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Figure 1. Training with the optimal template scale significantly improves MLM’s performance and reduces the performance vari-
ance. LLaVA-1.5-7B trained with 5K templates and LLaVA-1.5-13B trained with 100 templates achieve the highest average performance
and the lowest performance variance among similar-scale MLMs on the SeedBench [19] dataset, evaluated across 25 held-out instruction
templates that are not included in the visual instruction tuning.

Abstract

Current multimodal language model (MLM) training ap-001
proaches overlook the influence of instruction templates.002
Previous research deals with this problem by leverag-003
ing hand-crafted or model-generated instruction templates,004
failing to investigate the scaling effect of instruction tem-005
plates on MLM training. In this work, we propose a pro-006
grammatic instruction template generator capable of pro-007
ducing over 15K unique instruction templates by filling ran-008
domly sampled positional synonyms into weighted sampled009
meta templates, enabling us to comprehensively explore010
MLM’s performance across various template scales in the011
training process. Our investigation into scaling instruction012
templates for MLM training demonstrates that MLM ca-013
pabilities do not consistently improve with increasing tem-014
plate scale. Instead, optimal performance is achieved at015
a medium template scale. Models trained with data aug-016
mented at the optimal template scale achieve performance017

gains of up to 10% over those trained on the original data 018
and achieve the best overall performance compared with 019
the similar-scale MLMs tuned on at most 75 times the scale 020
of our augmented dataset. 021

1. Introduction 022

Multimodal Language Models (MLMs) have revolution- 023
ized vision-language learning by performing visual instruc- 024
tion tuning on diverse, high-quality multimodal instruction 025
data [21, 30, 62, 65]. However, previous studies [32, 48, 61] 026
reveal a critical limitation: MLMs exhibit substantial per- 027
formance variability across different instruction templates 028
(as shown in Figure 2). For instance, a succinct instruc- 029
tion and a detailed instruction can yield performance gaps 030
exceeding 40% [61]. This pronounced sensitivity to instruc- 031
tion templates compromises the reliability of MLM evalua- 032
tion and diminishes the practical utility of MLMs in down- 033
stream applications. 034
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Considering the provided picture, give your answer to the question:
How many towels are in the image?
Here are the selections: (A) One (B) Two (C) Three (D) Four

(B) Two

Model: (A) One

The question related to the provided
image: How many towels are in the image?
Potential choices which include only one
correct answer are:
(A) One (B) Two (C) Three (D) Four

Ground truth: 
(A) One

Ground truth:
(A) One

Model: (B) Two

Considering the provided picture, give
your answer to the question: How many
towels are in the image?
Here are the selections: (A) One (B)
Two (C) Three (D) Four

Input Image

Figure 2. An example of using different instruction templates to
prompt MLM without changing the original QA pairs. The in-
struction templates are marked in blue. Prompting MLM with
different instruction templates can twist the output of MLM.

Recent studies have empirically demonstrated that in-035
corporating multiple instruction templates during MLM’s036
training process improves model performance and reduces037
instruction sensitivity [45, 47, 62]. However, existing ap-038
proaches primarily depend on either human-designed or039
model-generated small-scale templates, which suffer from040
limitations such as high costs, inherent design biases, and041
limited diversity in instruction formulations. Considering042
the success of scaling up training data significantly im-043
proves model’s performance [11, 16] and the fact that multi-044
template training can improve MLM, this raises a critical045
question: How many instruction templates should be used046
during training to optimize MLM performance?047

To investigate the scaling effect of instruction templates048
for MLM training, we propose a programmatic instruc-049
tion template generator that leverages diverse meta tem-050
plates to produce semantically equivalent instruction tem-051
plates automatically and scalably. Our template generator052
can construct diverse instruction templates by random sam-053
pling from carefully curated word and phrase spaces to pop-054

ulate predefined placeholders, enabling the efficient gener- 055
ation of semantically consistent yet diverse instruction tem- 056
plates at scale. Our method can produce an extensive tem- 057
plate space comprising 15K visual instruction templates. To 058
ensure the diversity of sampled instruction templates from 059
our template generator, we use a sentence-pattern tree or- 060
ganizational framework based on grammatical structures 061
complemented by an efficient diverse sampling algorithm. 062
This programmatic approach ensures the generation of in- 063
struction templates that maximize diversity across multi- 064
ple dimensions, including grammatical construction, lexical 065
choice, and symbolic representation. 066

Leveraging our programmatic instruction template gen- 067
erator, we finetune two widely-used MLMs (LLaVA-1.5- 068
7B and LLaVA-1.5-13B) [28] and conduct a series of ex- 069
periments by performing visual instruction tuning on the 070
same dataset while varying the scale of instruction tem- 071
plates (from 10 to 15K). Our study reveals that the per- 072
formance of MLMs does not consistently improve with the 073
increasing scale of instruction templates. Instead, MLMs 074
achieve the best general capabilities at a medium template 075
scale, which varies with the model’s parameter size. We 076
find LLaVA-1.5-7B’s performance peaks at 5K templates 077
and LLaVA-1.5-13B peaks at 100 templates. We further 078
compare our models trained under the optimal template 079
scale with other MLMs fine-tuned on a significantly larger 080
scale—up to 75.19 times the size of our instruction tun- 081
ing datasets. Evaluation across five benchmarks reveals that 082
our tuned models achieve the best overall performance (We 083
showcase the comparison results on the SeedBench [19] 084
dataset in Figure 1), thereby demonstrating the capacity of 085
training with appropriate template scale to enhance MLMs 086
in a data-efficient and cost-effective manner. Additionally, 087
our analysis reveals that, compared to the original model, 088
fine-tuning with the optimal template scale results in a sub- 089
stantial reduction in performance variance across various 090
out-of-domain instruction templates. Our approach not only 091
confirms the practical utility of the scaling effect of instruc- 092
tion templates but also provides promising insights into ef- 093
ficient strategies for improving MLMs. We summarize our 094
main contributions as follows. 095

