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Abstract

Physics-informed neural networks (PINNs) have emerged as a powerful approach for solv-
ing partial differential equations (PDEs) by training neural networks with loss functions
that incorporate physical constraints. In this work, we introduce HyResPINNs, a two-level
convex-gated architecture designed to maximize approximation expressiveness for a fixed
number of degrees of freedom (DoF). The first level involves a trainable, per-block combina-
tion of smooth basis functions with trainable sparsity, and deep neural networks; the second
involves the ability to gate entire blocks (much like in ResNets or Highway Nets), allowing
for expressivity along the depth dimension of the architecture. Our empirical evaluation
on a diverse set of challenging PDE problems demonstrates that HyResPINNs consistently
achieve superior accuracy to baseline methods while remaining competitive relative to train-
ing times. These results highlight the potential of HyResPINNs to combine desirable features
from traditional scientific computing methods and modern machine learning, paving the way
for more robust and expressive approaches to physics-informed modeling.

1 Introduction

Partial differential equations (PDEs) underpin the simulation of complex physical phenomena across physics
and engineering, from turbulent flows to electromagnetic waves and quantum systems (Evans, 2010; LeV-
eque, 2007). However, the interplay of nonlinearities, intricate geometries, and temporal dynamics often ren-
ders analytic solutions intractable, motivating a need for robust and adaptable numerical methods (Strang
et al., 1974; LeVeque, 2007). While classical solvers—such as finite element, finite difference, and spectral
methods—have established a foundation for computational science, recent advances in machine learning
have led to physics-informed neural networks (PINNs), which offer a flexible, data-driven approach to PDE
approximation (Raissi et al., 2019a; Karniadakis et al., 2021).

Despite these advances, a central challenge remains: how can we balance expressivity, adaptivity, and effi-
ciency to obtain accurate, tractable solutions for increasingly complex problems? The impact of these three
factors differs fundamentally between classical and machine learning (ML) paradigms, creating complemen-
tary strengths and weaknesses. In this work, we decompose expressivity into three interrelated components:
function space richness—the breadth and diversity of approximable functions; adaptivity—the ability to
allocate expressive power selectively (whether across input regions or within the model’s internal structure);
and efficiency per DoF—the contribution of each parameter to the overall approximation. These criteria
jointly determine a solver’s ability to capture complex solution structures while maintaining computational
tractability. The central motivation of this study is to combine the controllable adaptivity and efficiency
of classical methods with the richness and flexibility of neural networks, unifying their advantages within a
hybrid framework.

Classical numerical methods offer rigorous convergence guarantees and explicit, controllable adaptivity—
allowing targeted mesh or basis refinement (Ainsworth & Oden, 1997). Such refinement is often guided by
prior knowledge of solution smoothness or domain geometry (Brenner & Scott, 2008; Strang et al., 1974),
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leading to high efficiency per DoF, where each additional parameter meaningfully improves accuracy. How-
ever, their function space richness is constrained to the chosen basis or kernel, limiting the diversity of
representable functions without significant model redesign. Adaptive extensions—such as hp-adaptive finite
elements (Schwab, 1998) or greedy kernel selection (Schaback & Wendland, 2000)—can expand or restruc-
ture the function space, but operate through discrete, manually designed rules within a fixed basis family.
In contrast, ML-based neural architectures adjust capacity continuously during training, reweighting and
recombining learned features without altering the underlying discretization. Further, maintaining accuracy
in complex scenarios, such as nonsmooth features, irregular geometries, or high-dimensional interactions,
escalates the required DoFs, resulting in increased computational costs (Babuvska & Suri, 1994). Thus,
while classical methods excel in efficiency and controllable adaptivity, they are less inherently flexible in
representing highly varied solution behaviors.

Conversely, PINNs offer a mesh-free, data-driven approach that embeds physical laws directly into the
neural network training. PINN approaches are promising due to their rich function spaces, enabling the
approximation of complex, high-dimensional problems without the need for hand-crafted bases (Hornik
et al., 1989), and without requiring a priori knowledge of solution structure. The overparameterization
of neural architectures enables this flexibility, but concurrently reduces the efficiency per DoF such that
many parameters contribute marginally to the final accuracy (Adcock & Dexter, 2021). Unlike classical
methods, where DoF efficiency is linked to convergence theory, its quantification in neural architectures
remains largely empirical. Moreover, their adaptivity is largely implicit, governed by global optimization
rather than targeted refinement, making it challenging to resolve localized features, sharp gradients, or
multiscale phenomena (Wang et al., 2021b). While adaptive PINN methods exist, achieving architecture-
level, localized adaptivity comparable to classical numerical methods remains an open challenge.

A growing body of research seeks to combine the complementary strengths of classical and ML paradigms
for PDE approximation. One class enriches neural networks with fixed structured bases—such as Fourier,
polynomial, or radial basis functions (RBFs)—to improve efficiency per DoF or representation quality (Cooley
et al., 2025b; Wang et al., 2021b; 2023b). While some adaptive basis methods exist, such as trainable
modes in random Fourier feature embeddings (Wang et al., 2021b), most basis-enrichment strategies fix the
basis set in advance and introduce adaptivity through pruning or regularization. This imposes a predefined
representational structure that the model can only reduce rather than expand. In contrast to the incremental
refinement strategies of classical methods, this separation of adaptivity from expressivity can limit efficiency
per DoF, particularly early in training, when many basis functions contribute little to the solution, or
when pruning strategies are insufficient. Another class draws on mesh-refinement ideas, reallocating model
effort toward difficult regions via adaptive sampling (Zeng et al., 2022), domain decomposition (Jagtap &
Karniadakis, 2020), or architecture adjustments (Luo et al., 2025). These approaches reallocate expressive
power locally—either by concentrating the training signal in regions of high residual (adaptive sampling) or by
statically partitioning the domain so that subregions have dedicated parameters (domain decomposition and
mesh-inspired designs). As a result, function space richness remains unchanged, and adaptivity is achieved
only indirectly through where and how the fixed capacity is applied—leaving a gap for methods that can
dynamically expand and redistribute capacity while blending complementary function spaces throughout
training.

We address this gap with HyResPINNs—a hybrid deep residual architecture that unifies function space
richness, adaptivity, and efficiency per DoF in a single framework. Each residual block is a hybridization of
two complementary function spaces: a trainable RBF neural network (RBFNN) that leverages compactly-
supported RBFs for localized, structured refinement, and a deep neural network (DNN) for flexible, compo-
sitional expressivity. Their outputs are merged via a convex combination controlled by a trainable, inter-
pretable gating parameter, allowing the model to adaptively shift between global and local modes over the
course of training. A second gating parameter modulates the residual (skip) connection, starting at identity
and progressively “opening” to activate additional depth only when needed, reducing early overparameteriza-
tion. Stacking these hybrid blocks—that is, composing multiple blocks sequentially in depth—incrementally
enriches the function space while concentrating refinement in specific solution regions, enabling fine-grained
adaptivity and efficient parameter use—without reliance on static bases, coarse pruning, or fixed architectural
capacity.
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Our key contributions are as follows:

• Expanded function space richness through hybridized composition. We combine the global,
compositional expressivity of deep neural networks with the localized approximation power of
compactly-supported RBFs, enabling accurate representation of both smooth global structures and
highly localized or discontinuous features across diverse PDE problems.

• Fine-grained adaptivity via global–local blending and progressive depth activation. Our
architecture dynamically reallocates representational power during training—adjusting the balance
between global and local modes and activating additional depth only when needed—to target re-
finement where it is most beneficial.

• Improved efficiency per DoF through targeted capacity growth and localized enrich-
ment. HyResPINNs achieve competitive or superior accuracy with fewer, more effectively utilized
parameters compared to static overparameterized neural PDE solvers by starting with minimal
active capacity and selectively expanding it in response to solution complexity.

Through these contributions, we establish HyResPINNs as a practical approach for learning solutions to
PDEs, providing a flexible framework that generalizes well across different problem domains. The remainder
of this paper is organized as follows. In Section 2, we discuss related works and in Section 3, we review
the relevant background. Then, in Section 4, we describe the mathematical formulation and architectural
details of HyResPINNs. Next, in Section 5, we present numerical experiments comparing HyResPINNs to
a suite of baseline neural PDE solvers, on a series of challenging PDE problems. We summarize our results
and discuss future work in Section 6.

2 Related Work

In this section, we outline in more depth the approaches of classical numerical solvers and traditional PINNs.
Then we review prior work in hybrid architectures that combine classical and ML paradigms, residual and
stacked designs for progressive refinement, and radial basis function (RBF) methods and related kernel
approaches. We organize this discussion to highlight how each class of methods addresses—or falls short
of—the three critical components of expressive PDE solvers: (i) function space richness, (ii) adaptivity, and
(iii) efficiency per degree of freedom. By situating HyResPINNs in relation to these prior works, we clarify
both the limitations that motivate our framework and the distinct design principles that set it apart.

