Decision and Control, volume 4, pages 3468–3473.

[25] Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909.

[26] Li, K. W., Moskovitz, T., Kanagawa, H., and Sahani, M. (2020). Amortised learning by
wake-sleep. In International Conference on Machine Learning.

[27] Li, Y. and Mandt, S. (2018). Disentangled sequential autoencoder. In International Conference
on Machine Learning.

[28] Ma, X., Karkus, P., Hsu, D., Lee, W. S., and Ye, N. (2020). Discriminative particle filter
reinforcement learning for complex partial observations. In International Conference on Learning
Representations.

[29] Maddison, C. J., Lawson, J., Tucker, G., Heess, N., Norouzi, M., Mnih, A., Doucet, A., and
Teh, Y. W. (2017). Filtering variational objectives. In Advances in Neural Information Processing
Systems.

[30] Marino, J., Cvitkovic, M., and Yue, Y. (2018). A general method for amortizing variational
filtering. In Advances in Neural Information Processing Systems.

[31] Marschall, O., Cho, K., and Savin, C. (2020). A unified framework of online learning algorithms
for training recurrent neural networks. Journal of Machine Learning Research, 21:1–34.

[32] Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference. In Uncer-
tainty in Artificial Intelligence.

[33] Naesseth, C. A., Linderman, S. W., Ranganath, R., and Blei, D. M. (2018). Variational sequential
Monte Carlo. In International Conference on Artificial Intelligence and Statistics.

[34] Pfrommer, D. and Matni, N. (2022). Linear variational state space filtering. arXiv preprint
arXiv:2201.01353.

[35] Richter, J., Carbajal, G., and Gerkmann, T. (2020). Speech enhancement with stochastic
temporal convolutional networks. In Interspeech.

[36] Ryder, T., Prangle, D., Golightly, A., and Matthews, I. (2021). The neural moving average model
for scalable variational inference of state space models. In Uncertainty in Artificial Intelligence.

[37] Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press.

[38] Šmídl, V. and Quinn, A. (2008). Variational Bayesian filtering. IEEE Transactions on Signal
Processing, 56(10):5020–5030.

12

[39] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press.

[40] Tadić, V. B. (2010). Analyticity, convergence, and convergence rate of recursive maximum-
likelihood estimation in hidden Markov models. IEEE Transactions on Information Theory,
56(12):6406–6432.

[41] Tadić, V. B. and Doucet, A. (2021). Asymptotic properties of recursive particle maximum
likelihood estimation. IEEE Transactions on Information Theory, 67(3):1825–1848.

[42] Tsay, R. S. (2005). Analysis of Financial Time Series, volume 543. John Wiley & Sons.

[43] Weber, T., Heess, N., Eslami, A., Schulman, J., Wingate, D., and Silver, D. (2015). Reinforced
variational inference. In Advances in Neural Information Processing Systems Workshop.

[44] Zhao, Y., Nassar, J., Jordan, I., Bugallo, M., and Park, I. M. (2019). Streaming variational
Monte Carlo. arXiv preprint arXiv:1906.01549.

[45] Zhao, Y. and Park, I. M. (2020). Variational online learning of neural dynamics. Frontiers in
Computational Neuroscience, 14.

13