• We introduce a novel programmatic instruction template 096
generator that enables fast and scalable generation of di- 097
verse, semantically equivalent instruction templates. 098

• We comprehensively investigate the scaling effect of in- 099
struction templates for MLM training, demonstrating that 100
MLM capabilities do not monotonically improve with in- 101
creasing template scale and instead peak at a medium 102
template scale. 103

• We propose a simple yet effective approach to en- 104
hance visual instruction tuning by augmenting the orig- 105
inal instruction tuning dataset with the optimal scale of 106
templates we investigated. Our extensive experiments 107
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demonstrate its effectiveness.108

2. Programmatically Scaling Instruction Tem-109

plates110

To investigate the scaling effect of instruction templates in111
MLM’s visual instruction tuning, we propose a program-112
matic instruction template generator. Our template gener-113
ator can efficiently produce diverse, grammatically correct,114
and semantically consistent instruction templates. Specif-115
ically, we generate instruction templates by programmati-116
cally filling the pre-defined placeholders in a meta template117
with randomly sampled positional synonyms (phrases), en-118
suring flexibility and diversity while keeping the original119
meaning (Sec. 2.1). We organize our meta templates in a120
sentence pattern tree, along with a diverse template sam-121
pling algorithm to ensure the sampling probability across122
all instruction templates is uniformly distributed (Sec. 2.2).123

2.1. Meta Templates124

We design meta template pi, i ∈ {1, ..., N} as a formal125
blueprint for constructing instruction templates, consisting126
of a sequence of fixed string segments interspersed with127

placeholder ⟨h(i)
j ⟩, j ∈ {1, ...,Mi}, where Mi is the num-128

ber of placeholders. We associate each placeholder ⟨h(i)
j ⟩129

with a predefined set of synonyms (phrases) s(i)j . We de-130

sign s
(i)
j according to the semantic position of ⟨h(i)

j ⟩, in-131
cluding nouns, verbs, adjectives, or more abstract functional132
tokens pertinent to the context of the instruction. The po-133
tential template variations T (pi) grow combinatorially as134

T (pi) =
∏Mi

j=1 |s
(i)
j |, where |s(i)j | is the size of each syn-135

onym set. As illustrated in Figure 3, consider the meta136
template, “<verb> me <answer> to the question <re-137
lated> the <image>: {question}”, where each placeholder138
is associated with a predefined set of positional synonyms,139
such as <verb> corresponds to three different candidates:140
“give”, “provide”, and “offer”. When generating templates,141
each placeholder is randomly assigned a candidate, allow-142
ing for diverse instruction templates to be produced. For143
example, one possible generated template is, “give me a144
response to the question concerning the provided image:145
{question}” Fixed strings establish the foundational sen-146
tence structure, ensuring grammatical correctness and se-147
mantic coherence, while placeholders introduce flexibility148
and diversity, enabling the rapid generation of varied, high-149
quality instruction templates. To ensure the diversity of gen-150
erated visual instruction templates, we design 24 meta tem-151
plates, yielding a template space capable of producing 15K152
distinct instruction templates.153

2.2. Diverse Template Sampling154

Sentence pattern tree. We build a sentence pattern tree155
to systematically organize our meta templates. We use156

<verb> me <answer> to the question

<related> the provided <image>: {question}

give me a response to the question

concerning the provided image: {question}

Meta Template

Generated Instruction Template

<verb> <answer> <related> <image>

give

provide
offer

your answer 
the correct
answer
a response

related to
based on
concerning

regarding

image

picture
figure

Positional Synonyms

Figure 3. Example of the instruction template generation through
a meta template.

T = (V,E) to denote the sentence pattern tree, where V 157
is the set of sentence patterns and E is the edge between 158
related sentence patterns. T consists of four levels, ranging 159
from coarse-grained to fine-grained, according to the tax- 160
onomy of sentence patterns. We use level 1 to represent 161
the highest level of a sentence pattern, including declarative 162
and imperative sentences. Level 2 decomposes Level 1 into 163
simple, complex, and compound sentences. Level 3 further 164
breaks Level 2 into subject-predicate, subject-predicate- 165
object, subject-subject, noun clause, gerund clause, and 166
linking clauses. Leaves in the final Level 4 represent the 167
meta templates belonging to the above parent nodes. Build- 168
ing on the sentence pattern tree framework, we can perform 169
weighted sampling on Level 4 according to vertex features 170
from Level 1 to Level 3. 171

Weighted sampling through sentence pattern tree. To 172
achieve diverse sampling across the extensive template 173
space, we implement a top-down weighted sampling ap- 174
proach within the sentence pattern tree. Specifically, our 175
approach begins by assigning a weight to each tree node. 176
The weight of each leaf node ℓ(i) corresponds to the num- 177
ber of potential templates that can be generated by the as- 178
sociated meta template pi. These weights accumulate pro- 179
gressively up each level of the tree. The weight wv of each 180
node v ∈ V at any level represents the sum of weights of 181
its descendant nodes in the next level. The detailed proce- 182
dure for weight accumulation is outlined in Algorithm 1. 183
During the template sampling process, we select nodes in 184
a top-down manner, with the probability of sampling each 185
node v at a given level proportional to wv . Upon reaching a 186
leaf node corresponding to a meta template, we program- 187
matically fill the placeholders in the meta template with 188
randomly selected positional synonyms. This process en- 189
sures that the sampling probability across all instruction 190
templates remains uniform, promoting diversity in gener- 191
ated templates while preserving the semantic consistency 192
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Algorithm 1 Weight Accumulation

