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ABSTRACT

Understanding visual semantics embedded in consecutive characters is a crucial
capability for both large language models (LLMs) and multi-modal large language
models (MLLMs). This type of artifact possesses the unique characteristic that
identical information can be readily formulated in both texts and images, mak-
ing them a significant proxy for analyzing modern LLMs’ and MLLMs’ capabil-
ities in modality-agnostic vision understanding. In this work, we select ASCII
art as a representative artifact, where the lines and brightness used to depict each
concept are rendered by characters, and we frame the problem as an ASCII art
recognition task. We benchmark model performance on this task by construct-
ing an evaluation dataset with an elaborate categorization tree and also collect
a training set to elicit the models’ visual perception ability. Through a compre-
hensive analysis of dozens of models, results reveal that although humans can
achieve nearly 100% accuracy, the state-of-the-art LLMs and MLLMs lag far be-
hind. Models are capable of recognizing concepts depicted in the ASCII arts given
only text inputs indicated by over 60% accuracy for some concepts, but most of
them achieves merely around 30% accuracy when averaged across all categories.
When provided with images as inputs, GPT-4o gets 82.68%, outperforming the
strongest open-source MLLM by 21.95%. Although models favor different kinds
of ASCII art depending on the modality provided, none of the MLLMs success-
fully benefit when both modalities are supplied simultaneously. Moreover, super-
vised fine-tuning helps improve models’ accuracy especially when provided with
the image modality, but also highlights the need for better training techniques to
enhance the information fusion among modalities. All resources are available at
https://anonymous.4open.science/r/VisionInText-08D3.

1 INTRODUCTION

While conventional wisdom suggests that texts primarily function as carriers of linguistic informa-
tion and images as conveyors of visual information, real-world scenarios often involve the inte-
gration of multiple information formats. For example, images may carry textual information, thus
Optical Character Recognition (OCR) (Mori et al., 1992) has been extensively studied. It focuses on
capturing and understanding linguistic information embedded in images through visual processors,
which is a crucial ability required in modern models for visual reasoning tasks (Yu et al., 2023).

In contrast, the comprehension of visual information embedded within text strings has not received
commensurate attention. One representative example that reflects visual semantics by a sequence
of characters is ASCII art (Xu et al., 2016) as shown in Fig. 1. Visual information in these artifacts
is situated in the middle of text strings and images, and can be readily expressed in both formats
containing identical content. In other words, it is modality-agnostic.

Understanding how well models can capture visual semantics in text modality is significant for de-
veloping large language models (LLMs) (Dubey et al., 2024; Bai et al., 2023a). Upon pre-training on
a vast amount of text corpus, language models are capable of capturing visual information through
escape characters, such as “\n” and “\t”, which encodes 2D structures in human writings. How-
ever, they were predominately assessed via textual-semantic-based evaluation benchmarks, without
detailed analysis on its visual perception ability. ASCII art, where information can be fully repre-
sented in text strings, serves as an ideal tool for benchmarking LLMs’ visual perception ability.
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```

Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. Tigger B. Spiderman
C. Pochacco D. Gopher
Answer with the option's letter from the given 
choices directly.

animals & natural ➜ animal ➜ dog

objects ➜ object ➜ umbrella

smileys & people ➜ character ➜ Spiderman

```
,--------------------

-------,\n | /--------
-------------\\ |\n | 
| | |\n | | |……
```

objects ➜ electronics ➜ computer

Figure 1: Examples of ASCII art. The left side contains text and image modalities of ASCII art
pieces under different categories, where the texts are reformatted and truncated due to space limita-
tion. The right side presents a multiple choice question in ASCIIEVAL.

Besides, with the advent of multi-modal large language models (MLLMs) (Achiam et al., 2023; Reid
et al., 2024; Anthropic, 2024) that arm LLMs with visual processors, the aforementioned modality-
agnostic characteristic also naturally leads to a new perspective of understanding MLLMs. The
modality-agnostic feature of ASCII art ensures that both vision and text modalities have the identical
semantics, which encounters the strict requirements for evaluating cross-modality alignment. In
other words, we expect that MLLMs can not only perform robustly among different modalities, but
also take the best of both worlds when two modalities are presented simultaneously.

Moreover, this research can also benefit a wide range of applications and have significant safety im-
plication for LLMs and MLLMs. Such visual information is ubiquitous in a wide range of practical
scenarios, such as processing tabular data (Deng et al., 2024) and playing board games (Topsakal &
Harper, 2024). In addition, using visual information reflected in characters to break through the de-
fense line is becoming a threat to LLM safety issues (Jiang et al., 2024b). For example, the attacker
may use the ASCII art of a “bomb” instead of the word. A thorough analysis for understanding
models’ visual perception ability to make proactive defense is in urgent need.

In this work, we define ASCII art recognition as an ideal proxy to investigate models’ visual percep-
tion ability in text strings through comprehensive evaluation and fine-tuning. Different from previ-
ous work that has focused on box diagrams (Hayatpur et al., 2024; Bayani, 2023), rich-formatting
texts (Jiang et al., 2024b), or tone-based ASCII art (Wang et al., 2023a) that can be easily generated
by rules or converted from images, we focus on ASCII art drawn by human artists, which is notably
more abstract, replete with visual information, and more popular among people. We formulate the
task as a multiple-choice question-answering problem, where the answers are objective for straight-
forward verification, to achieve fairer comparisons. Then, we task models to recognize the concept
depicted in the ASCII art. Due to the lack of a dataset covering diverse categories thoroughly bench-
marking the ability of existing models, we crawled data from online websites and cleaned manually
under an elaborate categorization tree. In this way, we construct a test set dubbed ASCIIEVAL
covering 359 concepts. To further elicit the models’ visual perception ability, a training set was
collected with approximately 10k data points.

We convert each ASCII art into a text string, an image, or both modalities at the same time as inputs,
evaluated dozens of existing LLMs and MLLMs, and fine-tuned representative open-source models.
Our major findings are summarized as follows:

◦ Models can truly recognize visual semantics through text inputs, indicated by the over 60%
accuracy of GPT-4o in certain concept categories. However, existing LLMs performs poorly on
ASCIIEVAL, where most of them achieve merely around 30% accuracy (Sec. 5.1).
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◦ There is an oversight in modality alignment that hinders MLLMs from answering questions
flexibly among modality-agnostic visual signals. We observed that well-known MLLMs show a
strong bias towards image modality, the expected synergistic effects do not emerge, and their training
techniques fail to facilitate the backbone LLMs’ visual understanding ability (Sec. 5.2 & 5.3.1).
◦ LLMs and MLLMs show different trends in model performance when provided with different

input modalities and excel at different ASCII art categories. Specifically, they perform relatively
better on ASCII art containing fewer characters when given text inputs, whereas performing better
on those with more characters given image inputs (Sec. 5.3.2 & 5.3.3).
◦ Better training strategies or model architectures are required for optimizing modality-agnostic

visual perception in text strings. Supervised fine-tuning using task-specific training data helps
MLLMs leverage representations from different modalities slightly better, but shows little improve-
ment given only text inputs (Sec. 5.4).

