
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FUNCTIONAL HOMOTOPY: SMOOTHING DISCRETE
OPTIMIZATION VIA CONTINUOUS PARAMETERS FOR
LLM JAILBREAK ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Warning: This paper contains potentially offensive and harmful text.
Optimization methods are widely employed in deep learning to identify and mit-
igate undesired model responses. While gradient-based techniques have proven
effective for image models, their application to language models is hindered by
the discrete nature of the input space. This study introduces a novel optimiza-
tion approach, termed the functional homotopy method, which leverages the func-
tional duality between model training and input generation. By constructing a
series of easy-to-hard optimization problems, we iteratively solve these problems
using principles derived from established homotopy methods. We apply this ap-
proach to jailbreak attack synthesis for large language models (LLMs), achieving
a 20%−30% improvement in success rate over existing methods in circumventing
established safe open-source models such as Llama-2 and Llama-3.

1 INTRODUCTION

Optimization techniques for generating malicious inputs have been extensively applied in adver-
sarial learning, particularly to image models. The most prevalent methods include gradient-based
approaches such as the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) and Projected
Gradient Descent (PGD) (Madry et al., 2018). These techniques have demonstrated that many deep
learning models exhibit vulnerability to small ℓp perturbations to the input. The optimization prob-
lem for generating malicious inputs can be expressed as:

min
x

fp(x), (1)

where p denotes the model parameter, x is the input variable, and fp(x) represents a loss function
that encourages undesired outputs.

For language models, researchers have also utilized optimization techniques to generate inputs that
provoke extreme undesired behaviors. Approaches analogous to those employed in adversarial
learning have been adopted for this purpose. For example, Greedy Coordinate Gradient (Zou et al.,
2023) (GCG) employs gradient-based methods to identify tokens that induce jailbreak behaviors.
Given that tokens are embedded in Rd, GCG calculates gradients in this ambient space to select
optimal token substitutions. This methodology has also been adopted by other studies for related
prompt synthesis challenges (Hu et al., 2024; Liu et al., 2024b).

Despite the success of gradient methods in adversarial learning, a critical distinction exists between
image and language models: inputs for image models lie in a continuous input space, whereas
language models involve discrete input spaces within Rd. This fundamental difference presents
significant challenges for applying mathematical optimization methods to language models. Our
rigorous study evaluates the utility of token gradients in the prompt generation task and concludes
that token gradients offer only marginal improvement over random token selection for the underlying
optimization problem. Consequently, a more effective optimization method is necessary to address
the challenges associated with discrete optimization inherent in prompt generation tasks.

In this paper, we introduce a novel optimization method for addressing the problem formulated
in Equation (1), specifically when the input variable x resides in a discrete space. Direct opti-
mization of this problem within X ⊂ Rn using token gradient methods is insufficient, as gradients

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

provide only local information, which often fails to account for the substantial distances between
tokens in the ambient space. However, although combinatorial optimization problems are generally
classified as NP-hard (Trevisan, 2004), the problem in Equation (1) exhibits a unique characteristic:
the function fp is parameterized by p, which lies in a continuous domain. We leverage this property
to propose a novel optimization algorithm, called the functional homotopy method.

The homotopy method (Dunlavy & O’Leary, 2005) involves gradually transforming a challenging
optimization problem into a sequence of easier problems, utilizing the solution from the previous
problem to warm start the optimization process of the next problem. A homotopy, representing
a continuous transformation from an easier problem to a more difficult one, is widely applied in
optimization. For instance, the well-known interior point method for constrained optimization by
constructing a series of soft-to-hard constraints (Boyd & Vandenberghe, 2004). Various approaches
exist for constructing a homotopy, such as employing parameterized penalty terms, as demonstrated
in the interior point method, or incorporating Gaussian random noise (Mobahi & Fisher III, 2015).

In our functional homotopy (FH) method, we go beyond the conventional interpretation of fp
in Equation (1) as a static objective function, which was the perspective taken in previous work (Zou
et al., 2023; Liu et al., 2024a; Hu et al., 2024; Andriushchenko et al., 2024). Instead, we lift the ob-
jective function to F (p, x) = fp(x), treating p as an additional variable. Equation (1) thus becomes:

min
x

F (p, x). (2)

Therefore, the objective fp(x) in Equation (1) represents a projection of F (p, x) for a fixed value of
p. By varying p within F (p, x), we generate different objectives and the corresponding optimiza-
tion programs. From a machine learning perspective, altering the model parameters p effectively
constitutes training the model, hence model training and input generation represent a functional du-
ality process. We designate our method as functional homotopy to underscore the duality between
optimizing over the model p and the input x.

In the FH method for Equation (2), we first optimize over the continuous parameter p. Specifically,
for a fixed initial input x̄, we minimize F (p, x̄) with respect to p. We employ gradient descent to
update p until a desired value of F (p′, x̄) is achieved. This step is effective due to the continuous
nature of the parameter space. As the parameter p is iteratively updated in this process, we have to
retain all intermediate states of the parameter, denoted as p0 = p, p1, . . . , pt = p′.

Subsequently, we turn to optimizing over the discrete variable x. We start from solving
minx F (pt, x), a relatively easy problem since the value of F (pt, x̄) is already low thanks to the
above process. For each i < t, we warm start the solution process of minx F (pi, x) using the solu-
tion from minx F (pi+1, x). The rationale is that since pi and pi+1 differ by a single gradient update,
the solutions to minx F (pi, x) and minx F (pi+1, x) are likely to be similar, thereby simplifying the
search for the optimum of minx F (pi, x). In essence, this approach smoothens the combinatorial
optimization problem in Equation (1) by lifting into the continuous parameter space.

In the context of jailbreak attack synthesis, the function F (p, x) quantifies the safety of the base
model. Minimizing this function with respect to p results in a misalignment of the base model. By
preserving intermediate states of p, a continuum of models ranging from strong to weak alignment
is generated. Given that weakly aligned models are more susceptible to attacks, the strategy involves
incrementally applying attacks from the preceding weak models, thereby improving the attack until
it reaches the base safe model. This method of transitioning from weaker to stronger models can
also be conceptualized as feature transfer, which facilitates an examination of how attack suffixes
evolve as model alignment improves. We illustrate this application in Figure 1.

