
The Implicit Delta Method

Nathan Kallus⇤
Cornell University & Netflix Research

kallus@cornell.edu

James McInerney⇤

Netflix Research
jmcinerney@netflix.com

Abstract

Epistemic uncertainty quantification is a crucial part of drawing credible con-
clusions from predictive models, whether concerned about the prediction at a
given point or any downstream evaluation that uses the model as input. When
the predictive model is simple and its evaluation differentiable, this task is solved
by the delta method, where we propagate the asymptotically-normal uncertainty
in the predictive model through the evaluation to compute standard errors and
Wald confidence intervals. However, this becomes difficult when the model and/or
evaluation becomes more complex. Remedies include the bootstrap, but it can be
computationally infeasible when training the model even once is costly. In this
paper, we propose an alternative, the implicit delta method, which works by in-
finitesimally regularizing the training loss of the predictive model to automatically
assess downstream uncertainty. We show that the change in the evaluation due to
regularization is consistent for the asymptotic variance of the evaluation estimator,
even when the infinitesimal change is approximated by a finite difference. This
provides both a reliable quantification of uncertainty in terms of standard errors
as well as permits the construction of calibrated confidence intervals. We discuss
connections to other approaches to uncertainty quantification, both Bayesian and
frequentist, and demonstrate our approach empirically.

1 Introduction
In this paper, we consider quantifying uncertainty in evaluations of predictive models trained on data.
Consider the following examples. We fit a complex model (such as a neural net) to predict mean
service time for an incoming call to a call center given some features, and we use it to prioritize
calls in a queuing system. We may be interested in confidence intervals on the average wait time
of incoming calls in the queue. Such confidence intervals would be crucial for drawing credible
conclusions about such evaluations, since we know we cannot take the point prediction at face value
given the sampling uncertainty in the data. We may, alternatively, be fitting a ranking algorithm by
predicting user interaction from user-item features and then applying some fixed business rules on
top, and we want to assess how often certain item categories would end up at the top. Of course,
we would want to understand how certain we are in this assessment. Or, we fit a complex model
to predict mean demand given price and user features from a price experiment we ran, and we use
it to target discounts by optimizing demand at a price times unit profit. We may be interested in
confidence intervals on the average profit over a given distribution of features.

All of these examples have three important features: they involve (1) a computationally burdensome
step of fitting a large-scale model, (2) evaluating the result using a complicated function that need not
even be known explicitly, and (3) requiring the epistemic uncertainty of the evaluation given a model
and finite data set, in contrast to the total uncertainty comprising both epistemic and irreducible
aleatoric uncertainty [9]. Were the first two of these simple (simple model and simple function
thereof), we could just use the classic delta method [10] (see next section for detail). However, when
these aspects are complex and the model involves many parameters, it may be too prohibitive to

⇤Equal contribution, alphabetical order.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Implicit Delta Method
<latexit sha1_base64="zA5s4p6bpun447tWUnTJzgVzGTg=">AAACCXicbVA9SwNBEN2L3/Hr1NJmMQhW4S4KCmmCWmghKBgTyIWwt5kkS3bvjt05IRxpbfwrNhaK2PoP7Pw3bmIKTXww8Hhvhpl5YSKFQc/7cnJz8wuLS8sr+dW19Y1Nd2v7zsSp5lDlsYx1PWQGpIigigIl1BMNTIUSamH/bOTX7kEbEUe3OEigqVg3Eh3BGVqp5dJAMexplV0qu44LDMrnIJEF5SvAXtwettyCV/TGoLPEn5ACmeC65X4G7ZinCiLkkhnT8L0EmxnTKLiEYT5IDSSM91kXGpZGTIFpZuNPhnTfKm3aibWtCOlY/T2RMWXMQIW2c3S3mfZG4n9eI8XOSTMTUZIiRPxnUSeVFGM6ioW2hQaOcmAJ41rYWynvMc042vDyNgR/+uVZclcq+ofF0s1RoXI6iWOZ7JI9ckB8ckwq5IJckyrh5IE8kRfy6jw6z86b8/7TmnMmMzvkD5yPb/idmoA=</latexit>

⇥1.96
<latexit sha1_base64="LCxV65uuM1O8H5Nht8sRwDArS6w=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwFZI09LErunFZwT4gDWUynbZDJw9mboQS+hluXCji1q9x5984aSuo6IELh3PO5T6CRHAFlvVhFDY2t7Z3irulvf2Dw6Py8UlXxamkrENjEct+QBQTPGId4CBYP5GMhIFgvWB2nfu9eyYVj6M7mCfMD8kk4mNOCWjJGwAPmcK22awNyxXLbDZqjlvDlmlZdduxc+LU3aqrE9YSFbRGe1h+H4ximoYsAiqIUp5tJeBnRAKngi1Kg1SxhNAZmTBP04joSX62XHmBL7QywuNY6ooAL9XvHRkJlZqHgU6GBKbqt5eLf3leCuOGn/EoSYFFdDVonAoMMc7vxyMuGQUx14RQyfWumE6JJBT0l0r6CV+X4v9J1zHtquncupXW1fodRXSGztElslEdtdANaqMOoihGD+gJPRtgPBovxusqWjDWPafoB4y3T0dFkJo=</latexit>

1

�n

⇣
 (✓̂n(�)) � (✓̂n)

