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ABSTRACT

We present OVID, a large open video dataset comprising 10 million hours of diverse
content collected from CommonCrawl. To complement the raw data, we generate
image captions for scene-changing frames and video-level captions for a 300M
frame—caption subset. Using this subset, we train CLIP models at multiple scales
and benchmark them against reference CLIP models trained on DataComp, Re-
LAION and DataComp recaptioned with the same captioning pipeline. Observed
scaling trends for classification and retrieval show evidence that OVID can be
another valuable and scalable source of image-text data, in addition to image-text
pairs from public webpages. OVID marks a significant step towards democratizing
access to large-scale video data and fostering the development of open multimodal
foundation models. To this end, all the data will be freely available to research

institutions.
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Figure 1: OVID enables open foundation model scaling at unprecedented scales. Left: With
10M total video hours, OVID is over an order of magnitude larger than existing video-text datasets.
Right: Our frame-level captions from OVID enable state-of-the-art retrieval on COCO Captions,
outperforming Re-LAION and DataComp (more details in Table 5). Since our data is sourced from
videos we expect almost no overlap to datasets like Re-LAION and DataComp.

1 INTRODUCTION

The current paradigm for training capable video or image embedding and foundation models relies
on accessible, large-scale datasets. Many publicly available datasets exist for text (Raffel et al., 2020;
Gao et al., 2020; Biderman et al., 2022; Penedo et al., 2024; 2023; Weber et al., 2024) and image-text
data (Thomee et al., 2016; Sharma et al., 2018; Srinivasan et al., 2021; Changpinyo et al., 2021; Desai
et al., 2021; Schuhmann et al., 2021; Byeon et al., 2022; Hu et al., 2022; Wang et al., 2023a; Gadre
etal., 2023; Wu et al., 2024b; Li et al., 2024b; Schuhmann et al., 2022). While not quite reaching the
scale of proprietary datasets, they are sufficiently large to train competitive open models (Schuhmann
et al., 2022; Cherti et al., 2023; Rombach et al., 2022; Huang et al., 2023a). As a prominent example,
LAION-5B (Schuhmann et al., 2022) and its 2B English-language subset are today’s largest public
image-text datasets (with Re-LAION-5B (LAION, 2024) being their recent update) and were used to
train popular models like OpenCLIP, KOSMOS-1, and Stable Diffusion (Cherti et al., 2023; Rombach
et al., 2022; Huang et al., 2023a).
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A cityscape with large Cityscape during sunset A silhouette of a lighthouse A sunset over water with a A white boat with red
buildings near water. viewed from an elevated stands against a colorful silhouette of buildings in accents is docked near
position. sunset
Video Level Caption: A vibrant cityscape at night with fireworks, a serene river surrounded Video Duration: 327 seconds
(Qwen3-1.7B) by greenery, a bustling city street, a lighthouse at dusk, and a crowd Number of Frames: 35
watching a sports event. (after filtering)
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A person is holding a jar A jar of cashews labeled A bowl! of chopped A person's hands are shown A hand is adding nuts into a
filled with cashews "RAW" sits vegetables sits next to a sprinkling shredded cheese food processor.
spoon
Video Level Caption: A woman in a kitchen demonstrates making vegan parmesan, using Video Duration: 70 seconds
(Qwen3-1.7B) cashews and a wooden spoon, with a close-up of the food processor Number of Frames: 19
and a bow! of vegetables. (after filtering)

Figure 2: Example data from 300M image subset of OVID. We provide a general video caption for
each video alongside specific captions for each scene-changing frame.

In contrast, recent open video-text datasets are still relatively small-scale. The largest dataset to date,
InternVid (Wang et al., 2023b), contains 234 million video-caption pairs — a relatively meager size
compared to modern text and image-text corpora.

The primary bottleneck for large-scale video-text datasets is not the availability of videos per se —
millions are accessible on the web — but the significant compute, memory, and engineering effort
required to download, filter, and annotate them at scale. Unlike images, videos are often hosted on
large commercial platforms that can restrict or gate access, making large-scale collection challenging
in practice. Moreover, while smaller-scale video datasets in the past used alt-text and automatic
speech recognition (ASR) to produce video captions (Bain et al., 2021; Zellers et al., 2021; Xue et al.,
2022), this approach does not scale well. It also produces sub-par video-caption alignment, so that
recent methods employ large language models (LLMs) to caption videos based on a combination of
frame captions from vision-language models (VLMs) and transcriptions (Wang et al., 2023b; Geng
et al., 2024; Chen et al., 2024b; Ju et al., 2024; Xiong et al., 2024).