Classical Numerical Solvers. Classical numerical methods such as finite element (FEM) (Strang et al.,
1974), finite difference (FDM) (LeVeque, 2007), and spectral approaches (Shen et al., 2011) have long pro-
vided a foundation for PDE solvers. These approaches employ carefully engineered discretizations or basis
functions informed by a priori knowledge of solution smoothness and domain geometry (Brenner & Scott,
2008; Strang et al., 1974). They offer provable convergence rates and explicit adaptivity, allowing refinement
to be directly targeted to specific regions of complexity. For instance, they can concentrate additional DoFs
in regions with singularities or sharp gradients by refining the approximation through mesh, basis, or com-
bined strategies (Ainsworth & Oden, 1997; Melenk, 1997). However, the required DoF can escalate rapidly
in the presence of nonsmooth features, irregular geometries, or high-dimensional interactions (Schwab, 1998;
Babuvska & Suri, 1994; Demkowicz et al., 2002; Bungartz & Griebel, 2004), resulting in significant compu-
tational costs.

Physics-Informed Neural Networks (PINNs). PINNs (Raissi et al., 2019a) approximate PDE so-
lutions by incorporating physical laws into the neural network’s loss function. PINNs achieve expressivity
through learned, mesh-free representations, with function space richness emerging from network architecture,
activation functions, and optimization processes (Hornik et al., 1989; Cybenko, 1989). Universal approxi-
mation theorems guarantee that, under certain architectural assumptions, neural networks can approximate
any function arbitrarily well, suggesting their theoretical suitability for modeling complex PDEs. However,
realizing this expressivity in practice is often difficult, with performance closely tied to the specific network
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architecture and optimization strategy (DeVore et al., 2020; Adcock & Dexter, 2021; Marwah et al., 2021).
Standard PINNs exhibit implicit, global adaptivity: the network parameters are updated in response to the
overall loss computed across the full domain, rather than through explicit, spatially localized refinement
mechanisms typical in classical methods. Further, PINNs often perform poorly in regimes with steep gra-
dients or multiscale features (Wang et al., 2022b). Recent approaches to ameliorating optimization issues
include domain decomposition (X-PINNs) (Jagtap & Karniadakis, 2020), gradient-enhanced training (G-
PINNs) (Yu et al., 2022), or discretely-trained PINNs using RBF-FD approximations in place of automatic
differentiation (DT-PINNs) (Sharma & Shankar, 2022).

Hybrid Architectures. Efforts to hybridize PINNs with classical ideas often fall into two broad categories.
The first are basis-enrichment methods which embed structured bases directly into neural architectures.
Embedding known spectral or polynomial structure can yield high efficiency per DoF: each parameter has a
targeted, interpretable role, and explicit representation of low- or high-frequency modes can offset the spectral
bias of standard neural networks (Tancik et al., 2020; Cooley et al., 2025a). RBF-based methods, in contrast,
target localized approximation and can provide improved computational efficiency when compactly supported
kernels limit the region of influence (Wang et al., 2023b; Widrow & Lehr, 2002; Fasshauer, 2007). While
some adaptive basis methods exist, such as trainable modes in random Fourier feature embeddings (Wang
et al., 2021b), most basis-enrichment strategies fix the basis set in advance and introduce adaptivity through
pruning or regularization. Across these methods, fixed, overcomplete basis sets are common, with adaptivity
introduced only through pruning or regularization, which can decouple adaptivity from expressivity and
limit efficiency per DoF when pruning is coarse.

Adaptivity-focused hybrids, in contrast, modify PINNs through adaptive sampling, domain decomposition,
or architecture-level refinements inspired by mesh adaptation. These approaches reallocate expressive power
locally—either by concentrating the training signal in regions of high residual (adaptive sampling) or by
statically partitioning the domain so that subregions have dedicated parameters (domain decomposition and
mesh-inspired designs). Recent efforts to introduce local adaptivity—including adaptive sampling (Zeng
et al., 2022; Lu et al., 2021), loss reweighting (McClenny & Braga-Neto, 2020), and domain decomposi-
tion (Shukla et al., 2021; Jagtap & Karniadakis, 2020)—have improved performance in challenging regions,
but these strategies still operate primarily at the data or loss level; the underlying parameter updates remain
global, and truly local, mesh-like refinement within the network architecture remains largely unaddressed.
Overall, most hybrids address only one axis of the expressivity–adaptivity–efficiency tradeoff at a time.

Residual and Stacked Architectures. Deep residual learning and stacked architectures have been re-
cently introduced in scientific machine learning to overcome optimization challenges and enhance the expres-
sivity of DNNs for solving PDEs. In particular, by enabling the training of deeper models and facilitating the
learning of multi-scale phenomena through incremental refinement or additive corrections (He et al., 2016;
Noorizadegan et al., 2024b). Residual connections allow deeper networks by alleviating gradient degrada-
tion, while stacked or multi-stage approaches iteratively refine solutions. These designs can increase function
space richness without dramatically widening single models.

For instance, PirateNets (Wang et al., 2024) use multiple residual blocks with learned skip weights that
modulate each block’s influence. However, these residual weights are unconstrained and can grow arbitrarily
large, complicating the interpretation of each block’s non-linear transformation and potentially potentially
destabilizing training. Stacked PINNs (Howard et al., 2025) introduce a multifidelity paradigm in which the
output of each trained network serves as a low-fidelity input for the next, iteratively building up model ac-
curacy while reducing the need for excessively large single networks. This framework incrementally increases
depth by stacking new PINNs, but it does so through a sequential training process that requires manual
intervention at each stage. Both methods introduce partial adaptivity—PirateNets modulate block contribu-
tions; stacked PINNs increase depth over stages—but neither couples adaptivity, efficiency, and richness in
a principled way. Crucially, neither integrates complementary function spaces (e.g., local RBFs with global
DNNs) to exploit different inductive biases within a unified refinement framework.

Radial Basis Function Networks and Kernel Methods. Radial basis functions (RBF) methods have
long been used in scientific computing as a flexible, mesh-free alternative to grid-based discretizations,
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especially for scattered or irregular domains (Wu et al., 2012; Fasshauer, 2007). Many RBFs—especially
those with compact support or rapidly decaying influence—enable local control in function approximation,
as each basis function primarily affects a specific region of the domain. This locality allows RBFs to accurately
represent local solution features with minimal disturbance to other regions (Wu et al., 2012; Widrow & Lehr,
2002; Chen et al., 2023). As a result, RBFs are particularly advantageous in problems where local refinement
is critical, whereas global bases such as Fourier or polynomial functions are often more effective for smooth,
globally distributed features but can struggle near sharp transitions due to the Gibbs phenomenon.

Despite their strengths for localized approximation, traditional RBFNNs, particularly those with fixed cen-
ters, encounter the curse of dimensionality when approximating general smooth functions in high dimen-
sions (Wu et al., 2012). The number of required basis functions can increase exponentially with input
dimension. This contrasts with three-layer multilayer perceptrons, where the number of hidden units grows
polynomially due to their global parameterization (Barron, 2002; Wu et al., 2012). This limitation highlights
a broader challenge in approximating complicated functions: balancing local accuracy with efficient global
representation. While RBFs offer locality, the field has also explored how other paradigms, such as neural
networks and kernel methods, expand representational capacity. Specifically, theoretical and practical con-
nections have been established between neural networks and kernel methods (Arora et al., 2019; Li et al.,
2020), inspiring feature lifting architectures such as random Fourier embeddings (Wang et al., 2021b; Li
et al., 2020) that aim to efficiently expand representational capacity. Crucially, while RBFNN-based models
are valued for their mesh-free construction and strong locality, they generally lack the hierarchical, compo-
sitional structure and global parameter sharing that characterize DNNs—a key advantage shared by many
feature lifting methods in expanding representational capacity efficiently. Yet most retain a bias toward
either predominantly local (RBF-like) or predominantly global (DNN-like) representation.

Positioning of HyResPINNs. HyResPINNs directly address the limitations identified above by embed-
ding trainable, compact-kernel RBFNNs and DNNs within a unified residual block architecture. Two inter-
pretable gating parameters per block control (i) the convex combination between local (RBF) and global
(DNN) modes, and (ii) the activation of the residual (skip) path, allowing progressive depth activation
during training. This enables HyResPINNs to dynamically grow and redistribute capacity while blending
complementary function spaces—coupling function space richness, adaptivity, and efficiency per DoF in a
single architecture. Unlike prior hybrids, this approach jointly targets all three axes, enabling fine-grained,
architecture-level refinement without manual basis selection, coarse pruning, or static overparameterization.

3 Background

In this section, we review the core components underlying HyResPINNs: physics-informed neural networks
(PINNs) as the baseline neural PDE framework, residual network architectures for progressive refinement,
and radial basis function neural networks (RBFNNs) for localized approximation.