1: procedure ACCUMULATEWEIGHTS(T )
2: for each leaf node v in T do
3: w(v)← NumTemplates(v) ▷ Set weight to

number of potential generated templates in the leaf
4: end for
5: for each non-leaf node v in T in reverse topological

order do
6: C ← children(v) ▷ Retrieve children of v
7: w(v)←

∑
c∈C w(c) ▷ Sum the weights of

child nodes
8: end for
9: return T ▷ Return tree with accumulated weights

10: end procedure

Algorithm 2 Weighted Sampling and Template Generation

1: procedure GENERATETEMPLATE(T )
2: v ← v0 ▷ Initialize at the root node of T
3: while v is not a leaf node do
4: C ← children(v) ▷ Retrieve child nodes of v
5: W ← {w(c) : c ∈ C} ▷ Collect weights of

child nodes
6: v ←WeightedRandomChoice(C,W ) ▷ Select

a child node based on weights
7: end while
8: p← pattern(v) ▷ Retrieve the meta template from

the selected leaf node
9: for each placeholder ⟨hj⟩ in p do

10: Sj ← synonyms(⟨hj⟩) ▷ Retrieve synonyms
for the placeholder

11: sj ← UniformRandomChoice(Sj) ▷
Randomly select a synonym

12: Replace ⟨hj⟩ in p with sj ▷ Substitute
placeholder with synonym

13: end for
14: return p ▷ Return the constructed instruction

template
15: end procedure

of each instruction template. We describe details of the193
weighted sampling algorithm in Algorithm 2.194

3. Investigating Scaling Instruction Templates195

on MLM Training196

To investigate the scaling effect of instruction templates in197
MLM’s visual instruction tuning, we train multiple model198
variants using the same instruction tuning dataset while199
varying the scale of instruction templates. We then evalu-200
ate these template-tuned models across various benchmark201
datasets to observe the impact of the instruction template202
scale on MLM performance. We first present our experi-203

mental setup (Sec 3.1), followed by the experimental results 204
and analysis (Sec 3.2). 205

3.1. Experiment Setup 206

Training configurations. We trained our template-tuned 207
models based on the two pretrained checkpoints: LLaVA- 208
1.5-7B-Base and LLaVA-1.5-13B-Base, which are strong 209
starting points for visual instruction tuning due to the open- 210
source nature of data and models in this series. We used 211
Low-Rank Adaptation (LoRA) [15] to train all models un- 212
der the same hyperparameter settings. We used a batch size 213
of 128 and a learning rate of 2 × 10−5 with a cosine decay 214
schedule. The learning rate warmup ratio is set to 0.03. We 215
used the AdamW [34] optimizer and performed fine-tuning 216
with DeepSpeed1 at stage 3. We trained all models with 16 217
× A100 (40G). 218

Scaling instruction templates in training data. We con- 219
structed six template-augmented versions of the original 220
665K-scale multimodal instruction-following data2 (pro- 221
vided by the LLaVA-1.5 series) by applying randomly sam- 222
pled 10, 100, 1K, 5K, 10K, and 15K templates from our pro- 223
grammatic template generator. Without introducing addi- 224
tional data sources, we applied instruction templates to the 225
instruction part of the training data, resulting in template- 226
diversified training datasets that maintain the same size as 227
the original. The enhanced datasets were subsequently used 228
to finetune the pretrained LLaVA-1.5-7B-Base and LLaVA- 229
1.5-13B-Base models. We trained a total of twelve models, 230
comprising six models with 7B parameters and six models 231
with 13B parameters. 232

Benchmark datasets. To comprehensively examine the 233
performance of our template-tuned models trained with dif- 234
ferent template scales across diverse tasks and domains, 235
we conduct the evaluation using five popular Visual Ques- 236
tion Answering (VQA) benchmark datasets: BLINK [12], 237
SeedBench [19], MMBench [33], TaskMeAnything [61], 238
and MMMU [60]. Each data point in the above bench- 239
mark datasets contains an image or multiple images, a ques- 240
tion, several choices, and a correct answer. We filter these 241
datasets to retain only the single-image samples for our 242
evaluation. Specifically, we randomly select 100 data points 243
for each dataset according to their category distribution, 244
then combine each data point with instruction templates 245
to test. To evaluate the robustness of these template-tuned 246
models, we conducted evaluations under the following two 247
evaluation template settings. 248

(1) In-domain templates: We generated 100 templates us- 249
ing our template generator, which our template-tuned mod- 250
els have encountered during training. 251

1https://github.com/microsoft/DeepSpeed
2https : / / huggingface . co / datasets / liuhaotian /

LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665K.
json
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(a) Evaluation of 7B models on in-domain templates.
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(b) Evaluation of 7B models on out-of-domain templates.
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(c) Evaluation of 13B models on in-domain templates.
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(d) Evaluation of 13B models on out-of-domain templates.

Figure 4. Scaling trends of MLM performance with increasing template scale on each benchmark dataset. We also show the performance
spread across models and datasets. Optimal template scale vary across different datasets.

