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ABSTRACT

Personalized federated learning (pFL) aims to provide each client with a cus-
tomized model based on global knowledge. However, in highly heteroge-
neous scenarios, pFL often struggles to obtain effective global information and
faces a trade-off between personalization and generalization, which can de-
grade overall generalization performance. To address this issue, we propose
a Model-Heterogeneous personalized Federated learning framework based on
HyperNetworks with Data Distillation, MH-pFedHNDD, which, for the first
time, incorporates data distillation into a hypernetwork-based federated learn-
ing framework, introducing a data-driven perspective to tackle this problem. We
design two effective regularization terms: (1) Contrastive Condensation Loss,
which encourages the latent embeddings of synthetic data to be more compact
and closely aligned with the local data of clients used as anchors; (2) Reg Loss,
which integrates the latent embeddings of all clients’ synthetic data as anchors
to guide the optimization direction for generalization, thereby enhancing each
client’s personalized optimization performance on its local data along with the
use of universum negatives. By leveraging synthetic data distilled with more
robust global information, our method enhances local training on clients, is the
first to alleviate the imbalance between commonality and personalization for hy-
pernetworks, and improves the performance and generalization of the hypernet-
work. Extensive experiments under various settings demonstrate the effectiveness
of our MH-pFedHNDD in personalized federated learning. Our code is available
at https://anonymous.4open.science/r/MH-pFedHNDD.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017; Yang et al., 2019) is a general distributed machine
learning paradigm that has been widely applied by researchers and engineers across various do-
mains (Zhou et al., 2024; Murmu et al., 2024; Feng et al., 2024). However, a single global model
often fails to meet the needs of all clients due to non-IID data. To address this, personalized feder-
ated learning (pFL) (Smith et al., 2017; T Dinh et al., 2020; Deng et al., 2020) has been proposed,
which allows each client to maintain a personalized model rather than a shared global model, thereby
better accommodating client-specific tasks and data distributions (McMahan et al., 2016).

In practice, current pFL faces the practical settings of model heterogeneity (Chen et al., 2023a), as
the devices running local clients typically differ in computational resources (Chai et al., 2020; Shin
et al., 2024), communication capabilities (Caldas et al., 2018; He et al., 2020; Shah & Lau, 2021),
and model architectures (Li & Wang, 2019; Zhu et al., 2021; Wu et al., 2024). Meanwhile, to prevent
privacy leakage, model-heterogeneous pFL also needs to address the challenges of preserving both
data (Shokri et al., 2017) and model (Zhang et al., 2024a) privacy.

For this issue, model-heterogeneous pFL (Kulkarni et al., 2020; Tan et al., 2022) has primarily fo-
cused on incorporating methods such as data distillation, hypernetworks, and model decoupling to
tackle the problem of model heterogeneity. Model decoupling (Jang et al., 2023; Yi et al., 2023a;b)
splits the local model on clients into a feature extractor component and a classifier component. How-
ever, this low-level knowledge sharing can hinder client collaboration and negatively impact overall
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performance. Although data distillation approaches (Huang et al., 2024) can integrate data from
multiple clients, they overlook model structure considerations, resulting in insufficient generaliza-
tion for model heterogeneity. Hypernetwork-based FL approaches (Shamsian et al., 2021; Zhu et al.,
2023; Scott et al., 2024) utilize a hypernetwork on the server to generate personalized models for
clients. Nevertheless, these methods overlook the statistical information of data distributions across
different clients, resulting in suboptimal accuracy.

In fact, the coexistence of model heterogeneity and data heterogeneity (T Dinh et al., 2020; Lin
et al., 2020; Li et al., 2022; Liu et al., 2024) poses significant challenges to model-heterogeneous
pFL. Therefore, an ideal approach could leverage hypernetworks to address model heterogeneity,
while also striking a balance between the individuality and commonality of data distributed across
different clients (Tang et al., 2021; Chen et al., 2023c; Mclaughlin & Su, 2024; Cui et al., 2024; Pan
et al., 2025), ultimately achieving well-performing models. However, this requires clients to share
either data or models to convey their statistical information, which may compromise privacy.

To address the challenges mentioned above, we are the first to combine hypernetworks with data
distillation to tackle the problem of model-heterogeneous pFL, without requiring the sharing of raw
local data or models. We propose Model-Heterogeneous personalized Federated learning frame-
work based on HyperNetworks with Data Distillation (MH-pFedHNDD), which adopts a data-
driven perspective to address this challenge. In our approach, each local client distills its local data
once and uploads it to the server. The server then aggregates synthetic data from all clients to form
a synthetic dataset, which assists local client training. This process enables the sharing of global
commonalities while maintaining local individuality, achieving a better balance between personal-
ization and generalization. In addition, we carefully design two effective regularization terms: (1)
Contrastive Condensation Loss during synthetic data generation, which encourages the latent em-
beddings of synthetic data to be more compact and closely aligned with the local data of clients
used as anchors, generating high-quality synthetic data; (2) Reg Loss during client training with the
synthetic dataset, which integrates the latent embeddings of all clients’ synthetic data as anchors to
guide the optimization direction of each client for generalization, then achieves better local train-
ing results and ultimately enables the hypernetwork to generate higher-quality personalized models
with the help of universum negatives (UniNegs). At the same time, we follow the state-of-the-art
approach (Zhang et al., 2025) by enabling hypernetworks to generate parameters for clients with
similar parameter sizes with the same designed heads, thereby boosting performance and reducing
computational overhead. Our framework ultimately addresses both data and model heterogeneity by
combining hypernetworks with a novel data-driven perspective, and is the first to achieve improved
performance and a better balance between commonality and individuality for the hypernetwork, all
while preserving privacy. Our major contributions are summarized as follows:

• We are the first to propose a data-driven perspective that enables a hypernetwork-based
FL solution for model heterogeneity in personalized federated learning. Our method, MH-
pFedHNDD, is the first to integrate data distillation into the hypernetwork framework as
well as better balance personalization and generalization under data heterogeneity.