While other video-text datasets discard generated frame captions, we view the frame-caption pairs
generated by our pipeline as an essential component of the final dataset. Existing paired image-text
data, including Re-LAION-5B, is almost entirely sourced from internet images. Thus, video frames
represent a largely untapped source of image-text pairs that follow a distribution different from
existing datasets. We show that our large-scale frame-caption data can be used to train competitive
CLIP (Radford et al., 2021) models that yield stronger text-image retrieval performance compared to
models trained on existing large-scale image-text data.

The video URLs and captions can be accessed at HuggingFace'. Furthermore, research institutions
can freely download the raw data upon signing a standard end-user license agreement, which restricts
the downloaded data to be used for research purposes.

Overall, we make the following contributions:

Contributions

» We release OVID, a large-scale dataset comprising 1.3B video URLs.

* We make 10M video hours downloaded videos (incl. metadata) freely available to research
institutions worldwide for non-commercial use.

* We release 300M high-quality frame-caption pairs as well as 12M video-level text summaries.
We show that frame-caption data is a strong and scalable signal for training vision-language
models highlighting the data quality of OVID.

"https://huggingface.co/datasets/EASOJUBYI/urls


https://huggingface.co/datasets/EASOJUBYI/urls
https://huggingface.co/datasets/EASOJUBYI/urls
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English

Dataset Source Caption Source Img-Txt Pairs
MS-COCO (Lin et al., 2014) Flickr Manual annotation 330k

Visual Genome (Krishna et al., 2017b) MS-COCO + YFCC100M Manual annotation 54M
YFCC100M (Thomee et al., 2016) FLickr Alt-text + Title 9M
CC3M (Sharma et al., 2018) Custom web crawl Alt-text 3.3M
WIT (Srinivasan et al., 2021) Wikipedia Alt-text + Caption 5.5M
CCI12M (Changpinyo et al., 2021) Custom web crawl Alt-text 12M
RedCaps (Desai et al., 2021) Reddit Subreddit name + Title 12M
ALT200M (Hu et al., 2022) Custom web crawl Alt-text 203 M
COYO-300M (Byeon et al., 2022) Common Crawl Generated 300M
LAION-400M (Schuhmann et al., 2021)  Common Crawl (Common Crawl) — Alt-text 413M
COYO-700M (Byeon et al., 2022) Common Crawl Alt-text T747TM
DataComp-1B (Gadre et al., 2023) Common Crawl Alt-text 1.4B
LAION-5B (Schuhmann et al., 2022) Common Crawl Alt-text 23B
OVID YouTube, Vimeo, Dailymotion Generated 300 M

Table 1: OVID compared to publicly accessible image-text datasets. OVID is the only one sourced
from video frames rather than web-crawled images. As a result, it complements existing datasets.

2 RELATED WORK

Multimodal Datasets. Training multimodal foundation models requires large-scale datasets contain-
ing data from at least two modalities.

Image-text pairs are easy to collect at scale, since many images on the web are captioned or come
with descriptive alt-text. As a result, open image-text datasets have grown rapidly over the past
decade (Thomee et al., 2016; Sharma et al., 2018; Srinivasan et al., 2021; Changpinyo et al., 2021;
Desai et al., 2021; Schuhmann et al., 2021; Byeon et al., 2022; Hu et al., 2022; Wang et al., 2023a;
Gadre et al., 2023; Wu et al., 2024b; Li et al., 2024b), from just 330k English image-text pairs in
MS-COCO (Lin et al., 2014) to over 2B in LAION-5B (Schuhmann et al., 2022)’s English-language
subset (see Table | for more details). Proprietary datasets have been scaled even further to at least
100B image-text pairs (Radford et al., 2021; Jia et al., 2021; Chen et al., 2022; Pham et al., 2023; Peng
etal., 2023; Dong et al., 2025; Wang et al., 2025). An overview of non-proprietary image-text datasets
is provided in Table 1. However, large image-text datasets see diminishing returns on traditional
benchmarks (Wang et al., 2025), and ultimately draw from very similar source distributions. We posit
that captioned video frames are a largely untapped source of image-text data.

Interleaved image-text data (Alayrac et al., 2022; Zhu et al., 2023b; Laurencon et al., 2023; Huang
et al., 2023a; He et al., 2023; McKinzie et al., 2024; Li et al., 2024a; Futeral et al., 2024; Awadalla
et al., 2024) can be scaled even further, incorporating more context information at the cost of not-as-
well-aligned modalities. In this space, OmniCorpus (Li et al., 2024a) experimented with increasing
data diversity by including keyframes and video transcriptions. However, interleaved data is not
suitable for all types of models and training recipes.