3.1 Physics-Informed Neural Networks.

Given a spatio-temporal domain D = [0, T ] × Ω ⊂ R1+d, where Ω is a bounded spatial domain in Rd with
boundary ∂Ω, the general form of a parabolic PDE is:

ut + F(u,∇u, . . . ) = f, (1)

where F is a linear or nonlinear differential operator, and u denotes the unknown solution. This PDE is
subject to an initial condition u(0,x) = g(x) for x ∈ Ω, and boundary conditions B(u(t,x)) = 0 for t ∈ [0, T ]
and x ∈ ∂Ω. Here, f and g are given functions, and B denotes an abstract boundary operator.

The general formulation of PINNs (Raissi et al., 2019a) aim to approximate the unknown solution u(t,x)
using a representation model uθ(t,x), such that uθ(t,x) ≈ u(t,x) and θ denotes the set of all trainable
parameters of the network. The parameters θ, are optimized to minimize the composite loss function:

L(θ) = λicLic + λbcLbc + λrLr, (2)
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where Lic, Lbc, and Lr represent the loss components associated with the initial conditions, boundary
conditions, and the residual of the PDE, respectively; and λic, λbc, and λr are corresponding weighting
coefficients that balance the contribution of each loss term. These terms can be set as static weights or
adapted during training using various techniques such as NTK weighting (Wang et al., 2021b), gradient
annealing (Wang et al., 2021a) among others.

Each loss term in Equation 2 is computed as the mean squared error of the initial condition, boundary, and
PDE residuals. Specifically, each loss term is defined as:

Lic = λic

Nic

Nic∑
i=1

∣∣uθ(0,xi
ic) − g(xi

ic)
∣∣2
, (3)

Lbc = λbc

Nbc

Nbc∑
i=1

∣∣B[uθ](tibc,xi
bc)

∣∣2
, (4)

Lr = λr

Nr

Nr∑
i=1

∣∣∣∣∂uθ

∂t
(tir,xi

r) + F [uθ](tir,xi
r) − f(tir,xi

r)
∣∣∣∣2
. (5)

The training data points {xi
ic}Nic

i=1, {tibc,xi
bc}Nbc

i=1 and {tir,xi
r}Nr

i=1 can be fixed mesh or points randomly sampled
at each iteration of a gradient descent algorithm.

Variants of PINNs extend this basic formulation to improve stability, scalability, or compatibility with
specific PDE structures. Specifically, Karniadakis and collaborators have extended these methods to conser-
vative PINNs (cPINNs) (Jagtap et al., 2020), variational PINNs (vPINNS) (Kharazmi et al., 2019), parareal
PINNs (pPINNs) (Meng et al., 2020), stochastic PINNs (sPINNs) (Zhang et al., 2019), fractional PINNs
(fPINNs) (Pang et al., 2018), LesPINNs (Yang et al., 2019), non-local PINNs (nPINNs) (Pang et al., 2020)
and eXtended PINNs (xPINNs) (Jagtap & Karniadakis, 2020). While differing in implementation details,
all variants rely on the ability of neural networks to represent complex solution spaces without manually
designed bases, and all face the challenge of efficiently directing model capacity toward localized, high-
complexity regions. In this work, we will focus on application of the original collocation PINNs approach;
however, the work presented herein can be applied to many if not all of these variants.

3.2 Residual Networks

DNNs often encounter optimization challenges in deep architectures such as vanishing or exploding, resulting
training performance degradation. Residual Networks (ResNets) address these issues by introducing skip
connections (He et al., 2016), which allow information to flow directly from an earlier layer to a later layer,
creating an identity mapping that ensures information is preserved even as the network deepens (Noorizade-
gan et al., 2024a). Formally, a standard residual block is expressed as:

y = F(x,Wi) + x, (6)

where x represents the input to the block, F is the learned residual mapping, and y is the block output.

These connections improve gradient flow, enable stable training of deeper models, and allow the network
to learn incremental refinements rather than full transformations from scratch (Noorizadegan et al., 2024a).
In the PDE context, this incremental refinement aligns naturally with multi-scale and hierarchical solution
structures, making residual architectures a useful foundation for adaptivity in depth. Recent work has
explored variants with trainable skip weights, allowing the effective network depth to evolve during training,
though often without constraints that ensure interpretability or stability (Wang et al., 2024).

3.3 Radial Basis Function Neural Networks

A Radial Basis Function Neural Network (RBFNN) is typically a shallow network with a single hidden layer
of RBF units followed by a linear output layer. The output of the network is a linear combination of the
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Name Formula ψ(r) Support Smoothness Notes
Gaussian exp

(
− 1

2 r
2
)

Global C∞ σ controls width
Multiquadric

√
r2 + c2 Global C∞ c controls shape; non-decaying

Inverse MQ 1√
r2+c2

Global C∞ Long-range; c sets shape

Matérn-5/2
(

1 +
√

5r/ℓ+ 5
3 (r/ℓ)2

)
e−

√
5r/ℓ Global C2 ℓ is the lengthscale

Wendland C2 (1 − r
ρ

)6(35( r
ρ

)2 + 18( r
ρ

) + 3), r < ρ Compact C2 ρ sets support radius

Table 1: Common radial basis functions ψ(r) for RBFNNs. The distance r(x,xc;ωj) may be isotropic,
anisotropic diagonal, or fully anisotropic (Mahalanobis), with ωj denoting shape parameters (e.g., σ, c, ℓ, ρ)
for the j-th RBF.

kernel activations:

f(x) =
Nc∑
j=1

cj ψ(r(x,xc
j ; ωj)), (7)

where xc
j are center points, cj are coefficients, and ψ is a chosen radial basis function kernel (see Table 1

for examples). The influence of each RBF is determined by a distance metric r between the input x and the
j-th center xc

j , with additional shape parameters ωj (e.g., width or lengthscale). One metric is the isotropic
Euclidean distance:

r =
||x − xc

j ||
σj

, (8)

which applies a uniform scale in all directions. Anisotropic variants allow direction-dependent scaling, such
as:

r =

√√√√ d∑
i=1

(xi − xc
j,i)2

σ2
j,i

, (9)

for axis-aligned ellipsoidal support (per-dimension widths σj,i), or more generally the Mahalanobis distance:

r =
√

(x − xc
j)⊤Aj(x − xc

j), (10)

using a symmetric positive-definite matrix Aj for arbitrary orientation.

The specific choice of ψ determines each basis function’s support, smoothness, and decay—for example,
Gaussians are globally supported and C∞ smooth, while Wendland functions are compactly-supported and
less smooth. The shape parameters (σ, c, A, etc.) control locality and directional influence, and are often
initialized to reasonable heuristics (e.g., based on data spread or uniformly), but can be further learned
from data during training. RBFs with rapid decay or compact support intrinsically localize their influence,
enabling accurate modeling of fine-scale features while minimizing impact on distant regions (Wu et al.,
2012).

Summary. PINNs provide flexible, mesh-free function approximations; ResNets offer a mechanism for
incremental refinement and stable training at depth; and RBFNNs give localized, interpretable basis functions
well matched to targeted refinements. Together, these components form a foundation for architectures that
can represent both global and local solution structures while controlling where and how model capacity is
used.

4 Hybrid Residual PINNs (HyResPINNs)

We propose HyResPINNs, a deep learning framework that integrates radial basis function neural networks
(RBFNNs) and deep neural networks (DNNs) within a hybrid residual architecture. This hybridization is
designed to enhance function approximation for PDEs by combining the adaptive locality potential of RBFs
with the expressive, hierarchical modeling capacity of DNNs.
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W (l) ∈ RNc×p

K(l) ∈ RN×Nc

σ̄

Weight Layer

...

Weight Layer

x ∈ RN×d or x ∈ RN×p

+

ϕ(α(l)) F (l)
R (x)

(
1 − ϕ(α(l))

)
F

(l)
N (x)

σ
(
F (l)(x)

)
∈ RN×p

RBFNN

DNN

Hybrid Residual Block (l)

Figure 1: Illustration of the hybrid residual block (l), which combines contributions from RBFNN and DNN com-
ponents. The input, x ∈ RN×d for the first block (ℓ = 1), or x ∈ RN×p for inner blocks (ℓ > 1), is first processed
by the RBFNN through the kernel K(l) ∈ RN×Nc , followed by a linear weight layer W (l) ∈ RNc×p to produce
F

(l)
R (x). In parallel, the DNN branch applies a sequence of weight layers and nonlinearities σ̄ to yield F

(l)
N (x).

The two branches are adaptively fused through a trainable gating parameter α(l), producing the weighted sum
σ
(
F (l)(x)

)
= ϕ(α(l))F (l)

R (x) +
(
1 − ϕ(α(l))

)
F

(l)
N (x), which is then passed forward through the residual connection.

This design allows the model to balance kernel-based representations from the RBFNN with expressive features from
the DNN, enhancing flexibility.

4.1 Hybrid Residual Block: Dual Gating for Adaptive Representation

The core component of HyResPINNs is the hybrid residual block (see Figure 1), which combines two rep-
resentational paradigms: an RBFNN component (FR) and a DNN component (FN ). These are combined
using two trainable gating parameters—one internal to each block and one external across blocks—to flexibly
balance local and global contributions and to enable dynamic depth adaptation. We note that the degree
of locality or globality realized in practice depends on the kernel choice and initialization strategies in the
RBFNN component, and the chosen activation function in the DNN component.