2 BACKGROUNDS & RELATED WORK

2.1 LLM & MLLM BENCHMARKS

Mainstream evaluations for LLMs focus on abilities in world knowledge, common sense reasoning,
instruction following, long context modeling, and mathematical reasoning. Representative bench-
marks include MMLU (Hendrycks et al., 2020), C-Eval (Huang et al., 2024), GSM8K (Cobbe et al.,
2021), and StrategyQA (Geva et al., 2021). Except for recent work from Qiu et al. (2024) bench-
marking LLMs on answering questions related to the graphics content by generating programs, none
of them consider the visual perception ability of LLMs as a distinct research problem.

Benchmarks for MLLMs focus on similar abilities when given a mix of text and images, such as
MMMU (Yue et al., 2024), MMBench (Liu et al., 2023b), and MME (Yin et al., 2023). Most
images considered in these benchmarks are photographs, paintings, or comics, rather than visual
information reflected in text characters. Additionally, the information between interleaved images
and texts is not guaranteed to be equivalent or complementary, whereas information in ASCII art
can be semantic-equivalent among different modalities.

Current benchmarks contain some ASCII art-related tasks. For example, Gu et al. (2024) introduces
a fine-grained and diverse instruction-following evaluation dataset, in which ASCII art generation is
a single case with approximately 40 samples of varied user requests. BigBench (Ghazal et al., 2013)
contains ASCII MNIST digit recognition, ASCII word recognition, and ASCII kanji recognition.
All of these tasks challenge the LLMs in recognizing different characters within the ASCII art. Test
cases can be easily collected by using automatic conversion tools like Figlet 1, where models may
learn conversion rules instead of truly understanding visual semantics.

In contrast, our work focuses on ASCII art depicting real-world profiles, containing more abstract
visual features. We consider ASCII art recognition to be a preliminary ability for ASCII art genera-
tion, and propose ASCIIEVAL based on this task, which can serve as both an LLM benchmark and
an MLLM benchmark, bringing unique characteristics compared to existing benchmarks.

2.2 RESEARCH ON ASCII ARTS

The history of ASCII art can be traced back to the 1860s. Due to the limitations of early computers,
text characters were widely used to simulate graphs, gradually becaming an important graphic design
technique. ASCII art broadly includes diverse types and styles (Carlsson & Miller, 2012; Carlsson,
2017), such as line art, emoticons, colored ASCII art, and animated ASCII art. Strictly speaking, it
refers to art made up of 95 printable fixed-width ASCII characters (Xu et al., 2016), which are easy
to copy from one file to another and display consistently across different computers.

Early studies focused on extracting ASCII art from general texts (Hiroki & Minoru, 2005; Hayashi
& Suzuki, 2009; Suzuki, 2011) by exploring byte patterns, morphological features, compression ra-
tios, etc. Subsequently, ASCII art gained more attention in the area of computer vision. Researchers
generally categorize ASCII art into tone-based and structure-based types and have developed algo-
rithms to synthesize ASCII art from images (Xu et al., 2010; Takeuchi et al., 2013; Xu et al., 2016;

1https://en.wikipedia.org/wiki/FIGlet
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Chung & Kwon, 2022). Tone-based ASCII art emphasizes the intensity distribution of the reference
image, while structure-based ASCII art focuses on the major structure of the content. The latter is
mostly curated by human artists and is more challenging to synthesize automatically.

Works on ASCII art classification typically convert such text graphics into images as a default set-
ting and exploit different image features to improve the classification accuracy of deep neural net-
works (Fujisawa et al., 2020a; Matsumoto et al., 2018; Fujisawa et al., 2018). Fujisawa et al. (2020b)
constructs ASCII art data automatically to enhance the models’ image classification ability. Most of
the aforementioned works are tested using an ASCII art classification dataset containing only five
categories, which is inadequate for comprehensively analyzing how well the LLMs and MLLMs can
grasp the visual representation of ASCII art.

There are also works that take advantage of ASCII art to achieve specific goals. Jiang et al. (2024b)
represent rich-formatting texts as ASCII art and find that it results in highly effective jailbreak attacks
that bypass state-of-the-art defense techniques. In contrast, Wang et al. (2023a) find that tone-based
ASCII art with rich visual information cannot be understood by current LLMs, which can be used
as an effective tool to detect whether the participant is a bot or a human. ASCII art is also utilized
to enhance LLMs’ spatial reasoning ability in Wu et al. (2024)’s work. Box diagrams, as a special
kind of ASCII art, are widely used in the development lifecycle (Hayatpur et al., 2024) and have
been benchmarked by Bayani (2023) with recognition and generation tasks.

In this work, we regard ASCII art as an ideal information carrier that bridges the gap between the
text and image modalities, to facilitate the understanding of modality-agnostic visual perception
ability for both LLMs and MLLMs.

3 ASCII ART RECOGNITION

We first define the ASCII art recognition task formally. Then, we introduced how we constructed
the test and training data, dubbed ASCIIEVAL and ASCIITUNE, followed by statistical analysis.

3.1 PROBLEM FORMULATION

We formulate ASCII art recognition as a multiple-choice question-answering problem. Let T repre-
sent the text string of an ASCII art and I refer to the corresponding image modality. The model is
asked to predict the correct choice containing the concept depicted by T or I among candidates C.

For LLMs that only accept text input, the prediction ŷ is generated as follows:

ŷT = LLM(T,C) (1)

For MLLMs, ŷ can be inferred under two additional conditions:

ŷI = MLLM(I, C)

ŷIT = MLLM(I, T, C)
(2)

We denote the above three input conditions as Text-only, Image-only, and Text-Image, respectively.
The final prompt is structured by corresponding string templates given the inputs. See Appendix C.

3.2 DATA COLLECTION FOR ASCIIEVAL

We carried out the data construction process in four stages to collect a high-quality test dataset.

Data Preparation We first crawled ASCII art created by human artists from two online galleries 2.

Classification Criteria Unification Next, we manually designed a 3-layer classification tree after
unifying the categories based on the categorical information from the original websites and removing
potentially harmful categories. The most fine-grained category is named the concept, representing
the semantic meaning reflected in the art. Similar concepts are merged into second-layer groups.
Finally, they are grouped into seven major classes inspired by the iOS emoji categories. Each
concept can be depicted in various ways by ASCII artists.