Video-text datasets usually provide captions for clips ranging from three seconds to a few min-
utes (Wang et al., 2023b; Sun et al., 2024). Many early datasets are specific to domains like
movies (Rohrbach et al., 2017; Soldan et al., 2022), cooking (Zhou et al., 2018; Damen et al., 2018),
instruction following (Sanabria et al., 2018; Miech et al., 2019), or action recognition (Soomro et al.,
2012; Caba Heilbron et al., 2015; Sigurdsson et al., 2016; Kay et al., 2017; Krishna et al., 2017a;
Sigurdsson et al., 2018; Goyal et al., 2017; Wang et al., 2019b; Stroud et al., 2020). More relevant for
foundation model training are open-domain datasets. Amongst those, smaller dataset can be manually
annotated (Xu et al., 2016; Hendricks et al., 2017; Xu et al., 2023a; Liu et al., 2024¢), but most recent
and larger datasets use automatic speech recognition, subtitles, alt-text, image captions (Zellers et al.,
2021; Xue et al., 2022; Bain et al., 2021; Nagrani et al., 2022), and/or utilize LLMs (Wang et al.,
2023b; 2024b; Chen et al., 2023b; 2024b; Ju et al., 2024; Xiong et al., 2024; Geng et al., 2024),
see Table 2 for more details. An overview of video-text datasets is provided in Table 2. To our
knowledge, none of these datasets explore video frames paired with textual captions as a source for
image-text data. While InternVid’s captioning pipeline involves captioning keyframes (Wang et al.,
2023b), these captions are not published or used for model training.

Vision-Language Foundation Models. Paired image-text or video-text data is used to train three
types of vision-language models (VLMs) (Ghosh et al., 2024) outlined below. OVID’s open collection
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Duration Median

Dataset Source Captions  Videos  Clips inh Resolution
MSR-VTT (Xu et al., 2016) YouTube Manual 7.2k 10k 40 240p
DideMo (Hendricks et al., 2017) Flickr Manual 10.5k 27k 87 -
YT-Temporal-180M (Zellers et al., 2021)  YouTube ASR 6M 180M - -
WebVid10M (Bain et al., 2021)" Stock footage Alt-text 10.7M  10.7M 52k 360p
HD-VILA-100M (Xue et al., 2022) YouTube ASR 33M  103M 371.5k 720p
VideoCC3M (Nagrani et al., 2022) YouTube Transfer 63M 103M 17.5k -
Panda-70M (Chen et al., 2024b) HD-VILA-100M Generated 38M 70.7M 167k 720p
LongVale (Geng et al., 2024) ACAV-100M (Lee et al., 2021)  Generated 8.4k 105k 550 -
LVD-2M (Xiong et al., 2024) YouTube + Stock footage Generated 2M 2M 11.2k 720p
InternVid (Wang et al., 2023b) YouTube Generated 7.1M  234M 760.3k 720p
MiraData (Ju et al., 2024) YouTube + Stock footage Generated 330k 330k 16k 720p
OViID YouTube, Vimeo, Dailymotion = Generated SOM 2.7B 10M 720p

* this dataset is now defunct

Table 2: OVID compared to public open-ended video-language datasets. OVID contains over an
order of magnitude more data than the next-largest dataset.

of frame-caption pairs and captioned videos will improve the scale and diversity of training data for
all types of VLMs.

Embedding models like CLIP (Radford et al., 2021; Ilharco et al., 2021; Cherti et al., 2023), Image-
Bind (Girdhar et al., 2023), and other variants (Bao et al., 2022; Xu et al., 2023b; Li et al., 2022b)
learn a shared image-text embedding space and are a common component in multimodal models.
VideoClip (Xu et al., 2021), VideoMAE (Tong et al., 2022), and ViCLIP (Wang et al., 2023b) are
examples of similar embedding models for videos.

Multimodal LLMs like Flamingo (Alayrac et al., 2022), BLIP (Dai et al., 2023; Li et al., 2022a;
2023a), LLaVA (Liu et al., 2023; 2024a;d;b; Zhang et al., 2024), many recent GPT variants (Zhu
et al., 2023a; Chen et al., 2023a; OpenAl, 2024; Chen et al., 2024a), DeepSeek-VL (Lu et al., 2024;
Wau et al., 2024¢) and many others (Laurencon et al., 2023; Chen et al., 2022; Peng et al., 2023; Bai
et al., 2023; Driess et al., 2023; Piergiovanni et al., 2024; Lin et al., 2023; Luo et al., 2023; You
et al., 2023; Wang et al., 2024a) can process images as an input modality, but output only text. Even
without an explicit temporal dimension during training, some image-text trained multimodal LLMs
exhibit good video understanding (Kim et al., 2024). Other multimodal LLMs like Llama model
variants (Zhang et al., 2023; Li et al., 2024c¢), some GPT variants (Maaz et al., 2023; Su et al., 2023),
and others (Zhang et al., 2024; Liu et al., 2024c; Lyu et al., 2023; Yan et al., 2022; Zhao et al., 2023)
are specifically trained with video data.