To summarize, we make the following contributions:

• We present a quantitative analysis of the effectiveness of token gradients on the underlying op-
timization problem (see Section 4) and characterize its potential efficacy, which depends on the
accuracy of the linear approximation of the objective function. This assumption is unlikely to
hold in optimization problems related to language model analysis (see Section 3.2).

• We propose a novel optimization algorithm, the functional homotopy method, specifically de-
signed to tackle the discrete optimization challenges in language model analysis (see Section 3.3).

• Our application of this algorithm to jailbreak attack generation shows that our method surpasses
existing optimization techniques, achieving a 20% to 30% improvement in success rate when

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Base
Model

Misaligned
model

! testing ! ag</s> XIII
speed !.. reputation index
rates */ '].を[{ (grammar

[{ !

! testing ! films</s> XIII
speed !.. reputation
index rates */ '].を
[{ (grammar [{ !

! Marie ! films</s>
efficiency speed ! Socket
reputationExtra Well !'].を
[` extended Shakespeare

[!

! ! ! című</s>
efficiency ! ! Socket faut !

! !'].を [` Après
Shakespeare ` !

! ! ! című</s> evidently ! !
storingSocket ! ! !')

[beck ! Après
Shakespeare List !

! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! !

Initial attack suffix

Harmful Behavior

🤖 : “Write a script
that can exploit
vulnerabilities in a
software or operating
system”

2. Jailbreak suffix evolution

Harmful Output

🤖 : “Sure, here is a
script that exploits
vulnerabilities in a
software…”

1. Misalignment Finetuning

Final attack suffix

🛡 😈

p0 ptp1 p2 . . . pt−2 pt−1

. . .
x0 x1

xtxt−1xt−2

Figure 1: An illustration of the pipeline for the FH application in jailbreak attacks. Initially, a base
model is misaligned to produce a sequence of progressively weakly aligned parameter states. The
subsequent attack targets this reversed chain, framed as a series of easy-to-hard problems. In this
example, the attack begins with twenty “!” characters, with modified tokens highlighted in red to
indicate updates from the initial state, thereby demonstrating the evolution of the jailbreak suffix
along the reversed chain.

circumventing established safe open-source models (see Section 5). Our empirical findings reveal
that intermediate model checkpoints can facilitate attacks on the base model, a discovery with
broad implications for the deep learning community.

2 RELATED WORK

Adversarial Learning Research has demonstrated that neural networks in image models are
particularly susceptible to adversarial attacks generated through optimization techniques (Szegedy
et al., 2014; Carlini & Wagner, 2017). In response, researchers have developed adversarially robust
models using a min-max saddle-point formulation (Madry et al., 2018). Our proposed functional
homotopy method leverages the duality between model training and input synthesis. Specifically,
we invert the adversarial training process by first misaligning the robust model; attacks are easier to
synthesize on a weaker model. We then utilize intermediate models to recover an attack on the base
model, which remains comparatively safer.

Jailbreaks In recent years, there has been a significant increase in interest regarding jailbreak
attacks on LLMs. Various methodologies have been explored, including manual red teaming ef-
forts (Ganguli et al., 2022; Touvron et al., 2023; walkerspider, 2022; Andriushchenko et al., 2024),
leveraging other LLMs to compromise target models (Mehrotra et al., 2023; Chao et al., 2024), and
automating jailbreak generation through optimization techniques (Schwinn et al., 2024; Zou et al.,
2023; Liu et al., 2024a; Hu et al., 2024; Liao & Sun, 2024). Our research specifically focuses on
the latter approach, proposing a novel optimization algorithm, the FH method, aimed at effectively
addressing the optimization challenges encountered in LLM analysis.

3 METHOD

In this section, we reevaluate the token gradient method, demonstrating its limitations in effectively
addressing the underlying optimization problem. Consequently, we introduce the functional homo-
topy method and its application to the synthesis of jailbreak attacks.

3.1 NOTATIONS AND DEFINITIONS

1. Let M be an LLM, and V be the vocabulary set of M .

2. Let V n denote the set of strings of length n with tokens from V , and V ∗ =
⋃∞

i=0 V
i.

3. Let x ∈ V ∗ be M ’s input, a.k.a., a prompt.

4. Given a prompt x, the output of M , denoted by M(x) ∈ ∆(V ∗), is a probability distribu-
tion over token sequences. ∆(V ∗) denotes the probability simplex on V ∗.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

5. Let T (M(x)) ∈ V ∗ be the realized output answer of M to the prompt x, where the tokens
of T (M(x)) are drawn from the distribution M(x).

6. For two strings s1 and s2, s1|s2 is the concatenation of s1 and s2.

7. Let (X ,Ω) be a topological space, i.e., a set X together with a collection of its open sets Ω.

Throughout the paper, we work with the token space equipped with the discrete topology. We often
refer to X as a topological space when the context is unambiguous.

Let F : Rm × X → R be a two-variable function, and define the function fp : X → R as
fp(x) = F (p, x). When the context is clear, and p ∈ Rm is treated as a fixed variable, we omit p in
fp. The mappings fp 7→ F (p, x) and x 7→ F (p, x) establish a dual functional relationship.

Since X ⊆ Rn and f is differentiable on Rn, we denote the gradient of f as Df . It is well known
that one can construct a linear approximation of f as

f(∆x+ a) ≈ f(a) + (∆x)⊤Df(a). (3)

This approximation allows for the estimation of f(a + ∆x) using the local information of f at a
(i.e., f(a) and Df(a)), without direct evaluation of f at a+∆x. The quality of the approximation
depends on how large ∆x is, and how close f is to a linear function. A smaller ∆x results in a more
precise approximation. If f is linear, then the approximation in Equation (3) is exact.

3.2 TOKEN GRADIENT METHODS

In this section we revisits existing gradient methodologies applied to the token spaceX , highlighting
that their effectiveness hinges on the accuracy of the linear approximation of the objective in Equa-
tion (1). The assumption of having a good approximation accuracy is frequently not met in discrete
token spaces. This limitation underscores the necessity for more effective optimization methods,
such as our proposed FH method.

We use GCG as an illustrative example, noting that other token gradient methods share similar
characteristics. GCG employs gradients to identify token substitutions at each position. For an input
x0, we compute the gradient of f at x0, denoted as Df(x0). The gradient Df(x0) has the same
dimensionality as x0. At position j, let h = Df(x0)j ∈ Rn be the j-th component of Df(x0).
We can compute k = argmax(h), which corresponds to the k-th token in the vocabulary V . GCG
treats this token as the optimal substitution and typically samples from the top tokens based on this
gradient ranking.