2https://asciiart.website/, https://www.asciiart.eu/
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Data Filtering Subsequently, we conducted additional filtering operations using a combination of
rules and human annotations as follows:

◦ Each ASCII art string was normalized by removing redundant empty spaces at the beginning
of each line and at the end of the string, without compromising its visual semantics.

◦ ASCII art consisting of more than 100 lines, not belonging to reserved categories, and repetitive
to other ASCII arts under the same concept were discarded. Repetition was identified by calculating
the edit distance between two ASCII strings. If the distance divided by the length of the existing
string was smaller than 0.3, the new ASCII art will be considered redundant.

◦ Human annotators were tasked to filter out unrecognizable or ambiguous art, remove words in
ASCII art to focus the dataset on visual perception and avoid information leakage through words,
and adjust the category according to the 3-layer category tree (See more analysis in Appendix D).

Multiple-Choice Data Construction Finally, we collected negative choices for each ASCII art by
randomly sampling from other concepts within the same group. It should be noted that the ground
truth labels were initially collected from the websites and subsequently verified by human annotators
during the data filtering process. Each ASCII art string was then converted into an image.

3.3 DATA COLLECTION FOR ASCIITUNE

To further elicit models’ visual perception ability through supervised fine-tuning on the ASCII art
recognition task, the creation of a training set is essential. An intuitive solution is to leverage pre-
vious works on ASCII art synthesis (Xu et al., 2016; 2010) by converting existing image datasets,
such as ImageNet (Deng et al., 2009), into the required format. A public dataset 3 indicates that
after automatic tone-based synthesis, approximately 85% data samples are filtered out due to poor
quality. Furthermore, existing data conversion tools are inadequate for structure-based ASCII art,
which accounts for 94% of the data in ASCIIEVAL according to annotators’ labels. Additionally,
artists often combine both tone-based and structure-based features in a single artifact.

Therefore, we chose to collect the training set in a manner similar to ASCIIEVAL instead of relying
on automatic conversion. Data sources include ASCII arts from another less well-organized web-
site 4, and the crawled content was extracted into individual ASCII art pieces based on specific rules
derived from observations. We also included the unrecognized ASCII art that was previously with-
drawn during the construction of ASCIIEVAL. The normalized ASCII art is discarded if recognized
as repetitive with samples in ASCIIEVAL or among each other.

Due to the large amount of data with diverse concepts, carefully categorizing data for high-quality
distractors is unfeasible. Instead, we prompted Llama-3-70B-Instruct to generate negative choices
given the ground truth concept and utilized the Perspective API to filter out unsafe samples based on
the concatenation of candidate choices. Samples with scores less than 0.2 across all six dimensions,
i.e., toxicity, severe toxicity, identity attack, insult, profanity and threat, are retained.

3.4 DATA ANALYSIS

As shown in Table 1, ASCIIEVAL comprises 3,526 samples distributed across 359 concepts, 23
groups, and 7 classes. The data distribution is illustrated in Fig. 2 (More in Appendix D). Each
concept is represented by 9.82 ASCII art pieces on average, with a maximum of 170 and a minimum
of 1, indicating an imbalance. ASCIITUNE consists of 11,836 samples with 2,307 concepts, which
is more diverse but of lower quality. The number of characters and lines in ASCIIEVAL range from
4 and 1 to 15,282 and 100, respectively, reflecting its diversity and complexity. ASCIITUNE holds
similar statistics.

Human Upper Bound We randomly extracted 100 samples from ASCIIEVAL three times and
asked three different annotators to perform the multiple-choice task. They achieved 100%, 98% and
97% accuracy, respectively, demonstrating that this task is simple for humans.

3https://huggingface.co/datasets/mrzjy/ascii_art_generation_140k
4https://ascii.co.uk/art
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Table 1: Statistics of ASCIIEVAL and ASCIITUNE.

Dataset ASCIIEVAL ASCIITUNE

#Samples 3,526 11,836
#Concepts 359 2,307

#Characters
Min 4 1
Max 15,282 13,569
Avg 635.53 622.38

#Lines
Min 1 1
Max 100 97
Avg 16.97 15.22

animals 
& natural

symbols
food & drink

travel 
& places

activities

smileys 
& people

objects

Figure 2: Data distribution of ASCI-
IEVAL. The outer and the inner circle
represent different classes and groups.

4 EXPERIMENT SETUP

4.1 EVALUATED MODELS

For open-source instructed models, we experiment with LLMs from different model families, in-
cluding Llama (Touvron et al., 2023), Qwen (Bai et al., 2023a), Mistral (Jiang et al., 2024a) and
Gemma (Team, 2024b), and with MLLMs from Llava (Liu et al., 2023a), CogVLM (Wang et al.,
2023b), Qwen-VL (Bai et al., 2023b) and Chameleon (Team, 2024a). Besides, GPT-4o (OpenAI,
2023) and Gemini (Reid et al., 2024) are selected as two leading proprietary models. Both of them
are multi-modal models capable of accepting text or image inputs and outputting text. The specific
versions we used are gpt-4o-2024-05-13 and Gemini-1.5-pro. More in Appendix E.

All of the models are decoded using greedy search or by setting the temperature to 0 for fair com-
parisons and easier reproduction. The maximum number of output tokens equals 32 for open-source
models and 128 for proprietary ones.

4.2 EVALUATION METRICS

We perform an exact match between the correct option and a model’s output to calculate accuracy
on ASCIIEVAL. As analyzed in Sec 3.4, the test data is unbalanced with varying art counts under
each concept. Therefore, we adopt micro-accuracy over each sample for analyzing specific ASCII
art characteristics, and macro-average over each concept for quantifying model performance. We
also define pass rate to measure a model’s ability to successfully follow the instruction by providing
an effective answer. Proprietary models may fail due to their safety policy.

5 RESULTS AND ANALYSIS

In this section, we first benchmark the performance of LLMs and MLLMs on ASCIIEVAL. Next,
we investigate whether the existing MLLM training approaches enhance the vision understanding
abilities of LLMs and delve deeper into understanding which types of ASCII arts are more challeng-
ing. Finally, we examine whether supervised fine-tuning can better align models for this task.

5.1 PERFORMANCES OF LLMS

The performance of LLMs with only text inputs is shown in Fig. 3. Most of these models exhibit
strong instruction-following abilities, achieving a pass rate equaling 100%. Therefore, this metric is
not shown in the figure and we primarily focus on macro-accuracy comparisons.