Large multimodal models like recent Gemini (Team et al., 2024) models, CoDi (Tang et al., 2023;
2024), Next-GPT (Wu et al., 2024a), and VideoPoet (Kondratyuk et al., 2023) handle images and
videos as input and output.

Image and Video Captioning. Image and video captioning has a long history in deep learning, both
as a benchmark task for visual understanding and as a tool for summarization and abstraction (Vinyals
et al., 2016; You et al., 2016; Gu et al., 2017; Sharma et al., 2018; Guo et al., 2020; Sidorov et al.,
2020). We refer the reader to Abdar et al. (2024) for an overview.

Automatic captioning pipelines for multimodal data curation at scale commonly follow a shared
approach (Wu et al., 2024b; Li et al., 2024b; Wang et al., 2023b; Xue et al., 2024; Chen et al., 2024b;
Geng et al., 2024): Images (including the center frame for videos) are captioned using a strong
pretrained multimodal LLM. Videos are first split into short clips and might be annotated by an
existing video-language model like LLaVA-NeXT-Video (Zhang et al., 2024) or frame-by-frame by
a more lightweight model like Tag2Text (Huang et al., 2023b). Audio captions from models like
Qwen-Audio / Qwen-Omni (Chu et al., 2023; Xu et al., 2025) or transcriptions from models like
Whisper-Large (Radford et al., 2023) can also be incorporated. Final video captions are synthesized
from these partial captions by pretrained LLMs like T5 (Raffel et al., 2020), Vicuna (Chiang et al.,
2023), Gemini (Team et al., 2024), or Claude (Anthropic, 2024).

3 DATASET

In this section, we outline the data collection process for OVID and provide key statistics. Specifically,
Section 3.1 details the data curation procedure, Section 3.2 describes the captioning pipeline, and
Section 3.3 presents the dataset statistics.
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CRAWL (YouTube, Vimeo, Dailymotion) 1.3B video urls subset video hours

() COMMON iter for video platform links download _  10M downloaded

Figure 3: OVID data curation pipeline. We source data from Common Crawl Common Crawl and
filter for platform-specific video URLs, resulting in 1.3B high-quality video candidates. Out of these,
we successfully downloaded 10M video hours using a distributed infrastructure.

3.1 DATA CURATION

Sources. Large-scale multimodal datasets like LAION-5B (Schuhmann et al., 2021)/Re-LAION-
5B (LAION, 2024) and Datacomp-1B (Gadre et al., 2023) rely on Common Crawl as a source of raw
data. Following this approach, we use Common Crawl WAT (Web Archive Transformation) files,
which provide essential metadata about archived web pages, including HTTP headers and hyperlinks.
We extract platform-specific video links using yt-dlp (yt dlp, 2021) extractors. To efficiently
process this data at scale, we employ the cc2dataset (Beaumont, 2022) tool in conjunction with
an Apache Spark (Zaharia et al., 2016) cluster. This setup enables the rapid extraction of video
URLSs and their associated metadata. We use all Common Crawl dumps available as of March 2024,
resulting in a corpus of 4.7B candidate URLs. To ensure the quality and accessibility of the videos,
we filter for links from major supported platforms — YouTube, Vimeo, and Dailymotion — yielding a
final set of 1.3B video URLs.

Video Download. We download videos using a distributed setup of 2,000 virtual servers coordinated
via a cluster built on Celery and powered by vt —~d1p. To avoid IP blocking and ensure robust access
to video content, we employ residential proxy providers throughout the download process. Overall,
our link success rate was approximately 60 %, yielding 10M total video hours.

Frame Filtering and Moderation. We extracted keyframes from the videos using f fmpeg, and
filtered them for black frames. We then extracted scene-changing frames using £ fmpeg’s scene
detection with scene value 0.1. We did not apply additional safety filters at the data collection stage,
as our video sources are restricted to well-moderated platforms (YouTube, Vimeo, and Dailymo-
tion). These platforms enforce their own community guidelines and content moderation policies,
significantly reducing the prevalence of harmful or unsafe content.