• We introduce Contrastive Condensation Loss, which serves as an anchor to better align
synthetic data with local data during the distillation, and Reg Loss, which enhances the
generalization of the local model and further boosts its personalized performance during
the training by combining with the universum negatives.

• We conduct extensive experiments on three widely used datasets with various state-of-
the-art baselines. The results demonstrate that our method consistently outperforms the
baselines across different tasks, validating the effectiveness of our approach.

2 RELATED WORK

2.1 FEDERATED DATA DISTILLATION

Dataset Distillation (Wang et al., 2018) can be applied to data by matching outputs or gradients (Zhao
et al., 2020a; Zhao & Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022), which helps generate
a small synthetic dataset from a large dataset to reduce the impact of data heterogeneity in FL (Wang
et al., 2024a; Jia et al., 2024).
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Goetz & Tewari (2020) are the first to introduce data distillation methods into FL, where, instead of
transmitting gradients back to the server, a small amount of synthetic data is communicated, thereby
reducing communication costs DOSFL (Zhou et al., 2020) and FedD3 (Song et al., 2022) explore
data distillation to improve performance in the complex one-shot Federated Learning settings (Liu
et al., 2025). FedDM (Xiong et al., 2023) implements a DM-based data condensation (Zhao &
Bilen, 2023) on the client side, with the server using condensed data from clients to approximate
the original global training loss in FL; FedAF (Wang et al., 2024b) reduces client drift and boosts
model performance via peer knowledge and condensed data. However, existing methods cannot
be deployed in personalized FL settings. Our MH-pFedHNDD integrates the effective distribution
matching method DM (Zhao & Bilen, 2023) to, for the first time, enhance the performance of hy-
pernetworks from a data-driven perspective.

2.2 PERSONALIZED FEDERATED LEARNING

To account for the model heterogeneity (Chen et al., 2023a) and data heterogeneity (T Dinh et al.,
2020; Lin et al., 2020; Li et al., 2022; Liu et al., 2024) in pFL, HeteroFL (Diao et al., 2021) di-
vides the global model into different sub-models for clients based on computational capabilities,
thus allowing the local models. FedRolex (Alam et al., 2022) utilizes a rolling scheme that al-
lows for training different sub-models for the global model evenly. FedClassAvg (Jang et al., 2023)
shows its effectiveness by employing classifier weights as an agreement to help clients learn about
scarce labels FedGH (Yi et al., 2023a) uses a generalized global prediction header for diverse model
structures, while FedTGP (Zhang et al., 2024b) leverages prototype learning with their Adaptive-
margin-enhanced Contrastive Learning to learn the trainable global prototype features on the server
to improve the accuracy.

Hypernetworks (Ha et al., 2017) have recently been recognized as a promising solution for pFL,
where a single network is employed to generate personalized model parameters from clients’ embed-
ding vectors of local models (Shamsian et al., 2021; Zhu et al., 2023; Scott et al., 2024) and output
the weight ratio during aggregation (Ma et al., 2022). pFedHN (Shamsian et al., 2021) introduces
a hypernetwork to directly produce a personalized model. pFedLHN (Zhu et al., 2023) leverages a
layer-wise hypernetwork to achieve fine-grained personalization across different layers of the model.
MH-pFedHN (Zhang et al., 2025) quantifies clients with different architectures and generates param-
eters using customized embedding vectors. In their design, clients with identical parameters share
the same customized embedding vector and the same designed heads. MH-pFedHNGD (Zhang
et al., 2025) extends MH-pFedHN by introducing a lightweight plug-in global model to improve
the final results from a model-driven perspective. In contrast, our MH-pFedHNDD tackles the pFL
problem from a data-driven perspective and achieves a better balance between commonality and
personalization, which the above approaches fail to address.

2.3 COMMONALITY AND PERSONALIZATION IN PERSONALIZED FEDERATED LEARNING

In pFL, achieving commonality of global model while preserving personalization of local models is a
non-trivial problem. For example, approaches such as local fine-tuning, FedPer (Arivazhagan et al.,
2019a), Ditto (Li et al., 2020), Per-FedAvg (Fallah et al., 2020b) and FedRep (Collins et al., 2021)
all emphasize retaining local characteristics. However, excessive personalization can undermine
commonality, thereby degrading the generalization ability of the model for data from new labels.

Some methods (Fallah et al., 2020a; Mansour et al., 2020; Tan et al., 2022) first train a shared base
model on the server and then perform additional training on local data to achieve personalization.
Other methods (Deng et al., 2020; Qi et al., 2025) introduce regularization terms related to the global
model during local training to strike a balance between commonality and personalization. However,
in highly heterogeneous environments, effective global information may be unavailable; further-
more, the balance between personalization and commonality may be disrupted, leading to excessive
personalization and reduced generalization ability of the model (Arivazhagan et al., 2019b; Chen
et al., 2023b; Tran et al., 2025). DESA (Huang et al., 2024) enhances the generalization of decen-
tralized federated learning by using synthetic anchors for effective knowledge transfer. However,
none of the previous methods can be directly applied to hypernetworks. Our MH-pFedHNDD is
the first to achieve both commonality and personalization within a hypernetwork framework, while
further enhancing performance through the use of universum negatives (Han et al., 2022).
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Figure 1: Framework of MH-pFedHNDD: it includes the distillation and the training Phase. The
Distillation Phase is iterated once and contains 7 steps: ① Initialize the embedding vector vd of
the distillation model and input it into the hypernetwork; ② Obtain the model parameters θd of the
distillation model; ③ Deliver θd to client i; ④ Obtain distillation data Si; ⑤ Upload Si; ⑥ Aggregate
Si to synthesize dataset S. The Training Phase consists of 6 steps: ① Input the embedding vector
vi of client i into the hypernetwork; ② Obtain personalized model parameters θi; ③ Deliver θi;
④ Train the local model by combining local data Di and synthetic data S; ⑤ Upload the model
parameter update ∆θi; ⑥ The server obtains the gradients of the hypernetwork and the embedding
vector based on ∆θi, thereby updating the hypernetwork and the embedding vector.