Proprietary Models vs. Open-source Models GPT-4o performs best among all the models. It
outperforms the best open-source model, Gemma-2-27B-it, by 32.51%, indicating a conspicuous
gap between the leading proprietary models and open-source ones. Gemini ranks second, outper-
forming the open-source models, but still significantly lags behind GPT-4o.
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Figure 3: Macro-accuracy of LLMs on ASCIIEVAL. The red line is the random baseline (25%).

Comparisons among Model Families Models within the same series generally exhibit perfor-
mance proportional to their sizes. However, this trend does not hold true across different model
series and families. For example, Qwen2-72B-Instruct outperforms Qwen1.5-110B-Chat. Addi-
tionally, Gemma, with only 27B parameters outperforms other competitors with more than 70B and
even hundreds of billions of parameters. This underscores the potential of developing lightweight
models with strong visual perception abilities in text strings.

Overall Performances of LLMs Most models with fewer than 10B parameters, including the
MoE model Mistral-8x7B-Instruct-v0.1, perform similarly to a random baseline. None of these
models achieve an accuracy higher than 50%, with GPT-4o ranking first at only 42.77%. Although
it’s hard to guarantee that the ASCII art in ASCIIEVAL was never used during pre-training, the poor
accuracy reflects that ASCIIEVAL stands as a challenging benchmark for LLMs, underscoring the
oversight of visual perception ability in current LLMs.

5.2 PERFORMANCES OF MLLMS

We evaluate MLLMs using different input modes as introduced in Sec. 3.1.

Table 2: Performance of MLLMs with different input modalities. Accuracy (%) refers to macro
accuracy. Pass rate (%) is listed to show the instruction-following ability of MLLMs. The highest
accuracy is in bold and the second highest are underlined. Models are ranked by Avg, defined as the
mean of the accuracy under different modes horizontally.

Models Avg Text-only Image-only Text-Image
Accuracy Pass Accuracy Pass Accuracy Pass

GPT-4o 67.36 42.88 99.97 82.68 98.75 76.52 99.83
CogVLM2-Llama3-chat-19B 53.07 24.73 99.32 67.80 100 66.68 100
Llava-v1.6-34B 51.87 28.62 100 65.66 100 61.33 100
Gemini-1.5-pro 50.84 33.49 97.36 60.69 99.46 58.33 98.78
Llava-v1.5-13B 49.52 26.00 100 61.87 100 60.70 100
Llava-v1.5-7B 49.45 24.66 100 62.18 100 61.52 100
Llava-v1.6-mistral-7B 48.54 25.89 100 60.72 100 59.02 100
Llava-v1.6-vicuna-13B 47.43 26.03 100 59.70 100 56.55 99.52
CogVLM-Chat-hf 46.61 21.25 86.07 61.00 100 57.58 99.97
Qwen-VL-Chat 39.10 24.79 90.70 52.32 96.68 40.09 77.94
Chameleon-30B 21.08 0.01 3.29 34.54 99.97 28.70 100
Chameleon-7B 18.13 0.00 0.00 26.46 96.17 27.93 99.40

Proprietary Models vs. Open-source Models Results in Table 2 indicate the gap between GPT-
4o and other models for MLLMs. It achieves 43.88%, 82.68%, and 76.54% on the three modes with
nearly 100% pass rate, while the second-best results lag behind by 14.26%, 14.86%, and 9.84%
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in accuracy respectively. GPT-4o not only handles character strings better but also understands the
ASCII art images well regardless of the style and abstractiveness differences compared to other im-
age datasets, such as ImageNet (Deng et al., 2009) and MS-COCO (Chen et al., 2015). Nevertheless,
GPT-4o, with the most competitive setting, still underperforms the human upper bound (98.33%).

Comparisons among Input Settings Another observation is that the performance follows the
trend Image-only > Text-Image > Text-only. Image encoders in MLLMs capture the visual infor-
mation in text strings more effectively, leading to superior performance over the Text-only mode.
Generally, we expect that multi-modal models can provide a more holistic understanding of the
data. However, when incorporating text modality with image, the performance of all models except
Chameleon-7B drops with a maximum decrease of 12.32% compared to the Image-only setting.
This reveals that existing MLLMs are unable to understand the complementarity and consistency of
different modalities, resulting in an inability to make correct predictions.

Degradation of Instruction-following Ability We also observe that the instruction-following
ability of some MLLMs, as indicated by the pass rate, drops significantly when ASCII art is pro-
vided in text strings. Among open-source late-fusion MLLMs, models from the Llava family show
little influence on the backbone LLMs’ ability, whereas others experience considerable degradation.
The only early-fusion MLLMs, Chameleon, falls to approximately 0% accuracy and pass rate un-
der the Text-only setting. Ideally, early-fusion strategies should better integrate the representations
and interactions among modalities, leading to a more cohesive and accurate understanding of data.
However, their poor performance and notable decline indicate significant room for improvement.

5.3 ANALYSIS OF THE RESULTS

As most open-source MMLMs are trained on a pre-trained LLM using late fusion strategies, we first
investigate whether the LLM’s visual perception ability improves after MLLM training. Next, we
analyze the trends in model performance under different ASCII art sizes and categories. The top 5
LLMs under the Text-only setting and the top 5 MLLMs under the Image-only setting, which are
generally their default input modalities, are primarily considered.

5.3.1 DO LLM’S VISUAL PERCEPTION ABILITY EVOLVE AFTER MLLM TRAINING?

Previous work on multi-modal models usually focuses on MLLMs’ visual understanding ability over
LLMs. A natural question arises: Can an MLLM’s training under the late fusion strategy enhance
its backbone LLM’s visual perception ability? Given the semantic-equivalence feature of ASCII art,
this question potentially explores how well the representations among different modalities are fused.

Table 3: Comparisons of MLLMs and their backbone LLMs measured by macro-accuracy (%).

MLLM LLM (backbone) MLLM Acc LLM Acc ∆

Llava-v1.5-7B Vicuna-v1.5-7B 24.66 26.05 -1.39
Llava-v1.5-13B Vicuna-v1.5-13B 26.00 25.47 0.53
Llava-v1.6-mistral-7B Mistral-7B-Instruct-v0.2 25.89 26.28 -0.39
Llava-v1.6-vicuna-13B Vicuna-v1.5-13B 26.03 25.47 0.56
Llava-v1.6-34B Nous-Hermes-2-Yi-34B 28.62 27.88 0.74
CogVLM-Chat-hf Vicuna-v1.5-7B 21.25 26.05 -4.80
CogVLM2-Llama3-chat-19B Llama-3-8B-Instruct 24.73 28.71 -3.98
Qwen-VL-Chat Qwen-7B-Chat 24.79 23.30 1.49

In Table 3, we compare the performance of the late-fusion MLLMs and their backbone LLMs under
the Text-only mode. Qwen-VL-Chat achieves an improvement of 1.49% over Qwen-7B-Chat, while
their absolute performance remains below the random baseline. The accuracy of LLMs trained
by CogVLM decreases by 4% to 5%, whereas the fluctuation in accuracy for the Llava series is
negligible. In summary, the results indicate that current late-fusion approaches do not enhance the
LLMs’ visual understanding ability, which warrants further exploration.