3.2 CAPTIONING PIPELINE

& Key frame extraction and Caption generation
scene change filtering ~
Input video &—» j —> . —> j
Provide a very coarse — Frame Fus?ng Vid.eo
single line of caption. captions captions captions

Figure 4: OVID’s captioning pipeline. Frame-level captions for scene-changing frames are generated
using a vision-language model (DeepSeek-VL2-tiny (Wu et al., 2024¢)). The resulting annotations
are validated through downstream tasks such as zero-shot classification and retrieval. Furthermore,
frame captions can be summarized into video-level captions using a language model (Wang et al.,
2023b).

Figure 4 illustrates our end-to-end captioning pipeline. We select a VLM that balances quality
and efficiency, and then apply it to generate frame-level captions. These captions are optionally
summarized into video-level descriptions. We validate the effectiveness of our frame captions through
downstream performance on standard benchmarks and explore the impact of caption length on the
performance.

Selecting a Captioning Model. We considered models for image captioning that balance quality
and throughput, selecting the seven top-performing models from the OpenVLM leaderboard (Duan
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Throughput
Model Language Model Vision Model Params CLIPScore in img/s
InternVL2.5-1B (Chen et al., 2024c) Qwen-2.5-0.5B InternViT-300M-v2.5 1B 0.43 10.41
InternVL2.5-2B-MPO (Chen et al., 2024¢)  InternLM2.5-1.8B InternViT-300M-v2.5 2B 0.27 6.41
InternVL2.5-2B (Chen et al., 2024c) InternLM2.5-1.8B InternViT-300M-v2.5 2B 0.21 6.21
SmolVLM-Instruct (Marafioti et al., 2025)  SmolLM2-1.7B SigLIP-400M 2.3B 0.50 2.71
DeepSeek-VL2-tiny (Wu et al., 2024¢) DeepSeekMoE-3B SigLIP-400M 34B 0.62 8.20
Qwen2.5-VL-3B-Instruct (Bai et al., 2023)  Qwen2.5-3B QwenViT 3.75B 0.55 2.46
Phi-3.5-vision-instruct (Abdin et al., 2024)  Phi-3.5-mini-instruct ~OpenAI CLIP L-14-336 4.15B 0.59 3.74

Table 3: Candidate captioner models. We choose DeepSeek-VL2-tiny, which achieves the highest
CLIPScore and the second-highest throughput.

Zero-Shot Classification Acc@1 Img-Retrieval Recall@5

ImageNet-1k ImageNet-R ImageNet-Sketch COCO Captions
Samples Original Recap Short Original Recap Original Recap Original Recap Short
128M  0.10 0.09 0.10 0.12 0.15 0.04 0.06 0.10 0.21 0.19
30M  0.20 0.15 0.17 0.21 0.24 0.10 0.13 0.18 0.31 0.28
128M 040 0.23 - 0.41 0.36 0.25 0.21 0.33 0.42 -

Table 4: Validation of caption quality. We report the performance of CLIP-ViT-B-32 trained on
subsets of DataComp-1B (Gadre et al., 2023) with their original captions, our automatically generated
captions (Recap), and length-constrained captions with only 7 words on average (Short).

et al., 2024) as our starting point. Due to practical constraints on overall compute and GPU memory,
we limited our selection to VLMs with fewer than 4B parameters. The resulting candidate pool is
provided in Table 3. We use CLIPScore (Hessel et al., 2021) as a proxy to measure the quality of
generated captions. Specifically, we calculate CLIPScore using OpenAl CLIP L-14-336 (OpenAl,
2021) on a representative subset of generated captions for 100k images from DataComp-1B Gadre
et al. (2023). We select DeepSeek-VL2-tiny for captioning our dataset, as it yielded the highest
CLIPScore and second-best throughput. Details for the hyperparameter choices in our pipeline are
included in the supplementary material.

Validation. To assess caption quality, we recaption subsets of DataComp-1B (Gadre et al., 2023)
using DeepSeek-VL2-tiny and train CLIP-ViT-B-32. For validation, we consider the zero-shot
image classification performance on ImageNet-1k (Deng et al., 2009), ImageNet-R (Hendrycks et al.,
2021), and ImageNet-Sketch (Wang et al., 2019a) alongside image retrieval performance on COCO
Captions (Lin et al., 2014). The results are summarized in Table 4. While our automatically generated
captions lead to a drop in classification accuracy (36 % for ImageNet, 11 % and 16 % for ImageNet-R
and ImageNet-Sketch respectively at the largest data scale), image retrieval performance increases by
27 %. Overall, we find the caption quality acceptable considering the reduced annotation cost and
increased dataset scale.