3 METHOD

In this section, we present our model-heterogeneous pFL method based on hyperNetworks with
data distillation, MH-pFedHNDD. The overall framework is illustrated in Figure 1. This method
comprises two phases: the data distillation phase and the personalized model training phase. Specif-
ically, the distillation phase consists of 7 steps, while the personalized model training phase includes
6 steps. The details of our complete algorithm are provided in Algorithm 1.

3.1 PROBLEM FORMULATION

Our objective is to devise a model-heterogeneous pFL framework that tackles the challenges of both
model heterogeneity and data heterogeneity. This could be formulated as a minimization problem
designed to simultaneously personalize objectives for each client and adapt to heterogeneous data
distributions and model architectures.

{θ∗
1 , . . . ,θ

∗
n} = argmin

θ1,...,θn

n∑
i=1

Ex,y∼Pi [ℓi(x, y;θi)]. (1)

Here, Pi defines the data distribution specific to client i, while ℓi is its corresponding loss function,
parameterized by the client’s unique model weights θi. Critically, the parameter vector θi and the
architecture it represents can vary across the different clients, enabling the framework to handle the
model heterogeneity.

To formalize the training procedure, we define the objective function as

argmin
θ1,...,θn

n∑
i=1

Li(θi) = argmin
θ1,...,θn

n∑
i=1

1

oi

oi∑
j=1

ℓi(xj , yj ;θi). (2)

Here, oi is the sample size of client i, and Li(θi) is its local empirical loss. Each client optimizes θi
to fit its specific data, ensuring the resulting parameters are adapted to its data distribution and task.
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3.2 MOTIVATION

Figure 2: Figure (a): The left shows the data fea-
tures generated using data distillation; the middle
uses features generated with the LDM Loss; and
the right shows features generated with the LCC

Loss. Figure (b): Compared to the left, the right
incorporates the LReg .

To address both model heterogeneity and data
heterogeneity, we employ a hypernetwork-
based approach to solve the pFL problem.
However, hypernetworks typically demand
substantial computational resources. To miti-
gate this, in Sec 3.3, we introduce a structure-
sharing strategy that allows clients with simi-
lar parameter distributions to reuse model com-
ponents. While this alleviates the computa-
tional burden, it still falls short in effectively
balancing shared (global) and personalized (lo-
cal) representations. In Sec 3.4, we take a data-
driven perspective and introduce a data distilla-
tion phase. We present our distillation method
and describe how synthetic data is made more
compact with the aid of a real data anchor, en-
abling a better balance between commonality
and individuality in client models. In Sec 3.5,
we further describe the local training phase,
where we propose techniques to improve the
generalization ability of local clients. Building
on this, we ultimately enhance the personalized performance of each local model.

3.3 HYPERNETWORK PERSONALIZED FEDERATED LEARNING BACKBONE

We adopt the state-of-the-art hypernetwork pFL method proposed by Zhang et al. (2025) to generate
the parameters for client-specific models. Let h(·;φ) denote the hypernetwork h with parameters
φ, where φ is composed by a feature extractor φf and multiple heads {φHl

}. Clients with the same
number of embedding vectors will share the same heads. For client i (associated with the l-th head),
we use vi = [v1

i , . . . ,v
τl
i ] to denotes the customized embedding vectors, where τl is the number of

embedding vectors. Each embedding vector generates a subset of the parameters for the client model
θi within the hypernetwork, which is formulated as θj

i = h(vj
i ;φf ,φHl

). Finally, the personalized
model parameters for client i are generated as follows:

θi := concat(θ1
i ,θ

2
i , · · · ,θ

τl
i )[1:Ki], (3)

where Ki denotes the number of parameters of the client’s personalized model, and [1 : Ki] indicates
that we only take the first Ki parameters, ensuring that the number of generated parameters matches
that of the client’s personalized model. For convenience, we denote θi = θi(φ) := h(vi;φ)[1:Ki].

3.4 SYNTHETIC DATASET GENERATION

Following Sec 3.3, we generate the distillation model for clients. We use vd = [v1
d, . . . ,v

τd
d ] to

denotes the embedding vectors for the distilled model θd = θd(φ) := h(vd;φ)[1:Kd], and Kd

represents the number of parameters of the distilled model.

During the optimization of synthetic data on the client side, we first employ the DM loss to promote
alignment between the feature distributions of real and synthetic samples. Specifically, the DM loss
minimizes the squared Euclidean distance between the mean feature representations of the real data
and the synthetic data,

LDM (Si,Di) = || 1
|Di|

∑
(x,y)∈Di

θf
d (x)−

1
|Si|

∑
(x̃,ỹ)∈Si

θf
d (x̃)||2, (4)

where θf
ddenotes the feature extractor of the distillation model θd. Thereby encourages the synthetic

data to capture the statistical characteristics and distributional tendencies of the original dataset.

However, aligning only the mean representations may not guarantee sufficient class-wise discrim-
inability of the synthetic data. Therefore, we introduce the SupConLoss (Khosla et al., 2020) as

5
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our Contrastive Condensation Loss (LCC), which utilizes class labels to promote intra-class feature
compactness and inter-class separability. This enhances the semantic alignment and discriminative
power of the synthetic data in the feature space.