4.1.1 Internal Gating: Balancing Local and Global Features

Within each block, the outputs of the RBFNN and DNN components are merged via a trainable scalar
parameter α(l), transformed by a tempered sigmoid (Papernot et al., 2020) ϕ(z) = ϕτ (z/τ), where τ > 0
is a hyperparameter controlling gate sharpness and enforces the weights in [0, 1]. This ensures a convex
combination:

F (l)(x) = σ

(
ϕ(α(l))F (l)

R (x) +
(

1 − ϕ(α(l))
)
F

(l)
N (x)

)
, (11)

where F
(l)
R (x) and F

(l)
N (x) are both projected to a common output dimension p, and σ = tanh ensures

bounded, nonlinear transformations. Low values of τ yield smooth mixing; high values drives near binary
selection between the component outputs. This mechanism enables the network to dynamically interpolate
between localized adaptation provided by RBFs—especially with compact support or rapid decay—and
global, compositional trends from DNNs.
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Hybrid Block 1 Hybrid Block 2 Hybrid Block Lx + ... + DNN y

ϕ(β(1)) ϕ(β(2)) ϕ(β(L))

Figure 2: Illustration of the HyResPINN architecture using L hybrid residual blocks. Each block combines outputs
from an RBFNN component and a DNN component (see Figure 1). The trainable skip connections ϕ(β(ℓ)), modulate
the residual flow of information across blocks. These gated skip parameters enable the network to adaptively balance
local kernel-based features and global neural representations at different depths, improving flexibility during training.
The final output is obtained by passing the aggregated representation through a terminal DNN layer to produce the
final prediction y.

The p Parameter and Kernel Method Connection. The block output dimension p defines the feature
lifting space where both components operate. This aligns with kernel methods, where data is explicitly
mapped into a higher-dimensional feature space to enhance separability or approximation capabilities. As
discussed in Section 2, theoretical and practical connections between neural networks and kernel methods
inspire such architectures, aiming to efficiently expand representational capacity. In our design, the RBFNN
and DNN components leverage this principle, enabling the subsequent layers to operate on more expressive
features.

4.1.2 External Gating: Adaptive Residual Depth

A second gating parameter, β(l), is likewise passed through a temperature-controlled sigmoid to modulate
the residual connection:

H(l) = ϕ(β(l))F (l) + (1 − ϕ(β(l)))H(l−1), (12)

where H(l−1) is the previous block’s output (or the original input for l = 1). This adaptive gating enables
the network to learn how much each block should transform the representation, thus supporting dynamic
depth during training.

4.1.3 Regularization and Initialization

We regularize gating parameters to avoid over-reliance on a single pathway similar to (Howard et al., 2025):

L = λicLic + λbcLbc + λrLr + λg

L∑
i=1

(
α2

i + β2
i

)
, (13)

such that λg is a weight modulating the strength of the regularization.

We initialize ϕ(β(l)) = 0 for all l, biasing the network toward the residual (identity) mapping at the
start (Hauser, 2019), and ϕ(α(l)) = 0.5 to initially balance RBFNN and DNN contributions. DNN weights
and RBF coefficients use Xavier (Glorot & Bengio, 2010) initialization, while the RBF shape parameters
are initialized using a quantile distance heuristic between the center points in each block. The input center
points are initialized using the Poisson sampling method of (Shankar, 2017), and internal block center points
are initialized using k-means clustering of the subsequent block’s output following (Wurzberger & Schwenker,
2024).

4.2 RBFNN Block Component

For input x ∈ RN×d, the l-th RBFNN constructs:

K(l)
ij = ψ(l)

(
r

(
xi,xc

j ; ω(l)
j

))
. (14)
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Here, ψ(l) denotes the selected RBF (see Table 1), and r(·, ·; ω(l)
j ) is a distance metric parameterized by

trainable shape parameters ω(l)
j , which control the width or anisotropy of each basis. The kernel matrix is

multiplied by a trainable weight matrix W (l) ∈ RNc×p, yielding the final RBFNN output:

F
(l)
R (x) = K(l)(x) ·W (l) ∈ RN×p. (15)

Each hybrid block maintains its own set of RBF center points {xc
j}(l), allowing block-specific local refinements

that adapt independently across network depth.

Wendland C2 Kernel Selection. In this work, we primarily use the C2(R3) Wendland kernel defined
as:

ψWend,C2(r) = (1 − r)6
+ (35r2 + 18r + 3), (16)

where (·)+ = max{0, ·} ensures compact support and xc
i is the center of the i-th RBF. The variable r denotes

the distance metric, which may be either isotropic (Equation 8) or anisotropic (Equation 9 or Equation 10).
We implement the Wendland kernels with unit support (ρ = 1 from Table 1), such that the kernel evaluates
to zero whenever r ≥ 1, ensuring strict locality and sparse kernel matrices. Fixing ρ = 1 lets the anisotropy
control the effective radii directly, simplifying the parameterization without sacrificing expressivity. For the
fully anisotropic case in Equation 10, we parameterize each matrix Aj in Cholesky form, Aj = M⊤

j Mj , where
Mj is a trainable lower-triangular matrix with positive diagonal entries. This guarantees that Aj remains
symmetric positive-definite during training, which ensures well-defined distances, avoids degeneracies, and
is practically efficient (Wurzberger & Schwenker, 2024). Empirically, ablation studies confirmed that the C2

Wendland RBF achieves the lowest approximation error compared to alternative kernels, justifying its use
in our architecture.

4.3 DNN Block Component

Each DNN block component computes:

F
(l)
N (x) = N N (x; θ(l)) ∈ RN×p, (17)

where θ(l) represents the set of trainable parameters in the network. The final output is projected to the
p-dimensional feature space shared by the RBFNN component. By design, this block can use any stan-
dard or advanced DNN architecture; in some experiments, we employ Modulated Multi-Layer Perceptrons
(ModMLPs) with random weight factorization (Wang et al., 2021a), which are an extension to standard fully
connected networks inspired by neural attention mechanisms. These modifications incur relatively small com-
putational and memory overhead while leading to significant improvements in predictive accuracy (Wang
et al., 2023a).

4.4 Full Model Composition

The complete HyResPINN model (see Figure 2) consists of L stacked hybrid residual blocks. After the final
block, a standard DNN head further refines the representation into the final prediction:

uθ = DNNout(H(L)). (18)

In some examples, we initialize the final layer of the final DNN using the physics-informed approach of (Wang
et al., 2024), a least-squares fit to the PDE residuals at collocation points before gradient training which
embeds physics priors and accelerating convergence.

Summary. By fusing RBFNNs with DNNs in a residual, gated architecture, HyResPINNs achieve function
space richness, fine-grained adaptivity, and improved parameter efficiency. Our experiments demonstrate
that this approach generalizes robustly across canonical and irregular PDE benchmarks, outperforming
state-of-the-art neural PDE solvers in both accuracy and parameter efficiency.

10
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Problem PINN ResPINN ExpertPINN StackedPINN PirateNet HyResPINN

Allen–Cahn (Dirchlet BCs) 2.65e-1 6.82e-2 9.66e-3 6.11e-2 1.10e-2 2.39e-3
Allen–Cahn (Periodic BCs) 5.26e-1 2.70e-3 3.86e-3 5.87e-3 2.62e-5 1.19e-5

DarcyFlow (2D Dirichlet BCs) 7.50e-4 4.60e-4 5.00e-4 9.00e-4 8.71e-5 5.44e-5
(2D Neumann BCs) 2.00e-3 1.40e-3 1.20e-4 4.10e-3 1.70e-4 6.00e-5
(3D Dirichlet BCs) 2.20e-3 1.20e-2 2.10e-2 5.40e-2 3.90e-2 1.20e-3
(3D Neumann BCs) 8.50e-3 6.10e-3 1.10e-3 3.90e-2 1.30e-3 1.10e-3

DarcyFlow (rough) 6.85e-5 2.69e-5 1.10e-4 1.50e-4 5.44e-5 1.05e-5

Kuramoto–Sivashinsky 1.42e-1 1.29e-2 1.57e-3 1.86e-1 2.00e-3 8.12e-4
Korteweg–De Vries 8.17e-1 5.72e-1 6.86e-4 2.98e-1 5.61e-4 4.09e-4
Grey–Scott (u) 7.54e-1 9.87e-3 4.79e-3 1.21e-3 3.61e-3 6.43e-3
Grey–Scott (v) 9.56e-1 1.10e-2 8.98e-3 6.90e-2 9.39e-3 1.31e-2

Table 2: Relative L2 test error results across a range of PDE benchmarks under different boundary conditions.
For the Grey–Scott PDE, errors are reported separately for both components (u and v). The lowest error for each
problem is highlighted in bold.