⌘

<latexit sha1_base64="Xtdjafa6jAQL64E7wTILAo9eMVc=">AAACPXicbVBNa9tAFFylH3HdL7c99rLUFOxDjZQUmqNJLj0mECcBrxFP6ydryWoldp8KRuiP9dL/0FtuueSQUnrtNWtHh9bxwMIwM4+3b5JSK0dheBXsPHr85Olu51n3+YuXr1733rw9c0VlJU5koQt7kYBDrQxOSJHGi9Ii5InG8+TyaOWff0PrVGFOaVniLIeFUamSQF6Ke6citSDrqKmF9lNziE0jNKY0EKVTA5EB1YIyJGhiM2gzwyH/xLf4Q2HVIqNh3OuHo3AN/pBELemzFsdx76eYF7LK0ZDU4Nw0Ckua1WBJSY1NV1QOS5CXsMCppwZydLN6fX3DP3plztPC+meIr9V/J2rInVvmiU/mQJnb9FbiNm9aUXowq5UpK0Ij7xelleZU8FWVfK4sStJLT0Ba5f/KZQa+TvKFd30J0ebJD8nZ3ijaH+2dfO6PD9s6Ouw9+8AGLGJf2Jh9ZcdswiT7zq7ZLfsV/Ahugt/Bn/voTtDOvGP/Ifh7B7q+r3k=</latexit>

nX

i=1

log f(Zi; ✓) + � (✓)
<latexit sha1_base64="j7zt/68b9Jk92ZUUOWgPPrFIke4=">AAACIHicdZDLahsxFIY1adq47iXTZtmNqCm4FAbJsWtDCZh0k6UL9YV63EEja2xhjWaQzhTM4EfJJq+STRYJodm1T1P5EmhL+4Pg5zvnSDp/nCtpgZAf3t6D/YePDiqPq0+ePnt+6L94ObBZYbjo80xlZhQzK5TUog8SlBjlRrA0VmIYLz6u68NvwliZ6c+wzMUkZTMtE8kZOBT57dAWaVTKE7r6qnGoshlO6l8i+QGHMBfA3uJ3jrr7pgyHuZX1HY78GgnI+1aTdjAJWoR2aMuZRosS0sA0IBvV0E69yL8LpxkvUqGBK2btmJIcJiUzILkSq2pYWJEzvmAzMXZWs1TYSblZcIXfODLFSWbc0YA39PeJkqXWLtPYdaYM5vbv2hr+qzYuIOlMSqnzAoTm24eSQmHI8DotPJVGcFBLZxg30v0V8zkzjIPLtOpCuN8U/98MGgE9DhqfmrXu6S6OCnqFXqM6oqiNuugM9VAfcXSOLtE1uvEuvCvv1vu+bd3zdjNH6A95P38BdYCh7Q==</latexit>

nX

i=1

log f(Zi; ✓)
<latexit sha1_base64="DC7D1D3GtuvBhz2hx2o9LOfOJL8=">AAACCXicbVDLSsNAFJ34rPUVdelmsAh1U5IqKIhQdOOygn1gU8NkOmmHTiZh5kYooVs3/oobF4q49Q/c+TdOHwttPXDhcM693HtPkAiuwXG+rYXFpeWV1dxafn1jc2vb3tmt6zhVlNVoLGLVDIhmgktWAw6CNRPFSBQI1gj6VyO/8cCU5rG8hUHC2hHpSh5ySsBIvo09nUZ+xi/c4b3Enoi7OCze+fwce9BjQI58u+CUnDHwPHGnpICmqPr2l9eJaRoxCVQQrVuuk0A7Iwo4FWyY91LNEkL7pMtahkoSMd3Oxp8M8aFROjiMlSkJeKz+nshIpPUgCkxnRKCnZ72R+J/XSiE8a2dcJikwSSeLwlRgiPEoFtzhilEQA0MIVdzcimmPKELBhJc3IbizL8+TernkHpfKNyeFyuU0jhzaRweoiFx0iiroGlVRDVH0iJ7RK3qznqwX6936mLQuWNOZPfQH1ucPzzWZHg==</latexit>

�
1

�

⇣
 (✓̂n(�)) � (✓̂n)

⌘

<latexit sha1_base64="6tY3gOC+OIK7nRtdNSSFUsclr+Q=">AAACQnicbVA9bxMxGPYFaEsKbYCRxSKqlAxEd2mlMlZlYSwSaYPiKHrPeS9nxee72u8hRaf7bSz9BWz8ABYGEGJlwElvgKaPZOnR8yHbT1xo5SgMvwatBw8f7ezuPW7vP3l6cNh59vzS5aWVOJK5zu04BodaGRyRIo3jwiJkscarePl27V99QutUbj7QqsBpBgujEiWBvDTrfBTu2lIlEguyiupKaN+dQy00JtQThVM9kYIPUIoE9cz0mkS/z1/ze/y+sGqRUr+edbrhINyAb5OoIV3W4GLW+SLmuSwzNCQ1ODeJwoKmFVhSUmPdFqXDAuQSFjjx1ECGblptJqj5kVfmPMmtP4b4Rv23UUHm3CqLfTIDSt1dby3e501KSt5MK2WKktDI24uSUnPK+XpPPlcWJemVJyCt8m/lMgW/JvnV236E6O6Xt8nlcBAdD4bvT7pn580ce+wle8V6LGKn7Iy9YxdsxCT7zL6xH+xncBN8D34Fv2+jraDpvGD/IfjzF7dusfw=</latexit>

Figure 1: Illustration of how the implicit delta method (IDM) estimates 95% confidence intervals
for a statistic of interest (✓0). Both the original MLE objective and the -regularized objective are
optimized, the -evaluations of the two fitted models are compared, and 1.96 multiples of the square
root of the difference in evaluations is added and subtracted from the nominal evaluation to create a
95% confidence interval.

either analytically derive the whole inverse Fisher information matrix in the many model parameters
or compute and invert the Hessian of the training loss empirically as well as compute the gradient of
the final evaluation as a function of all parameters [28]. Even one aspect being complex may pose a
serious challenge (e.g., uncertainty quantification for the prediction of a complex model at a point). A
remedy may be to bootstrap the whole process from data to final evaluation, but that can prove very
computationally burdensome [12]. Usually just fitting the model once is already an expensive task;
fitting it hundreds of times can be operationally infeasible. Other remedies, in the case of neural nets,
may be the use of Langevin dynamics [39] or random dropout [15]. But these assess uncertainty in
network weights and/or network predictions, which must then be translated to uncertainty in the final
evaluation.