5.3.2 IS THE COMPLEXITY PROPORTIONAL TO THE NUMBER OF CHARACTERS?

We classify test samples into 7 subsets by the number of characters in ASCII art. The results are
shown in Fig. 4.
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Figure 4: Micro-accuracy (%) of models on ASCII art with different numbers of characters.

LLMs are proficient in recognizing ASCII art with fewer characters, and they even outperform com-
petitive MLLMs with image inputs, such as CogVLM2-Llama3-chat-19B, on ASCII arts with fewer
than 50 characters. In smaller ASCII art, significant features are densely packed within consecutive
characters. For instance, the string “() '`;” captures some major characteristics of a dog in Fig. 1.
The results indicate that LLMs excel at capturing the relationship between a concept and some fea-
tured combinations of characters. However, as the length of the ASCII art increase, such features
are likely to be diluted, and much stronger 2D perception abilities are required.

Conversely, MLLMs are better at recognizing larger ASCII art. Smaller ASCII art tends to be more
abstract, where artists try to depict significant features of a concept with few characters. In contrast,
larger ASCII art is more similar to real images or posters that MLLMs are trained on. For example,
the Spiderman in Fig. 1 shares much more similarity in terms of outline and luminance contrast to
a real poster. Nevertheless, MLLM also face challenges on ASCII arts containing more than 1600
characters, as evidenced by the performance drop of both GPT-4o and CogVLM-Chat-hf. This may
be due to the fact that larger ASCII art contains more spaces with the same grayscale, providing
ineffective or redundant features for MLLMs, thereby aggravating the recognition difficulty.

In summary, LLMs are adept at understanding short and abstract art, and MLLMs are proficient in
interpreting longer and more detailed art, which are mainly influenced by the characteristics of the
input modality (More in Appendix F). Although different modalities have strengths with various
forms of ASCII art, late fusion strategies fail to combine them effectively, as showed in Sec. 5.3.1.

5.3.3 HOW DO MODELS PERFORM ON DIFFERENT CATEGORIES?

Models’ performances across the 7 different classes are shown in Fig. 5. LLMs trained purely on
text corpus perform better at recognizing ASCII arts belonging to the “objects” class. MLLMs given
image inputs show consistent improvement in recognizing “travel & places” over LLMs compared to
other classes relatively. Moreover, all models struggle with ASCII art referring to “symbols”, which
comprise different logos and astrology symbols. MLLMs actually perform quite well at recognizing
well-known logos, such as Apple and Linux, where GPT-4o achieves 97.96% macro-accuracy and
CogVLM2-Llama3-Chat-19B gets 91.16%. However, their performance drops dramatically on rela-
tively niche astrology symbols. Nevertheless, it is simple for both LLMs and MLLMs to answer the
question “Can you show me some astrology symbols?”. Existing models tend to use rare Unicode
characters or emojis to explain the symbols, but cannot understand the visual semantics embedded
in those symbols flexibly. More cases can be found in Appendix J.

5.4 CAN SUPERVISED FINE-TUNING ELICIT MODELS’ VISUAL PERCEPTION CAPABILITY?

We fine-tune Llama-3.1-8B-Instruct and Llava-v1.6-mistral-7B using ASCIITUNE constructed in
Sec. 3.3. The LLM is trained solely with the Text-only data setting, while the MLLM is trained under
four different settings: Text-only, Image-only, Text-Image, and Random. “Random” represents that
we uniformly select from the above three modality settings for each input sample. All of the models
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Figure 5: Macro-accuracy (%) of models on recognizing ASCII arts under different classes.

Table 4: Macro-accuracy(%) of the model after supervised fine-tuning on different modes of training
data. The corresponding performance on ASCIIEVAL are shown in the last three columns.

Model SFT Data Text-only Image-only Text-Image

Llama-3.1-8B-Instruct Text-only 27.46↑0.24 - -

Llava-v1.6-mistral-7B

Text-only 26.49↑0.60 - -
Image-only - 75.58↑14.86 -
Text-Image 25.50↓0.39 76.78↑16.06 76.92↑17.90
Random 27.19↑1.30 74.52↑13.80 74.92↑15.90

are tuned for 2 epochs with a batch size of 16. The results of the fine-tuned models and comparisons
to the original results are shown in Table 4.

Models with pure text inputs don’t significantly benefit from fine-tuning on the task-specific dataset.
They achieve at most a 1.30% improvement under the Text-only setting, while MLLMs with image
inputs gains more than a 10% increase accuracy. Even though models are able to recognize ASCII
art strings as analyzed above, the experiments also highlight the limitations of current models.

Moreover, supervised fine-tuning on this dataset helps Llava better leverage the representations from
both modalities, as shown by the further improvements of Text-Image results over the Image-only
results. The decrease in performance of Llava tested under the Text-only mode indicates that the
model tends to gather useful information from the image modality when trained by text-image pairs.
Llava trained using the Random setting shows better performance on Text-only samples, though with
a compromise on samples with image inputs. Exploring training techniques to make the information
among modalities more compatible and to improve the accuracy remains a direction of future work.

6 CONCLUSION

In this work, we focus on analyzing and eliciting models’ visual perception ability in text strings. We
introduce the ASCII art recognition problem, which task models to recognize the concepts depicted
by the art conveyed through different modalities. We constructed both test and training data, and
conducted comprehensive evaluations with dozens of LLMs and MLLMs followed by supervised
fine-tuning. Results pinpoint the weaknesses of current models on this task, highlighting a lack of
effective fusion techniques for semantic-equivalent information across different carriers.
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A DATA LICENSE

We express our gratitude to the ASCII artists whose fantastic creations underpin our research. In
order to assess the visual perception abilities of models, we made slight modifications to the original
ASCII art for the test set ASCIIEval. Meanwhile, we retained the original ASCII art and provided
the URL to the data source. It is important to note that our data is licensed under CC BY NC 4.0,
which permits only non-commercial use and is intended exclusively for research purposes.

B FUTURE DIRECTIONS

In the current work, we majorly devoted our efforts on dataset construction for the ASCII art recog-
nition task, benchmarking the performance of LLMs and MLLMs, and figuring out the limitations
of current models.

