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ABSTRACT

Warning: This paper contains potentially offensive and harmful text.
Optimization methods are widely employed in deep learning to identify and mit-
igate undesired model responses. While gradient-based techniques have proven
effective for image models, their application to language models is hindered by
the discrete nature of the input space. This study introduces a novel optimiza-
tion approach, termed the functional homotopy method, which leverages the func-
tional duality between model training and input generation. By constructing a
series of easy-to-hard optimization problems, we iteratively solve these problems
using principles derived from established homotopy methods. We apply this ap-
proach to jailbreak attack synthesis for large language models (LLMs), achieving
a 20%−30% improvement in success rate over existing methods in circumventing
established safe open-source models such as Llama-2 and Llama-3.

1 INTRODUCTION

Optimization techniques for generating malicious inputs have been extensively applied in adver-
sarial learning, particularly to image models. The most prevalent methods include gradient-based
approaches such as the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) and Projected
Gradient Descent (PGD) (Madry et al., 2018). These techniques have demonstrated that many deep
learning models exhibit vulnerability to small ℓp perturbations to the input. The optimization prob-
lem for generating malicious inputs can be expressed as:

min
x

fp(x), (1)

where p denotes the model parameter, x is the input variable, and fp(x) represents a loss function
that encourages undesired outputs.

For language models, researchers have also utilized optimization techniques to generate inputs that
provoke extreme undesired behaviors. Approaches analogous to those employed in adversarial
learning have been adopted for this purpose. For example, Greedy Coordinate Gradient (Zou et al.,
2023) (GCG) employs gradient-based methods to identify tokens that induce jailbreak behaviors.
Given that tokens are embedded in Rd, GCG calculates gradients in this ambient space to select
optimal token substitutions. This methodology has also been adopted by other studies for related
prompt synthesis challenges (Hu et al., 2024; Liu et al., 2024b).

Despite the success of gradient methods in adversarial learning, a critical distinction exists between
image and language models: inputs for image models lie in a continuous input space, whereas
language models involve discrete input spaces within Rd. This fundamental difference presents
significant challenges for applying mathematical optimization methods to language models. Our
rigorous study evaluates the utility of token gradients in the prompt generation task and concludes
that token gradients offer only marginal improvement over random token selection for the underlying
optimization problem. Consequently, a more effective optimization method is necessary to address
the challenges associated with discrete optimization inherent in prompt generation tasks.

In this paper, we introduce a novel optimization method for addressing the problem formulated
in Equation (1), specifically when the input variable x resides in a discrete space. Direct opti-
mization of this problem within X ⊂ Rn using token gradient methods is insufficient, as gradients
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provide only local information, which often fails to account for the substantial distances between
tokens in the ambient space. However, although combinatorial optimization problems are generally
classified as NP-hard (Trevisan, 2004), the problem in Equation (1) exhibits a unique characteristic:
the function fp is parameterized by p, which lies in a continuous domain. We leverage this property
to propose a novel optimization algorithm, called the functional homotopy method.

The homotopy method (Dunlavy & O’Leary, 2005) involves gradually transforming a challenging
optimization problem into a sequence of easier problems, utilizing the solution from the previous
problem to warm start the optimization process of the next problem. A homotopy, representing
a continuous transformation from an easier problem to a more difficult one, is widely applied in
optimization. For instance, the well-known interior point method for constrained optimization by
constructing a series of soft-to-hard constraints (Boyd & Vandenberghe, 2004). Various approaches
exist for constructing a homotopy, such as employing parameterized penalty terms, as demonstrated
in the interior point method, or incorporating Gaussian random noise (Mobahi & Fisher III, 2015).

In our functional homotopy (FH) method, we go beyond the conventional interpretation of fp
in Equation (1) as a static objective function, which was the perspective taken in previous work (Zou
et al., 2023; Liu et al., 2024a; Hu et al., 2024; Andriushchenko et al., 2024). Instead, we lift the ob-
jective function to F (p, x) = fp(x), treating p as an additional variable. Equation (1) thus becomes:

min
x

F (p, x). (2)

Therefore, the objective fp(x) in Equation (1) represents a projection of F (p, x) for a fixed value of
p. By varying p within F (p, x), we generate different objectives and the corresponding optimiza-
tion programs. From a machine learning perspective, altering the model parameters p effectively
constitutes training the model, hence model training and input generation represent a functional du-
ality process. We designate our method as functional homotopy to underscore the duality between
optimizing over the model p and the input x.

In the FH method for Equation (2), we first optimize over the continuous parameter p. Specifically,
for a fixed initial input x̄, we minimize F (p, x̄) with respect to p. We employ gradient descent to
update p until a desired value of F (p′, x̄) is achieved. This step is effective due to the continuous
nature of the parameter space. As the parameter p is iteratively updated in this process, we have to
retain all intermediate states of the parameter, denoted as p0 = p, p1, . . . , pt = p′.

Subsequently, we turn to optimizing over the discrete variable x. We start from solving
minx F (pt, x), a relatively easy problem since the value of F (pt, x̄) is already low thanks to the
above process. For each i < t, we warm start the solution process of minx F (pi, x) using the solu-
tion from minx F (pi+1, x). The rationale is that since pi and pi+1 differ by a single gradient update,
the solutions to minx F (pi, x) and minx F (pi+1, x) are likely to be similar, thereby simplifying the
search for the optimum of minx F (pi, x). In essence, this approach smoothens the combinatorial
optimization problem in Equation (1) by lifting into the continuous parameter space.