(2) Out-of-domain templates: To assess the generaliza-252
tion ability of these template-tuned models, we manually253
wrote 25 templates that are outside the template space of254
our instruction template generator. These templates serve255
as a held-out set for evaluation.256

Populating evaluation data with the two template sets257
yields two new templated benchmark datasets with 10K and258
2.5K samples for each original dataset.259

Evaluation Protocol. We fix the choice order according260
to the original dataset to eliminate this confounder and fo-261
cus solely on the effects of template scale on model perfor-262
mance [64]. To retrieve answers from MLMs’ replies, we263
follow [61] and adopt a two-step approach. First, we ap-264
ply a string-matching algorithm to determine if the model’s265
output matches any of three specific option representations:266
(1) the option identifier, e.g., (A); (2) the option content,267
e.g., cat; or (3) both the identifier and the name, e.g., (A)268
cat. If no direct match is identified, we employ a sentence-269
transformer [46] to calculate the embedding similarity be-270

tween the model’s output and each answer option, selecting 271
the option with the highest similarity as the predicted an- 272
swer. We adopt the answer accuracy on each dataset as our 273
evaluation metric. 274

3.2. Comparing MLMs on Different Template 275
Scales 276

Figure 4 provides detailed scaling curves of MLM perfor- 277
mance with increasing template scale on each individual 278
benchmark, while Figure 5 illustrates the scaling curves of 279
the average performance across all datasets with increasing 280
template scale. These results reveal three main findings. 281

Training with diverse templates can improve MLMs. As 282
illustrated in Figure 4 and Figure 5, models trained with 283
a diverse range of instruction templates, spanning from 10 284
to 15K templates, consistently outperform those trained ex- 285
clusively on the original instruction tuning data. This im- 286
provement is clearly observable in both the average per- 287
formance and individual performance across all five bench- 288
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(a) 7B models on in-domain tem-
plates.
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(b) 7B models on out-of-domain tem-
plates.
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(c) 13B models on in-domain tem-
plates.
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(d) 13B models on out-of-domain
templates.

Figure 5. Scaling trend of MLM performance with increasing template scale on the average performance across five benchmarks. There
exists an optimal template scale for MLM’s general capabilities, with stronger models requiring a smaller template scale.

mark datasets. Furthermore, this trend holds true for mod-289
els with varying parameter sizes (7B and 13B) and remains290
consistent for both in-domain and out-of-domain evaluation291
template settings. These results highlight the value of our292
exploration into the scaling effects of instruction templates293
in MLM training, showing that incorporating a broader set294
of instruction templates can lead to more robust and gener-295
alized model performance.296

Optimal template scale vary across datasets. As shown297
in Figure 4, the scaling trend of MLM performance with298
increasing template scale exhibits significant variability299
across different datasets, with the optimal template scale300
differing for each dataset. Furthermore, we observed that an301
inappropriate template scale can lead to a decrease in per-302
formance or an increase in performance fluctuation range303
compared to the original model on certain datasets, high-304
lighting the significance of finding the optimal template305
scale to improve model performance.306

MLM capability presents clear scaling trend with in-307
creasing template scale. As illustrated in Figure 5, the308
model’s average performance across all five datasets ex-309
hibits a consistent scaling trend, initially increasing before310
declining, with peak performance achieved at a medium311
template scale. This trend holds across different model312
sizes (7B and 13B parameters) and evaluation settings (in-313
domain and out-of-domain templates). However, the op-314
timal template scale varies depending on model capacity:315
the 7B model reaches peak performance at 5K templates,316
whereas the 13B model achieves its best results at a signifi-317
cantly smaller scale of 100 templates. This discrepancy sug-318
gests that models with stronger baseline capabilities (e.g.,319
the 13B model) require fewer templates to attain optimal320
performance. Furthermore, while Figure 4 demonstrates321
that model performance exhibits dataset-specific variabil-322
ity at smaller template scales, the performance consistently323
declines as the template scale increases beyond a certain324
threshold, demonstrating that the optimal template scale lies325
within a medium range, eliminating the need for exhaustive326
large-scale searches.327

4. Visual Instruction Tuning on the Optimal 328

Template Scale 329

To demonstrate the practical impact of the scaling effect of 330
instruction templates for MLM’s visual instruction tuning, 331
we compare the performance of our template-tuned models 332
trained on the optimal template scale against other promi- 333
nent MLMs of similar parameter sizes. We first outline the 334
experimental setup (Sec. 4.1), then detail the comparison 335
results and analysis (Sec. 4.2). 336

4.1. Experiment Setup 337

Our method. We selected our best-performing template- 338
tuned models—LLaVA-1.5-7B trained with 5K templates, 339
and LLaVA-1.5-13B trained with 100 templates—to com- 340
pare against other prominent MLMs of comparable scales. 341
Baselines. To establish our baseline models, we used 342
original visual instruction data to perform conventional 343
visual instruction tuning on the LLaVA-1.5-7B-Base and 344
LLaVA-1.5-13B-Base models, yielding LLaVA-1.5-7B and 345
LLaVA-1.5-13B [28], which serve as our primary baseline 346
models. In addition, for the 7B parameter size, we se- 347
lected LLaVA-Next-7B [29], Qwen-VL-7B and Qwen-VL- 348
Chat-7B [3], and IDEFICS2-8B [17] as additional baseline 349
models; for the 13B parameter size, we selected LLaVA- 350
Next-13B [29] as an additional baseline model. Notably, as 351
shown in Table 1, each of these additional baseline models 352
was finetuned on a substantially larger training dataset than 353
ours. We evaluate all models under the same evaluation pro- 354
tocol to ensure fair comparisons. 355
Benchmark datasets. We evaluated on the BLINK, MM- 356
Bench, Seedbench, TaskMeAnything, and MMMU 357
datasets. For consistency, we employed both in- 358
domain templates and out-of-domain templates in 359
Sec. 3.1 as evaluation templates. To further mea- 360
sure the ease of use of the template-tuned models, 361
we selected three most commonly-used simple tem- 362
plates in VQA tasks: (1) {question}\n{choices}, 363
(2) Question: {question}\nChoices: {choices}, and 364
(3) Question: {question}\nSelect from the following 365
choices: {choices}. 366
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Model # IT-Data
BLINK MMB SeedB TMA MMMU