Based on the results and analysis, we summarized future directions as follows:

Constructing high-quality training data automatically. We randomly selected 100 samples from
ASCIITune for the quality check and the human annotator achieved only 70% accuracy. This in-
dicates that ASCIITune is much noisier than ASCIIEval (98.33%), pointing out the importance of
collecting more training data with higher quality. On the one hand, utilizing the ASCII art synthesis
tools to convert image datasets into ASCII art can be considered to enlarge the size of the training
data, under the awareness of the style differences between the converted ones and the ones created
by artists. On the other hand, more strict filtering strategies should be incorporated, such as verifying
the validity of ASCII art with strong MLLMs under the Image-only setting.

Improving the model architecture. All of the tested LLMs and MLLMs show the inability to
recognize information that can be fully represented in text. One potential reason is the lack of
exposure to this type of data. It may be also a result of the structural limitation of current models. As
for human beings, we perceive text from the aspects of character sequences and their visual shapes
at the same time, while these two aspects are conventionally distinguished into two modalities when
being processed by neural models. More flexible processing techniques and architecture among
modalities should not only benefit the models’ visual perception ability in text strings, but also make
the model closer to human beings with more efficient information processing abilities.

Adjusting the training pipeline. In this work, we simply did supervised fine-tuning with ASCI-
ITune to improve the models’ visual perception ability in text strings. This first attempt only shows
effectiveness in Image-only setting, pointing out that superficial instruction tuning is not sufficient
for current models. Therefore, we hypothesize that post-training should be considered for injecting
related knowledge and gaining better representations. Specifically, LLMs are expected to be post-
trained on ASCII art corpus containing more diverse tasks, such as ASCII art generation and ASCII
art description, mixed with traditional pre-training corpora. As for MLLMs, besides improving the
corresponding backbone LLMs, more flexible usage of ASCII art in both modalities should improve
MLLMs representation alignments between modalities during the vision-text alignment stage.

We did some further explorations on improving LLMs’ and MLLMs’ on ASCIIEVAL with unsuper-
vised training objectives based on data from ASCIITUNE. Specifically, we post-trained the Llama-
3.1-8B-Instruct on textual ASCII art from ASCIITUNE where the loss is calculated from each token
in the textual ASCII art, and post-train the Llava-v1.6-mistral-7B with (rendered ASCII art, textual
ASCII art) input-output-pairs from ASCIITUNE where the loss is only calculated from the tokens
in the textual ASCII art. Both models are post-trained with the following hyper-parameters: “lr =
2e-5, batch size = 16, number of epochs = 3”, and are fine-tuned for ASCII art recognition after
further post-training. The results are shown in Table 5.

The post-trained LLM achieved 27.58%, almost the same as the 27.46% accuracy shown in Table 4.
Meanwhile, fine-tuning MLLMs with (rendered ASCII art image, textual ASCII art) input-output
pairs from ASCIITune is also not helpful for ASCII art recognition. We offer the following hy-
pothesis for the above observations: In the recognition task, the model is required to understand
the semantic concept behind the textual ASCII art. However, using textual ASCII art alone for
post-training can not help to bridge the gap between visual information and semantics in language.
Besides, training MLLMs to convert an ASCII art image into its string format is merely a super-
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Table 5: Macro-accuracy(%) of the model after unsupervised post-training and supervised fine-
tuning on different modes of training data. The corresponding performance on ASCIIEVAL are
shown in the last three columns. The subscript numbers represent the difference compared to the
results in Table 4.

Model Post-train Data SFT Data Text-only Image-only Text-Image

Llama-3.1-8B-Instruct textual ASCII art Text-only 27.58↑0.08 - -

Llava-v1.6-mistral-7B
(rendered ASCII
art, textual ASCII
art) pairs

Text-only 26.99↑0.50 - -
Image-only - 60.90↓14.68 -
Text-Image 26.69↑1.19 61.67↓15.11 56.83↓20.09
Random 26.25↓0.94 59.44↓15.08 57.20↓17.72

ficial transcribing task. However, the task of ASCII art recognition further necessitates models to
understand the visual semantics, i.e., concept, depicted in the ASCII art.

In summary, base on the above experiments, we recognize that an ideal training corpus used prior
to the instruction-tuning stage should contain samples that embed the ASCII art in documents or
conversations. In this way, the model can gradually gain knowledge of this data format and under-
stand the semantic meaning behind it based on its context. Nevertheless, the ASCIITune proposed
in our work is designed for supervised fine-tuning, and is not suitable as a pre-training corpus for the
following reasonings: First, it only contains 11K samples specifically for the ASCII art recognition
task. Second, the semantic context for each ASCII art is limited. ASCIITune may be used as the
seed data for developing a more diverse and high-quality dataset using data synthesis techniques in
the future.

Incorporating more complicated scenarios. Currently, we only considered the basic type of ASCII
art made up of 95 printable fixed-width ASCII characters. Nevertheless, there also exist more fasci-
nating ASCII arts, such as color ASCII art, 3D ASCII art, animated ASCII art, etc. These different
kinds of ASCII art are also valuable for understanding LLMs designed for video understanding (He
et al., 2024) and 3D modeling (Hong et al., 2023).

C PROMPT TEMPLATE

We designed three prompt templates for different input modes:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt Template for Text-only Input

Please answer the multi-choice question based on the given
ASCII art:↪→

[ASCII ART]
{ascii_art}

[Question]
What is depicted in the above ASCII art? {choices}

Answer with the option's letter from the given choices
directly.↪→

Prompt Template for Image-only Input

Please answer the multi-choice question based on the given
ASCII art image.↪→

[ASCII ART]
<image>

[Question]
What is depicted in the above ASCII art? {choices}

Answer with the option's letter from the given choices
directly.↪→

Prompt Template for Image-text Input

Please answer the multi-choice question based on the given
ASCII art in both image and text formats.↪→

[ASCII ART Image]
<image>

[ASCII ART Text]
{ascii_art}

[Question]
What is depicted in the above ASCII art? {choices}

Answer with the option's letter from the given choices
directly.↪→

All of the models except Qwen-VL are evaluated based on these prompt templates with minor mod-
ifications to adapt to their default settings, especially for the position of the image.

Qwen-VL is more sensitive to prompt templates according our experiments. Therefore, we adapted
the above templates into Qwen-VL’s original format, which is ”Context: ... Question: ... Answer:”.

D DATA ANALYSIS AND STATISTICS

During the data filtering process, we recognized that some of the ASCII art have multiple interpre-
tations, which can be summarized into two types:

◦ The ASCII art itself, as a kind of art form, is abstract and ambiguous. For instance, certain
depictions of cats might resemble rats. Regarding these cases, we asked human annotators to remove
such unrecognizable and ambiguous art.
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◦ The ASCII art is rich in content, potentially allowing two interpretations from different aspects.
For example, the third ASCII art in Fig. 11, can be interpreted as a beach scene, coconut tree, sunset,
etc. Most of the ASCII art in ASCIIEval only contains a single object, and we also tried to remove
such ambiguities by carefully designing and adjusting the classification criterion. Ultimately, there
are only less than 1.67% ambiguous cases in ASCIIEval, leading to the imperfect performance of
human annotators.