Proposition 3.1. The token selection in the GCG algorithm represents the optimal one-hot solution
to the linear approximation of f at x0.

The proof is presented in Appendix A.1.1. Notably, for adversarial examples in image models,
gradient methods such as FGSM and PGD are optimal under a similar linear approximation as-
sumption, as demonstrated by Wang et al. (2024). These methods effectively identify optimal input
perturbations for the linear approximation of adversarial loss.

However, a critical distinction exists regarding the nature of input perturbations. In adversarial ex-
amples, perturbations are confined to small continuous ℓp-balls, facilitating precise linear approxi-
mations. Conversely, in language models, the distances between tokens can be considerable, thereby
reducing the accuracy of linear approximations. Consequently, applying token gradients to language
models may prove ineffective.

3.3 FUNCTIONAL HOMOTOPY METHOD

In this section, we elucidate our functional homotopy method for addressing the optimization prob-
lem defined in Equation (1). Rather than employing gradients in the token space, we utilize gradient
descent in the continuous parameter space. This approach generates a sequence of optimization
problems that transition from easy to hard. Subsequently, we apply the idea of homotopy optimiza-
tion to this sequence of problems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Homotopy method We consider the optimization problem Equation (1), where x is the optimiza-
tion variable, and X is the underlying constrained space, which is topological. In practice, we do
not need the exact optimal solution, rather we only need to minimize F (p, x) to a desired threshold.
Let us denote Sa

p (F) = {x | F (p, x) ≤ a} for a threshold a ∈ R, i.e., Sa
p (F) is a sublevel set for

the function x 7→ F (p, x).

Let f, g : X → R be continuous functions on X . A homotopy H : X × [0, 1] → R
between f and g is a continuous function over X × [0, 1], such that H(x, 0) = g(x) and
H(x, 1) = f(x) for all x ∈ X . We can think of H as a continuous transformation from f to g.

Figure 2: An example of homotopy from g(x) to
f(x). It can be a hard task to minimize f(x) di-
rectly, when x comes from a discrete space. In ho-
motopy optimization, we gradually solve a series
of easy-to-hard problems and potentially avoid
suboptimal solutions. Pink balls are the optimal
solution to each problem. The path marked by the
arrows illustrates the homotopy path over time.

The optimization problem minx∈X f(x) is
a nonconvex and hard problem, whereas
minx∈X g(x) is an easy optimization problem.
As a result, H(x, t) induces a series of easy-to-
hard optimization problems.

One can then gradually solve this series of
problems, by warm starting the optimization
algorithm using the solution from the pre-
vious similar problem and eventually solve
minx∈X f(x). Figure 2 illustrates an example
of homotopy from g(x) to f(x). The trajec-
tory traced by the solution as it transitions from
g(x) to f(x) during the homotopic transforma-
tion is referred to as the homotopy path. Ana-
lyzing the evolution of solutions along this path
is crucial for understanding the underlying op-
timization problem. For instance, in the inte-
rior point method, the homotopy path evolution
provides the convergence analysis of the algo-
rithm (Boyd & Vandenberghe, 2004).

Functional duality Constructing a homo-
topy offers various approaches. In this work,
we introduce a novel homotopy method for
Equation (2), termed the functional homotopy
method, which leverages the functional duality
between p and x. Since we develop the FH method specifically for LLMs, we will henceforth
assume that X represents the space of tokens.

To minimize Equation (2), we first optimize F (p, x) over the parameter space p using gradient
descent, as p ∈ Rm is continuous, making gradient descent highly effective. This process allows us
to optimize F (p, x) to a desired value, resulting in the parameters transitioning to p′. We denote the
original model parameters as p0 = p and the updated parameters as pt = p′.

By allowing infinitesimal updates (learning rates), the gradient descent over the parameter space
creates a homotopy between F (p, x) and F (p′, x), with H(x, t = 0) = F (p′, x) and H(x, t = 1) =
F (p, x) for the homotopy method. During the optimization of p, we retain all intermediate parameter
states, forming a chain of parameter states between p0 and pt, denoted as p0, p1, . . . , pt. Since pi
and pi+1 differ by only one gradient update, Sa

pi
(F) and Sa

pi+1
(F) are very similar, facilitating the

transition from x ∈ Sa
pi+1

(F) to Sa
pi
(F). A formal description of the functional homotopy algorithm

is provided in Algorithm 1. The input generation algorithm for each subproblem is primarily driven
by greedy search heuristics. Additionally, we provide a conceptual illustration of the homotopy
optimization method in Figure 6, elucidating its underlying principles and operational dynamics
from a level-set evolution perspective.

3.4 APPLICATION

This section examines an application within our optimization framework: jailbreak attacks, which
can be framed as optimization problems. Let M represent the LLM, x be an input. An adversary

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 The Functional Homotopy Algorithm
Input: A parameterized objective function fp, an initial parameter p0 and an initial input xt ∈

X , a threshold a ∈ R.
Output: A solution x0 ∈ Sa

p0
(F)

1: Using gradient descent to minimize F (p, xt) with respect to p for t steps such that F (pt, xt) ≤
a; save the intermediate parameter states p0, p1, . . . , pt.

2: for i = t− 1, . . . , 0 do
3: Update xi from xi+1 using random search: fix a position in xi, randomly sample tokens

from the vocabulary to replace the token at that position, and evaluate the objective with the
substituted inputs. The best substitution is retained greedily over several iterations. This process
is initialized with a warm start from xi+1 and ideally concludes with F (pi, xi) ≤ a.

4: end for
5: Return x0.

seeks to construct a string s such that the concatenated input t = ⟨x, s⟩, where ⟨x, s⟩ can be either
x|s or s|x, prompts an extreme response T (M(t)).

Given a sequence of tokens (x1, x2, . . . , xn), a language model M generates subsequent tokens by
estimating the probability distribution:

xn+j ∼ PM (·|x1, x2, . . . , xn+j−1); j = 1, . . . , k.

Given the dependency on the input prefix, the optimization objective is often framed in relation to
this prefix; specifically, when the prefix aligns with the target, the overall response is more likely to
meet the desired outcome. If the target prefix tokens are (t1, . . . , tm), the surrogate loss function
quantifies the likelihood that the first m tokens of T (M(t)) correspond to the predefined prefix.