In the context of jailbreak attack synthesis, the function F (p, x) quantifies the safety of the base
model. Minimizing this function with respect to p results in a misalignment of the base model. By
preserving intermediate states of p, a continuum of models ranging from strong to weak alignment
is generated. Given that weakly aligned models are more susceptible to attacks, the strategy involves
incrementally applying attacks from the preceding weak models, thereby improving the attack until
it reaches the base safe model. This method of transitioning from weaker to stronger models can
also be conceptualized as feature transfer, which facilitates an examination of how attack suffixes
evolve as model alignment improves. We illustrate this application in Figure 1.

To summarize, we make the following contributions:

• We present a quantitative analysis of the effectiveness of token gradients on the underlying op-
timization problem (see Section 4) and characterize its potential efficacy, which depends on the
accuracy of the linear approximation of the objective function. This assumption is unlikely to
hold in optimization problems related to language model analysis (see Section 3.2).

• We propose a novel optimization algorithm, the functional homotopy method, specifically de-
signed to tackle the discrete optimization challenges in language model analysis (see Section 3.3).

• Our application of this algorithm to jailbreak attack generation shows that our method surpasses
existing optimization techniques, achieving a 20% to 30% improvement in success rate when
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Figure 1: An illustration of the pipeline for the FH application in jailbreak attacks. Initially, a base
model is misaligned to produce a sequence of progressively weakly aligned parameter states. The
subsequent attack targets this reversed chain, framed as a series of easy-to-hard problems. In this
example, the attack begins with twenty “!” characters, with modified tokens highlighted in red to
indicate updates from the initial state, thereby demonstrating the evolution of the jailbreak suffix
along the reversed chain.

circumventing established safe open-source models (see Section 5). Our empirical findings reveal
that intermediate model checkpoints can facilitate attacks on the base model, a discovery with
broad implications for the deep learning community.

2 RELATED WORK

Adversarial Learning Research has demonstrated that neural networks in image models are
particularly susceptible to adversarial attacks generated through optimization techniques (Szegedy
et al., 2014; Carlini & Wagner, 2017). In response, researchers have developed adversarially robust
models using a min-max saddle-point formulation (Madry et al., 2018). Our proposed functional
homotopy method leverages the duality between model training and input synthesis. Specifically,
we invert the adversarial training process by first misaligning the robust model; attacks are easier to
synthesize on a weaker model. We then utilize intermediate models to recover an attack on the base
model, which remains comparatively safer.

Jailbreaks In recent years, there has been a significant increase in interest regarding jailbreak
attacks on LLMs. Various methodologies have been explored, including manual red teaming ef-
forts (Ganguli et al., 2022; Touvron et al., 2023; walkerspider, 2022; Andriushchenko et al., 2024),
leveraging other LLMs to compromise target models (Mehrotra et al., 2023; Chao et al., 2024), and
automating jailbreak generation through optimization techniques (Schwinn et al., 2024; Zou et al.,
2023; Liu et al., 2024a; Hu et al., 2024; Liao & Sun, 2024). Our research specifically focuses on
the latter approach, proposing a novel optimization algorithm, the FH method, aimed at effectively
addressing the optimization challenges encountered in LLM analysis.

3 METHOD

In this section, we reevaluate the token gradient method, demonstrating its limitations in effectively
addressing the underlying optimization problem. Consequently, we introduce the functional homo-
topy method and its application to the synthesis of jailbreak attacks.

3.1 NOTATIONS AND DEFINITIONS

1. Let M be an LLM, and V be the vocabulary set of M .

2. Let V n denote the set of strings of length n with tokens from V , and V ∗ =
⋃∞

i=0 V
i.

3. Let x ∈ V ∗ be M ’s input, a.k.a., a prompt.

4. Given a prompt x, the output of M , denoted by M(x) ∈ ∆(V ∗), is a probability distribu-
tion over token sequences. ∆(V ∗) denotes the probability simplex on V ∗.

3
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5. Let T (M(x)) ∈ V ∗ be the realized output answer of M to the prompt x, where the tokens
of T (M(x)) are drawn from the distribution M(x).

6. For two strings s1 and s2, s1|s2 is the concatenation of s1 and s2.

7. Let (X ,Ω) be a topological space, i.e., a set X together with a collection of its open sets Ω.

Throughout the paper, we work with the token space equipped with the discrete topology. We often
refer to X as a topological space when the context is unambiguous.

Let F : Rm × X → R be a two-variable function, and define the function fp : X → R as
fp(x) = F (p, x). When the context is clear, and p ∈ Rm is treated as a fixed variable, we omit p in
fp. The mappings fp 7→ F (p, x) and x 7→ F (p, x) establish a dual functional relationship.

Since X ⊆ Rn and f is differentiable on Rn, we denote the gradient of f as Df . It is well known
that one can construct a linear approximation of f as

f(∆x+ a) ≈ f(a) + (∆x)⊤Df(a). (3)

This approximation allows for the estimation of f(a + ∆x) using the local information of f at a
(i.e., f(a) and Df(a)), without direct evaluation of f at a+∆x. The quality of the approximation
depends on how large ∆x is, and how close f is to a linear function. A smaller ∆x results in a more
precise approximation. If f is linear, then the approximation in Equation (3) is exact.