LCC(Si,Di) =
∑

xj∈Di∪Si
− 1

|(Di∪Si)
yj
\j |

∑
xp∈(Di∪Si)

yj
\xj

log
exp(θf

d (xj)·θf
d (xp)/τtemp)∑

xa∈(Di∪Si)\xj
exp(θf

d (xj)·θf
d (xa)/τtemp)

, (5)

where (Di ∪ Si)\xj
represents the dataset containing both local data Di and synthetic data Si but

without data xj , (Di ∪ Si)
yj

\xj
a subset of (Di ∪ Si)\xj

only with samples belonging to class yj ,
and τtemp is a scalar temperature parameter.

Finally, the overall optimization objective is formulated as a weighted combination of the DM loss
and the CC loss.

Ltotal(Si,Di) = LDM(Si,Di) + λCCLCC(Si,Di). (6)

Here, λCC is a hyperparameter that balances the contributions of the two terms. In Figure 2a, we
could observe that LDM helps synthetic features align more closely with real data features, using
the latter as anchors, while LCC Loss encourages the synthetic features to be more compact and
intra-class cohesive.

After each client i completes data distillation and uploads Si, the server aggregates all Si into a final
synthesized dataset S by merging data with the same labels. The server then sends S to all clients
for the next training phase.

S =
⋃C−1

c=0 (
⋂n

i=1 S
c
i ) . (7)

3.5 PERSONALIZED LOCAL TRAINING

Following Sec 3.3, we generate the local model for clients. we use vi = [v1
i , . . . ,v

τi
i ] to denotes the

customized embedding vectors for the i-th client θi = θi(φ) := h(vi;φ)[1:Ki], and Ki represents
the number of parameters of the personalized model.

During the training phase, we optimize the model using both the local data Di and the synthetic
data S. Specifically, we introduce the UniConLoss (Han et al., 2022) as our Reg Loss for feature
regularization; its effect is shown in Figure 2(b).

LReg(θ
f
i ,S,Di) = −

∑
xj∈B

log
exp

(
θf
i (xj) ·m/τtemp

)
∑

xa∈Bu\j
exp

(
θf
i (xj) · θf

i (xa)/τtemp

) , (8)

where m = (
∑

xp∈Bu
yi
\j
θf
i (xp))/|Bu

yj

\j |, B represents a batch containing both local data batch
BDi

and synthetic data batch BS . Bu represents a batch containing both the universum data batch
Bu

Di
and the synthetic data batch BS . For any uj ∈ Bu

Di
, uj = λ ·xj +(1−λ) ·xk (k ̸= j) where

xj , xk ∈ BDi , and λ denotes the mixup parameter. Bu\j represents the subset of Bu that excludes
the j-th data point uj . Bu

yi

\j a subset of Bu\j only with samples belonging to class yj . θf
i denotes

the feature extractor of personalized model θi, and τtemp is the temperature hyperparameter.

Figure 2 shows that LReg guides the optimization direction for generalization, which helps local
clients map their local data features toward the latent embeddings of synthetic data that serve as an-
chors. Additionally, the introduction of universum negatives enables clients to learn larger inter-class
margins, enhancing feature discriminability across different categories. Finally, the loss function is
defined as follows:

L = LCE(Di;θi) + λSLCE(S;θi) + λRegLReg(Di,S;θi). (9)

Here, λS and λReg are the hyperparameters.
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Table 1: Accuracy comparison of FL methods (best in bold, second best underlined). The upper
part represents homogeneous settings, while the lower part represents heterogeneous settings.

Methods α = 0.02 α = 0.05 α = 0.1

CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet
FedAvg (McMahan et al., 2017) 47.45 22.34 11.46 59.80 24.86 12.44 61.76 31.70 13.25
FedBN (Li et al., 2021) 82.64 25.54 19.67 82.59 25.41 15.79 78.27 29.08 14.71
FedDM (Xiong et al., 2023) 65.95 50.40 26.23 67.53 51.13 31.82 67.30 57.73 39.95
FedAF (Wang et al., 2024b) 47.20 39.65 25.16 53.48 42.71 29.74 56.29 47.00 34.47
pFedHN (Shamsian et al., 2021) 94.20 65.55 36.74 90.34 61.73 35.96 85.82 57.93 27.51
pFedLHN (Zhu et al., 2023) 95.60 72.68 49.13 92.22 67.92 44.65 88.12 63.60 38.37
MH-pFedHN (Zhang et al., 2025) 95.81 75.53 50.14 93.15 71.07 47.28 89.23 66.89 40.23
MH-pFedHNGD (Zhang et al., 2025) 96.26 76.41 47.54 93.09 72.30 42.86 89.23 68.12 36.79
MH-pFedHNDD 96.81 77.00 51.46 94.05 72.58 47.84 90.13 68.02 41.05
Difference 0.55 0.59 1.32 0.90 0.28 0.56 0.90 -0.1 0.79
FedGH (Yi et al., 2023a) 93.91 52.50 31.87 88.56 55.39 28.61 84.32 45.40 28.07
DESA (Huang et al., 2024) 92.30 58.21 36.34 84.03 53.39 30.42 78.69 46.12 25.40
pFedHN (Shamsian et al., 2021) 91.34 58.64 32.37 83.95 53.50 25.27 79.02 47.05 19.52
pFedLHN (Zhu et al., 2023) 91.80 60.76 36.84 84.34 55.44 33.03 79.21 50.18 26.21
FedTGP (Zhang et al., 2024b) 92.66 56.28 29.16 87.24 50.80 24.50 81.85 41.95 16.60
MH-pFedHN (Zhang et al., 2025) 92.12 61.99 39.30 84.84 56.91 35.47 79.89 52.00 29.39
MH-pFedHNGD (Zhang et al., 2025) 90.74 64.39 40.34 86.07 58.32 36.23 80.42 55.70 30.02
MH-pFedHNDD 91.75 65.02 40.88 85.35 59.50 36.45 80.06 54.80 30.44
Difference -2.16 0.63 0.54 -3.21 1.18 0.22 -4.26 -0.9 0.42