Finally, the number of samples and the hierarchical relationship between classes and groups of
ASCIIEVAL illustrated in Figure 2 are shown in Table 6.

Table 6: The number of samples under each category.

Classes Groups

animals & natural (1,122) animal (870), plant (130), nature (122)
objects (777) object (451), electronics (192), clothing (81), furniture (53)

smileys & people (644) role (199), character (195), body (146), occupation (68), people (36)
activities (473) event (207), sport (126), activity (84), instrument (35), monument (21)

travel & places (406) transportation (123), building (123), places (30)
food & drink (66) food (66)

symbols (38) logo (27), astrology (11)

The token length of samples under the Text-only mode tokenized by three representative tokenizers
is in Table 7. The ASCII art data used in our experiments respects the context length limitation of
nowadays models.

Table 7: Statistics of token length by different tokenizers.

ASCIIEval ASCIITune
Min Max Avg Min Max Avg

Llama-3 Tokenizer 71 2,192 262.72 69 3,673 215.10
Mistral-v0.1 Tokenizer 85 2,890 332.91 83 4,294 267.93

Qwen-2 Tokenizer 80 2,833 278.17 78 3,996 273.40

E DETAILS ABOUT EVALUATED MODELS

For open-source instructed models, we experiment with the following LLMs and MLLMs:

LLMs. Llama (Touvron et al., 2023) contains three collections of generative models with different
sizes, including Llama-2, Llama-3, and Llama-3.1; Qwen (Bai et al., 2023a) is another group of
models with instructed verions, including Qwen, Qwen1.5 and Qwen2 series; Mistral (Jiang et al.,
2024a) includes different versions of instruction fine-tuned models, i.e., Mistral-7B-Instruct-v0.1,
v0.2 and v0.3. Besides, Mixtral-8x7B-Instruct-v0.1 and Mixtral-8x22B-Instruct-v0.1 which are pre-
trained generative Sparse Mixture of Experts are also compared; Gemma (Team, 2024b) is a family
of lightweight text-to-text models with instruction-tuned variants. We considered Gemma-2-9B-it
and Gemma-2-27B-it.

MLLMs. Llava (Liu et al., 2023a) augmented a pre-trained LLM with a pre-trained vision en-
coder. The vision model’s representations are projected into the LLM’s representation space with a
projection layer, and it is frozen during instruction tuning while the projector and the backbone LLM
are updated; CogVLM (Wang et al., 2023b) aims at retaining the original capabilities of the LLM
while adding visual understanding abilities. Representations from the pre-trained vision transformer
encoder are passed through an MLP adapter as the input, and a group of trainable visual expert
modules in the attention and FFN layers are introduced into the LLM. All of the parameters except
the ones from the original LLM are tuned; Qwen-VL (Bai et al., 2023b) proposed a position-aware
vision-language adapter for compressing image features. The model is trained through three stages,
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i.e., pre-training, multi-task pre-training and supervised fine-tuning; Chameleon (Team, 2024a) is a
family of early-fusion token-based mixed-modal models, different from the above late-fusion ones.

We implemented all open-source models with fewer than 100B parameters locally while collecting
predictions from the other models through API requests 5.

F ANALYSIS ON SAMPLES UNDER DIFFERENT ASCII ART SIZES

Based on the length characteristics of different ASCII art, we divided the test set into various subsets,
as shown in Table 8.

Table 8: The number of samples with ASCII arts divided by different characteristics.

#Characters [1, 50] (50,100] (100, 200] (200, 400] (400, 800] (800, 1600] (1600, +∞)
#Samples 221 366 546 710 760 618 305

#Lines [1,5] (5, 10] (10, 15] (15, 20] (20, 25] (25,+∞) -
#Samples 414 854 699 534 399 626 -

The performances of LLMs and MLLMs on testing samples grouped by the number of lines con-
tained in the ASCII art are shown in Fig. 6. The trends are similar to those grouped by the number
of characters in Sec 5.3.2, i.e., LLMs favor smaller ASCII art while MLLMs prefer larger ASCII
art.
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Figure 6: Micro accuracy(%) of models on recognizing ASCII arts with different numbers of lines.

We also show the trends of the top 5 MLLMs under Text-only and Text-Image modes respectively
in Fig. 7. It reveals that the overall trend in Text-only mode is similar to that of LLMs, indicating
that models are easier to be adept at small-sized ASCII art in text format. In contrast, the overall
trend in Text-Image mode shares more similarity with the Image-only mode, pointing out the strong
bias towards image signals of MLLMs.

G PERFORMANCE ON SAMPLES UNDER DIFFERENT CATEGORIES

The models’ performance under different groups is shown in Fig. 8. Overall, the performance of
MLLMs is more balanced across different categories, except for the drops in “astrology” and “instru-
ment”. Meanwhile, LLMs’ accuracy fluctuates among different groups, with “electronics”, “food”
and “object” topping the rank.

5https://www.together.ai/, https://openai.com/
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(a) MLLMs in the Text-only mode.
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(b) MLLMs in the Text-Image mode.

Figure 7: Micro accuracy(%) of MLLMs on recognizing ASCII arts with different numbers of lines.

H SENSITIVITY TO MINOR CHARACTER CHANGES

We randomly removed tokens (other than spaces, “\n” and “\t”) from ASCII art and manually
checked if the result remained recognizable. Two representative examples are illustrated in Fig. 9. In
both cases, the ASCII art remains recognizable when only few characters are removed. However, the
first ASCII art becomes progressively indistinguishable as more characters are missing. Meanwhile,
the second one just gradually has some additional noise and remains recognizable. This suggests
that as the number of characters increases, the importance of each character diminishes as it carries
less visual information.

We did more quantitative analysis by sampling 100 cases from ASCIIEval, among which Llava-
v1.6-34B provided correct answers under all three test settings. Next, we randomly replaced 1%,
5%, 10%, and 20% of tokens (other than spaces, “\n” and “\t”) in the original ASCII art with spaces.

The computed micro-accuracy of Llava-v1.6-34B under different test settings, as well as the human
upper bound, are shown in Table 9. Changing the characters in ASCII art will make the recognition
task more challenging both for humans and the model, while Human is relatively more robust than
Llava-v1.6-34B under different settings.

Perturbation Ratio Human Text-only Image-only Text-Image

1% 99 94 96 96
5% 99 95 91 93

10% 97 91 93 92
20% 94 84 87 83

Table 9: The micro-accuracy (%) at different perturbation ratios.