Caption Length. We explore different input prompts for captioning and consequently the impact
of different resulting caption lengths on downstream model performance. Specifically, we use the
following prompt as our default choice: Provide a very coarse brief single line of
caption for the image. We compare this to using the following prompt, which resulted in
caption lengths limited to around 7 words on average (short): Provide a very coarse brief
single line of caption for themain object in the image. Don’ t worry about
the details, just a very high-level description. The description should
be as short as possible — 1-3 words. The impact on model performance of these short
captions is also included in Table 4. While we observe a small improvement in classification accuracy
on 30.7M training samples, we ultimately decide against artificially constraining the caption length.

Video-Level Captions. To generate video-level captions, we aggregate frame-level captions for each
video and, following Wang et al. (2023b), we use a language model (Qwen3-1.7B Yang et al. (2025))
to summarize them. This results in concise, high-level descriptions that capture the overall content of
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Video Platform Video Category Video Language
Dailymotion (2%)  Vimeo (4%) Entertainment (10%) Russian (9%) English (57%)
Music (17%)
Spanish (8%
News & Politics (8%) panish (&%)
Japanese (4%),
Education (8%)‘ French (4%)-
People & Portuguese (3%) ==
Science & Tech (6%) Blogs (20%) German (3%)
Italian (Z%);
Sports (5%) Korean (2%)
Howto & Style (5%) Other (7%)
YouTube (94%) Gaming (5%) Other (16%)
Duration Caption Length Upload Date
5% 56% 9%
5% 48% a%
% 4% % 40% u'é 6%
it 8
g 3% 2 32%
g g " g 5%
o 2% 5 24% o
a a a 3%
2% 16%
1% 8% 2%
0% 0% 0%
0 5 10 15 20 25 30+ 4 6 8 10 2006 2010 2014 2018 2022
Duration (min) Length (words) Year

Figure 5: Dataset statistics for OVID. Top row: Most videos come from YouTube, Vimeo, and
Dailymotion, and cover a diverse set of topics. While English remains the most prominent language,
nearly half of the videos feature other languages. Bottom row: OVID features a substantial fraction
of videos exceeding 30 minutes. Our captioning pipeline produces relatively short captions with an
average of 9.22 words. Videos cover almost two decades.

each video, as seen in Figure 2. These captions would be useful for training video-text models (e.g.
ViCLIP (Wang et al., 2023b)).

3.3 DATASET STATISTICS

OVID comprises 10 million video hours, yielding a large corpus of captioned visual content. This
amounts to approximately 1 trillion frames, an estimated 2.6 billion of which would be filtered out by
our pipeline. On average, we extract and caption 34.5 frames per video. Figure | and Tables | and 2
contextualize our dataset within existing video-language and image-text pair datasets.

As is the case for other video-language datasets, most videos (over 93 %) are sourced from YouTube.
Much smaller fractions (4 % and 2 %) come from Vimeo and Dailymotion.

OVID is exceptionally diverse in its topic coverage. Vlogs (20 %) and music (17 %) are the most
common categories, but not by a large margin, resulting in a truly open-ended data distribution.
Furthermore, our dataset is noticeably multi-lingual. While the majority (almost 60 %) of video
content is in English, many other languages are present in significant proportions.

Like other video datasets, most videos in OVID are below 5 minutes long, with an average duration
of 7.82 minutes. However, the distribution is rather long-tailed, and almost 6 % of videos are 30
minutes or longer, supporting long-horizon video tasks.

As mentioned in Section 3.2, our lightweight captioning pipeline is tuned to produce relatively short
captions, with most containing between 8-10 words. OVID also presents one of the more recent video
datasets in terms of video uploaded, with the most recent entries from early 2024.

For additional insights, Figure 5 provides a summary of key dataset metrics. A comparison of OVID
to existing vision-text datasets can be found in Tables 1 and 2.

4 EXPERIMENTS VALIDATING OVID

To validate the quality of extracted video frames and generated captions, we train CLIP models and
evaluate them on several downstream tasks. In the following, we describe our experimental setup and
the quantitative results and scaling behavior.
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Acc COCO Retrieval Recall@5 Acc

Model Dataset Samples ImageNet-1k Text-to-Image Image-to-Text ImageNet-R ImageNet-Sketch ImageNet-V2