5 Experimental Results and Discussion

We evaluate HyResPINNs on a suite of PDE benchmark problems designed to test its function space richness,
adaptivity, and efficiency per DoF. These benchmarks have been selected to either model solution features
that present significant challenges for computational models or are recognized as established benchmark
problems. First, to evaluate localized adaptivity, we consider two 1D non-linear hyperbolic Allen-Cahn
equations, one with Dirichlet boundary conditions in Section 5.1, and periodic boundary conditions in
Section 5.2, each containing sharp solution features. In Section 5.3, we test 2D and 3D Darcy flow problems
on annulus and extruded annulus domains to evaluate generalization to non-standard geometries using
various boundary conditions. Then, Section 5.4 details a 2D Darcy flow problem with rough, discontinuous
coefficients to examine robustness under discontinuities. To further explore the function space richness of
our methods, we evaluate the chaotic and multi-scale systems given by the Kuramoto–Sivashinsky equation
in Section 5.5, the Korteweg-de Vries equation in Sections 5.6, and the Grey–Scott equation in Section 5.7.
We assess predictive accuracy and efficiency per DoF throughout all experiments, comparing against state-
of-the-art baselines. Table 2 summarizes the top results from each test.

Baseline Methods We compare the proposed HyResPINNs against a suite of baseline methods, including
1) the standard PINN as originally formulated in (Raissi et al., 2019b) (PINN), 2) a PINN based on the
architectural guidelines proposed in (Wang et al., 2023a) (ExpertPINNs), 3) PINNs with residual connections
(ResPINNs), 4) PirateNets (Wang et al., 2024), and 5) the stacked PINN approach of (Howard et al., 2025)
(StackedPINNs). To ensure a fair comparison, we implemented each approach following the architectural
details provided in each.

Experimental Setup We follow similar experimental design procedures as those described in (Wang et al.,
2022a; 2023a; 2024). We employ mini-batch gradient descent for most experiments, with collocation points
randomly sampled during each training iteration. In the Darcy Flow experiments, we use full-batch gradient
descent, with collocation point sets generated using the efficient Poisson sampling technique from (Shankar,
2017). For training, we use the Adam optimizer Kingma & Ba (2015), and follow the learning rate schedule
of (Wang et al., 2023a) which starts with a linear warm-up phase of 5, 000 iterations, starting from zero and
gradually increasing to 10−3, followed by an exponential decay at a rate of 0.9. We also employ a learning
rate annealing algorithm (Wang et al., 2023a) to balance each loss term and causal training (Wang et al.,
2022a; 2023a) to mitigate causality violation in time-dependent PDEs. Further, we apply exact periodic or
Dirichlet boundary conditions (Dong & Ni, 2021) when applicable. We use the hyperbolic tangent activation
functions in all DNNs and initialize each network’s parameters using the Glorot normal scheme (Glorot &
Bengio, 2010). We ran five random trials for each test and report the mean values achieved in each plot
and table. We measure the quality of each model’s predicted solution uθ using the relative L2 error, defined

11



Under review as submission to TMLR

(a) Comparison of the three variants: HyResPINN (RBFNN+DNN), DNN-only, and RBF-only’s predicted solutions
(middle) and the absolute errors (right) compared to the true solution (lef).

(b) (Left) RBF Support Map. Hybrid model exhibits stronger kernel coverage at sharp solution features. (Right)
Sigma Norms. Distribution of learned RBF widths. Hybrid learns broader, smoother kernels.

Figure 3: (Allen–Cahn Equation) Comparison of model outputs and internal representations across variants.
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as ∥uθ−u∗∥2
∥u∗∥2

, where u∗ denotes the reference solution (either exact or computed using a high-fidelity solver).
Here ∥ · ∥2 refers to the discrete ℓ2 norm evaluated over a set of equispaced test points in the domain, which
serves as an approximation of the continuous L2(Ω) norm. The code for our methods and all compared
baseline approaches is written in Jax 1.11 and will be publicly available upon publication. We train all
models on an Nvidia H100 GPU running CentOS 7.2.

5.1 1D Allen-Cahn with Dirichlet Boundary Conditions

We start by considering the one-dimensional Allen–Cahn equation defined on x ∈ [−1, 1], t ∈ [0, 1] given as:

∂u

∂t
= ε

∂2u

∂x2 − 5u3 + 5u,

where u(x, t) is the solution and ε = 0.001 is the diffusion coefficient. We impose the homogeneous Dirichlet
boundary conditions:

u(−1, t) = 0, u(1, t) = 0, for all t ∈ [0, 1],
and the initial condition is:

u(x, 0) = −2 sin(2πx)
(

2e−8(x−0.5)2
− e−5(x+0.5)2

)
.

This nonlinear, reaction-diffusion PDE’s solution exhibits both smooth, global variation and sharp, localized
peaks (centered at x = ±0.5). This problem is designed to evaluate a model’s capacity to accurately capture
these localized features while simultaneously preserving the global solution structure.

We first perform ablation studies to systematically investigate the individual contributions of the RBFNN
and DNN components within the HyResPINN residual blocks. Next, to measure the DoF efficiency, we
benchmark the complete HyResPINN model against baseline solvers with comparable model complexity,
quantified by parameter count and network depth. Appendix A details ablation studies measuring the
accuracy and computational cost of the HyResPINN architecture under varying RBF kernel types, numbers
of center points, and deepening residual blocks. For the remainder of the experiments, we fix the RBF kernel
to Wendland C2—the configuration our ablation studies identify as the most effective concerning accuracy,
computational efficiency, while aligning with our goal of inherent locality.

Expressivity: Local and Global Representations. We first examine the function space richness of HyResPINNs
by isolating local (RBFNN), global (DNN), and hybrid (RBFNN+DNN) representations, testing whether
their combination enables more expressive solution approximation than either alone. To isolate the contri-
butions of each hybrid component, we conduct ablation experiments comparing RBFNN-only, DNN-only,
and full HyResPINN configurations. In the RBFNN-only configuration, the DNN outputs are fixed to zero,
isolating localized basis function representation. In the DNN-only configuration, the RBFNN outputs are
fixed to zero, isolating global neural representation. In the full HyResPINN, both components are active
and combined via learned gating. All models are trained with Adam for 100,000 iterations, with a batch
size of 1024 collocation points randomly sample each iteration. The DNNs use three layers of 64 neurons,
RBFNNs use 64 centers, and HyResPINNs use both and one block.

As shown in Figure 3a, the full hybrid model achieves the lowest relative error (2.4 × 10−3), accurately
resolving both the steep gradients and the global structure. The DNN-only baseline captures the overall
shape but fails to resolve sharp peaks, resulting in localized errors above 1.0 (relative error 2.65×10−1). The
RBFNN-only baseline captures localized peaks but struggles to maintain smoothness elsewhere (4.6×10−3).
Neither baseline achieves the accuracy or robustness of the hybrid. These results directly confirm that hybrid
local–global representation enables superior function approximation on challenging, multiscale PDEs.

Adaptivity: Solution Refinement. We next examine how HyResPINNs achieve fine-grained adaptivity in the
width of RBF kernels. Kernel support maps (Fig. 3b, left), computed by summing RBF activations across
the domain, reveal that the hybrid model develops broad, overlapping support, densely covering regions
with sharp features. In contrast, the RBFNN-only model forms narrowly focused kernels with little overlap.
Furthermore, the distribution of learned RBF widths (Fig. 3b, right) demonstrates that HyResPINNs favor
wider, smoother kernels compared to RBFNNs alone. This broader support reflects the model’s ability to
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blend basis functions, promoting both smooth transitions and precise local refinement—key ingredients of
adaptive expressivity.

Figure 4: Allen–Cahn equation: Predicted solutions (top row) and corresponding absolute errors (bottom row) for
various baseline models. Each column shows the model’s prediction across the full domain, followed by the absolute
errors relative to the reference solution.

Figure 5: Allen–Cahn equation: (Left) Relative L2 errors, (middle) PDE loss, (right) initial condition loss, across
all baselines of similar parameter numbers as a function of training iteration.

Model # of Parameters Computational Cost
PINN 17025 0.0121 (0.0003)
StackedPINN 17157 0.0175 (0.0001)
ResPINN 17157 0.0148 (0.0003)
PiratePINN 17926 0.0216 (0.0001)
ExpertPINN 17793 0.0185 (0.0002)
HyResPINN 17667 0.0180 (0.0001)

Table 3: Comparison of model complexity and efficiency across PINN variants. The table reports the
total number of trainable parameters and the average wall-clock time (in seconds) required to perform 100
iterations, with standard deviations in parentheses.