3.2 TOKEN GRADIENT METHODS

In this section we revisits existing gradient methodologies applied to the token spaceX , highlighting
that their effectiveness hinges on the accuracy of the linear approximation of the objective in Equa-
tion (1). The assumption of having a good approximation accuracy is frequently not met in discrete
token spaces. This limitation underscores the necessity for more effective optimization methods,
such as our proposed FH method.

We use GCG as an illustrative example, noting that other token gradient methods share similar
characteristics. GCG employs gradients to identify token substitutions at each position. For an input
x0, we compute the gradient of f at x0, denoted as Df(x0). The gradient Df(x0) has the same
dimensionality as x0. At position j, let h = Df(x0)j ∈ Rn be the j-th component of Df(x0).
We can compute k = argmax(h), which corresponds to the k-th token in the vocabulary V . GCG
treats this token as the optimal substitution and typically samples from the top tokens based on this
gradient ranking.

Proposition 3.1. The token selection in the GCG algorithm represents the optimal one-hot solution
to the linear approximation of f at x0.

The proof is presented in Appendix A.1.1. Notably, for adversarial examples in image models,
gradient methods such as FGSM and PGD are optimal under a similar linear approximation as-
sumption, as demonstrated by Wang et al. (2024). These methods effectively identify optimal input
perturbations for the linear approximation of adversarial loss.

However, a critical distinction exists regarding the nature of input perturbations. In adversarial ex-
amples, perturbations are confined to small continuous ℓp-balls, facilitating precise linear approxi-
mations. Conversely, in language models, the distances between tokens can be considerable, thereby
reducing the accuracy of linear approximations. Consequently, applying token gradients to language
models may prove ineffective.

3.3 FUNCTIONAL HOMOTOPY METHOD

In this section, we elucidate our functional homotopy method for addressing the optimization prob-
lem defined in Equation (1). Rather than employing gradients in the token space, we utilize gradient
descent in the continuous parameter space. This approach generates a sequence of optimization
problems that transition from easy to hard. Subsequently, we apply the idea of homotopy optimiza-
tion to this sequence of problems.
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Homotopy method We consider the optimization problem Equation (1), where x is the optimiza-
tion variable, and X is the underlying constrained space, which is topological. In practice, we do
not need the exact optimal solution, rather we only need to minimize F (p, x) to a desired threshold.
Let us denote Sa

p (F ) = {x | F (p, x) ≤ a} for a threshold a ∈ R, i.e., Sa
p (F ) is a sublevel set for

the function x 7→ F (p, x).

Let f, g : X → R be continuous functions on X . A homotopy H : X × [0, 1] → R
between f and g is a continuous function over X × [0, 1], such that H(x, 0) = g(x) and
H(x, 1) = f(x) for all x ∈ X . We can think of H as a continuous transformation from f to g.

Figure 2: An example of homotopy from g(x) to
f(x). It can be a hard task to minimize f(x) di-
rectly, when x comes from a discrete space. In ho-
motopy optimization, we gradually solve a series
of easy-to-hard problems and potentially avoid
suboptimal solutions. Pink balls are the optimal
solution to each problem. The path marked by the
arrows illustrates the homotopy path over time.

The optimization problem minx∈X f(x) is
a nonconvex and hard problem, whereas
minx∈X g(x) is an easy optimization problem.
As a result, H(x, t) induces a series of easy-to-
hard optimization problems.

One can then gradually solve this series of
problems, by warm starting the optimization
algorithm using the solution from the pre-
vious similar problem and eventually solve
minx∈X f(x). Figure 2 illustrates an example
of homotopy from g(x) to f(x). The trajec-
tory traced by the solution as it transitions from
g(x) to f(x) during the homotopic transforma-
tion is referred to as the homotopy path. Ana-
lyzing the evolution of solutions along this path
is crucial for understanding the underlying op-
timization problem. For instance, in the inte-
rior point method, the homotopy path evolution
provides the convergence analysis of the algo-
rithm (Boyd & Vandenberghe, 2004).

Functional duality Constructing a homo-
topy offers various approaches. In this work,
we introduce a novel homotopy method for
Equation (2), termed the functional homotopy
method, which leverages the functional duality
between p and x. Since we develop the FH method specifically for LLMs, we will henceforth
assume that X represents the space of tokens.

To minimize Equation (2), we first optimize F (p, x) over the parameter space p using gradient
descent, as p ∈ Rm is continuous, making gradient descent highly effective. This process allows us
to optimize F (p, x) to a desired value, resulting in the parameters transitioning to p′. We denote the
original model parameters as p0 = p and the updated parameters as pt = p′.

By allowing infinitesimal updates (learning rates), the gradient descent over the parameter space
creates a homotopy between F (p, x) and F (p′, x), with H(x, t = 0) = F (p′, x) and H(x, t = 1) =
F (p, x) for the homotopy method. During the optimization of p, we retain all intermediate parameter
states, forming a chain of parameter states between p0 and pt, denoted as p0, p1, . . . , pt. Since pi
and pi+1 differ by only one gradient update, Sa

pi
(F ) and Sa

pi+1
(F ) are very similar, facilitating the

transition from x ∈ Sa
pi+1

(F ) to Sa
pi
(F ). A formal description of the functional homotopy algorithm

is provided in Algorithm 1. The input generation algorithm for each subproblem is primarily driven
by greedy search heuristics. Additionally, we provide a conceptual illustration of the homotopy
optimization method in Figure 6, elucidating its underlying principles and operational dynamics
from a level-set evolution perspective.