ViT-B-32 Re-LAION 30.7M 0.17 0.20 0.32 0.22 0.10 0.15
64M 0.26 0.30 0.45 0.32 0.17 0.22
128M 0.35 0.38 0.53 0.40 0.24 0.28
300M 0.44 0.46 0.64 0.52 0.32 0.37
ViT-B-32  DataComp 30.7M 0.20 0.21 0.32 0.25 0.12 0.17
64M 0.31 0.29 0.43 0.36 0.21 0.26
128M 0.40 0.37 0.54 0.45 0.29 0.33
300M 0.50 0.45 0.63 0.57 0.39 0.42
ViT-B-32 OVID 30.7M 0.08 0.27 0.40 0.13 0.04 0.08
64M 0.13 0.40 0.56 0.18 0.06 0.11
128M 0.19 0.48 0.67 0.26 0.11 0.16
300M 0.24 0.56 0.74 0.34 0.16 0.21
ViT-B-16 Re-LAION 128M 0.41 0.45 0.62 0.48 0.29 0.34
300M 0.51 0.53 0.71 0.59 0.38 0.44
ViT-B-16  DataComp 30.7M 0.22 0.26 0.38 0.28 0.15 0.21
64M 0.38 0.36 0.52 0.42 0.26 0.32
128M 0.47 0.43 0.60 0.52 0.34 0.40
300M 0.58 0.52 0.70 0.64 0.44 0.49
ViT-B-16 OVID 30.7M 0.10 0.35 0.51 0.16 0.05 0.10
64M 0.18 0.50 0.67 0.24 0.09 0.15
128M 0.22 0.56 0.74 0.30 0.14 0.19
300M 0.28 0.63 0.80 0.40 0.19 0.23

Table 5: Zero-shot classification and retrieval performance across datasets and scales. While
OVID achieves the highest performance on the COCO retrieval tasks, it is consistently weaker in
ImageNet-1k classification.

4.1 EXPERIMENTAL SETUP

We train CLIP models on different dataset sizes (30.7M, 64M, 128M, 300M frames) and model
scales (ViT-B/32, ViT-B/16) on both OVID and two reference datasets, namely DataComp-1B and
Re-LAION-2B (LAION, 2024). We evaluate each model on two tasks - zero-shot classification on
ImageNet-1k and zero-shot image retrieval on MS-COCO. The hyperparameters for our experiments
and details about the compute resources used are provided in the supplementary material.

4.2 RESULTS

We present the results of our experiments that validate OVID through CLIP training and evaluating
its downstream performance in Table 5. OVID shows superior performance on text-to-image
and image-to-text retrieval tasks while at the same time, lags behind on ImageNet-1k zero-shot
classification.

We observe comparable performances for CLIP models trained on OVID and models trained on
DataComp-1B recaptioned with our captioning pipeline (e.g. 0.23 ImageNet-1k accuracy compared to
0.19 with OVID when training on 128M frames as can be seen in Tables 4 and 5). We hypothesize that
the performance gap between the real and synthetic captions for zero-shot classification on ImageNet-
1k might be due to the fact that synthetic captions are usually longer and more descriptive than alt-text
from the web while ImageNet-1k contains only labels for each image. Similar observations have also
been made in prior works (e.g. Li et al. (2023b)). Moreover, synthetically generated captions suffer
from limited diversity compared to real ones (Lai et al., 2024). One common approach (Lai et al.,
2024) is to mix the synthetic and real captions to increase the diversity, which also suggests great
future potential for OVID.

In addition to ImageNet-1k, we also evaluate our models on ImageNet-R (Hendrycks et al., 2021),
ImageNet-Sketch (Wang et al., 2019a), and ImageNet-V2 (Recht et al., 2019), which further support
the generalization capabilities of models trained on OVID.

4.3 SCALING TRENDS

The plots in Figure 6 reveal strong scaling trends for OVID across tasks. While all datasets yield
improved performance when using larger sets of image-text pairs for training, OVID exhibits weaker
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Figure 6: Classification and retrieval scaling trends for OVID, Re-LAION, and DataComp-
1B. OVID has superior scaling behavior on retrieval while its ImageNet zero-shot classification
performance falls behind Re-LAION and DataComp-1B.

scaling for ImageNet-1k zero-shot classification compared to Re-LAION and DataComp. This again
confirms that its synthetic captions may be less effective for fine-grained classification. In contrast,
OVID demonstrates strong scaling behavior on MS COCO text-to-image retrieval, outperforming
other datasets with a steeper slope and lower error rates when using more data. This underscores
OVID’s effectiveness for retrieval tasks.

5 LIMITATIONS

While our video dataset provides a scalable resource for vision-language learning, it has several
limitations. Our generated captions introduce a domain gap to real, human-written descriptions.
Synthetic captions are often less nuanced and diverse, which can limit generalization capabilities
that require rich semantic understanding. Furthermore, we observe relatively low performance for
the downstream zero-shot classification task on ImageNet-1k when using OVID. However, this is
comparable to the drop in performance when using our captioning pipeline for DataComp-1B data.
This confirms that there is a domain gap between our synthetic captions and original captions or
alt-text descriptions used for CLIP training.