Efficiency: Accuracy and Convergence per Degree of Freedom. Finally, we assess efficiency per DoF by
comparing HyResPINNs to state-of-the-art neural PDE solvers under matched parameter budgets, focusing
on both final accuracy and convergence speed. As summarized in Figure 5 and Table 3, HyResPINNs con-
sistently outperform all baselines, achieving lower mean relative L2 error, faster convergence, and sharper
resolution of transition regions. The final relative errors are 6.82 × 10−2 for ResNet, 9.66 × 10−3 for Ex-
pertPINN, 1.09 × 10−2 for PirateNet, and 6.12 × 10−2 for StackedPINN, compared to just 2.39 × 10−3 for
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HyResPINNs. Qualitative comparisons (Fig. 4) further show that only HyResPINNs robustly resolve both
sharp and smooth solution features.

Summary. These analyses highlight the benefit of hybridization: the RBFNN component provides localized
adaptivity, while the DNN component ensures global coherence. HyResPINN’s lower error and more adap-
tive internal structure demonstrate that coordinated local–global representation is essential for robust and
expressive PDE learning.

5.2 1D Allen-Cahn with Periodic Boundary Conditions

Next, we present results for 1D the Allen-Cahn problem with periodic boundary conditions, a well-known
challenge for conventional PINN models and a widely studied benchmark in recent literature (Wight &
Zhao, 2020; Wang et al., 2022a; Daw et al., 2022). For simplicity, we consider the one-dimensional case with
a periodic boundary condition with t ∈ [0, 1], and x ∈ [−1, 1]:

ut − 0.0001uxx + 5u3 − 5u = 0 ,
u(0, x) = x2 cos(πx) ,
u(t,−1) = u(t, 1) , ux(t,−1) = ux(t, 1) .

This problem is particularly difficult for two reasons. First, the Allen-Cahn PDE requires PINNs to ap-
proximate solutions with sharp transitions in space and time, posing challenges for standard neural network
architectures. Second, there is an inherent incompatibility between the initial and boundary conditions, lead-
ing to a weak discontinuity at time t = 0. Traditional numerical methods would likely produce oscillations
near the discontinuity due to the mismatch between the initial and boundary conditions. However, unlike
traditional solvers, PINNs do not rely on discretization and instead learn their model parameters through
optimization. This optimization process may mitigate spurious oscillations, as it relies on stochastic updates
and continuous function approximations. Specifically, implicit regularization from both mini-batch training
and stochastic gradient descent (SGD) may contribute to stabilizing optimization and reducing any spurious
oscillations (Sekhari et al., 2021). Full experimental details are provided in Appendix B.

Expressivity: Capturing Periodic and Discontinuous Solutions. Similar to the previous section, we compare
HyResPINNs to DNN-only and RBFNN-only variants. Figure 6 demonstrates the advantages of the hybrid
residual block structure in capturing both smooth and sharp features in the 1D Allen-Cahn solution. The
absolute error plots show that HyResPINN exhibits significantly lower errors than standard DNN-only and
RBFNN-only, validating its improved accuracy.

Adaptivity: Depth Ablation and Solution Refinement. To test architectural adaptivity, we vary the number of
residual blocks. Figure 7 demonstrates that increasing the number of residual blocks in HyResPINNs leads to
consistently lower errors, outperforming the competing methods. Residual learning allows deeper networks
to refine predictions iteratively, progressively improving both global structure and sharp transitions. The
competing methods struggle to maintain accuracy as depth increases, whereas HyResPINNs remains robust,
demonstrating the effectiveness of deep hybrid residual learning. Specifically, the standard PINNs prediction
error increases as the network becomes deeper, eventually failing to capture any part of the solution. ResNets
errors also increase with increased depth, though at a slower rate than the standard PINN. This is likely due
to the static skip connection in the standard residual architecture design preventing the adaptive learning
of residual connections.

Efficiency: Accuracy and Convergence per Degree of Freedom. We next assess the efficiency per DoF by
comparing HyResPINNs to state-of-the-art neural PDE solvers under matched parameter budgets, focusing
on both final accuracy and convergence speed (see Figure 8). Training times reported in Table 4 show that
HyResPINN has comparable training costs to other methods, while exhibiting consistently lower error rates.
Together, these results show that HyResPINN’s hybrid, gated design delivers the function space richness,
adaptivity, and efficiency required for challenging periodic PDEs, outperforming conventional architectures
across both local and global metrics.

15



Under review as submission to TMLR

0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
HyResPINN

0.0 0.5 1.0

PINN

0 1

RBFNet

0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Abs. Error

0.0 0.5 1.0

Abs. Error

0 1

Abs. Error

1 0 1
x

1.0

0.8

0.6

0.4

0.2

0.0

u

t = 0.25

Exact
HyResPINN
PINN
RBFPINN

1 0 1
x

t = 0.50

1 0 1
x

t = 0.99

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Figure 6: Allen-Cahn equation: Comparison of the predicted solutions for the Allen-Cahn equation using
HyResPINN, standard PINN, and RBF PINN models. The top row shows the predicted solutions for HyResPINN
(left), standard PINN (center), and RBF PINN (right). The second row shows the absolute error between the pre-
dicted and true solutions. The bottom row shows the predicted solutions for time steps (t = 0.25, 0.5, 0.99) compared
to the true solution.
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Figure 8: Allen-Cahn equation: Comparison of mean relative L2 error across various methods, plotted against the
number of training iterations.

Model # of Parameters Computational Cost
PINN 727,170 0.0365 (0.0003)
StackedPINN 795,283 0.0525 (0.0002)
ResPINN 793,218 0.0444 (0.0003)
PiratePINN 727,173 0.0648 (0.0002)
ExpertPINN 727,170 0.0558 (0.0002)
HyResPINN 739,976 0.0769 (0.0001)

Table 4: Comparison of model complexity and efficiency across PINN variants. The table reports the
total number of trainable parameters and the average wall-clock time (in seconds) required to perform 100
iterations, with standard deviations in parentheses.

17



Under review as submission to TMLR

5.3 Darcy Flow with Smooth Coefficients

Figure 9: Smooth Darcy Flow equation: True solutions of the 2D and 3D problems.

We next test the performance of HyResPINN on the Darcy Flow equation with smooth coefficients. Darcy
Flow serves as a fundamental model for various physical processes, including porous media flow, heat transfer,
and semiconductor doping. In most applications, the flux u = −µ∇ϕ is the variable of primary interest.
The Darcy Flow problem is an elliptic boundary value problem given by:

−∇ · µ∇ϕ = f in Ω (19)

ϕ = u on ΓD

n · µ∇ϕ = g on ΓN

where ΓD and ΓN denote Dirichlet and Neumann parts of the boundary Γ, respectively, µ is a symmetric
positive definite tensor describing a material property and f , u and g are given data.

We use manufactured solutions in both 2D and 3D domains, ensuring that the exact solution contains global
structure and cross-dimensional correlations. Specifically, the exact solutions are given as:

u(x, y) = sin(πx) cos(3πy), (20)
u(x, y, z) = sin(πx) sin(3πy) sin(πz), (21)

for the 2D and 3D cases, respectively. Figure 9 displays the target solutions for both cases.

To rigorously evaluate data efficiency, adaptivity, and convergence, we generated static training datasets for
all experiments, fixing the set of collocation points within each run. This design enables controlled studies
of error reduction as the number of training points increases, while eliminating the variability introduced
by stochastic sampling. We systematically varied the number of collocation points to perform convergence
studies, and solved each problem under both Dirichlet and Neumann boundary conditions in both 2D and
3D domains. This approach allows for a fair, direct comparison of accuracy, data efficiency, and robustness
across problem dimensions and boundary types. All baseline models were matched in parameter count and
trained under identical conditions for consistent benchmarking.

Expressivity: Accurate Solution of Smooth Multidimensional PDEs. HyResPINN accurately reconstructs
these solutions and achieves low mean relative L2 errors across all tested training set sizes (see Figure 10, solid
lines), indicating its capacity to represent smooth solutions in higher dimensions. Notably, HyResPINN’s
predictions for both the solution and the physically relevant flux quantity remain stable and accurate even
as dimensionality increases.

Adaptivity: Robustness to Boundary Conditions and Domain Complexity. HyResPINN maintains high ac-
curacy across both types of boundary conditions in 2D and 3D, whereas baseline methods often exhibit
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Figure 10: 2D and 3D Smooth Darcy Flow equations: Comparison of the mean relative L2 errors across each baseline
method for the 2D Darcy Flow problem (top) and the 3D Darcy flow problem (bottom) plotted against the number
of training collocation points using both Dirichlet and Neumann boundary conditions. Solid lines show the solution
error, while dashed lines show the x-directional flux errors.

19



Under review as submission to TMLR

significant degradation or instability, particularly for Neumann constraints (see Figure 10, where dashed
lines denote flux errors). The model also seamlessly scales from the 2D annulus to the more complex 3D
cylindrical domain, demonstrating flexibility in handling increased geometric and dimensional complexity
without additional tuning.

Efficiency per Degree of Freedom: Data Efficiency and Convergence with Static Datasets. HyResPINN
consistently achieves lower solution and flux errors than competing models, especially in the low-data regime.
This data efficiency confirms that HyResPINN can generalize robustly from limited training points, reducing
computational cost while maintaining accuracy.