In this paper, we propose a direct yet inexpensive way to generically assess uncertainty in such
settings. Specifically, we consider conducting inference when the estimator is some specified function
of a (conditional) maximum likelihood estimator (MLE), such as a regression or classification model.
Our proposal, the implicit delta method, works by simply adding an infinitesimal regularization to the
MLE objective (e.g., the sum of squared errors). We prove that the infinitesimal change in the final
estimator due to this regularization is consistent for its asymptotic variance, the same variance that
would have been predicted by the delta method in theory. Hence, the name of our method: we are
conducting a delta-method quantification of uncertainty implicitly without explicitly propagating the
uncertainty through the derivative of the evaluation function, analytically deriving the possibly-huge
Fisher information matrix, or approximating it empirically. We prove that even when we approximate
the infinitesimal change with a finite difference with constant width, the change we measure is still
consistent for the asymptotic variance. This not only gives an assessment of uncertainty in terms of
standard errors, it also permits us to construct calibrated confidence intervals. We demonstrate this in
experiments, comparing to other popular approaches for uncertainty quantification, both Bayesian
and frequentist.

2 Problem Set Up and the Delta Method
We consider an estimate constructed in two steps: first we fit a model using maximum likelihood
estimation (MLE) and then apply some function to it. Namely, we consider data given by n

independent and identically distributed (iid) observations Zi 2 Z , i = 1, . . . , n, drawn from a
population with density f(z; ✓0) with respect to some base measure µ on Z . For example, the data
may consist of observations of features X and responses Y , with Z = (X, Y).

In the first step, we fit a model to the data by MLE. Given a model {f(z; ✓) : ✓ 2 ⇥} of densities
(with respect to µ) parametrized by ✓ 2 ⇥ ✓ Rd, we set

Model fitting: ✓̂n 2 argmax
✓2⇥

nX

i=1

log f(Zi; ✓). (1)

A prominent example is generalized regression, where we observe features and responses Z = (X, Y),
have a parametrized predictor h✓(x) 2 Rp, and a parametric model g(y;#) with # 2 Rp. We then set

2

f((x, y); ✓) = g(y; h✓(x)).2 Examples include least-squares regression, binary classification with
cross-entropy loss, and Poisson regression, all with possibly complex and nonlinear predictors (e.g.,
neural nets).

In the second step, we process the trained model in some way to come up with our estimate. Given
some : ⇥ 7! R, we compute

Evaluation using fitted model: ̂n = (✓̂n).

One example in the case of generalized regression is evaluation of the predictor at a specified
point, (✓) = g✓(x0). Another example is, when g✓(x, p) corresponds to predicted mean de-
mand at price p given features x, we may be interested in the average optimal profit, (✓) =
1
m

Pm
j=1

�
supp�c g✓(xj , p)(p� c)

�
, for an evaluation dataset {xj : j = 1, . . . , m}. More generally,

 could be more opaque: it could involve, for example, simulating a queuing system with a controller
parametrized by ✓, such as a priority policy with priority score g✓(x).

We are interested in conducting uncertainty quantification for ̂n, and in particular in inference on its
population limit, 0 = (✓0). One way to do this inference is to propagate through the uncertainty
within ✓̂n about ✓0, provided we understand the latter uncertainty. This is the so-called delta method.

To apply it, we must first understand the uncertainty in ✓̂n. Provided some regularity holds, this
uncertainty can be characterized by the curvature of the objective function P`(✓, ·) at ✓ = ✓0: if the
curvature is sharp (resp., flat) then perturbing the objective and minimizing Pn`(✓, ·) instead does not
(resp., does) move the minimizer far away. This curvature is exactly the Fisher information matrix:

I(✓) = �
Z

(r2 log f(z; ✓))f(z; ✓)dµ(z).

Specifically, under appropriate regularity conditions,
p

n(✓̂n � ✓0) N (0, I
�1(✓0)). (2)

In the above, N (µ, ⌃) refers to the multivariate normal distribution and refers to convergence in
distribution. There are a variety of specific technical conditions that can establish this result. For an
abstract presentation see theorems 9.27 and 9.28 in Wasserman [38]. For more rigorous treatments
see theorem 13.2 of Wooldridge [41], theorem 3.3 of Newey and McFadden [27], theorem 5.1 of
Lehmann and Casella [24], or theorem 8.3 of Davidson and MacKinnon [7], each of which uses
slightly different technical regularity conditions.

Given Eq. (2) holds with I(✓0) � 0, the delta method would then guarantee that (see theorem 5.15 in
38) p

n(̂n � 0) N (0, V0), V0 = r (✓0)
>

I
�1(✓0)r (✓0), (3)

provided r (✓0) exists and V0 > 0.