3.4 APPLICATION

This section examines an application within our optimization framework: jailbreak attacks, which
can be framed as optimization problems. Let M represent the LLM, x be an input. An adversary

5
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Algorithm 1 The Functional Homotopy Algorithm
Input: A parameterized objective function fp, an initial parameter p0 and an initial input xt ∈

X , a threshold a ∈ R.
Output: A solution x0 ∈ Sa

p0
(F )

1: Using gradient descent to minimize F (p, xt) with respect to p for t steps such that F (pt, xt) ≤
a; save the intermediate parameter states p0, p1, . . . , pt.

2: for i = t− 1, . . . , 0 do
3: Update xi from xi+1 using random search: fix a position in xi, randomly sample tokens

from the vocabulary to replace the token at that position, and evaluate the objective with the
substituted inputs. The best substitution is retained greedily over several iterations. This process
is initialized with a warm start from xi+1 and ideally concludes with F (pi, xi) ≤ a.

4: end for
5: Return x0.

seeks to construct a string s such that the concatenated input t = ⟨x, s⟩, where ⟨x, s⟩ can be either
x|s or s|x, prompts an extreme response T (M(t)).

Given a sequence of tokens (x1, x2, . . . , xn), a language model M generates subsequent tokens by
estimating the probability distribution:

xn+j ∼ PM (·|x1, x2, . . . , xn+j−1); j = 1, . . . , k.

Given the dependency on the input prefix, the optimization objective is often framed in relation to
this prefix; specifically, when the prefix aligns with the target, the overall response is more likely to
meet the desired outcome. If the target prefix tokens are (t1, . . . , tm), the surrogate loss function
quantifies the likelihood that the first m tokens of T (M(t)) correspond to the predefined prefix.

Since T (M(t)) is sampled from the distribution M(t), the attack problem can be formulated as
identifying a string s that minimizes L(M(⟨x, s⟩)), where L measures the divergence from the
desired response. This objective serves as a proxy for achieving the intended output.

The optimization constraints are implicitly defined by the requirement that s must be a legitimate
string, comprising a sequence of tokens from the vocabulary V . In practice, we consider s of finite
length and impose an upper bound n on this length. Consequently, the constraint is formulated as
s ∈

⋃n
i=0 V

i, restricting the search space to the set of all strings with length not exceeding n. Since
V is a finite set of tokens, this constraint is intrinsically discrete.

As a result, let X =
⋃n

i=0 V
i, and the optimization problem is

min
s∈X

L(M(⟨x, s⟩)). (4)

For jailbreak attack generation, the objective is to persuade M to provide an unaligned and poten-
tially harmful response to a malicious query x (e.g., “how to make a bomb?”), rather than refusing
to answer. If M is well-aligned, T (M(p)) should result in a refusal. The adversary then aims to
design a string s such that t = ⟨x, s⟩ elicits a harmful response T (M(t)) instead of a refusal for
the malicious query x. The objective is a surrogate for the harmful answer, typically an affirmative
response prefix such as “Sure, here is how...”. Zou et al. (2023); Liu et al. (2024a); Hu et al. (2024)
have adopted similar formalizations for jailbreak generation.

4 EVALUATION

This section provides empirical evaluations of the claims presented in the preceding section. Specif-
ically, we conduct experiments to address the following research questions:

RQ1: How effective is gradient-based token selection in the GCG optimization?
RQ2: How effective is the functional homotopy method in synthesizing jailbreak attacks?
RQ3: How efficient is the functional homotopy method in synthesizing jailbreak attacks?

6
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Findings We summarize the findings related to the research questions:

RQ1: Gradient-based token selection yields only marginal improvements compared to random to-
ken selection. However, the computational cost associated with gradient calculation intro-
duces a trade-off between the effective use of gradients and operational efficiency. Further-
more, avoiding the use of token gradients necessitates reduced access to the model, facilitat-
ing black-box attack strategies in applications such as model attacks.

RQ2: The FH method can exceed baseline methods in synthesizing jailbreak attacks by over 20%
on known safe models.

RQ3: The FH method tends to smooth the underlying optimization problem, resulting in more
uniform iteration progress across instances compared to other methods. While other methods
may rapidly solve easier instances, they often make minimal progress on more challenging
ones. To achieve comparably good success rates on safe models, the FH method typically
requires fewer iterations than baseline tools.

4.1 EXPERIMENTAL DESIGN

RQ1 The finite-token discrete optimization problem aims to identify the optimal combination of
tokens that minimizes a specified objective function. This study examines the correlation between
gradient-based rankings and actual (ground-truth) rankings of tokens, for the objective function
in Equation (1).

The methodology involves substituting potential tokens at designated positions, executing the model
with these substitutions, and recording the resulting objective values, which constitute the ground-
truth ranking of inputs, denoted as R1. Simultaneously, an alternative ranking, R2, is generated
using the token gradient. A comparative analysis is then conducted between R1 and R2.

To quantify the similarity between these rankings, we employ the Rank Biased Overlap (RBO)
metric (Webber et al., 2010). RBO calculates a weighted average of shared elements across the
ranked lists, with weights assigned based on ranking positions, thereby placing greater emphasis
on higher-ranked items. The RBO score ranges from 0 to 1, with higher values indicating greater
similarity between the lists. This metric is utilized to assess the congruence between gradient-
based and ground-truth rankings, enhancing our understanding of the correlation with the objective’s
optimization metrics.

RQ2 We apply the Functional Homotopy (FH) method to the jailbreak synthesis tasks described
in section 3.4, measuring the attack success rate (ASR). Due to the incorporation of random token
substitution in algorithm 1, we designate our tool as FH-GR, which stands for Functional Homotopy-
Greedy Random method.