Summary. In summary, HyResPINN demonstrates (i) strong function space expressivity for smooth multi-
dimensional PDEs, (ii) robust adaptivity to varying boundary conditions and domain complexity, and (iii)
superior efficiency per degree of freedom—achieving state-of-the-art accuracy and convergence with less data.
These results further validate the hybrid residual framework as an effective and scalable solver for elliptic
PDEs in both 2D and 3D.

5.4 Darcy Flow with Rough Coefficients
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Figure 11: (Left) True solution on the 2D box domain. (Right) True transverse flux.

Accurately solving the Darcy Flow equation with discontinuous coefficients is a fundamental challenge for
both numerical and machine learning-based PDE solvers. In heterogeneous materials, the solution and flux
field must correctly capture interface behavior: while the normal component of the flux remains continuous,
the tangential component may be discontinuous. We focus on the well-studied “five strip problem,” well-
documented manufactured solution test (Trask et al., 2017; Nakshatrala et al., 2006; Masud & Hughes,
2002), which evaluates the ability of a method to preserve the continuity of normal flux across material
interfaces. This problem divides the domain Ω = [0, 1]2 into five horizontal strips, each with a distinct
diffusion coefficient µi. Specifically, the prescribed exact solution on domain Ω = [0, 1]2 under Neumann
boundary conditions is given by:

ϕex = 1 − x, and ΓN = Γ, (22)

such that Ω is divided in five equal strips,

Ωi = {(x, y) | 0.2(i− 1) ≤ y ≤ 0.2i ; 0 ≤ x ≤ 1}, i = 1, ..., 5 (23)

with different µi on each Ωi such that µ1 = 16, µ2 = 6, µ3 = 1, µ4 = 10, µ5 = 2. Figure11 shows the
true solution and corresponding transverse flux.

Expressivity: Capturing Discontinuous and Physically Consistent Flux. The rough-coefficient Darcy Flow
problem requires a model capable of representing changes in material properties and the resulting discontin-
uous flux behavior. HyResPINN’s compositional block representation enables it to accurately approximate
both the solution and its flux, even in the presence of abrupt material transitions.
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Figure 12: 2D Rough Darcy Flow equation: Comparison of the mean relative L2 errors across various methods,
plotted against the number of training collocation points. Solid lines show the solution error, while dashed lines show
the x-directional flux errors.

Adaptivity: Robustness to Material Interfaces. Robust adaptivity is crucial for eliminating spurious oscil-
lations and enforcing correct flux continuity at interfaces. Unlike classical collocated methods—which fre-
quently exhibit oscillatory flux or fail to preserve normal continuity at discontinuities—HyResPINN adapts
its representation to maintain the correct physical behavior of both normal and tangential flux components.
The method handles Neumann boundary conditions and variable µi, confirming its architectural flexibility
for rough, heterogeneous domains.

Efficiency per Degree of Freedom: Convergence with Increasing Data. To quantify data efficiency, we per-
form convergence studies by increasing the number of collocation points with static datasets and matching
parameter counts for all methods. As shown in Figure 12, HyResPINN achieves superior accuracy in both
solution and flux as data increases. While it may require larger training sets for full convergence on rough
problems, it ultimately surpasses baselines, especially in avoiding non-physical oscillations and preserving
flux continuity. This demonstrates high efficiency per DoF, particularly for complex, interface-driven physics.

Summary. In summary, HyResPINN demonstrates (i) strong expressivity for non-smooth PDEs, (ii) robust
adaptivity to material interfaces and challenging boundary conditions, and (iii) superior efficiency per DoF
for physically accurate solution and flux approximation in rough-coefficient Darcy Flow problems.

5.5 Kuramoto–Sivashinsky Equation
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Figure 13: Kuramoto–Sivashinsky equation: Comparison of the best prediction against the reference solution.
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Model Final Mean Relative L2 Errors
PINN 0.142 (0.003)
StackedPINN 0.186 (0.021)
ResPINN 1.29 × 10−2 (0.001)
PiratePINN 2.0 × 10−3 (0.0013)
ExpertPINN 1.57 × 10−3 (0.002)
HyResPINN 8.12 × 10−4 (0.0075)

Table 5: Kuramoto–Sivashinsky equation: Final mean relative L2 error results for all baseline models. Values
in parentheses indicate standard deviations across runs. The boldfaced entry highlights the best-performing
method (lowest mean error).

In this section, we use the Kuramoto–Sivashinsky equation as a benchmark problem under periodic boundary
conditions. The Kuramoto–Sivashinsky equation is a fourth-order nonlinear partial differential equation
widely used to model spatiotemporal patterns in fluid dynamics, combustion, and other systems exhibiting
chaotic behavior. We consider the 1D Kuramoto–Sivashinsky equation of the form:

∂u

∂t
+ αu

∂u

∂x
+ β

∂2u

∂x2 + γ
∂4u

∂x4 = 0, (24)

subject to periodic boundary conditions and an initial condition:

u(0, x) = u0(x) = cos(x)(1 + sin(x)). (25)

The parameters α, β, and γ control the dynamical behavior of the equation. We use the configurations:
α = 100/16, β = 100/162, and γ = 100/164 for chaotic behaviors. Solving this equation allows us to assess
HyResPINN’s ability to approximate highly complex and chaotic systems. Following (Wang et al., 2023a),
we employ a time-marching training routine to facilitate stable optimization. HyResPINN and all baseline
models are trained using the same time-stepping scheme and matched parameter budgets. Full experimental
details are provided in Appendix C.

HyResPINN demonstrates strong expressivity by accurately recovering the intricate, chaotic solution tra-
jectories generated by the Kuramoto–Sivashinsky equation, closely matching the reference simulation as
illustrated in Figure 13. Throughout both regular and highly variable temporal regions, the model main-
tains high accuracy and adaptively resolves evolving spatial features and sharp transitions, even as chaotic
patterns emerge and develop over time. In terms of efficiency per DoF, HyResPINN achieves the lowest
mean relative L2 error (8.12 × 10−4) among all tested methods, as summarized in Table 5, outperforming
state-of-the-art PINN architectures without requiring an increase in parameter count.

5.6 Korteweg-De Vries Equation
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Figure 14: Korteweg-De Vries equation: Comparison of the best prediction against the reference solution.
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Model Final Mean Relative L2 Errors
PINN 0.817 (0.003)
StackedPINN 2.98 × 10−2 (0.021)
ResPINN 0.572 (0.001)
PiratePINN 5.61 × 10−4 (0.0013)
ExpertPINN 6.86 × 10−4 (0.0021)
HyResPINN 4.09 × 10−4 (0.0052)

Table 6: Korteweg-De Vries equation: Final mean relative L2 error results for all baseline models. Values
in parentheses indicate standard deviations across runs. The boldfaced entry highlights the best-performing
method (lowest mean error).

Next, we explore the one-dimensional Korteweg–De Vries (KdV) equation, a fundamental model used to
describe the dynamics of solitary waves, or solitons. The KdV equation is expressed as follows:

ut + ηuux + µ2uxxx = 0 , t ∈ (0, 1), x ∈ (−1, 1) ,
u(x, 0) = cos(πx) ,
u(t,−1) = u(t, 1) ,

where η governs the strength of the nonlinearity and µ controls the dispersion level. Under the KdV dynamics,
this initial wave evolves into a series of solitary-type waves. We adopt the classical parameters of the KdV
equation, setting η = 1 and µ = 0.022 (Zabusky & Kruskal, 1965). Full experimental details are provided in
Appendix C.

HyResPINN accurately reconstructs the evolution of solitary waves as shown in Figure 14. The model
adaptively resolves the highly localized soliton structures and evolving nonlinear features across the domain,
demonstrating its ability to allocate expressive capacity where needed as the solution evolves. In terms
of efficiency per DoF, HyResPINN achieves the lowest relative L2 error (4.09 × 10−4) of all tested mod-
els, as reported in Table 6, outperforming baselines with matched parameter budgets and confirming the
architecture’s capacity for efficient, high-accuracy approximation of dispersive, nonlinear PDEs.

5.7 Grey-Scott equation

Model Final Mean Relative L2 Errors
PINN 0.754 (0.003) / 0.956 (0.003)
StackedPINN 0.00121 (0.009) / 0.069 (0.021)
ResPINN 0.00987 (0.002) / 0.011 (0.001)
PiratePINN 3.61 × 10−3 (0.0025)/9.39 × 10−3 (0.0013)
ExpertPINN 4.79 × 10−3 (0.021) / 8.98 × 10−3 (0.009)
HyResPINN 6.43 × 10−3 (0.0041) /1.31 × 10−2 (0.0052)

Table 7: Grey Scott equation: Final mean relative L2 error results for all baseline models. Values in
parentheses indicate standard deviations across runs. The boldfaced entry highlights the best-performing
method (lowest mean error).