4 EXPERIMENTS

Datasets. We evaluate our approach and baselines on three popular image classification datasets,
including CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-ImageNet (Le & Yang,
2015). We adopt two non-IID settings (T Dinh et al., 2020; Lin et al., 2020; Li et al., 2022; Liu et al.,
2024). 1) Distribution-based label imbalance. We employ the Dirichlet distribution Dir(0.02),
Dir(0.05), andDir(0.1) to partition the dataset among the clients. 2) Quantity-based label imbal-
ance. For the CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, we randomly allocate 2, 10,
and 20 classes to each client, respectively. We draw αi,c ∼ U(0.4, 0.6), and allocate αi,c∑

j αj,c
of the

samples for the class c selected on client i. For each client, 75% of the data is used for training, and
25% is used for testing.

Baselines. We choose various state-of-the-art methods. For federated data distillation methods,
we adopt FedDM (Xiong et al., 2023) and FedAF (Wang et al., 2024b); for personalized federated
learning, we consider FedGH (Yi et al., 2023a) and FedTGP (Zhang et al., 2024b); for hypernetwork-
based approaches, we evaluate pFedHN (Shamsian et al., 2021), pFedLHN (Zhu et al., 2023), MH-
pFedHN and MH-pFedHNGD (Zhang et al., 2025); and for methods targeting the joint achievement
of commonality and personalization, we include DESA (Huang et al., 2024). In addition, we also
incorporate FedAvg (McMahan et al., 2017) and FedBN (Li et al., 2021). In this way, we are able
to validate the effectiveness of our method from multiple perspectives.

Model heterogeneity. In prior studies on federated dataset distillation, each client employs Con-
vNet (Zhao et al., 2020b). For a fair comparison, we use ConvNet in homogeneous model experi-
ments. In addition, we also use MLP, LeNet (LeCun et al., 1998), VGGNet (Simonyan & Zisserman,
2015) and ResNet-9 (He et al., 2016) in heterogeneous model settings. All our heterogeneous ex-
periments use these five models, which are evenly distributed among all clients by default.

Training Strategies. We configure FedAvg, FedBN, FedGH, and FedTGP with 200 communication
rounds and 10 local epochs per round. For FedDM and FedAF, we adopt 20 communication rounds,
a total of 500 global training epochs, and 1000 local distillation iterations, using 50 images per class
(IPC) for synthetic data generation. For DESA, we set 1000 local distillation iterations, 100 local
training epochs, and use IPC = 50. For pFedHN, pFedLHN, MH-pFedHN, and MH-pFedHNGD,
we use 500 communication rounds with 1 local epoch per round. Specifically, for MH-pFedHNGD,
we adopt ConvNet as the global model. For MH-pFedHNDD, we set 500 communication rounds
with 1 local epoch, and 3000 local distillation iterations. IPC values are set to 50 for CIFAR-10,
10 for CIFAR-100, and 10 for Tiny-ImageNet, respectively. The default client number is 10. For
hyperparameter, we set λ = 0.7, λCC = 5e− 4, λS = 0.1 and λReg = 0.1. All results are averaged
across five random seeds. More settings and design choices are in Appendix B and Appendix D.

4.1 AN OVERALL COMPARISON

We compare the accuracy of MH-pFedHNDD against other baselines in Table 1 and Table 2. The
experimental results demonstrate that under both non-IID settings and across homogeneous and het-
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Table 2: Accuracy comparison of FL methods
with quantity-based label imbalance. The upper
part represents homogeneous settings, while the
lower part represents heterogeneous settings.

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet

FedAvg (McMahan et al., 2017) 53.10 28.22 17.66
FedBN (Li et al., 2021) 87.16 35.21 24.55
FedDM (Xiong et al., 2023) 71.69 53.88 34.36
FedAF (Wang et al., 2024b) 53.85 43.49 30.43
pFedHN (Shamsian et al., 2021) 94.45 69.36 40.45
pFedLHN (Zhu et al., 2023) 95.59 75.60 52.17
MH-pFedHN (Zhang et al., 2025) 96.61 78.48 55.43
MH-pFedHNGD (Zhang et al., 2025) 96.89 79.24 48.67
MH-pFedHNDD 97.33 79.79 56.00
Difference 0.44 0.55 0.57
FedGH (Yi et al., 2023a) 92.70 63.82 39.23
DESA (Huang et al., 2024) 92.55 62.86 38.76
pFedHN (Shamsian et al., 2021) 92.62 62.58 37.95
pFedLHN (Zhu et al., 2023) 93.16 64.82 40.78
FedTGP (Zhang et al., 2024b) 92.52 60.54 37.59
MH-pFedHN (Zhang et al., 2025) 93.36 66.76 42.79
MH-pFedHNGD (Zhang et al., 2025) 94.38 69.02 44.57
MH-pFedHNDD 92.34 69.26 45.62
Difference -2.04 0.24 1.05

Table 3: Impact of core design on the person-
alized model accuracy for learning CIFAR-100
under three different degrees of heterogeneity.

Configuration α = 0.02 α = 0.05 α = 0.1

MH-pFedHNDD w/o LCC 76.82 72.19 67.54
MH-pFedHNDD w/o UniNeg 76.87 72.55 67.79

MH-pFedHNDD 77.00 72.58 68.02

Table 4: Impact of IPC on the personalized
model accuracy for learning CIFAR-100 under
three different degrees of heterogeneity.