An immediate and very important consequence of this is that we can construct calibrated confidence
intervals for 0: under Eq. (3),

if nV̂n !p V0, then P
⇣
 0 2

h
 ̂n ± ��1((1 + �)/2)V̂ 1/2

n

i⌘
! � 8� 2 (0, 1). (4)

where � refers to the cumulative distribution function of the standard normal distribution and!p

refers to convergence in probability. For example, as long as I(✓) and r (✓) are continuous at ✓0,
we can use

V̂
DeltaMethod
n =

1

n
r (✓̂n)>I

�1(✓̂n)r (✓̂n). (5)

As discussed in the introduction, however, this approach may prove intractable in practice, especially
when ✓ has many dimensions. Since we are only truly concerned with the uncertainty in ̂n and not
in ✓̂n, it may seem unnecessary and overly cumbersome to first compute the uncertainty in the latter
and then propagate it. We next present our method, which does this all implicitly, never working
directly with the vector ✓ except as an optimization variable in maximizing the MLE objective and a
perturbation thereof.

2Note since we are not interested in the distribution of X we here use only the conditional density of Y | X .
Setting f((x, y); ✓) = g(y;h✓(x))f(x) using the true unknown density f(x) of X does not change the MLE
nor any of the results compared to omitting f(x) altogether as we do here, which is referred to as the conditional
MLE by Wooldridge [41].

3

3 The Implicit Delta Method
We would like to construct calibrated confidence intervals as in Eq. (4), but computing the estimated
standard error as in Eq. (5) can be prohibitive. The IDM is a way to compute the estimated standard
error while neither explicitly computing the uncertainty in ✓̂n nor propagating this uncertainty
through . Instead, we will simply slightly perturb the original MLE in Eq. (1) using a little bit of
regularization, which will implicitly do both of these difficult tasks for us.

To define the IDM, we first define a regularized version of the MLE. Given any � � 0, we consider
adding the regularizer � (✓) to Eq. (1) as well as the corresponding final estimator after passing
through :

✓̂n(�;) 2 argmax
✓2⇥

nX

i=1

log f(Zi; ✓) + � (✓), ̂n(�) = (✓̂n(�;)). (6)

We refer to this as -regularized MLE.

We then define the infinitesimal IDM (IIDM) as the infinitesimal change (i.e., derivative) in our final
estimate using -regularized MLE as we infinitesimally increase � from 0:

V̂
IIDM
n =

@

@�
 ̂n(�)

����
�=0

= lim
�!0

1

�

⇣
 ̂n(�)� ̂n

⌘
. (7)

Our first result shows that the IIDM estimate is consistent for the true asymptotic variance in Eq. (3).
Theorem 1. Suppose that ✓̂n !p ✓0 2 Interior(⇥), I(✓0) � 0, and that, in a neighborhood of ✓0,
 (✓) is continuously differentiable and f(Z; ✓) is almost surely twice continuously differentiable in ✓
with a Hessian that is bounded in operator norm by an integrable function of Z. Then

nV̂
IIDM
n !p V0.

The significance of Theorem 1 is that, per Eq. (4), it implies that

 ̂n ± ��1((1 + �)/2)

q
V̂ IIDM

n

�

is a calibrated �-confidence interval for 0.

Note that, aside from conditions on (which are the same as needed for Eqs. (3) and (5) to work),
the regularity conditions required in Theorem 1 are implied by the regularity conditions required for
establishing Eq. (2) by, for example, any of Davidson and MacKinnon [7], Lehmann and Casella
[24], Newey and McFadden [27], Wooldridge [41]. In that sense, these conditions are not strong as
they are already needed for V̂

DeltaMethod
n to be a good estimate of uncertainty to begin with, and they

fit into the existing framework for the asymptotic analysis of MLE.

The implication of Theorem 1 is that we may be able to implicitly complete the steps of the delta
method (compute the uncertainty in ✓̂n, then propagate it through) by simply assessing the
impact of regularizing the MLE. However, this requires we actually differentiate with respect to the
regularization coefficient. While this requires computing just one first derivative (rather than many
first and second derivatives as in Eq. (5)), it is still not clear how to do this in practice.

In practice, we might approximate this derivative using finite differences, i.e., replace the limit in
Eq. (7) with a very small �. This gives rise to what we call the finite-difference IDM (FDIDM),
defined as follows for a given �n > 0:

V̂
FDIDM
n =

1

�n

⇣
 ̂n(�n)� ̂n

⌘
. (8)

Our next result shows that it in fact suffices to choose �n constant. In fact any choice of �n growing
strictly slower than n, yields that nV̂

FDIDM
n is also consistent for V0, just like V̂

IIDM
n , provided just

slightly more regularity holds.
Theorem 2. Fix any �n = o(n). Suppose that in addition to the assumptions of Theorem 1, in a
neighborhood of ✓0, (✓) is thrice continuously differentiable and f(Z; ✓) is almost surely thrice
continuously differentiable in ✓ with a third-order derivative that is bounded in operator norm by an
integrable function of Z. Then

nV̂
FDIDM
n !p V0.

4

It may seem surprising that a constant �n suffices or that �n is even allowed to grow, but that can be
seen as an artifact of the fact we did not normalize the sum over the data in Eq. (6) by 1/n. If we
did normalize, it would be equivalent to rescaling � by n, so that o(n) becomes o(1), i.e., requiring
a vanishing increment for the finite differencing. Nonetheless, writing Eq. (6) as we did is very
convenient, as it matches how one usually applies optimization algorithms such as stochastic gradient
descent to training objectives, and it makes the choice of �n for Eq. (8) very easy: just fix some
constant and do not worry about the scaling with n. For example, setting �n = 1 suggests a very

simple-looking 95%-confidence interval:

 ̂n ± 1.96

q
 ̂n(1)� ̂n

�
. Note that it is not necessarily

better to choose smaller �: the smaller � the closer V̂
FDIDM
n is to V̂

IIDM
n , but that need not mean

it is a better estimate (see numerical illustration in Fig. 3). Finally, note that Eq. (8) is but one way
to make a finite-difference approximation of a derivative, and other finite-difference formulae for
derivatives (see ch. 4 of 4) such as central differences could possibly be used.
Remark 1 (Regression Using Squared Error Loss). When training regression models we usually
minimize over model parameters (e.g., neural net weights) the sum over the data of squared error
loss, `((x, y); ✓) = (y � g✓(x))2. This differs from the corresponding Gaussian log likelihood by
a factor of � 1

2�2 (and some constants that do not matter), where �2 is the residual variance of Y

given X . Therefore, to apply IDM, all we should do is simply regularize the sum-of-squared-errors
minimization problem by �2�2

� (✓), as that would be equivalent to dividing the log likelihood part
by �2�2. Of course, we do not know �

2, but we can estimate it by �̂2
n = 1

n

Pn
i=1(y� g✓̂n

(x))2, that
is, the minimum average sum of squared errors. Since �̂2

n !p �
2, as it is in fact the MLE estimate for

�
2, the asymptotic guarantees of Theorems 1 and 2 will continue to hold after this rescaling. Note that

the standard errors given correspond to the MLE formulation of least-squares (usual standard errors)
rather than the M -estimation formulation thereof (so-called robust or sandwich standard errors).
Remark 2 (Using IDM to Compute the Fisher Information). A by-product of the proof of
Theorem 1 is that, if we looked at the (vector-valued) derivative Ŵn = @

@� ✓̂n(�;)
��
�=0

=

lim�!0
1
�

⇣
✓̂n(�;)� ✓̂n

⌘
, then nŴn !p I(✓0)�1r (✓0). Therefore, if we set (✓) = ✓i, i.e.,

the i
th component of ✓, then Ŵn converges to the i

th column of I(✓0)�1. Thus, by regularizing each
component of ✓ in turn, we obtain the whole matrix.

Nonetheless, the whole raison d’être of IDM is to avoid working directly with the parameter vector ✓
altogether, and simply propagate its uncertainty automatically via the MLE optimization problem. For
example, if we consider neural net regression, IDM would never make explicit reference to the vector
of weights itself, only to the trained prediction model and its prediction performance on data. The
above, wherein we compute the uncertainty in ✓ directly, stands in contradiction to this. Nonetheless,
it can be a useful observation when inference on ✓ itself is for some reason of interest.

3.1 Extension to Multivariate Evaluations

We have so far focused on scalar evaluations for ease of presentation and as it covers the most
important cases. We now show how our method easily extends to the multivariate case, where
 (✓) = ((1)(✓), . . . , (K)(✓)) 2 RK . The reason it may not suffice to run IDM separately for each
component is that we may be interested in the covariance of the evaluations. Under the appropriate
conditions, the extension of the delta method for MLE (Eq. (3)) to multivariate evaluations is

p
n(̂n � 0) N (0, V0), V0 = J(✓0)

>
I
�1(✓0)J(✓0), (9)

where Jij(✓) = @
@✓i

(j)(✓) is the K ⇥ d Jacobian of (✓).

Our extensions of IIDM and FDIDM to multivariate evaluations are as follows:

�ij(�) =
1

�

⇣

(i)(✓̂n(�; (j)))� (i)(✓̂n)
⌘
, (V̂ IIDM

n)ij = lim
�!0

�ij(�), (V̂ FDIDM
n)ij = �ij(�n).

Theorem 3. nV̂
IIDM
n !p V0 under the conditions of Theorem 1, and nV̂

FDIDM
n !p V0 under the

conditions of Theorem 2, both as K ⇥K matrices.
Surprisingly, this shows one need only solve K + 1 (possibly) regularized MLEs to get the full
K ⇥K covariance. (See Alg. 3 in supplement.)

5

3.2 Handling Non-differentiable Evaluations and Evaluation Uncertainty

So far we have assumed that the evaluation function is a known and differentiable function. Both
statements may be false when we are interested in evaluating average performance on a population
but we only have a finite evaluation data set and unit performance is not differentiable.

Specifically, let W1, . . . , Wm ⇠ W denote the evaluation data set (which may be the same as the
training set or otherwise dependent or it may be an independent data set) and let h(w; ✓) the unit
evaluation function. Consider the empirical evaluation map

 (✓) = 1
m

Pm
j=1 h(Wi; ✓).

If h(W ; ✓) is almost surely not differentiable in ✓, then is also almost surely not differentiable,
which poses a challenge. We will show, however, that even though is not differentiable (which
would break the usual delta method), FDIDM actually remains valid, without any changes to the
method, provided certain on-average-differentiability holds.

To motivate the challenge of nondifferentiability and the plausibility of on-average-differentiability,
consider an example where g✓(x) represents an order quantity to stock in context x and w = (x, d)
represents features and demand. If h((x, d); ✓) = max{d� g✓(x), 0} then (✓) quantifies average
unmet demand, but h is not differentiable. Other non-differentiable examples include evaluating
regression and classification models’ performance using non-differentiable utility functions. While
h may not be differentiable and hence neither , it may still be plausible that its expectation
E[h(W ; ✓)] = E[(✓)] is differentiable. For example, if the distribution of demand conditioned on
features is continuous, then the derivative of E[h(W ; ✓)] in the example of average unmet demand
will be the average of the conditional cumulative distribution function at g✓(x) times �r✓g✓(x), and
the second derivative will involve the conditional density.

We next show FDIDM still works with non-differentiable , given some on-average-differentiability.
Theorem 4. Consider m = ⌦(n). Fix �n = � > 0 constant. Suppose the assumptions of Theorem 2
hold, that Eq. (2) holds, that h(W ; ✓) is almost surely L-Lipschitz in ✓, and that for some M > 0,

lim
✏!0

P
�
On {✓ : k✓ � ✓0k  ✏}, h(W ; ✓) is twice differentiable in ✓ with

��r2
✓h(W ; ✓)

�� M
�

= 1.