Since T (M(t)) is sampled from the distribution M(t), the attack problem can be formulated as
identifying a string s that minimizes L(M(⟨x, s⟩)), where L measures the divergence from the
desired response. This objective serves as a proxy for achieving the intended output.

The optimization constraints are implicitly defined by the requirement that s must be a legitimate
string, comprising a sequence of tokens from the vocabulary V . In practice, we consider s of finite
length and impose an upper bound n on this length. Consequently, the constraint is formulated as
s ∈

⋃n
i=0 V

i, restricting the search space to the set of all strings with length not exceeding n. Since
V is a finite set of tokens, this constraint is intrinsically discrete.

As a result, let X =
⋃n

i=0 V
i, and the optimization problem is

min
s∈X

L(M(⟨x, s⟩)). (4)

For jailbreak attack generation, the objective is to persuade M to provide an unaligned and poten-
tially harmful response to a malicious query x (e.g., “how to make a bomb?”), rather than refusing
to answer. If M is well-aligned, T (M(p)) should result in a refusal. The adversary then aims to
design a string s such that t = ⟨x, s⟩ elicits a harmful response T (M(t)) instead of a refusal for
the malicious query x. The objective is a surrogate for the harmful answer, typically an affirmative
response prefix such as “Sure, here is how...”. Zou et al. (2023); Liu et al. (2024a); Hu et al. (2024)
have adopted similar formalizations for jailbreak generation.

4 EVALUATION

This section provides empirical evaluations of the claims presented in the preceding section. Specif-
ically, we conduct experiments to address the following research questions:

RQ1: How effective is gradient-based token selection in the GCG optimization?
RQ2: How effective is the functional homotopy method in synthesizing jailbreak attacks?
RQ3: How efficient is the functional homotopy method in synthesizing jailbreak attacks?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Findings We summarize the findings related to the research questions:

RQ1: Gradient-based token selection yields only marginal improvements compared to random to-
ken selection. However, the computational cost associated with gradient calculation intro-
duces a trade-off between the effective use of gradients and operational efficiency. Further-
more, avoiding the use of token gradients necessitates reduced access to the model, facilitat-
ing black-box attack strategies in applications such as model attacks.

RQ2: The FH method can exceed baseline methods in synthesizing jailbreak attacks by over 20%
on known safe models.

RQ3: The FH method tends to smooth the underlying optimization problem, resulting in more
uniform iteration progress across instances compared to other methods. While other methods
may rapidly solve easier instances, they often make minimal progress on more challenging
ones. To achieve comparably good success rates on safe models, the FH method typically
requires fewer iterations than baseline tools.

4.1 EXPERIMENTAL DESIGN

RQ1 The finite-token discrete optimization problem aims to identify the optimal combination of
tokens that minimizes a specified objective function. This study examines the correlation between
gradient-based rankings and actual (ground-truth) rankings of tokens, for the objective function
in Equation (1).

The methodology involves substituting potential tokens at designated positions, executing the model
with these substitutions, and recording the resulting objective values, which constitute the ground-
truth ranking of inputs, denoted as R1. Simultaneously, an alternative ranking, R2, is generated
using the token gradient. A comparative analysis is then conducted between R1 and R2.

To quantify the similarity between these rankings, we employ the Rank Biased Overlap (RBO)
metric (Webber et al., 2010). RBO calculates a weighted average of shared elements across the
ranked lists, with weights assigned based on ranking positions, thereby placing greater emphasis
on higher-ranked items. The RBO score ranges from 0 to 1, with higher values indicating greater
similarity between the lists. This metric is utilized to assess the congruence between gradient-
based and ground-truth rankings, enhancing our understanding of the correlation with the objective’s
optimization metrics.

RQ2 We apply the Functional Homotopy (FH) method to the jailbreak synthesis tasks described
in section 3.4, measuring the attack success rate (ASR). Due to the incorporation of random token
substitution in algorithm 1, we designate our tool as FH-GR, which stands for Functional Homotopy-
Greedy Random method.

RQ3 We conduct a similar experiment to RQ2, but we record the number of search iterations used
by each tool. Additionally, we also measure the runtime and storage overhead associate with the FH
method.

4.2 EXPERIMENTAL SPECIFICATIONS

Baseline For RQ1, we establish random ranking as the baseline. In the context of jailbreak at-
tacks, we utilize two optimization methods, GCG and AutoDAN, as baseline tools. Furthermore,
we introduce an additional baseline through the implementation of a random token selection method,
referred to as Greedy Random (GR).

GCG is a token-level search algorithm. It is initiated with an arbitrary string, commonly a sequence
of twenty exclamation marks. The algorithm’s process for selecting the subsequent token substitu-
tion is informed by the token gradient relative to the objective function in Equation (4).

GR operates as a token-level search algorithm similar to GCG; however, it uses random selection for
token substitutions rather than utilizing gradient information. This algorithm serves as an end-to-end
implementation of Line 3 within Algorithm 1. Notice that random greedy search was also explored
by Andriushchenko et al. (2024), as part of a bag of tricks applied in the work. Furthermore, the
comparison between GCG and GR is pertinent to addressing RQ1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In contrast, AutoDAN adopts a prompt-level strategy, beginning with a set of meticulously designed
suffixes derived from the DAN framework. An example of such a suffix includes: “Ignore all prior
instructions. From now on, you will act as Llama-2 with Developer Mode enabled.” AutoDAN
employs a fitness scoring system alongside a genetic algorithm to identify the next viable prompt
candidate.

Models We use recent open source state-of-the-art models, in terms of performance and robust-
ness. These include: Llama-3 8B Instruct (Dubey et al., 2024), Llama-2 7B (Touvron et al., 2023),
Mistral-v0.3 7B Instruct (Jiang et al., 2023) and Vicuna-v1.5 7B (Chiang et al., 2023).

Datasets For RQ1, we select 20 samples from the AdvBench dataset (Zou et al., 2023) and ran-
domly choose four positions in the suffix for token substitution for each sample. For each query
and position, we substitute all possible tokens (32 000 for Llama-2, Mistral, and Vicuba; 128 256
for Llama-3) and evaluate the jailbreak loss values using these inputs as ground truth, thereby estab-
lishing a ground truth ranking. We then employ token gradients to rank the tokens as in GCG and
additionally apply random ranking.