Overall
S ID OOD S ID OOD S ID OOD S ID OOD S ID OOD

7B / 8B Models

Avg. 43.67 37.26 38.72 70.00 68.55 69.20 60.67 57.35 56.16 37.00 42.94 42.60 36.67 37.19 36.16 48.94
LLaVA-1.5-7B 665K

Max-Min 8.00 15.00 15.00 18.00 16.00 9.00 5.00 18.00 16.00 14.00 26.00 18.00 4.00 14.00 13.00 13.93

Avg. 45.33 38.92 37.64 62.67 60.43 58.08 70.00 65.29 62.16 50.67 44.06 44.60 33.67 31.51 29.24 48.95
LLaVA-Next-7B 760k

Max-Min 7.00 16.00 12.00 10.00 20.00 9.00 2.00 18.00 10.00 16.00 17.00 11.00 2.00 18.00 8.00 11.73

Avg. 36.00 34.44 34.04 50.07 47.51 47.16 30.67 29.66 28.80 31.67 29.76 30.76 25.67 28.06 28.40 34.18
Qwen-VL-7B 50M

Max-Min 4.00 9.00 8.00 3.00 11.00 11.00 10.00 17.00 12.00 9.00 19.00 14.00 2.00 17.09 11.00 10.47

Avg. 31.67 40.09 40.28 62.67 74.02 75.16 56.00 58.77 58.32 39.33 51.55 51.48 39.00 36.49 36.36 50.08
Qwen-VL-Chat-7B 50M

Max-Min 4.00 21.00 20.00 3.00 17.00 14.00 2.00 20.00 13.00 8.00 17.00 12.00 10.00 16.00 10.00 12.47

Avg. 39.33 45.97 46.36 71.00 70.73 70.28 43.33 53.36 54.04 36.00 47.40 46.20 29.33 27.48 28.36 47.28
IDEFICS2-8B 1.8M

Max-Min 4.00 17.00 10.00 6.00 11.00 9.00 7.00 16.00 17.00 8.00 20.00 17.00 3.00 14.00 11.00 11.33

Avg. 46.33 43.19 45.44 68.67 71.66 73.20 64.33 65.13 64.16 52.00 51.78 52.64 39.33 37.46 37.32 54.18
LLaVA-1.5-7B w/ 5K templates 665K

Max-Min 5.00 13.00 2.55 10.00 12.00 8.00 3.00 11.00 6.00 4.00 22.00 10.00 9.00 11.00 6.00 8.84

13B Models

Avg. 40.00 38.75 41.20 72.33 73.42 71.24 67.00 68.87 66.92 54.00 52.38 52.24 37.33 39.00 37.20 54.13
LLaVA-1.5-13B 665K

Max-Min 7.00 16.00 14.00 3.00 12.00 6.00 5.00 9.00 10.00 8.00 16.00 15.00 6.00 16.00 10.00 10.20

Avg. 39.67 40.72 38.16 64.67 63.47 63.40 68.33 68.76 66.88 54.67 51.53 47.68 31.00 33.23 33.80 51.06
LLaVA-Next-13B 760k

Max-Min 1.00 15.00 13.00 9.00 19.00 15.00 1.00 12.00 11.00 5.00 21.00 14.00 2.00 21.00 10.00 11.27

Avg. 37.67 41.22 42.68 70.00 73.88 74.68 69.33 69.37 69.48 51.33 50.49 50.68 39.67 43.21 44.40 55.21
LLaVA-1.5-13B w/ 100 templates 665K

Max-Min 14.00 15.00 8.00 12.00 10.00 10.00 3.00 7.00 5.00 1.00 12.00 5.00 7.00 15.00 15.00 9.27

Table 1. Comparison of our tuned models trained under the optimal template scale against similar-scale MLMs. Avg. denotes the average
accuracy and Max-Min denotes the difference between best and worst accuracy across all templates. # IT-Data is the size of instruction
tuning data the model used. S indicates the evaluation of three commonly used simple templates, ID refers to the evaluation of 100
instruction templates that our template-tuned model has encountered during training, and OOD denotes the evaluation of 25 manually
crafted templates not included in our instruction template generator’s template space. The best results are marked in red bold and the
second best in blue. Training with optimal template scale can boost performance across most benchmarks.

Evaluation Protocol. In this section, our evaluation set-367
tings are consistent with those in Sec. 3.1. For the eval-368
uation metric, in addition to the answer accuracy, we fol-369
low [48] and report the range (Max-Min) between the best370
and worst accuracy across all evaluation instruction tem-371
plates to quantify MLM’s performance fluctuation to in-372
struction template variations.373

4.2. Main Results374

As presented in Table 1, we compare the performance of375
our tuned 7B and 13B models, which we trained with the376
optimal template scale, against several prominent MLMs of377
similar scale, revealing the following two key findings.378

Training on the optimal template scale significantly379
enhances MLM’s performance without increasing the380
scale of training data. Compared to LLaVA-1.5-7B381
and LLaVA-1.5-13B, which utilize the same pretrained382
models as our template-tuned models but rely on origi-383
nal instruction tuning data, training with the optimal tem-384
plate scale achieves substantial performance improvements385
across most datasets in all three evaluation settings. Ad-386
ditionally, our tuned models trained with the optimal tem-387
plate scale outperforms other prominent MLMs of similar388
scale, despite these models being trained on significantly389

larger datasets (up to 75.19 times larger). This underscores 390
the efficiency and effectiveness of our approach of training 391
MLMs with the optimal template scale to achieve superior 392
performance without the need for extensive data scaling. 393
By focusing on the quality and diversity of instruction tem- 394
plates rather than the quantity of training data, our method 395
demonstrates a more resource-efficient pathway to enhanc- 396
ing visual instruction tuning. 397