Then
(V̂ FDIDM

n)�1/2(̂n � 0) N (0, 1).

In the above example of average unmet demand, L and M would be bounds of the gradient and
Hessian of g✓(x) in ✓, and a sufficient condition for the assumption to hold would be that g✓(x)
is boundedly differentiable in x for ✓ in a neighborhood of ✓0 and W = (X, D) has a continuous
distribution.

Although the asymptotic variance of ̂n � 0 is now different (in particular V̂
DeltaMethod
n in Eq. (5)

may be ill-defined), Theorem 4 shows that V̂
FDIDM
n actually remains consistent for this new asymp-

totic variance. Thus, it provides a consistent estimate of standard errors and it still gives calibrated
confidence intervals (note 0 is now random but we can still have a confidence interval for it).

In some cases we may want to directly conduct inference on the population version of the evaluation,

⇤
0 = E[h(W ; ✓0)]. To do this, all we have to do is simply also add the uncertainty due to finite

evaluation data set. Under standard regularity conditions, we have

(V̂
m)�1/2(0 � ⇤

0) N (0, 1), where V̂

m = 1

(m�1)m

Pm
j=1(h(w; ✓̂n)� (✓̂n))2.

Therefore, provided the training and evaluation data sets are independent,

(V̂ FDIDM
n + V̂

m)�1/2((✓̂n)� ⇤

0) N (0, 1).

If not independent, then
q

V̂ FDIDM
n +

p
V̂

m provides a consistent upper bound on the standard error.

3.3 Implementation

FDIDM is given in pseudocode in Alg. 1. Given an objective function L :=
Pn

i log f(Zi; ✓),
evaluation function , and scalar width �, FDIDM returns the estimated variance of (✓̂n). The first
step is to maximize the original objective w.r.t. ✓. Usually, this task has already been solved as this is

6

Algorithm 1: Finite-difference implicit delta method (FDIDM)
Input: Learning objective L, evaluation , scalar �

1 Function FDIDM(L, , �):
2 ✓̂n arg max✓ L(✓) // optimize learning objective
3 ✓̂n(�) arg max✓ L(✓) + � (✓) // optimize -regularized objective
4 return 1

� ((✓̂n(�))� (✓̂n)) // estimated variance of (✓̂n)

the trained predictive model. Then, maximize the -regularized objective w.r.t. ✓. Finally, return the
estimated variance using the finite-difference method evaluated at � = 0. See Appendix D for the
corresponding algorithm when is multivariate.

In practice, one can further reduce the computational cost of FDIDM due to the fact that the -
regularized objective can be made arbitrarily close to original objective by choosing � small enough,
subject to numerical instability at extremely small values. Specifically, when using stochastic gradient
ascent in FDIDM, once the optimum ✓̂n has been found, only a small number of gradient updates
may be required to also find ✓̂n(�).

FDIDM also admits non-gradient-based approaches. Consider the case that is a simulator that takes
a fitted model and returns a set of evaluations and no gradient. Then the -regularized objective may
optimized by gradient-free methods such as Nelder-Mead [26] and Bayesian optimization [14].

4 Alternatives for Uncertainty Quantification and Related Work
Uncertainty quantification in machine learning is a topic of major interest due to the need to make
downstream inferences and decisions based on the predictions of large-scale networks trained on
massive datasets in either a frequentist [16, 28, 31] or Bayesian fashion [3, 8, 15]. Our focus here is
on methods that can flexibly isolate epistemic uncertainty in an evaluation, representing data sampling
uncertainty of that evaluation under a given model. In cases where the total uncertainty for predictions
is desired, a broader set of methods may be brought to bear, such as conformal prediction [1, 36, 37],
Platt scaling [17, 33], or indeed, any of the aforementioned statistical methods used in conjunction
with a term or terms for aleatoric uncertainty. An exhaustive account of the literature is outside the
scope of this paper. We highlight the principal ideas and points of contact with our work.

The Bootstrap The bootstrap simulates sampling from the true data generating distribution by
resampling from the observed dataset (see, e.g., [12] for an introduction and [22] for theory on when
it works). The key advantage is that it enables general-purpose and easy-to-implement uncertainty
quantification for estimators. It comes at a high computational burden because the estimator, which
may comprise a model-fitting algorithm and prediction, needs to be executed many times. In the
context of deep learning, many useful adaptations of the bootstrap and the related jackknife have been
proposed to increase its computational efficiency [16, 30, 31]. Maintaining an ensemble of models as
a representation of the variability of the evaluation is an appealing intuition that does not restrict one
to local approximations, and may be combined with local approximations where necessary.

The Functional Delta Method The delta method [10] is a classic approach that is widely used with
small models with an analytic Fisher information matrix (e.g., linear regression) and, more recently,
auto-differentiation unlocks the delta method for a larger class of models [28]. The bottleneck
is the need to calculate then invert the Fisher information matrix, for which there are various
approximations [25, 32]. The delta method applies to a wide range of (differentiable) estimators
subject to regularity conditions that ensure asymptotic normality of the parameter estimates and this
constraint carries over to the implicit delta method. The functional delta method extends the delta
method to evaluations of infinite-dimensional parameters (see Ch. 12 [22]) but is usually restricted to
analytically deriving influence functions in theory by differentiating the population estimand with
respect to distributions and then approximating the influence function by plugging in estimates of
unknown nuisances [5, 18].