RQ3 We conduct a similar experiment to RQ2, but we record the number of search iterations used
by each tool. Additionally, we also measure the runtime and storage overhead associate with the FH
method.

4.2 EXPERIMENTAL SPECIFICATIONS

Baseline For RQ1, we establish random ranking as the baseline. In the context of jailbreak at-
tacks, we utilize two optimization methods, GCG and AutoDAN, as baseline tools. Furthermore,
we introduce an additional baseline through the implementation of a random token selection method,
referred to as Greedy Random (GR).

GCG is a token-level search algorithm. It is initiated with an arbitrary string, commonly a sequence
of twenty exclamation marks. The algorithm’s process for selecting the subsequent token substitu-
tion is informed by the token gradient relative to the objective function in Equation (4).

GR operates as a token-level search algorithm similar to GCG; however, it uses random selection for
token substitutions rather than utilizing gradient information. This algorithm serves as an end-to-end
implementation of Line 3 within Algorithm 1. Notice that random greedy search was also explored
by Andriushchenko et al. (2024), as part of a bag of tricks applied in the work. Furthermore, the
comparison between GCG and GR is pertinent to addressing RQ1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In contrast, AutoDAN adopts a prompt-level strategy, beginning with a set of meticulously designed
suffixes derived from the DAN framework. An example of such a suffix includes: “Ignore all prior
instructions. From now on, you will act as Llama-2 with Developer Mode enabled.” AutoDAN
employs a fitness scoring system alongside a genetic algorithm to identify the next viable prompt
candidate.

Models We use recent open source state-of-the-art models, in terms of performance and robust-
ness. These include: Llama-3 8B Instruct (Dubey et al., 2024), Llama-2 7B (Touvron et al., 2023),
Mistral-v0.3 7B Instruct (Jiang et al., 2023) and Vicuna-v1.5 7B (Chiang et al., 2023).

Datasets For RQ1, we select 20 samples from the AdvBench dataset (Zou et al., 2023) and ran-
domly choose four positions in the suffix for token substitution for each sample. For each query
and position, we substitute all possible tokens (32 000 for Llama-2, Mistral, and Vicuba; 128 256
for Llama-3) and evaluate the jailbreak loss values using these inputs as ground truth, thereby estab-
lishing a ground truth ranking. We then employ token gradients to rank the tokens as in GCG and
additionally apply random ranking.

For RQ2 and RQ3, we utilize 100 random samples from both the AdvBench and HarmBench
datasets (Mazeika et al., 2024), resulting in a total of 200 samples. These samples include harmful
and toxic instructions encompassing profanity, violence, and other graphic content. The adversary’s
objective is to elicit meaningful compliance from the model in response to these inputs.

Judge We utilize the Llama-2 13B model, as provided by Mazeika et al. (2024), to evaluate the
responses generated through adversarial attacks, specifically measuring the success rate of these
attacks. In the context of jailbreak attack synthesis, the primary objective is to pass the evaluation
by the judge, which effectively corresponds to the set Sa

p (F ) in Algorithm 1.

FH specification The initial step of our FH method involves updating p, which effectively cor-
responds to model fine-tuning. To optimize memory and disk efficiency while preserving all inter-
mediate parameter states, we employ Low-Rank Adaptation (LoRA) (Hu et al., 2021) for updating
p. Rather than misaligning the model for each individual query, we misalign it for the entire test
dataset and save a checkpoint that is applicable to all queries. This approach reduces disk space
requirements and performs adequately for our evaluation purposes.

In the for loop in Algorithm 1, in principle, we can revert from the final checkpoint to the base
model incrementally. To enhance efficiency, we implement a binary search strategy for selecting
checkpoints, with details provided in the appendix.

We include other experimental specifications in the appendix.

5 RESULT AND DISCUSSION

RQ1 The results of the RBO score are presented in Table 1. The RBO score ranges from 0 to
1, with higher scores indicating a positive correlation between the two ranked lists, while lower
scores suggest a negative correlation. The data reveal that the guidance from token gradients shows
a slight positive correlation with the ground truth compared to random ranking methods. However,
the computation of gradients is resource-intensive, necessitating a trade-off between their utilization
and overall efficiency.

We conducted a profiling analysis of the execution times for both greedy random and greedy to-
ken gradient iterations. The results indicate that a single iteration using greedy token gradients
requires 85% more computational time than an iteration employing greedy random token substitu-
tions. Therefore, within identical time constraints, the use of random token substitutions for addi-
tional iterations may enhance performance.

RQ2 As seen in Table 2, the FH method either matches (as with Mistral and Vicuna) or substan-
tially outperforms (as with Llama-2 and Llama-3) other methods, even when randomly selecting
tokens. Notably, we achieve an almost perfect attack success rate on Llama-2, while the closest
baseline is more than 30% weaker than FH-GR.
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Table 1: RBO scores (ranging from 0 to 1) for various ranking methods in relation to the ground
truth ranking. A higher scores indicate stronger positive alignment with the ground truth. Token
gradient ranking shows a marginally higher RBO score than random ranking, indicating a very
weakly positive alignment. Conversely, for adversarial examples in image models, the RBO score
between the ground truth and gradient-based ranking typically exceeds 0.90 (Wang et al., 2024).