Training on the optimal template scale significantly mit- 398
igates MLM’s sensitivity to diverse instruction tem- 399
plates. Compared to LLaVA-1.5-7B and LLaVA-1.5-13B, 400
which rely on original instruction tuning data, our approach 401
of training MLMs under the optimal template scale not 402
only achieves superior overall performance but also sig- 403
nificantly reduces the performance fluctuation range (Max- 404
Min) across multiple evaluation instruction templates in 405
most cases. This reduction in fluctuation range indicates 406
that training on the optimal template scale enhances model 407
stability and adaptability when faced with varying instruc- 408
tion formats, a critical requirement for real-world applica- 409
tions where input instructions can vary widely. Further- 410
more, when compared to other prominent MLMs of similar 411
scale, our tuned models trained with the optimal template 412
scale consistently exhibit a lower performance fluctuation 413
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range. This consistency holds true across both in-domain414
(ID) and out-of-domain (OOD) instruction template set-415
tings, demonstrating the robustness of our approach across416
diverse evaluation scenarios. However, counterexamples417
are more likely to arise with commonly used simple tem-418
plates (S), likely due to the limited diversity of only three419
evaluation templates. Notably, even when evaluated using420
manually crafted out-of-domain templates—which lie en-421
tirely outside the template space of our instruction template422
generator, our template-tuned models frequently demon-423
strate a smaller performance fluctuation range. This ob-424
servation underscores the ability of training on the optimal425
template scale to generalize beyond the specific instruction426
templates encountered during training, rather than merely427
memorizing them.428

5. Related Work429

Multimodal language model. In recent years, multi-430
modal language models (MLMs) have advanced visual-431
language learning by integrating visual encoders within432
various pretrained large language models [2, 4, 6, 7, 20,433
25, 31, 35, 38, 42, 44, 49–53, 55, 58]. With the in-434
creasing availability of open-sourced LLM backbones and435
extensive visual instruction-tuning data, models like the436
BLIP series [10, 22, 23, 43, 58], QwenVL series [3, 56],437
LLaVA series [27, 29, 30], and InternVL series [8, 9], have438
achieved unprecedented performance in a wide range of vi-439
sual tasks [1, 26, 37, 39, 57, 59, 63]. These models, which440
take both visual content and language as input and output441
language, are now considered a new type of foundation442
model with exceptional visual understanding capabilities.443
However, these MLMs largely overlooked the significance444
of instruction templates of prompts, resulting in unreliable,445
unstable evaluation results.446
Influence of template perturbation. Recent research il-447
lustrated how prompt perturbations affect the performance448
and robustness of large language models (LLMs) and449
MLMs [13, 14, 36, 40, 66]. Liang et al. [24] performed450
a comprehensive examination of MLM outputs under di-451
verse prompt designs, emphasizing the importance of sys-452
tematic evaluation to ensure MLM robustness. Liu et al.453
[32] highlight that MLMs often produce incorrect responses454
when presented with nuanced, leading questions, underlin-455
ing their susceptibility to prompt design variations. To solve456
this problem, Chatterjee et al. [5] propose a prompt sen-457
sitivity index method that captures the relative change in458
log-likelihood of the given prompts, making it a more re-459
liable measure of prompt sensitivity. Some former meth-460
ods [18, 41, 54] also have proposed to extend the evaluation461
benchmarks from a single prompt to multiple variants for462
each prompt. However, these former methods are all based463
on hand-crafted methods, which are not comprehensive464
enough to evaluate LLMs and MLMs. Meanwhile, most465

existing benchmarks, such as BLINK [12], SeedBench [19], 466
MMBench [33], TaskMeAnything [61], and MMMU [60], 467
still keep using a single template of the prompts for the per- 468
formance evaluation. 469

6. Discussion 470

6.1. Limitation 471

Designing the template space requires manual effort. 472
The development of meta templates and the association of 473
placeholders with synonyms demand minimal manual in- 474
tervention. Despite the automation of template generation, 475
ensuring semantic consistency and grammatical correctness 476
across diverse templates demands human checking. 477
An inappropriate template scale during training can de- 478
grade model performance on specific datasets. The re- 479
sults in Sec. 3 indicate that models achieve peak perfor- 480
mance at a medium template scale, which varies based on 481
model scale. Disproportionate scaling templates can lead to 482
performance variability and generalization challenges. 483

6.2. Future Work 484

Budget-constrained instruction template optimization 485
tailored to specific models and tasks. For a specific model 486
and dataset, it is practical and valuable to identify the most 487
effective instruction template from a large pool of prede- 488
fined options within a constrained computational budget. 489
Our future work will explore developing efficient meth- 490
ods for optimizing instruction templates to enhance task- 491
specific model performance. 492
Enhancing the generalization of template-augmented 493
training. The conclusions present in Sec. 3 highlight the 494
limitations of our approach when faced with an inappro- 495
priate template scale. To address this, our future research 496
will explore developing advanced techniques to enhance 497
the generalization capabilities of our template augmentation 498
methods, ensuring its robustness across diverse scenarios 499
and benchmark datasets. 500

7. Conclusion 501

We introduced a programmatic instruction template gener- 502
ator to efficiently produce diverse, high-quality instruction 503
templates at scale, aimed at investigating the scaling effect 504
of instruction templates for MLM’s visual instruction tun- 505
ing. Our investigation into scaling instruction templates for 506
MLM training showed that MLM capabilities did not mono- 507
tonically improve with increasing template scale and in- 508
stead peaked at a medium template scale, which varies with 509
the model’s parameter size. Additionally, using this instruc- 510
tion template generator, we proposed a simple yet effective 511
method to improve visual instruction tuning by augmenting 512
the original instruction tuning dataset at the optimal tem- 513
plate scale, offering an efficient and cost-effective solution 514
to improve MLMs. 515
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[17] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor 593
Sanh. What matters when building vision-language models? 594
arXiv preprint arXiv:2405.02246, 2024. 595