Configuration α = 0.02 α = 0.05 α = 0.1

IPC=2 74.96 71.16 66.57
IPC=5 75.88 72.02 67.30
IPC=10 77.00 72.58 68.02
IPC=25 77.50 72.80 68.74
IPC=50 76.92 72.88 68.67

erogeneous model scenarios, our method consistently achieves the best or near-best performance.
In the distribution-based label imbalance setting on CIFAR-10, the simplicity of the dataset may
limit the benefits of synthetic data generation, causing MH-pFedHNDD to perform slightly be-
low the state of the art. Similarly, in the more challenging quantity-based label imbalance setting,
the model-driven approach MH-pFedHNGD achieves comparable results to MH-pFedHNDD on
CIFAR-10. On CIFAR-100 and Tiny-ImageNet, MH-pFedHNDD achieves significantly better per-
formance, highlighting its effectiveness in addressing the more challenging problems of complex
datasets in pFL from a data-driven perspective. Moreover, it demonstrates a better balance between
personalization and generalization.

4.2 EXPERIMENT WITH GENERALIZATION
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Figure 3: Generalization experiments, the left de-
notes homogeneous settings and the right denotes
heterogeneous settings.

In federated learning, generalization measures
how well a method performs on unseen clients.
We conduct experiments on CIFAR-100, where
80% of the clients are used to train the hyper-
network, and the remaining 20% are held out
for generalization testing. During testing, the
hypernetwork parameters are fixed.

Figure 3 presents results under both homoge-
neous and heterogeneous settings, across dif-
ferent levels of non-IID settings. Notably, the
state-of-the-art MH-pFedHN is only compara-
ble to MH-pFedHNDD when α = 0.02 in
the homogeneous setting. In all other scenar-
ios, MH-pFedHNDD consistently outperforms
MH-pFedHN. These results demonstrate that
our design is more effective in improving the generalization ability of the hypernetwork, which
in turn enhances local clients’ personalized performance.

4.3 ABLATION STUDY

Table 3 presents the impact of different components of our framework. Without LCC , the accuracy
drops more severely as the data distribution scale increases, ranging from 0.18% to 0.48%. A similar
trend is observed when the universum negatives are removed. These results demonstrate that LCC

indeed helps synthetic data become more compactly anchored to real data, thereby producing more
precise synthetic datasets and improving performance. Meanwhile, UniNeg enables clients to form
larger inter-class decision boundaries, enhancing personalized performance.
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Table 5: Performance improvement on CIFAR-
100 by integrating data distillation into other fed-
erated learning methods.

Methods α = 0.02 α = 0.05 α = 0.1

Acc Diff Acc Diff Acc Diff

FedAvg 35.48 13.14 35.67 10.81 37.55 5.85
FedBN 38.04 12.50 38.18 12.77 38.71 9.63
pFedHN 67.31 1.76 62.18 0.45 58.02 0.09
pFedLHN 75.84 3.16 71.55 3.63 66.13 2.53

FedGH 61.22 8.72 56.95 1.56 50.69 5.29
pFedHN 59.43 0.79 53.82 0.32 48.61 1.56
pFedLHN 63.29 2.53 58.04 2.60 52.34 2.16

Table 6: The results for MH-pFedHNDD
trained with Different Privacy (DP).

Configuration α = 0.02 α = 0.05 α = 0.1

MH-pFedHNDD 77.00 72.58 68.02
MH-pFedHNDD(DP) 75.70 71.85 67.02

Table 7: Experiments with scalability, upper
(homogeneous) and lower (heterogeneous).

Client Number α = 0.02 α = 0.05 α = 0.1

50 80.33 73.01 66.67
100 79.33 71.41 63.88
200 80.15 68.71 61.28
50 82.41 75.64 68.84
100 81.84 73.28 65.75
200 82.27 70.34 63.41

4.4 EXPERIMENTS WITH IMPACT OF IPC

We conduct IPC experiments on the CIFAR-100 dataset, where the number of IPC is varied from 2
to 50. Table 4 shows that as IPC increases, the accuracy also improves. However, when IPC is set
to 50, the accuracy slightly drops. This is because each client generates 5,000 synthetic images for
CIFAR-100, which reduces the quality of some synthetic data and lowers the relative proportion of
real data during training, ultimately causing the accuracy to decline. Nevertheless, the accuracy at
IPC=50 remains higher than at IPC=2 or 5, demonstrating the robustness of our MH-pFedHNDD.

4.5 EFFICIENT PLUG-AND-PLAY PROPERTY

Table 5 reports the results of integrating our data distillation method into different baselines. The
upper part presents the results under the homogeneous setting, while the lower part shows the re-
sults under the heterogeneous setting. All methods benefit from an accuracy improvement of up
to 13.14%. Although the results still fall short compared with MH-pFedHNDD, these experiments
demonstrate the potential of addressing the pFL problem from a data-driven perspective.

4.6 EXPERIMENTS WITH PRIVACY PRESERVATION

We conducted differential privacy (Abadi et al., 2016) experiments for MH-pFedHNDD when gen-
erating synthetic data. Table 6 shows that MH-pFedHNDD can be effectively combined with differ-
ential privacy (DP) while still maintaining high accuracy, with only about a 1% drop. The results
remain comparable to the state-of-the-art, demonstrating that our method can be seamlessly inte-
grated with privacy-preserving techniques and still achieve strong performance.

4.7 EXPERIMENTS WITH SCALABILITY

Table 7 presents the experimental results of our method with the number of clients set to 50, 100,
and 200. We observe that as the degree of non-IID increases, the accuracy usually decreases with a
larger number of clients. Nevertheless, our method still achieves strong performance—for instance,
under the heterogeneous setting with 200 clients, the accuracy remains as high as 82.27. These
results demonstrate the scalability of MH-pFedHNDD.