I SENSITIVITY WITH DIFFERENT FONTS

In this work, we only considered the traditional ASCII art composed of 95 printable fixed-width
ASCII characters. The semantic meaning remains unchanged as long as it is displayed with a fixed-
width font. In addition to the “DejaVu Sans Mono” font used in this work, examples of the same
ASCII art rendered with 4 different fonts are shown in Fig. 10. All of the dogs are recognizable,
with only minor differences. In other words, the multiple-choice questions for ASCII art recognition
in ASCIIEVAL remain valid, regardless of the specific fixed-width font used.

Although humans have no difficulty recognizing ASCII art rendered with different fonts, this raises
the question of whether MLLMs are sensitive to these variations and show a preference to a specific
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(5) CogVLM-Chat-hf (6) Average
(b) MLLM

Figure 8: Micro accuracy(%) of models on recognizing ASCII arts in different groups. Average is
calculated as the mean of the top 5 models.
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Original Remove 5 chars Remove 10 chars Remove 20 chars Remove 50 chars 

Figure 9: An illustration of removing characters in the ASCII art. “chars” is short for “characters”.

DejaVu Sans Mono Cascadia Code Comic Mono Courier Fantasque Sans

Figure 10: An illustration of an ASCII art displayed in different fid-width fonts.

fixed-width font. We take Llava-v1.6-34B as an example and evaluated its performance on ASCII
art under both Image-only and Text-Image settings where the images are rendered using 5 different
fonts mentioned in Fig. 10. It should be noted that the textual ASCII art is unaffected by font
variations, and Llava-v1.6-34B’s performance under the Text-only setting is identical to the result in
Table 2.

Table 10: Macro-accuracy(%) of Llava-v1.6-34B under Image-only and Text-Image setting with
ASCII art rendered by different fix-width fonts.

Mode DejaVu Sans Mono Cascadia Code Comic Mono Courier Fantasque Sans

Image-only 65.66 63.41 66.68 63.84 66.73
Text-Image 61.33 59.85 62.11 59.89 64.04

According to the results in Table 10, MLLMs do face challenges in performing robustly among
different text fonts in ASCII art recognition and the performance varies. Nevertheless, its best
performance in this table with 66.73% and 64.04% still lags far behind that of GPT-4o with 83.69%
and 76.52% under both settings respectively. Moreover, the accuracy under the Text-Image setting
is consistently lower than that under the Image-only setting. These observations are same as the
results in Sec. 5.2.

On the one hand, how to reduce this sensitivity and improve the MLLMs’ robustness is important
and worth further exploration. On the other hand, changing the fonts in rendered ASCII art can po-
tentially a useful data augmentation technique for boosting MLLMs’ performance on ASCIIEVAL.
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J CASE STUDIES

We selected seven samples belonging to different classes from ASCIIEVAL and show the cases in
Fig. 11 and Fig. 12. The correct answers are shown in red. The top-ranking models are highlighted
in yellow if they make correct predictions. Otherwise, they are highlighted in blue with oblique
lines.
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Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. caterpillar B. panda
C. ant D. lizard
Answer with the option's letter from the given 
choices directly.

animals & natural ➜ animal ➜ panda
Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. light bulb B. CD
C. mouse D. phone
Answer with the option's letter from the given 
choices directly.

objects ➜ electronics ➜ light bulb

LLM MLLM

Llama-3.1-70B-
Instruct

Llama-3.1-405B-
Instruct

Gemma-2-27B
Gemini-1.5-pro

GPT-4o

CogVLM-Chat-hf

Llava-v1.5-7B

Llava-v1.6-34B

CogVLM—Llama3-
chat-19B

GPT-4o

LLM MLLM

Llama-3.1-70B-
Instruct

Llama-3.1-405B-
Instruct

Gemma-2-27B
Gemini-1.5-pro

GPT-4o

CogVLM-Chat-hf

Llava-v1.5-7B

Llava-v1.6-34B

CogVLM—Llama3-
chat-19B

GPT-4o

Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. star B. lightning
C. beach D. sun
Answer with the option's letter from the given 
choices directly.

travel & places ➜ nature ➜ beach
Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. Gingerbread man B. strawberry
C. pie D. ice cream
Answer with the option's letter from the given 
choices directly.

food & drink ➜ food ➜ ice cream

LLM MLLM

Llama-3.1-70B-
Instruct

Llama-3.1-405B-
Instruct

Gemma-2-27B
Gemini-1.5-pro

GPT-4o

CogVLM-Chat-hf

Llava-v1.5-7B

Llava-v1.6-34B

CogVLM—Llama3-
chat-19B

GPT-4o

LLM MLLM

Llama-3.1-70B-
Instruct

Llama-3.1-405B-
Instruct

Gemma-2-27B
Gemini-1.5-pro

GPT-4o

CogVLM-Chat-hf

Llava-v1.5-7B

Llava-v1.6-34B

CogVLM—Llama3-
chat-19B

GPT-4o

Figure 11: Case studies (Part I).
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Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. Aries B. Cancer
C. Leo D. Pisces
Answer with the option's letter from the given 
choices directly.

symbols ➜ astrology ➜ Aries

LLM MLLM

Llama-3.1-70B-
Instruct

Llama-3.1-405B-
Instruct

Gemma-2-27B
Gemini-1.5-pro

GPT-4o

CogVLM-Chat-hf

Llava-v1.5-7B

Llava-v1.6-34B

CogVLM—Llama3-
chat-19B

GPT-4o

Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. ice-skating B. dancing
C. camping D. rodeo
Answer with the option's letter from the given 
choices directly.

activity ➜ activity ➜ dancing

LLM MLLM

Llama-3.1-70B-
Instruct

Llama-3.1-405B-
Instruct

Gemma-2-27B
Gemini-1.5-pro

GPT-4o

CogVLM-Chat-hf

Llava-v1.5-7B

Llava-v1.6-34B

CogVLM—Llama3-
chat-19B

GPT-4o

Please answer the multi-choice question based on the 
given ASCII art:
[ASCII ART]

[Question]
What is depicted in the above ASCII art?
A. hand B. skeleton
C. face D. foot
Answer with the option's letter from the given 
choices directly.

smileys & people ➜ body ➜ hand

LLM MLLM

Llama-3.1-70B-
Instruct

Llama-3.1-405B-
Instruct

Gemma-2-27B
Gemini-1.5-pro

GPT-4o

CogVLM-Chat-hf

Llava-v1.5-7B

Llava-v1.6-34B

CogVLM—Llama3-
chat-19B

GPT-4o

Figure 12: Case studies (Part II).
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