[18] Alina Leidinger, Robert Van Rooij, and Ekaterina Shutova. 596
The language of prompting: What linguistic properties make 597
a prompt successful? arXiv preprint arXiv:2311.01967, 598
2023. 599

[19] Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix- 600
iao Ge, and Ying Shan. Seed-bench: Benchmarking mul- 601
timodal llms with generative comprehension. arXiv preprint 602
arXiv:2307.16125, 2023. 603

[20] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi 604
Pu, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Mimic-it: 605
Multi-modal in-context instruction tuning, 2023. 606

[21] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng 607
Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and 608
Chunyuan Li. Llava-onevision: Easy visual task transfer. 609
arXiv preprint arXiv:2408.03326, 2024. 610

[22] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. 611
Blip: Bootstrapping language-image pre-training for unified 612
vision-language understanding and generation. In ICML, 613
2022. 614

[23] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 615
BLIP-2: bootstrapping language-image pre-training with 616
frozen image encoders and large language models. In ICML, 617
2023. 618

[24] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, 619
Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak 620
Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evalu- 621
ation of language models. arXiv preprint arXiv:2211.09110, 622
2022. 623

[25] Kevin Lin, Faisal Ahmed, Linjie Li, Chung-Ching Lin, 624
Ehsan Azarnasab, Zhengyuan Yang, Jianfeng Wang, Lin 625
Liang, Zicheng Liu, Yumao Lu, Ce Liu, and Lijuan Wang. 626
Mm-vid: Advancing video understanding with gpt-4v(ision), 627
2023. 628

[26] Weifeng Lin, Xinyu Wei, Ruichuan An, Peng Gao, Bocheng 629
Zou, Yulin Luo, Siyuan Huang, Shanghang Zhang, and 630

9



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Hongsheng Li. Draw-and-understand: Leveraging visual631
prompts to enable mllms to comprehend what you want.632
arXiv preprint arXiv:2403.20271, 2024.633

[27] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.634
Improved baselines with visual instruction tuning, 2023.635

[28] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.636
Improved baselines with visual instruction tuning. In Pro-637
ceedings of the IEEE/CVF Conference on Computer Vision638
and Pattern Recognition, pages 26296–26306, 2024.639

[29] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan640
Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Im-641
proved reasoning, ocr, and world knowledge, 2024.642

[30] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.643
Visual instruction tuning. Advances in neural information644
processing systems, 36, 2024.645

[31] Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei646
Xiao, and Anima Anandkumar. Prismer: A vision-language647
model with multi-task experts, 2024.648

[32] Yexin Liu, Zhengyang Liang, Yueze Wang, Muyang He, Jian649
Li, and Bo Zhao. Seeing clearly, answering incorrectly: A650
multimodal robustness benchmark for evaluating mllms on651
leading questions. arXiv preprint arXiv:2406.10638, 2024.652

[33] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang653
Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,654
Ziwei Liu, et al. Mmbench: Is your multi-modal model an655
all-around player? In European Conference on Computer656
Vision, pages 216–233. Springer, 2025.657

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay658
regularization. In Proceedings of the International Confer-659
ence on Learning Representations, 2019.660

[35] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei661
Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao.662
Chameleon: Plug-and-play compositional reasoning with663
large language models, 2023.664

[36] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and665
Pontus Stenetorp. Fantastically ordered prompts and where666
to find them: Overcoming few-shot prompt order sensitivity.667
arXiv preprint arXiv:2104.08786, 2021.668

[37] Yulin Luo, Ruichuan An, Bocheng Zou, Yiming Tang, Ji-669
aming Liu, and Shanghang Zhang. Llm as dataset ana-670
lyst: Subpopulation structure discovery with large language671
model. arXiv preprint arXiv:2405.02363, 2024.672

[38] Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting673
Huang, Bingshuai Liu, Zefeng Du, Shuming Shi, and674
Zhaopeng Tu. Macaw-llm: Multi-modal language modeling675
with image, audio, video, and text integration, 2023.676

[39] Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and677
Ranjay Krishna. m&m’s: A benchmark to evaluate tool-use678
for multi-step multi-modal tasks. In Synthetic Data for Com-679
puter Vision Workshop@ CVPR 2024, 2024.680

[40] Aman Madaan, Katherine Hermann, and Amir Yazdan-681
bakhsh. What makes chain-of-thought prompting effec-682
tive? a counterfactual study. In Findings of the Association683
for Computational Linguistics: EMNLP 2023, pages 1448–684
1535, 2023.685

[41] Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror,686
Dafna Shahaf, and Gabriel Stanovsky. State of what art? a687

call for multi-prompt llm evaluation. Transactions of the As- 688
sociation for Computational Linguistics, 12:933–949, 2024. 689

[42] Michael Moor, Qian Huang, Shirley Wu, Michihiro Ya- 690
sunaga, Cyril Zakka, Yash Dalmia, Eduardo Pontes Reis, 691
Pranav Rajpurkar, and Jure Leskovec. Med-flamingo: a mul- 692
timodal medical few-shot learner, 2023. 693

[43] Artemis Panagopoulou, Le Xue, Ning Yu, Junnan Li, 694
Dongxu Li, Shafiq R. Joty, Ran Xu, Silvio Savarese, Caim- 695
ing Xiong, and Juan Carlos Niebles. X-instructblip: A 696
framework for aligning x-modal instruction-aware represen- 697
tations to llms and emergent cross-modal reasoning. ArXiv, 698
abs/2311.18799, 2023. 699

[44] Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan 700
Huang, Shuming Ma, and Furu Wei. Kosmos-2: Grounding 701
multimodal large language models to the world, 2023. 702