5 CONCLUSION

In this paper, we are the first to propose MH-pFedHNDD from a data-driven perspective, lever-
aging data distillation within hypernetworks to address the challenges of model heterogeneity and
data heterogeneity in pFL. By introducing the Contrastive Condensation Loss and the Reg loss, we
enable the generation of more accurate synthetic data and enhance the generality of local clients.
Furthermore, MH-pFedHNDD incorporates universum negatives to ultimately improve personal-
ized performance. We conduct extensive experiments against a variety of baselines, which validate
the effectiveness of our method and highlight the promising potential of data-driven approaches.
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A ALGORITHMS

Here, we outline the pseudo-algorithm of MH-pFedHNDD in Algorithm 1.

B ADDITIONAL EXPERIMENT SETTINGS

B.1 DATASET DETAILS

We use three widely adopted datasets to evaluate our proposed methods. Both CIFAR-10 and
CIFAR-100 (Krizhevsky & Hinton, 2009) consist of 60,000 color images, each with dimensions
of 32 × 32 pixels. CIFAR-10 contains 10 different classes, with each class containing 6000 im-
ages. CIFAR-100 includes 100 different classes, with each class containing 600 images. Tiny-
ImageNet (Le & Yang, 2015) comprises 100,000 color images with dimensions of 64 × 64 pixels
each. It includes 200 classes, with 500 images per class.

B.2 EXPERIMENT SETTINGS

For traditional federated learning methods (FedAvg and FedBN), we set the learning rate to 0.01.
For federated data distillation methods such as FedDM and FedAF, we sample data from the real
dataset. The distillation learning rate is set to 1.0, while the federated learning rate is 0.01. For
personalized federated learning baselines, we use a learning rate of 5e-3 for FedGH and 0.01 for
FedTGP. The learning rate for DESA is set to 0.01. For pFedHN, pFedLHN, MH-pFedHN, and
MH-pFedHNGD, the learning rates for the hypernetworks are set to 1e-3, 3e-4, 2e-4, and 2e-4,
respectively. For MH-pFedHNDD (our proposed method), the hypernetwork learning rate is set to
2e-4. All of these methods use a local client learning rate of 1e-3 with a weight decay of 1e-4.
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Algorithm 1 Model-Heterogeneous Personalized Federated Hypernetwork with Dataset Distillation

Input: R - number of rounds; α, β, γ, η - learning rate; E - client local epoch; T - number of itera-
tions for dataset distillation; C - Number of classes; {K1, . . . ,Kn} - number of clients parameter;
{D1, . . . ,Dn} - datasets; λS - weight of distillation dataset loss; λReg - weight of regularization
term.

Output: trained model parameters {θ1, . . . ,θn}
procedure SERVER EXECUTES

θd = h(vd;φ)[1:Kd]

for each client i in parallel do
Si ← ClientDatasetDistillation(θd)

end for
get S based on Equation 7, and send it to all clients
for r = 1 to R do

for each client i in parallel do
θi = h(vi;φ)[1:Ki]

∆θi ← ClientUpdate(θi)
φ = φ− α∇φθ

T
i ∆θi

vi = vi − α∇viφ
T∇φθ

T
i ∆θi

end for
end for

end procedure
function CLIENTDATASETDISTILLATION(θd)

initialize Si with a subset of Di

for t = 1 to T do
sample batch BDi

⊂Di

for c = 1 to C do
sample batch Bc

Di
⊂ BDi , S

c
i ⊂ Si

Sc
i = Sc

i − β∇θd
LDM (θd,B

c
Di

,Sc
i )

end for
Si = Si − γ∇θd

LCC(θd,BDi ,Si)
end for
return Si

end function
function CLIENTUPDATE(θi)

θ̃i = θi
for e = 1 to E do

sample batch BDi ⊂Di, BS ⊂ S

θ̃i = θ̃i − η∇θ̃i

(
L(θ̃i,BDi

) + λSL(θ̃i,BS) + λRegL(θ̃i,BDi
,BS)

)
end for
∆θi = θ̃i − θi
return ∆θi

end function

B.3 IMPLEMENTATION

We conduct all the experiments on a workstation with a 2.6-GHz Intel W7-2475X CPU, an RTX
4090 GPU and 125 GiB of RAM. All the code is written using PyTorch.

C ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTS WITH DIFFERENT CLIENT PARTICIPATION RATIOS

In Table 8, we report the results obtained by varying the client participation ratios. As expected,
higher participation ratios lead to higher accuracy. Nevertheless, even in the most biased case with
α = 0.1 and a ratio of 0.2, the accuracy still exceeds 66%, demonstrating the robustness of our
method to different participation ratios.
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Table 8: MH-pFedHNDD experiments with different participation ratios.

Ratio α = 0.02 α = 0.05 α = 0.1

0.2 74.51 70.9 66.42
0.4 76.06 72.27 67.82
0.6 76.18 73.39 67.87
0.8 76.47 72.72 67.98
1.0 77.00 72.58 68.02

Table 9: Experiments with different sources of data.

Configuration α = 0.02 α = 0.05 α = 0.1

MH-pFedHN 75.53 71.07 66.89
Only S 24.05 22.60 22.51
One-shot 23.50 21.33 20.68
MH-pFedHNDD 77.00 72.58 68.02
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Figure 4: Figure (a): the impact of synthetic data’s batch size; Figure (b): synthetic data quantity,
Figure (c): LCC loss weight; Figure (d): synthetic data loss weight; Figure (e): LReg loss weight.