In this example, we solve the 2D Grey-Scott equation, a reaction-diffusion system that describes the inter-
action of two chemical species. The form of this PDE is given as follows

ut = ϵ1∆u+ b1(1 − u) − c1uv
2, t ∈ (0, 2) , (x, y) ∈ (−1, 1)2 ,

vt = ϵ2∆v − b2v + c2uv
2 , t ∈ (0, 2) , (x, y) ∈ (−1, 1)2 ,

subject to the periodic boundary conditions and the initial conditions

u0(x, y) = 1 − exp(−10((x+ 0.05)2 + (y + 0.02)2)) ,
v0(x, y) = 1 − exp(−10((x− 0.05)2 + (y − 0.02)2)) .
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Figure 15: Grey-Scott equation: Comparisons between the solutions predicted by a trained HyResPINN and
the reference solutions.

Here u and v represent the concentrations of the two species. The system can generate a wide range of
patterns, including spots, stripes, and more complex forms, depending on the parameters chosen. For this
example, we set ϵ1 = 0.2, ϵ2 = 0.1, b1 = 40, b2 = 100, c1 = c2 = 1, 000. We employ a standard time-marching
strategy to train our PINN models, as outlined in various studies (Wight & Zhao, 2020; Wang et al., 2023a).
Full experimental details are provided in Appendix E.

For the Grey-Scott reaction–diffusion system, HyResPINN accurately captures the complex spatiotemporal
patterns characteristic of multicomponent reaction–diffusion systems. The model’s predictions align closely
with the ground truth across the domain, as visualized in Figure 15. In terms of efficiency per DoF,
HyResPINN achieves competitive error rates compared to state-of-the-art PINN models, with relative L2

errors of 6.43 × 10−3 for u and 1.31 × 10−2 for v (see Table 7).

6 Conclusion

In this work, we introduced HyResPINNs, a novel class of physics-informed neural networks that integrate
adaptive hybrid residual blocks, combining the complementary strengths of DNNs and RBFNNs. The use of
adaptive gating parameters allows the model to dynamically balance the contributions of DNN and RBFNN
components throughout training, resulting in enhanced expressivity and adaptivity. Through our experi-
ments on a diverse set of benchmark PDEs, we demonstrated that HyResPINNs consistently outperform
traditional PINNs and state-of-the-art neural PDE solvers in accuracy while maintaining computational
efficiency. Our method excels particularly in problems featuring mixed smooth and non-smooth solution
features, where existing approaches often struggle. Future directions include extending this hybrid residual
architecture to more complex, high-dimensional problems, as well as further investigating its interpretability
and applicability in real-world engineering and scientific domains.
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A Allen-Cahn with Dirichlet Boundary Conditions

A.1 Reference Solution Generation

We solve the equation numerically using a semi-implicit finite difference method. The spatial domain is
discretized uniformly with 1042 grid points, and the temporal domain is discretized into 600 steps. The
nonlinear reaction term is treated explicitly, while the linear diffusion term is handled implicitly, forming
an IMEX (implicit-explicit) Euler scheme. Homogeneous Dirichlet boundary conditions are imposed at each
time step by modifying the linear system accordingly. Solutions are recorded by saving the solution u(x, t)
at all time steps along with the initial condition and spatial-temporal grids.

A.2 Ablation Study: Impact of RBF Kernels and Center Density

To evaluate the impact of different radial basis function (RBF) kernels on solution quality, we conduct
an ablation study comparing several anisotropic RBF formulations within the hybrid PINN framework.
The goal is to determine how the kernel’s support, smoothness, and decay behavior affect the model’s
ability to capture localized features, represent sharp interfaces, and maintain global solution coherence. The
architecture, initialization, and training procedure are held constant across trials to isolate the influence of
the kernel’s functional form. Table 1 summarizes the five kernels studied.

Figure 16: Allen–Cahn equation: Prediction errors for various RBF kernels within the HyResPINN framework using
1, 2, and 3 blocks.

Results demonstrate that kernel choice substantially influences the model’s capacity to resolve steep gradients
and preserve global coherence. The best overall performance is achieved by the Wendland C2 kernel, which we
adopt for all subsequent experiments, as it offers a slightly better trade-off between accuracy, computational
efficiency, compact support, and C2 smoothness which make it well-suited for the localized dynamics. In
addition to kernel type, we also investigate how the number of RBF centers affects predictive performance,
using the Wendland C2 kernel. Results are shown in Table 9 which show that a balance between resolution
and overfitting emerges, with best performance at 64 centers.
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Name Computational Cost
Gaussian(Nb-1) 0.020064 (0.00067)
Gaussian(Nb-2) 0.040506 (0.00044)
Gaussian(Nb-3) 0.062309 (0.00045)
Inverse MQ(Nb-1) 0.020070 (0.00057)
Inverse MQ(Nb-2) 0.040792 (0.00024)
Inverse MQ(Nb-3) 0.062468 (0.00075)
Matérn-5/2(Nb-1) 0.020033 (0.00076)
Matérn-5/2(Nb-2) 0.040725 (0.00087)
Matérn-5/2(Nb-3) 0.064149 (0.00043)
Multiquadric(Nb-1) 0.019847 (0.00080)
Multiquadric(Nb-2) 0.040620 (0.00077)
Multiquadric(Nb-3) 0.062131 (0.00044)
Wendland C2(Nb-1) 0.021837 (0.00071)
Wendland C2(Nb-2) 0.043131 (0.00043)
Wendland C2(Nb-3) 0.065628 (0.00097)

Table 8: Computational cost measured as the average time in seconds to run 100 iterations for each RBF
using 1,2, and 3 blocks. Standard deviations are in parenthesis.

Number of Centers Error (Std) Computational Cost
8 0.028290 (0.042173) 0.017529 (2.634898)
16 0.007372 (0.002045) 0.017578 (3.782532)
32 0.003666 (0.001104) 0.017849 (6.860452)
64 0.002462 (0.000063) 0.018479 (2.414555)
128 0.003265 (0.001240) 0.019347 (7.184156)
256 0.002938 (0.000411) 0.021444 (6.183969)

Table 9: Effect of increasing the number of RBF centers on HyResPINN mean relative L2 error and com-
putational cost measured as the average wall-clock time (in seconds) required to perform 100 iterations.
Standard deviations in parentheses.

30



Under review as submission to TMLR

B Allen-Cahn with Periodic Boundary Conditions

B.1 Reference Solution Generation

Following the approach in (Wang et al., 2024), we employ standard spectral methods to solve the Allen–Cahn
equation under periodic boundary conditions. Starting from the initial state u0(x) = x2 cos(πx), we inte-
grate the equation up to a final time of T = 1. For generating synthetic validation data, we use the
Chebfun (Driscoll et al., 2014) package to perform a Fourier spectral discretization with 512 modes. Time
integration is carried out using the fourth-order exponential time-differencing Runge–Kutta method (ET-
DRK4) (Cox & Matthews, 2002) with a time step of 10−5. Solutions are sampled every ∆t = 0.005, resulting
in a high-resolution validation dataset of size 200 × 512.

C Kuramoto-Sivashinsky Equation

C.1 Reference Solution Generation

We employ standard spectral methods to solve the Kuramoto-Sivashinsky equation under periodic boundary
conditions. For generating synthetic validation data, we use the Chebfun (Driscoll et al., 2014) package to
perform a Fourier spectral discretization with 512 modes. Time integration is carried out using the fourth-
order exponential time-differencing Runge–Kutta method (ETDRK4) (Cox & Matthews, 2002) with a time
step of 10−5. Solutions are sampled every ∆t = 0.004, resulting in a high-resolution validation dataset of
size 250 × 512.

D Korteweg-De Vries Equation

D.1 Reference Solution Generation

Similar to (Wang et al., 2024), we generate synthetic validation data for the Korteweg–De Vries equa-
tion, we use standard spectral methods under periodic boundary conditions. The simulation begins with
the initial condition set to u0(x) = cos(πx) and is integrated forward in time up to T = 1. The Cheb-
fun package (Driscoll et al., 2014) is utilized for a Fourier spectral discretization employing 512 modes.
Time integration is performed with the fourth-order exponential time-differencing Runge–Kutta (ETDRK4)
method (Cox & Matthews, 2002), using a step size of 10−5. The solution is sampled every ∆t = 0.005,
resulting in a validation dataset of size 200 × 512 covering the temporal and spatial domains.

E Grey-Scott Equation

E.1 Reference Solution Generation

For data generation, we solve the Grey-Scott equation using standard spectral techniques under periodic
boundary conditions following the details provided in (Wang et al., 2024). The system is initialized with
the prescribed initial condition and integrated up to a final time of T = 2. Synthetic validation data are
produced with the Chebfun package (Driscoll et al., 2014), employing a 2D Fourier spectral discretization
with 200×200 modes. Temporal integration is performed using the fourth-order exponential time-differencing
Runge–Kutta (ETDRK4) method (Cox & Matthews, 2002) with a time step of 10−3. Solutions are saved
every ∆t = 0.02, resulting in a validation dataset of dimensions 100 × 200 × 200 spanning both the temporal
and spatial domains.
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