Bayesian Uncertainty Quantification Tractable methods for approximate Bayesian inference
in neural networks, such as variational inference in feed-forward nets [3], autoencoders [21, 35],
normalizing flows [34], dropout uncertainty [15], stochastic gradient Langevin dynamics [39] and
related approaches, present an impressive range of options for uncertainty quantification. In cases

7

(a) IDM (this paper) (b) Delta Method

(c) GP-Matern52 (d) True sampling uncertainty by simulation

Figure 2: Fits along with uncertainty bounds and estimated prediction-covariance matrix for data
generated from y = � sin(3x� 3

10) + 1
10✏, where ✏ ⇠ N (0, 1)

where it is sufficient to only consider a single mode in the posterior, local methods can prove useful.
In particular, an alternative interpretation of the delta method is as a special case of the Laplace
approximation to Bayesian inference, where Eq. (5) arises in the posterior predictive distribution
for a local multivariate Gaussian approximation around the maximum a posteriori estimate. Several
recent works have investigated the potential of the Laplace approximation as a way to avoid having
to characterizing the full posterior in deep networks [8, 19, 20]. IDM can provide another way to
perform a Laplace approximation and may be orthogonally combined with the above methods.

5 Experiments
In this section, we evaluate finite-difference implicit delta method (FDIDM) on a range of tasks that
require confidence intervals.3 Our goal is to quantify the extent to which FDIDM applies in practice
and how it compares to alternative methods. We start with 1D synthetic data in Sec. 5.1 where we
apply a neural net to recover known functions from small datasets. Then, in Sec. 5.2, we consider the
task of inferring average utility under a neural net trained on a set of real-world benchmark datasets.
In Sec. 5.3, we apply FDIDM to variational autoencoders and use the implicit delta perspective to
understand the effect of KL down-weighting. We find that the motivation and convergence properties
of FDIDM are empirically observed and this may be useful to practitioners seeking to quantify the
epistemic uncertainty of complex models on a variety of regression and classification tasks.

5.1 1D Synthetic Examples

We consider known quadratic and sinusoidal functions from which we draw a random dataset. Fig. 2
gives the data generating stochastic function for a sin wave and the resulting fits for FDIDM, the
classic delta method, a Gaussian process (GP) with Matern-52 kernel, as well as simulation from
the true data generating function. (Appendices B and C provide the results on the quadratic function
and further experimental details, respectively.) The quadratic example has evenly dispersed input
data and there is close alignment between the methods. The sin wave is more challenging because it
requires extrapolation – also known as “in-between” uncertainty in [13] – from outside the ranges
of given inputs. Results for IDM, DM, and simulation are all based on estimates using a neural net
with 1 hidden layer of 50 tanh units.4 It should be noted that the GP is not trying to estimate the
frequentist sampling variance (shown in the simulation results) but rather the Bayesian posterior
uncertainty (although they can coincide asymptotically; 38, theorem 11.5); we include it largely for a
qualitative comparison to a popular epistemic-uncertainty quantification method. In particular, unlike

3The source code is available at https://github.com/jamesmcinerney/implicit-delta.
4This architecture is in line with [13], which also provided the basis for our sin example.

8

https://github.com/jamesmcinerney/implicit-delta

(a) Number of data points as independent variable. (b) � as independent variable.

Figure 3: Convergence of IDM in the quadratic task for different values of n and �. There is a wide
dynamic range of acceptable �.

Table 1: Run time (seconds)
Vehicle Waveform Satellite MNIST

IDM 39 129 111 303
Bootstrap 806 2,334 3,192 7,164

the IDM, DM, and simulation results, the GP does not yield an interval around the neural-net based
mean estimate and instead has a different mean function5

As expected, IDM agrees most with the delta method while the GP overestimates uncertainty,
particularly for extrapolation at the outer edges. The corresponding full covariance matrix of the
predictions is also given in Fig. 2. All the methods recover the high-level structure of covariance for
both examples, though the scale factors differ considerably.

Fig. 3 shows the convergence of the root mean squared error of IDM w.r.t. the true variance as
determined by 50 resamples from the data generating distribution in the quadratic task. The squared
errors are rescaled by n

2 to account for decreasing scale (1
n) of the true the variance as n grows.

Shaded error bars indicate one standard error. Convergence for the standard delta method is also
shown for reference. We find there is a wide dynamic range of acceptable values of �. Small values
of � < 0.01 perform poorly, likely due to numerical instability, but performance improves for larger
�. The setting � = 0.512 even outperforms the delta method. These findings support the implication
of Theorem 2 indicating that convergence holds as long as � grows sublinearly to n.

5.2 Confidence in Predicted Cost Downstream of Classification

A set of classification tasks are fitted with a neural net with one hidden layer and 50 tanh hidden
units. In this setting, we wish to calculate confidence intervals over total cost in a downstream task
under predictions from the network. An arbitrary cost function is set up, in this case, the average
cross entropy of the observations on a held-out validation dataset, though in practice we could have a
wide variety of cost functions relating to the task downstream of the classifier. It is challenging to
form a confidence interval for even this simple cost function because it is a function of predictions
from the network. Under this scenario, it is typical to make a bootstrapping estimate, requiring B

times the cost of training the network (here, we use B = 50). FDIDM is also applicable in this
setting. We show both methods on MNIST image classification [23] and a set of UCI benchmark
datasets [11] in Fig. 4. We find that FDIDM has good coverage for a fraction of the computational
cost of the bootstrap estimate. Specifically, a time complexity comparison is provided in Table 1.6

5.3 Down-Weighting KL in Variational Autoencoders

The variational autoencoder (VAE) is a prominent example of approximate inference in deep gen-
erative models [21, 35]. In practice, it has been observed that down-weighting the KL term in the
variational objective by a factor 1

T , where T > 1, results in significantly better accuracy on held-out
5We also applied the arccos kernel in a GP which imitates a neural network [6] but found that the Matern-52

kernel inferred a mean that was closer in practice to the mean inferred by the neural net.
6Run time was measured on a MacBook Pro 2.3 GHz Quad-Core Intel Core i7 with 32 GB RAM.