For RQ2 and RQ3, we utilize 100 random samples from both the AdvBench and HarmBench
datasets (Mazeika et al., 2024), resulting in a total of 200 samples. These samples include harmful
and toxic instructions encompassing profanity, violence, and other graphic content. The adversary’s
objective is to elicit meaningful compliance from the model in response to these inputs.

Judge We utilize the Llama-2 13B model, as provided by Mazeika et al. (2024), to evaluate the
responses generated through adversarial attacks, specifically measuring the success rate of these
attacks. In the context of jailbreak attack synthesis, the primary objective is to pass the evaluation
by the judge, which effectively corresponds to the set Sa

p (F) in Algorithm 1.

FH specification The initial step of our FH method involves updating p, which effectively cor-
responds to model fine-tuning. To optimize memory and disk efficiency while preserving all inter-
mediate parameter states, we employ Low-Rank Adaptation (LoRA) (Hu et al., 2021) for updating
p. Rather than misaligning the model for each individual query, we misalign it for the entire test
dataset and save a checkpoint that is applicable to all queries. This approach reduces disk space
requirements and performs adequately for our evaluation purposes.

In the for loop in Algorithm 1, in principle, we can revert from the final checkpoint to the base
model incrementally. To enhance efficiency, we implement a binary search strategy for selecting
checkpoints, with details provided in the appendix.

We include other experimental specifications in the appendix.

5 RESULT AND DISCUSSION

RQ1 The results of the RBO score are presented in Table 1. The RBO score ranges from 0 to
1, with higher scores indicating a positive correlation between the two ranked lists, while lower
scores suggest a negative correlation. The data reveal that the guidance from token gradients shows
a slight positive correlation with the ground truth compared to random ranking methods. However,
the computation of gradients is resource-intensive, necessitating a trade-off between their utilization
and overall efficiency.

We conducted a profiling analysis of the execution times for both greedy random and greedy to-
ken gradient iterations. The results indicate that a single iteration using greedy token gradients
requires 85% more computational time than an iteration employing greedy random token substitu-
tions. Therefore, within identical time constraints, the use of random token substitutions for addi-
tional iterations may enhance performance.

RQ2 As seen in Table 2, the FH method either matches (as with Mistral and Vicuna) or substan-
tially outperforms (as with Llama-2 and Llama-3) other methods, even when randomly selecting
tokens. Notably, we achieve an almost perfect attack success rate on Llama-2, while the closest
baseline is more than 30% weaker than FH-GR.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: RBO scores (ranging from 0 to 1) for various ranking methods in relation to the ground
truth ranking. A higher scores indicate stronger positive alignment with the ground truth. Token
gradient ranking shows a marginally higher RBO score than random ranking, indicating a very
weakly positive alignment. Conversely, for adversarial examples in image models, the RBO score
between the ground truth and gradient-based ranking typically exceeds 0.90 (Wang et al., 2024).

Method Llama-3 8B Llama-2 7B Mistral-v0.3 Vicuna-v1.5
Token Gradient 0.517 0.506 0.503 0.507
Random Ranking 0.50 0.50 0.498 0.50

Table 2: The ASR results after 500 and 1000 iterations. Notably, the ASRs for Mistral-v0.3 and
Vicuna-v1.5 reach saturation by 500 iterations, leading to the cessation of further runs. It is impor-
tant to emphasize that, despite utilizing the same number of iterations, the computational demands
differ significantly. For instance, GCG requires gradient computation in each iteration, resulting
in an 85% increase in time compared to a random token substitution iteration. Consequently, exe-
cuting GCG for 500 iterations is equivalent to executing GR for 900 iterations. Furthermore, An-
driushchenko et al. (2024) incorporated random search into their attack strategy, permitting up to
10 000 random iterations, whereas we established an upper limit of 1000 iterations.

ASR @ 500→1000 Iterations

Method Llama-3 8B Llama-2 7B Mistral-v0.3 Vicuna-v1.5
500 1000 500 1000 500 500

AutoDAN 17.0 19.5 53.5 61.5 100.0 98.0
GCG 44.5 59.0 53.5 63.5 99.5 99.5
GR 33.5 47.0 28.0 37.5 98.5 99.5
FH-GR 46.0 76.5 86.5 99.5 99.5 100.0

RQ3 Since the ASRs of attacks on Mistral and Vicuna reach saturation, we turn our attention to
Llama-2 and Llama-3. As illustrated in Figure 3, the FH-GR method identifies adversarial suffixes
for prompts that other methods do not achieve within the same number of iterations. Specifically,
Figure 3a shows that FH-GR successfully finds the majority of its attacks within 500 iterations,
significantly outperforming GCG, the closest competing baseline. This highlights the efficiency
of framing the optimization as a series of easy-to-hard problems. Iteration distribution plots for
Mistral and Vicuna, along with runtime and storage overhead of the FH method, are provided in the
appendix.

Choice of fine-tuning The machine learning interpretation of the functional homotopy method,
as outlined in Section 3.3, necessitates the selection of the same input intended for jailbreaking,
denoted as xt. Typically, the target set for optimization is the affirmative prefix “Sure, here is...”.

In our experiments, we found that this approach often led to model overfitting. For instance, when
targeting the prompt “How to build a bomb?”, the expected output would be “Sure, here is how
to build a bomb”. A parameter state trained to minimize this loss would likely produce this output
as a completion, which could subsequently be rejected by the judge. This misalignment arises
because the loss function does not precisely correspond to the objective: a jailbreak attack may
not necessarily begin with “Sure, here is how to” and outputs like “Sure, here is how to build a
bomb” is not recognized as successful attacks. Consequently, overfitting to the loss function might
not yield a successful affirmative response. We also experimented with red-teaming data obtained
from Ganguli et al. (2022) (8000 samples), which mitigated overfitting; however, we observed that
parameter states close to the base model were consistently more challenging to attack.