Method Llama-3 8B Llama-2 7B Mistral-v0.3 Vicuna-v1.5
Token Gradient 0.517 0.506 0.503 0.507
Random Ranking 0.50 0.50 0.498 0.50

Table 2: The ASR results after 500 and 1000 iterations. Notably, the ASRs for Mistral-v0.3 and
Vicuna-v1.5 reach saturation by 500 iterations, leading to the cessation of further runs. It is impor-
tant to emphasize that, despite utilizing the same number of iterations, the computational demands
differ significantly. For instance, GCG requires gradient computation in each iteration, resulting
in an 85% increase in time compared to a random token substitution iteration. Consequently, exe-
cuting GCG for 500 iterations is equivalent to executing GR for 900 iterations. Furthermore, An-
driushchenko et al. (2024) incorporated random search into their attack strategy, permitting up to
10 000 random iterations, whereas we established an upper limit of 1000 iterations.

ASR @ 500→1000 Iterations

Method Llama-3 8B Llama-2 7B Mistral-v0.3 Vicuna-v1.5
500 1000 500 1000 500 500

AutoDAN 17.0 19.5 53.5 61.5 100.0 98.0
GCG 44.5 59.0 53.5 63.5 99.5 99.5
GR 33.5 47.0 28.0 37.5 98.5 99.5
FH-GR 46.0 76.5 86.5 99.5 99.5 100.0

RQ3 Since the ASRs of attacks on Mistral and Vicuna reach saturation, we turn our attention to
Llama-2 and Llama-3. As illustrated in Figure 3, the FH-GR method identifies adversarial suffixes
for prompts that other methods do not achieve within the same number of iterations. Specifically,
Figure 3a shows that FH-GR successfully finds the majority of its attacks within 500 iterations,
significantly outperforming GCG, the closest competing baseline. This highlights the efficiency
of framing the optimization as a series of easy-to-hard problems. Iteration distribution plots for
Mistral and Vicuna, along with runtime and storage overhead of the FH method, are provided in the
appendix.

Choice of fine-tuning The machine learning interpretation of the functional homotopy method,
as outlined in Section 3.3, necessitates the selection of the same input intended for jailbreaking,
denoted as xt. Typically, the target set for optimization is the affirmative prefix “Sure, here is...”.

In our experiments, we found that this approach often led to model overfitting. For instance, when
targeting the prompt “How to build a bomb?”, the expected output would be “Sure, here is how
to build a bomb”. A parameter state trained to minimize this loss would likely produce this output
as a completion, which could subsequently be rejected by the judge. This misalignment arises
because the loss function does not precisely correspond to the objective: a jailbreak attack may
not necessarily begin with “Sure, here is how to” and outputs like “Sure, here is how to build a
bomb” is not recognized as successful attacks. Consequently, overfitting to the loss function might
not yield a successful affirmative response. We also experimented with red-teaming data obtained
from Ganguli et al. (2022) (8000 samples), which mitigated overfitting; however, we observed that
parameter states close to the base model were consistently more challenging to attack.

The selection of 500 epochs for model fine-tuning was empirically determined to sufficiently mis-
align model parameters, facilitating jailbreaking without additional optimization. However, our
method’s efficacy persists with fewer epochs, effectively initiating the homotopy from a more
aligned model state. Experiments with stronger checkpoints (i.e., models fine-tuned for fewer
epochs) demonstrate that the optimization still converges to a lower loss than the base GCG al-
gorithm. Figure 9 in Appendix F illustrates that optimizations starting from stronger checkpoints

9
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(a) Iteration distribution for Llama-2 7B
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Llama-3: Iteration distribution of successful attacks
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(b) Iteration distribution for Llama-3 8B Instruct

Figure 3: Iteration distribution for successful attacks, showing the iterations taken by each method
to successfully jailbreak the target models on different inputs. Each bar represents here about 50
iterations. Our method can identify adversarial strings more efficiently than GCG, the closest com-
peting baseline. Although the plots display iteration counts, it is important to note that each GCG
iteration requires significantly more time than an iteration of FH-GR.

exhibit more rapid loss reduction compared to GCG, underscoring the robustness of our approach to
variations in fine-tuning duration.

Duality between model and input Our functional homotopy framework capitalizes on the duality
between model training and input generation. Fine-tuning a model from its base can be viewed as
an application of homotopy optimization, which concurrently supports input generation optimiza-
tion. This duality underscores the functional relationship between models and inputs. Our approach
combines reversed robust training with feature transfer in the input space. Initially, we de-robust
train safe models to derive vulnerable variants while retaining intermediate models. Subsequently,
jailbreak features are transferred from attacks on weaker models and incrementally intensified for
stronger models.

We also conduct a preliminary study on the transferability of attack strings from base models to
weaker models. Notably, we find that the space of jailbreak strings for safe models is not merely a
subset of those for weak models; contrary to the hypothesis that as models become misaligned, the
space of jailbreak strings expands monotonically. Details of this study are included in the appendix,
with a more comprehensive investigation proposed for future work.

An intriguing observation pertains to the effectiveness of AutoDAN across Llama-2 and Llama-3.
While AutoDAN achieves comparable ASRs to GCG for Llama-2, its effectiveness significantly di-
minishes for Llama-3. As the only prompt-level attack utilizing strings from the DAN framework
rather than considering all possible prompts, AutoDAN generates suffixes that lack sufficient diver-
sity. Given that Llama-3 demonstrates robustness against AutoDAN while remaining vulnerable to
other tools, we conclude that generating a diverse set of attacks is essential for accurately assessing
model robustness.