[45] Amirhossein Razavi, Mina Soltangheis, Negar Arabzadeh, 703
Sara Salamat, Morteza Zihayat, and Ebrahim Bagheri. 704
Benchmarking prompt sensitivity in large language models. 705
arXiv preprint arXiv:2502.06065, 2025. 706

[46] N Reimers. Sentence-bert: Sentence embeddings using 707
siamese bert-networks. arXiv preprint arXiv:1908.10084, 708
2019. 709

[47] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, 710
Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Ar- 711
naud Stiegler, Teven Le Scao, Arun Raja, et al. Multi- 712
task prompted training enables zero-shot task generalization. 713
arXiv preprint arXiv:2110.08207, 2021. 714

[48] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. 715
Quantifying language models’ sensitivity to spurious fea- 716
tures in prompt design or: How i learned to start worrying 717
about prompt formatting. In The Twelfth International Con- 718
ference on Learning Representations, 2023. 719

[49] Mustafa Shukor, Corentin Dancette, Alexandre Rame, and 720
Matthieu Cord. Unival: Unified model for image, video, 721
audio and language tasks, 2023. 722

[50] Guangzhi Sun, Wenyi Yu, Changli Tang, Xianzhao Chen, 723
Tian Tan, Wei Li, Lu Lu, Zejun Ma, and Chao Zhang. Fine- 724
grained audio-visual joint representations for multimodal 725
large language models, 2023. 726

[51] Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying 727
Yu, Zhengxiong Luo, Yueze Wang, Yongming Rao, Jingjing 728
Liu, Tiejun Huang, and Xinlong Wang. Generative multi- 729
modal models are in-context learners, 2024. 730

[52] Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong 731
Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun 732
Huang, and Xinlong Wang. Emu: Generative pretraining in 733
multimodality, 2024. 734

[53] Yunlong Tang, Jinrui Zhang, Xiangchen Wang, Teng Wang, 735
and Feng Zheng. Llmva-gebc: Large language model with 736
video adapter for generic event boundary captioning, 2023. 737

[54] Anton Voronov, Lena Wolf, and Max Ryabinin. Mind your 738
format: Towards consistent evaluation of in-context learning 739
improvements. arXiv preprint arXiv:2401.06766, 2024. 740

[55] Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai, 741
Lu Yuan, Zuxuan Wu, and Yu-Gang Jiang. Chatvideo: A 742
tracklet-centric multimodal and versatile video understand- 743
ing system, 2023. 744

10



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[56] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,745
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin746
Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui747
Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Jun-748
yang Lin. Qwen2-vl: Enhancing vision-language model’s749
perception of the world at any resolution. arXiv preprint750
arXiv:2409.12191, 2024.751

[57] Weizhi Wang, Khalil Mrini, Linjie Yang, Sateesh Kumar,752
Yu Tian, Xifeng Yan, and Heng Wang. Finetuned multi-753
modal language models are high-quality image-text data fil-754
ters. arXiv preprint arXiv:2403.02677, 2024.755

[58] Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan,756
Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yutong757
Dai, Michael S Ryoo, Shrikant B. Kendre, Jieyu Zhang, Can758
Qin, Shu Zhen Zhang, Chia-Chih Chen, Ning Yu, Juntao759
Tan, Tulika Awalgaonkar, Shelby Heinecke, Huan Wang,760
Yejin Choi, Ludwig Schmidt, Zeyuan Chen, Silvio Savarese,761
Juan Carlos Niebles, Caiming Xiong, and Ran Xu. xgen-mm762
(blip-3): A family of open large multimodal models. ArXiv,763
abs/2408.08872, 2024.764

[59] Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan,765
Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yu-766
tong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A767
family of open large multimodal models. arXiv preprint768
arXiv:2408.08872, 2024.769

[60] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi770
Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming771
Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline772
multimodal understanding and reasoning benchmark for ex-773
pert agi. In Proceedings of the IEEE/CVF Conference774
on Computer Vision and Pattern Recognition, pages 9556–775
9567, 2024.776

[61] Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong777
He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha778
Kembhavi, and Ranjay Krishna. Task me anything. arXiv779
preprint arXiv:2406.11775, 2024.780

[62] Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai781
Huang, Manli Shu, An Yan, Zixian Ma, Juan Carlos Niebles,782
Silvio Savarese, et al. Provision: Programmatically scaling783
vision-centric instruction data for multimodal language mod-784
els. arXiv preprint arXiv:2412.07012, 2024.785

[63] Qizhe Zhang, Bocheng Zou, Ruichuan An, Jiaming Liu, and786
Shanghang Zhang. Split & merge: Unlocking the poten-787
tial of visual adapters via sparse training. arXiv preprint788
arXiv:2312.02923, 2023.789

[64] Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and790
Minlie Huang. On large language models’ selection bias in791
multi-choice questions. arXiv preprint arXiv:2309.03882,792
2023.793

[65] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-794
hamed Elhoseiny. Minigpt-4: Enhancing vision-language795
understanding with advanced large language models. arXiv796
preprint arXiv:2304.10592, 2023.797

[66] Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong798
Duan, Dahua Lin, and Kai Chen. Prosa: Assessing and un-799
derstanding the prompt sensitivity of llms. arXiv preprint800
arXiv:2410.12405, 2024.801

11


	Introduction
	Programmatically Scaling Instruction Templates
	Meta Templates
	Diverse Template Sampling

	Investigating Scaling Instruction Templates on MLM Training
	Experiment Setup
	Comparing MLMs on Different Template Scales

	Visual Instruction Tuning on the Optimal Template Scale
	Experiment Setup
	Main Results

	Related Work
	Discussion
	Limitation
	Future Work

	Conclusion