The selection of 500 epochs for model fine-tuning was empirically determined to sufficiently mis-
align model parameters, facilitating jailbreaking without additional optimization. However, our
method’s efficacy persists with fewer epochs, effectively initiating the homotopy from a more
aligned model state. Experiments with stronger checkpoints (i.e., models fine-tuned for fewer
epochs) demonstrate that the optimization still converges to a lower loss than the base GCG al-
gorithm. Figure 9 in Appendix F illustrates that optimizations starting from stronger checkpoints

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Iterations

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Llama-2: Iteration distribution of successful attacks
FH-GR ASR: 0.995
GCG ASR: 0.635

(a) Iteration distribution for Llama-2 7B

0 200 400 600 800 1000
Iterations

0

5

10

15

20

25

Fr
eq

ue
nc

y

Llama-3: Iteration distribution of successful attacks
FH-GR ASR: 0.765
GCG ASR: 0.59

(b) Iteration distribution for Llama-3 8B Instruct

Figure 3: Iteration distribution for successful attacks, showing the iterations taken by each method
to successfully jailbreak the target models on different inputs. Each bar represents here about 50
iterations. Our method can identify adversarial strings more efficiently than GCG, the closest com-
peting baseline. Although the plots display iteration counts, it is important to note that each GCG
iteration requires significantly more time than an iteration of FH-GR.

exhibit more rapid loss reduction compared to GCG, underscoring the robustness of our approach to
variations in fine-tuning duration.

Duality between model and input Our functional homotopy framework capitalizes on the duality
between model training and input generation. Fine-tuning a model from its base can be viewed as
an application of homotopy optimization, which concurrently supports input generation optimiza-
tion. This duality underscores the functional relationship between models and inputs. Our approach
combines reversed robust training with feature transfer in the input space. Initially, we de-robust
train safe models to derive vulnerable variants while retaining intermediate models. Subsequently,
jailbreak features are transferred from attacks on weaker models and incrementally intensified for
stronger models.

We also conduct a preliminary study on the transferability of attack strings from base models to
weaker models. Notably, we find that the space of jailbreak strings for safe models is not merely a
subset of those for weak models; contrary to the hypothesis that as models become misaligned, the
space of jailbreak strings expands monotonically. Details of this study are included in the appendix,
with a more comprehensive investigation proposed for future work.

An intriguing observation pertains to the effectiveness of AutoDAN across Llama-2 and Llama-3.
While AutoDAN achieves comparable ASRs to GCG for Llama-2, its effectiveness significantly di-
minishes for Llama-3. As the only prompt-level attack utilizing strings from the DAN framework
rather than considering all possible prompts, AutoDAN generates suffixes that lack sufficient diver-
sity. Given that Llama-3 demonstrates robustness against AutoDAN while remaining vulnerable to
other tools, we conclude that generating a diverse set of attacks is essential for accurately assessing
model robustness.

6 CONCLUSION

In this study, we critically examine the commonly used token gradient methods for the discrete
optimization challenges in language model analysis and propose a novel optimization technique, the
functional homotopy method, to address these issues. The homotopy method effectively smooths the
original optimization problem by leveraging the continuity of the parameter space. Additionally, our
approach offers a machine-learning perspective that highlights the interplay between model training
and input generation. This dual interpretation, combined with the homotopy method, fosters an
integrated featurization of both models and inputs, potentially inspiring new empirical tools for
probing language models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-
aligned llms with simple adaptive attacks. arXiv preprint arXiv:2404.02151, 2024.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pp. 39–57, Los Alamitos, CA, USA, may 2017. IEEE Com-
puter Society. doi: 10.1109/SP.2017.49. URL https://doi.ieeecomputersociety.
org/10.1109/SP.2017.49.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, and Eric
Wong. Jailbreaking black box large language models in twenty queries, 2024. URL https:
//openreview.net/forum?id=hkjcdmz8Ro.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Abhimanyu Dubey et al. The Llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Daniel M Dunlavy and Dianne P O’Leary. Homotopy optimization methods for global optimization.
Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA . . . ,
2005.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1412.6572.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Kai Hu, Weichen Yu, Tianjun Yao, Xiang Li, Wenhe Liu, Lijun Yu, Yining Li, Kai Chen, Zhiqiang
Shen, and Matt Fredrikson. Efficient llm jailbreak via adaptive dense-to-sparse constrained opti-
mization, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Zeyi Liao and Huan Sun. Amplegcg: Learning a universal and transferable generative model of
adversarial suffixes for jailbreaking both open and closed llms. arXiv preprint arXiv:2404.07921,
2024.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. AutoDAN: Generating stealthy jailbreak
prompts on aligned large language models. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=7Jwpw4qKkb.

Xiaogeng Liu, Zhiyuan Yu, Yizhe Zhang, Ning Zhang, and Chaowei Xiao. Automatic and universal
prompt injection attacks against large language models, 2024b. URL https://arxiv.org/
abs/2403.04957.

11

https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
https://openreview.net/forum?id=hkjcdmz8Ro
https://openreview.net/forum?id=hkjcdmz8Ro
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=7Jwpw4qKkb
https://arxiv.org/abs/2403.04957
https://arxiv.org/abs/2403.04957

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for
automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249, 2024.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron
Singer, and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automatically, 2023.

Hossein Mobahi and John Fisher III. A theoretical analysis of optimization by gaussian continuation.
Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Feb. 2015. doi: 10.1609/
aaai.v29i1.9356. URL https://ojs.aaai.org/index.php/AAAI/article/view/
9356.

Leo Schwinn, David Dobre, Sophie Xhonneux, Gauthier Gidel, and Stephan Günnemann. Soft
prompt threats: Attacking safety alignment and unlearning in open-source LLMs through the
embedding space. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=CLxcLPfARc.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6199.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Luca Trevisan. Inapproximability of combinatorial optimization problems, 2004.

walkerspider, 2022. URL https://www.reddit.com/r/ChatGPT/comments/zlcyr9/
dan_is_my_new_friend/.

Zi Wang, Jihye Choi, Ke Wang, and Somesh Jha. Rethinking diversity in deep neural network
testing, 2024. URL https://arxiv.org/abs/2305.15698.

William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for indefinite rankings.
ACM Trans. Inf. Syst., 28(4), nov 2010. ISSN 1046-8188. doi: 10.1145/1852102.1852106. URL
https://doi.org/10.1145/1852102.1852106.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

12

https://ojs.aaai.org/index.php/AAAI/article/view/9356
https://ojs.aaai.org/index.php/AAAI/article/view/9356
https://openreview.net/forum?id=CLxcLPfARc
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://www.reddit.com/r/ChatGPT/comments/zlcyr9/dan_is_my_new_friend/
https://www.reddit.com/r/ChatGPT/comments/zlcyr9/dan_is_my_new_friend/
https://arxiv.org/abs/2305.15698
https://doi.org/10.1145/1852102.1852106

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ELIDED PROOF

A.1.1 PROOF OF PROPOSITION 3.1

Proof. Let x0 be a string input of length n, i.e., |x0| = n; and x′ be a substituted string such that
x0 and x′ are of the same length and only differ by one token at position j, from token a in x0 to
token b in x′. Let E0 be the one-hot encoding of x0 and E′ be the one-hot encoding of x′, therefore,
E′ = (E′ − E0) + E0. Let vabj = (E′ − E0), then E′ = vabj + E0.