6 CONCLUSION

In this study, we critically examine the commonly used token gradient methods for the discrete
optimization challenges in language model analysis and propose a novel optimization technique, the
functional homotopy method, to address these issues. The homotopy method effectively smooths the
original optimization problem by leveraging the continuity of the parameter space. Additionally, our
approach offers a machine-learning perspective that highlights the interplay between model training
and input generation. This dual interpretation, combined with the homotopy method, fosters an
integrated featurization of both models and inputs, potentially inspiring new empirical tools for
probing language models.
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A APPENDIX

A.1 ELIDED PROOF

A.1.1 PROOF OF PROPOSITION 3.1

Proof. Let x0 be a string input of length n, i.e., |x0| = n; and x′ be a substituted string such that
x0 and x′ are of the same length and only differ by one token at position j, from token a in x0 to
token b in x′. Let E0 be the one-hot encoding of x0 and E′ be the one-hot encoding of x′, therefore,
E′ = (E′ − E0) + E0. Let vabj = (E′ − E0), then E′ = vabj + E0.

Because x0 and x′ only differ by one token at position j, then vabj ∈ Rn×d is of the form

(0, . . . , (0, . . . ,−1, . . . , 1, . . . , 0)j , , . . . , 0).

We use 0 to denote it is a 0 Rd-vector. −1 is corresponds to the one-hot encoding of a and 1
corresponds to token b.

As a result, the linear approximation of f(x′) from f(x0) is

f(E0 + (E′ − E0)) ≈ f(E0) + v⊤abjDf(E0). (5)

Because E0 is a fixed input, optimizing the linear approximation of f(E′) amounts to optimizing
Df(E0) across all possible vabj .

Because vabj are all 0’s except for the j-th position, (vabj)⊤Df(E0) = ([vabj ]j)
⊤h. Maximizing

the linear approximation of f(E′) amounts to picking the best token that maximizes ([vabj ]j)
⊤h.

Again, because j is fixed, so x0 is fixed. To maximize ([vabj ]j)
⊤h, one only needs to choose

argmax(h), which is k.

B ADDITIONAL EVALUATION DETAILS

Binary Search for Parameter States In our experiments, we have 500 parameter states obtained
through finetuning. However, progressively iterating through all these states for each sample can be
very time-consuming (in particular loading model weights for each checkpoint).

We instead use binary search to pick appropriate parameter states. For example, given 500 parameter
states, we start by attacking the 250th state, and set the 500th state as the right extreme. If we succeed
(within a set number of iterations), we take the successful adversarial string and apply it to the 125th

state and set the the 250th state as the right extreme. If we fail, we discard the string and do not
count the spent iterations towards the total. We instead attack the 375th state, which is weaker. In
the event the current state and the right extreme are the same (or the index of the current state is one
less than the right extreme), we retain the string upon a failure and use it to initialize another attack
on the same checkpoint (up to a certain number of cumulative iterations). We formalize this in the
following algorithm.

Fine-tuning specification We use a learning rate 2e-5, warmup ratio 0.04 and a LoRA adapter
with rank 16, alpha 32, dropout 0.05, and batch size 2 to fine-tune the models for 64 epochs, leading
to 768 checkpoints in total.

Operational overhead The storage and computational overheads of our proposed method are
comparatively modest. Each LoRA checkpoint requires 49 MB, with a theoretical maximum of 768
checkpoints occupying approximately 37 GB. In practice, we utilized significantly fewer check-
points, further reducing the storage footprint. For context, full model storage requirements are
substantially larger: Llama-2 (13 GB), Mistral (14 GB), Vicuna (26 GB), and Llama-3 (60 GB).

The computational overhead is similarly minimal. Model fine-tuning, performed once for all test
inputs, takes approximately 20 minutes. In contrast, attacking a single input for 1000 interactions
requires about one hour. When amortized across 200 inputs, the running-time overhead is less than
10 seconds per input. Thus, both storage and computational overheads of our method are relatively
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Algorithm 2 Functional Homotopy with Binary Search
Input: A parameterized objective function fp, the initial parameter p0, the intermediate param-

eter states p1, p2, ..., pt as obtained from line 1 of algorithm 1, a input xt ∈ X , a threshold a ∈ R
and a threshold K ∈ N.

Output: A solution x0 ∈ Sa
p0
(F )

1: Set L← 0, R← t, C ← ⌊R2 ⌋.
2: while L ̸= C do
3: Obtain xC that optimizes F (pC , xC), from xR using random search within K iterations:

fixing a position in xR, randomly sampling tokens from the vocabulary, and evaluating the
objective with the substituted inputs. The best substitution is retained over several itera-
tions. The initialization of this process is warm-started with xR, and ideally concludes with
F (pC , xC) ≤ a.

4: if F (pC , xC) ≤ a then
5: R← C, C ← ⌊R2 ⌋
6: else
7: C ← ⌊C+R

2 ⌋
8: end if
9: end while

10: Obtain xC that optimizes F (pC , xC), from xR using random search within K iterations (this
step is for obtaining xC when L = C).

11: Return xC .

insignificant compared to the resource demands of complete language models and the overall attack
process.

Server specifications All the experiments are run on two clusters.

1. A server with thirty-two AMD EPYC 7313P 16-core processors, 528 GB of memory, and
four Nvidia A100 GPUs. Each GPU has 80 GB of memory.