C.2 EXPERIMENTS WITH DIFFERENT SOURCES OF DATA

In Table 9, MH-pFedHN refers to a hypernetwork-based method where each client is trained only
on its local dataset; Only S denotes the method where clients are trained solely on the synthetic
dataset; One-shot represents the setting in which each client uploads the synthetic dataset only once
and the server trains a global model on it; and MH-pFedHNDD leverages both local datasets and
synthetic dataset. The experimental results demonstrate that local data play a decisive role in pFL.
Nevertheless, training solely on synthetic data can still yield effective results, with improvements of
up to 24.05%. Combining both local datasets and synthetic data leads to even better performance,
highlighting the effectiveness of our data-driven approach.

D EXPERIMENTS WITH HYPERPARAMETERS

We use the CIFAR-100 dataset under a homogeneous setup to explore various hyperparameter con-
figurations.

D.1 EXPERIMENT WITH SYNTHETIC DATASET BATCH

Here, we explore the impact of the batch size of synthetic data during training on model accuracy,
with results shown in Figure 4a. We found that the best performance occurs when the batch size
of synthetic data is close to but slightly smaller than that of the local data (in the experiment, we
set them to 50 and 64, respectively). This is because when the batch size of synthetic data is too
small, the optimization of the personalized model is dominated entirely by the local data, and the
synthetic data provides no benefit; conversely, when the batch size is too large, it interferes with the
optimization of the model by the local data.
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D.2 EXPERIMENT WITH SIZE OF THE SYNTHETIC DATASET

Here, we explored the impact of the quantity of synthetic datasets on model accuracy. The results are
shown in Figure 4b. For example, when IPC=10, we need to run the data distillation process twice
to generate 2,000 synthetic images, which differs from the IPC=20 setting, where 2,000 images can
be generated in a single run. This is because a smaller IPC value allows each synthetic image to
contain richer information from the original local data.

It can be observed that as the amount of synthetic data increases, the model accuracy continuously
improves. This is because more diverse data increases the variety and coverage of training samples,
thereby helping the model learn more generalized knowledge and enhancing performance.

Table 10: ConvNet model structure.

Layer Shape Nonlinearity

Conv1 3× 3× 3× 128 ReLU

Avg-Pool 2× 2 -

Conv2 128× 3× 3× 128 ReLU

Avg-Pool 2× 2 -

Conv3 128× 3× 3× 128 ReLU

Avg-Pool 2× 2 Flatten

FC 2048× 100 -

Table 11: LeNet-style model structure.

Layer Shape Nonlinearity

Conv1 3× 3× 3× 16 ReLU

MaxPool 2× 2 -

Conv2 16× 3× 3× 32 ReLU

MaxPool 2× 2 Flatten

FC1 2048× 108 ReLU

FC2 108× 2048 ReLU

FC3 2048× 100 None

Table 12: MLP model structure.

Layer Shape Nonlinearity

FC1 3072× 128 ReLU

FC2 128× 2048 ReLU

FC3 2048× 100 None

Table 13: Simplified VGG8 model structure.

Layer Shape Nonlinearity

Conv1 3× 3× 3× 16 ReLU

Conv2 16× 3× 3× 16 ReLU

MaxPool 2× 2 -

Conv3 16× 3× 3× 32 ReLU

Conv4 32× 3× 3× 32 ReLU

MaxPool 2× 2 -

Conv5 32× 3× 3× 64 ReLU

Conv6 64× 3× 3× 64 ReLU

MaxPool 2× 2 Flatten

Linear1 1024× 180 ReLU

Linear2 180× 2048 ReLU

Linear3 2048× 100 None

Table 14: Structure of the 9-layer Residual net-
work model.

Group Name Output Size 9-layer ResNet

Conv1 32× 32 [3× 3, 32]

Conv2 32× 32

 3× 3, 32

3× 3, 32

× 3

Conv3 16× 16

 3× 3, 64

3× 3, 64

× 3

Conv4 8× 8

 3× 3, 128

3× 3, 128

× 3

Avg-Pool 4× 4 [4× 4]

D.3 EXPERIMENT WITH LOSS WEIGHTS

Figure 4c illustrates the effect of varying the weight λCC of the LCC loss. We observe that increas-
ing λCC from a small value helps the synthetic data become more compactly anchored to the real
data, thereby improving the quality of the generated data and leading to higher accuracy. However,
when λCC becomes too large, it reduces the relative weight of the data distillation loss in Equation 6,
which in turn degrades the quality of the synthetic data. The optimal hyperparameter value of λCC

is found to be around 5e-4, which is also used as the default setting in our experiments.

Figure 4d shows the effect of varying λS . As λS increases, local training relies more on the synthetic
dataset, which strengthens the data-driven perspective in optimizing the hypernetwork and thus im-
proves accuracy. However, in Equation 9, when λS becomes too large, the contribution of the real
dataset to optimization diminishes, weakening personalization. At the same time, the Reg Loss can
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no longer play its role effectively, reducing the generalization ability of local clients. The optimal
hyperparameter for λS is 0.1, which is also used as the default setting in our experiments.

Figure 4e illustrates the effect of varying λReg . The results show that as λReg increases, it bet-
ter guides local clients to integrate the latent embeddings of all clients’ synthetic data as anchors,
thereby steering the optimization toward improved generalization and performance. However, as
shown in Equation 9, when λReg becomes too large, local training struggles to leverage the features
of both local datasets and synthetic data to optimize the local models, ultimately leading to degraded
performance. The optimal hyperparameter for λReg is also 0.1, which is used as the default setting
in our experiments.

E MODEL ARCHITECTURES AND PARAMETERS

Here, we present all the model architectures and the parameters used in the CIFAR-100 experiments
(the only difference across datasets lies in the final output layer). Table 10 is a ConvNet model,
Table 11 is a LeNet-style model, Table 12 is an MLP model, Table 13 is a simplified VGG model (8
layers), Table 14 is a residual network (9 layers).

F THE USE OF LARGE LANGUAGE MODELS

We only use Large Language Models (LLMs) to aid or polish writing and check typos.
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