Because x0 and x′ only differ by one token at position j, then vabj ∈ Rn×d is of the form

(0, . . . , (0, . . . ,−1, . . . , 1, . . . , 0)j , , . . . , 0).

We use 0 to denote it is a 0 Rd-vector. −1 is corresponds to the one-hot encoding of a and 1
corresponds to token b.

As a result, the linear approximation of f(x′) from f(x0) is

f(E0 + (E′ − E0)) ≈ f(E0) + v⊤abjDf(E0). (5)

Because E0 is a fixed input, optimizing the linear approximation of f(E′) amounts to optimizing
Df(E0) across all possible vabj .

Because vabj are all 0’s except for the j-th position, (vabj)⊤Df(E0) = ([vabj]j)
⊤h. Maximizing

the linear approximation of f(E′) amounts to picking the best token that maximizes ([vabj]j)
⊤h.

Again, because j is fixed, so x0 is fixed. To maximize ([vabj]j)
⊤h, one only needs to choose

argmax(h), which is k.

B ADDITIONAL EVALUATION DETAILS

Binary Search for Parameter States In our experiments, we have 500 parameter states obtained
through finetuning. However, progressively iterating through all these states for each sample can be
very time-consuming (in particular loading model weights for each checkpoint).

We instead use binary search to pick appropriate parameter states. For example, given 500 parameter
states, we start by attacking the 250th state, and set the 500th state as the right extreme. If we succeed
(within a set number of iterations), we take the successful adversarial string and apply it to the 125th

state and set the the 250th state as the right extreme. If we fail, we discard the string and do not
count the spent iterations towards the total. We instead attack the 375th state, which is weaker. In
the event the current state and the right extreme are the same (or the index of the current state is one
less than the right extreme), we retain the string upon a failure and use it to initialize another attack
on the same checkpoint (up to a certain number of cumulative iterations). We formalize this in the
following algorithm.

Fine-tuning specification We use a learning rate 2e-5, warmup ratio 0.04 and a LoRA adapter
with rank 16, alpha 32, dropout 0.05, and batch size 2 to fine-tune the models for 64 epochs, leading
to 768 checkpoints in total.

Operational overhead The storage and computational overheads of our proposed method are
comparatively modest. Each LoRA checkpoint requires 49 MB, with a theoretical maximum of 768
checkpoints occupying approximately 37 GB. In practice, we utilized significantly fewer check-
points, further reducing the storage footprint. For context, full model storage requirements are
substantially larger: Llama-2 (13 GB), Mistral (14 GB), Vicuna (26 GB), and Llama-3 (60 GB).

The computational overhead is similarly minimal. Model fine-tuning, performed once for all test
inputs, takes approximately 20 minutes. In contrast, attacking a single input for 1000 interactions
requires about one hour. When amortized across 200 inputs, the running-time overhead is less than
10 seconds per input. Thus, both storage and computational overheads of our method are relatively

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2 Functional Homotopy with Binary Search
Input: A parameterized objective function fp, the initial parameter p0, the intermediate param-

eter states p1, p2, ..., pt as obtained from line 1 of algorithm 1, a input xt ∈ X , a threshold a ∈ R
and a threshold K ∈ N.

Output: A solution x0 ∈ Sa
p0
(F)

1: Set L← 0, R← t, C ← ⌊R2 ⌋.
2: while L ̸= C do
3: Obtain xC that optimizes F (pC , xC), from xR using random search within K iterations:

fixing a position in xR, randomly sampling tokens from the vocabulary, and evaluating the
objective with the substituted inputs. The best substitution is retained over several itera-
tions. The initialization of this process is warm-started with xR, and ideally concludes with
F (pC , xC) ≤ a.

4: if F (pC , xC) ≤ a then
5: R← C, C ← ⌊R2 ⌋
6: else
7: C ← ⌊C+R

2 ⌋
8: end if
9: end while

10: Obtain xC that optimizes F (pC , xC), from xR using random search within K iterations (this
step is for obtaining xC when L = C).

11: Return xC .

insignificant compared to the resource demands of complete language models and the overall attack
process.

Server specifications All the experiments are run on two clusters.

1. A server with thirty-two AMD EPYC 7313P 16-core processors, 528 GB of memory, and
four Nvidia A100 GPUs. Each GPU has 80 GB of memory.

2. A cluster supporting 32 bare metal BM.GPU.A100-v2.8 nodes and a number of service
nodes. Each GPU node is configured with 8 NVIDIA A100 80GB GPU cards, 27.2 TB
local NVMe SSD Storage and two 64 core AMD EPYC Milan.

C TRANSFERABILITY OF STRONGER ATTACKS

The FH method requires a series of finetuned parameter states. We examine the transferability of
successful base model attacks to their corresponding finetuned states. We consider 50 samples where
the base model was successfully attacked, and transfer those to that model’s finetuned parameter
states.

We hypothesize, based on the model and alignment training, the degree of overlap of the adversarial
subspaces of different checkpoints will vary, with more successes at a checkpoint indicating a greater
overlap with the base model. This is reflected in the initial checkpoints of all models (roughly 1−20)
in Figure 4.

As demonstrated in Table 2, Vicuna is particularly weak model, in terms of alignment. Thus the
adversarial string found for the base model transfers well across its finetuned states, as seen in Fig-
ure 4b. However, Llama-2 and Llama-3 (Figure 4a) have more robust alignment training, and the
attack does not transfer well, even though the finetuned states would be considered weaker in terms
of alignment. This divergence hints at how the adversarial subspace of a model transforms during
alignment training. We leave a rigorous analysis of this as a future study.