Moreover, we currently do not filter frames for visual quality or relevance. This inevitably introduces
noise into the dataset. Future work could also benefit from principled frame filtering mechanisms
(e.g. based on data diversity). Furthermore, we do not consider temporal and audio-visual aspects of
the dataset, for instance, by investigating the dataset’s impact on training audio-visual video models.

We acknowledge that OVID has undergone only limited curation, since careful curation of such
large-scale data would be prohibitively expensive. We rely on content moderation efforts by the video
hosting platforms (YouTube, Vimeo, Dailymotion) to prevent harmful content. Nevertheless, models
trained on this dataset risk inheriting biases, such as harmful stereotypes.

6 DISCUSSION AND CONCLUSION

In this work, we introduce OV1ID, a large-scale open video dataset featuring 10 million video hours
and 300 million frame-caption pairs. Our collection is the largest of its kind, surpassing prior
video-language datasets by over an order of magnitude in total video hours.

Our experiments show that CLIP models trained on OVID perform competitively in image and text
retrieval tasks, with superior scaling behavior on COCO retrieval benchmarks. At the same time, we
observe a performance gap in zero-shot classification on ImageNet-1k compared to models trained
on traditional web alt-text datasets such as DataComp and Re-LAION.

We hope that OVID will democratize access to large-scale video data and spur progress in open
multimodal research. All data, including raw videos and metadata will be made freely available
to research institutions under a research-only license. By releasing this dataset and establishing a
scalable data curation pipeline, we aim to lower the entry barrier for vision-language research and
foster reproducibility at scale.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release the full codebase for frame extraction, video-level caption gener-
ation, and all preprocessing steps, together with the 1.3B extracted video URLs from CommonCrawl,
in the following HuggingFace repository: https://huggingface.co/datasets/EASOJUBYT/urls. The
caption annotations for the 300M filtered frames and 12M videos are publicly accessible through this
repository. Due to double-blind review constraints, the raw OVID video data (10M video hours) will
be made freely available to research institutions under a non-commercial license immediately after
acceptance. Upon release, OVID will become the largest open video dataset of its kind, enabling
the community to fully reproduce our experiments and advance research on large-scale multimodal
language models.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 FRAME FILTERING

In order to obtain high-quality frames for CLIP training, we employ a filtering pipeline as outlined
above. Table 6 shows the number of frames extracted and the corresponding percentage of videos.

Extracted frames Percentage of videos

12.93%
7.96%
6.31%
5.36%
4.74%
4.21%
3.79%
3.44%
+ 51.27%

O 001NNk~ W=

Table 6: Number of extracted frames per video using our filtering pipeline and corresponding
percentage of videos.

A.2 CAPTIONING

The hyperparameters used for frame-level captioning can be found in Tab. 7

Hyperparameter  Value

Temperature 0.5
Max Model Length 4096
Max Sequences 16
Max Tokens 20

Table 7: Frame-Level Captioning Hyperparameters

To obtain the video-level captions, we employed a Qwen3-1.7B (Yang et al., 2025) model with
hyperparameters as shown in Table 8 and the following prompt:

You are given frame captions of a video. Your job is to create a
video-level caption.
Just return the video-level caption, nothing else. Keep it short

and concise but add some details.
Frame captions:
{frame_captions}

\nothink

Hyperparameter Value

Temperature 0.5
Max Tokens 512

Table 8: Video-Level Captioning Hyperparameters

A.3 TRAINING DETAILS CLIP MODELS

For training CLIP models we used the OpenCLIP (Ilharco et al., 2021) codebase. We trained models
on different datasets with the same setup and hyperpameters outlined in Tab. 9.
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Model Samples Seen LR Scheduler Warmup Steps LR GPUs Batch Size
12.8M cosine 4000 0.001 16 GPUs A100 2048
30.7M cosine 3000 0.001 16 GPUs A100 4096

ViT-B/32  64.0M cosine 4000 0.002 16 GPUs A100 8192
128.0M cosine 4000 0.002 64 GPUs A100 8192
307.2M cosine 8000 0.002 64 GPUs A100 16384
12.8M cosine 4000 0.001 16 GPUs A100 2048
30.7M cosine 4000 0.002 16 GPUs A100 4096

ViT-B/16  64.0M cosine 4000 0.002 16 GPUs A100 8192
128.0M cosine 6000 0.002 64 GPUs A100 8192
307.2M cosine 4000 0.002 64 GPUs A100 16384

Table 9: CLIP scaling laws: training hyperparameters for CLIP ViT-B/32 and ViT-B/16.
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