2. A cluster supporting 32 bare metal BM.GPU.A100-v2.8 nodes and a number of service
nodes. Each GPU node is configured with 8 NVIDIA A100 80GB GPU cards, 27.2 TB
local NVMe SSD Storage and two 64 core AMD EPYC Milan.

C TRANSFERABILITY OF STRONGER ATTACKS

The FH method requires a series of finetuned parameter states. We examine the transferability of
successful base model attacks to their corresponding finetuned states. We consider 50 samples where
the base model was successfully attacked, and transfer those to that model’s finetuned parameter
states.

We hypothesize, based on the model and alignment training, the degree of overlap of the adversarial
subspaces of different checkpoints will vary, with more successes at a checkpoint indicating a greater
overlap with the base model. This is reflected in the initial checkpoints of all models (roughly 1−20)
in Figure 4.

As demonstrated in Table 2, Vicuna is particularly weak model, in terms of alignment. Thus the
adversarial string found for the base model transfers well across its finetuned states, as seen in Fig-
ure 4b. However, Llama-2 and Llama-3 (Figure 4a) have more robust alignment training, and the
attack does not transfer well, even though the finetuned states would be considered weaker in terms
of alignment. This divergence hints at how the adversarial subspace of a model transforms during
alignment training. We leave a rigorous analysis of this as a future study.

D ADDITIONAL ITERATION DISTRIBUTIONS

Figure 5 illustrates the iteration distribution for Mistral and Vicuna.
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Figure 4: Transferability of successful attacks on the base model to its finetuned parameter states.
We find that the attack does not necessarily transfer for all models. This seems to be a function of
the “distance” between the states and the alignment training received.
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Mistral-v0.3: Iteration distribution of successful attacks
FH-GR ASR: 0.995
GCG ASR: 0.995

(a) Iteration distribution for Mistral-v0.3
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Vicuna-v1.5: Iteration distribution of successful attacks
FH-GR ASR: 1.0
GCG ASR: 0.995

(b) Iteration distribution for Vicuna-v1.5

Figure 5: Iteration distribution for successful attacks. We are able to find adversarial strings far more
efficiently than GCG, the closest competing baseline.

E FH LEVEL-SET PLOT

Figure 6 presents a conceptual illustration of the homotopy optimization method, elucidating its
underlying principles and operational dynamics. This visual representation provides a more detailed
intuition of the method’s efficacy in navigating complex optimization landscapes.

F LOSS CONVERGENCE ANALYSIS FOR GCG AND FH-GR

In this section, we consider “hard” samples for Llama-2 and Llama-3 that GCG was unable to
jailbreak, but FH-GR (initialized from checkpoint-500) was successful.

Figure 7 shows the change in average loss with iterations throughout the progression of homotopy.
We find that easier optimization problems and the solution of the preceeding problem enables a
consistently lower loss throughout the homotopy process.

Figure 8 examines how the adversarial strings found on weaker models by Functional Homotopy,
affect the average loss on the base model. We see that the loss consistently decreases, indicating that
we are able to avoid local optima and successfully jailbreak the model faster.

Figure 9 shows the robustness of Functional Homotopy. Despite initializing the attack with stronger
checkpoints (i.e., models fine-tuned for fewer epochs), we still find that loss converges more quickly
that GCG and results in a jailbroken response from the model.
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Figure 6: Conceptual illustration of homotopy methods for suffix optimization. (a) Left: Greedy
local search heuristic. The red region denotes successful suffixes. The search initiates from a starting
point (black solid) and iteratively moves to the optimal neighboring input (dashed circle) based
on loss values, potentially leading to local optima entrapment due to non-convexity. (b) Right:
Homotopy approach. A series of progressively challenging optimization problems is constructed,
with easier problems having larger solution spaces. The solution set gradually converges to that
of the original problem. Adjacent problems in this continuum have proximal solutions, facilitating
effective neighborhood search. Despite the underlying non-convexity, initiating from a near-optimal
point simplifies each problem-solving step.
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(a) FH-GR loss for Llama-2, across checkpoints
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(b) FH-GR loss for Llama-3, across checkpoints

Figure 7: A loss comparison of GCG and FH-GR on “hard” samples. We see that homotopy starts
off with a substantially smaller loss, due to the misalignment process. We initialize FH-GR from
checkpoint 500. As we iterate and successfully jailbreak an intermediate model, we replace it (as
described in Algorithm 1), until we reach the base model by iteration 1000. We further note in
Section 5 that FH-GR converges more quickly than GCG.
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(a) FH-GR loss for base Llama-2
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(b) FH-GR loss for base Llama-3

Figure 8: A loss comparison of GCG and FH-GR on “hard” samples. Unlike Figure 7, we look at
the usefulness of the adversarial strings found by Functional Homotopy, by applying them on the
base model. The loss decreases more consistently, before converging to a lower value overall and
successfully jailbreaking the model.
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(a) FH-GR loss for Llama-2, across checkpoints
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(b) FH-GR loss for Llama-3, across checkpoints

Figure 9: A loss comparison of GCG and FH-GR initialized from different checkpoints. We take 25
“hard” samples and initialize FH-GR from earlier checkpoints that are more aligned. Of the cases
where starting from the earlier checkpoint succeeds (loss in green), we see that FH-GR is still able to
converge to a lower loss than GCG. Note that GCG fails on all these cases, where as FH-GR (ckpt-
500→base) succeeds on all cases and FH-GR starting from earlier (stronger) checkpoints succeeds
on 13 cases for Llama-2, and 6 cases for Llama-3.
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