D ADDITIONAL ITERATION DISTRIBUTIONS

Figure 5 illustrates the iteration distribution for Mistral and Vicuna.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Checkpoints

25

30

35

40

45

50

Sa
m

pl
es

 w
he

re
 th

e
su

ffi
x

su
cc

ee
ds

Base model adversarial suffix applied to other checkpoints
Llama-3
Llama-2

(a) Successes when directly attacking Llama-2
and Llama-3’s checkpoints

0 50 100 150 200 250 300 350 400
Checkpoints

25

30

35

40

45

50

Sa
m

pl
es

 w
he

re
 th

e
su

ffi
x

su
cc

ee
ds

Base model adversarial suffix applied to other checkpoints

Mistral-v0.3
Vicuna-v1.5

(b) Successes when directly attacking Mistral and
Vicuna’s checkpoints

Figure 4: Transferability of successful attacks on the base model to its finetuned parameter states.
We find that the attack does not necessarily transfer for all models. This seems to be a function of
the “distance” between the states and the alignment training received.

0 50 100 150 200 250
Iterations

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Mistral-v0.3: Iteration distribution of successful attacks
FH-GR ASR: 0.995
GCG ASR: 0.995

(a) Iteration distribution for Mistral-v0.3

0 50 100 150 200 250 300 350 400
Iterations

0

20

40

60

80

100

Fr
eq

ue
nc

y

Vicuna-v1.5: Iteration distribution of successful attacks
FH-GR ASR: 1.0
GCG ASR: 0.995

(b) Iteration distribution for Vicuna-v1.5

Figure 5: Iteration distribution for successful attacks. We are able to find adversarial strings far more
efficiently than GCG, the closest competing baseline.

E FH LEVEL-SET PLOT

Figure 6 presents a conceptual illustration of the homotopy optimization method, elucidating its
underlying principles and operational dynamics. This visual representation provides a more detailed
intuition of the method’s efficacy in navigating complex optimization landscapes.

F LOSS CONVERGENCE ANALYSIS FOR GCG AND FH-GR

In this section, we consider “hard” samples for Llama-2 and Llama-3 that GCG was unable to
jailbreak, but FH-GR (initialized from checkpoint-500) was successful.

Figure 7 shows the change in average loss with iterations throughout the progression of homotopy.
We find that easier optimization problems and the solution of the preceeding problem enables a
consistently lower loss throughout the homotopy process.

Figure 8 examines how the adversarial strings found on weaker models by Functional Homotopy,
affect the average loss on the base model. We see that the loss consistently decreases, indicating that
we are able to avoid local optima and successfully jailbreak the model faster.

Figure 9 shows the robustness of Functional Homotopy. Despite initializing the attack with stronger
checkpoints (i.e., models fine-tuned for fewer epochs), we still find that loss converges more quickly
that GCG and results in a jailbroken response from the model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: Conceptual illustration of homotopy methods for suffix optimization. (a) Left: Greedy
local search heuristic. The red region denotes successful suffixes. The search initiates from a starting
point (black solid) and iteratively moves to the optimal neighboring input (dashed circle) based
on loss values, potentially leading to local optima entrapment due to non-convexity. (b) Right:
Homotopy approach. A series of progressively challenging optimization problems is constructed,
with easier problems having larger solution spaces. The solution set gradually converges to that
of the original problem. Adjacent problems in this continuum have proximal solutions, facilitating
effective neighborhood search. Despite the underlying non-convexity, initiating from a near-optimal
point simplifies each problem-solving step.

0 200 400 600 800 1000
Iterations

0.5

1.0

1.5

2.0

CE
 L

os
s

Comparing Average GCG and FH-GR Loss for Hard Samples - Llama-2
GCG Loss
FH-GR Loss

(a) FH-GR loss for Llama-2, across checkpoints

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CE
 L

os
s

Comparing Average GCG and FH-GR Loss for Hard Samples - Llama-3
GCG Loss
FH-GR Loss

(b) FH-GR loss for Llama-3, across checkpoints

Figure 7: A loss comparison of GCG and FH-GR on “hard” samples. We see that homotopy starts
off with a substantially smaller loss, due to the misalignment process. We initialize FH-GR from
checkpoint 500. As we iterate and successfully jailbreak an intermediate model, we replace it (as
described in Algorithm 1), until we reach the base model by iteration 1000. We further note in
Section 5 that FH-GR converges more quickly than GCG.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Iterations

0.5

1.0

1.5

2.0

CE
 L

os
s

Avg. FH-GR Loss for Llama-2 with Evolving Adversarial Suffix
GCG Loss
FH-GR Loss

(a) FH-GR loss for base Llama-2

0 200 400 600 800 1000
Iterations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CE
 L

os
s

Avg. FH-GR Loss for Llama-3 with Evolving Adversarial Suffix
GCG Loss
FH-GR Loss

(b) FH-GR loss for base Llama-3

Figure 8: A loss comparison of GCG and FH-GR on “hard” samples. Unlike Figure 7, we look at
the usefulness of the adversarial strings found by Functional Homotopy, by applying them on the
base model. The loss decreases more consistently, before converging to a lower value overall and
successfully jailbreaking the model.

0 200 400 600 800 1000
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

CE
 L

os
s

Comparing Average GCG and FH-GR Loss for Hard Samples - Llama-2
GCG Loss (Base)
FH-GR Loss (ckpt-500 -> Base)
FH-GR Loss (ckpt-100 -> Base)

(a) FH-GR loss for Llama-2, across checkpoints

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CE
 L

os
s

Comparing Average GCG and FH-GR Loss for Hard Samples - Llama-3
GCG Loss (Base)
FH-GR Loss (ckpt-500 -> Base)
FH-GR Loss (ckpt-150 -> Base)

(b) FH-GR loss for Llama-3, across checkpoints

Figure 9: A loss comparison of GCG and FH-GR initialized from different checkpoints. We take 25
“hard” samples and initialize FH-GR from earlier checkpoints that are more aligned. Of the cases
where starting from the earlier checkpoint succeeds (loss in green), we see that FH-GR is still able to
converge to a lower loss than GCG. Note that GCG fails on all these cases, where as FH-GR (ckpt-
500→base) succeeds on all cases and FH-GR starting from earlier (stronger) checkpoints succeeds
on 13 cases for Llama-2, and 6 cases for Llama-3.

17

	Introduction
	Related Work
	Method
	Notations and definitions
	Token Gradient Methods
	Functional Homotopy method
	Application

	Evaluation
	Experimental Design
	Experimental Specifications

	Result and discussion
	Conclusion
	Appendix
	Elided proof
	Proof of prop:gcg

	Additional Evaluation Details
	Transferability of stronger attacks
	Additional iteration distributions
	FH level-set plot
	Loss Convergence Analysis for GCG and FH-GR