9

ve
hic

le

wa
ve
fo
rm

sa
te
llit

e
m
nis

t
0

1

2

3

4

IDM

Bootstrap

Figure 4: Predicted distribution of utility in clas-
sification on benchmark datasets. Datasets are
shown in order of number of examples.

2 4 6 8
T

0

5

10

15

20

(T

�
1)

�

(0
)

noise fraction = 0.00

noise fraction = 0.50

Figure 5: Improvement in reconstruction quality
over the unweighted likelihood as a function of T .

test data [2, 42]. This is closely related to other ways of reweighting the prior and likelihood terms
in approximate inference such as data augmentation [29] and the cold posterior effect [40]. Various
explanations for the benefit of setting T > 1 have been posited, e.g., model misspecification. Here,
we briefly explore an IDM interpretation of this phenomenon.

Observing that any objective does not change its critical points under (non-zero) rescaling, it holds that
down-weighting the KL term yields the same optimization problem as up-weighting the reconstruction
error by T . We consider this setting and define to be the reconstruction quality (i.e., negative
reconstruction error) while optimizing the standard (unweighted) evidence lower bound defined by
the VAE. Rearranging the terms in Eq. (8), letting �n := T � 1, we have

 ̂n(�n) = (T � 1)V̂ FDIDM
n + ̂n(0). (10)

The two immediate implications of Eq. (10) for fixed T > 1 of o(n) are that,

1. the reconstruction quality for the objective implied by variational inference is upper bounded by
that of the objective with up-weighted likelihood; and,

2. the higher the variance in the reconstruction quality, as determined by the dataset and model, the
greater the benefit of up-weighting the likelihood term in variational inference.

Since (1) is already supported by existing empirical work, we focus on evaluating whether (2) also
holds in practice. To do this, we artificially increase the variance of the reconstruction quality by
perturbing a proportion of the dataset and compare ̂n for various T . Fig. 5 shows the results for
applying a VAE to the MNIST dataset after adding i.i.d. noise ✏ ⇠ Uniform(0,

1
20) to each pixel in a

randomly chosen fraction of the images. The figure indicates that, as predicted by Eq. (10), the gap
in the reconstruction quality for T > 1 relative to T = 1 increases as more variance is introduced.
Higher values of T do indeed result in better reconstruction quality and this advantage grows with
the amount of variance. In sum, these findings are consistent with the hypothesis that the advantage
from KL down-weighting may be explained as the residual between the -regularized variational
objective and the objective implied by the evidence lower bound, though further studies are required.

6 Discussion, Limitation, and Conclusions
In this paper we develop the implicit delta method for forming calibrated confidence intervals via
a careful regularization of the model objective. Like the delta method, the method requires certain
regularity conditions (Theorem 1) and for the MLE to be at a stable optimum, where perturbations
around the optimum reliably capture sampling uncertainty. If this is not the case, e.g., the parameter
has failed to converge or the objective itself is changing, it yields unreliable results. For this reason,
IDM – like the delta method and the bootstrap – may be misleading for small data, and indeed
uncertainty quantification with small data is fundamentally difficult. The most appealing feature of
IDM is that it does not require the variance of the parameters to be made explicit, which also suggests
future research in exploring the compatibility of nonparametric models with IDM. There is also the
potential to explore IDM in constrained MLE and in general M -estimation.

Acknowledgments
We are grateful for the insightful comments of the anonymous reviewers and our colleagues at Netflix.

10

References
[1] Anastasios Nikolas Angelopoulos, Stephen Bates, Michael I. Jordan, and Jitendra Malik. Un-

certainty sets for image classifiers using conformal prediction. In International conference on
learning representations, 2021.

[2] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-
domain uncertainty estimation and ensembling in deep learning. In International conference on
learning representations, 2020.

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. In International conference on machine learning, pages 1613–1622. PMLR,
2015.

[4] Richard L Burden, J Douglas Faires, and Annette M Burden. Numerical analysis. 2015.

[5] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
Newey, and James Robins. Double/debiased machine learning for treatment and structural
parameters. Oxford University Press, 2018.

[6] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural
information processing systems, 22, 2009.

[7] Russell Davidson and James G MacKinnon. Estimation and inference in econometrics, volume 63.
Oxford New York, 1993.

[8] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless Bayesian deep learning. Advances in neural information
processing systems, 34, 2021.

[9] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? Does it matter? Structural
safety, 31(2):105–112, 2009.

[10] J. L. Doob. The limiting distributions of certain statistics. The annals of mathematical statistics,
6(3):160 – 169, 1935. doi: 10.1214/aoms/1177732594.

[11] Dheeru Dua and Casey Graff. UCI machine learning repository [http://archive. ics. uci. edu/ml].
Irvine, CA: University of California. School of Information and Computer Science, 25:27, 2019.

[12] Bradley Efron and Trevor Hastie. Computer age statistical inference, volume 6. Cambridge
University Press, 2021.

[13] Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner.
’In-between’ uncertainty in Bayesian neural networks. arXiv preprint arXiv:1906.11537, 2019.

[14] Peter I Frazier. Bayesian optimization. In Recent advances in optimization and modeling of
contemporary problems, pages 255–278. Informs, 2018.

[15] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International conference on machine learning, pages 1050–1059.
PMLR, 2016.

[16] Ryan Giordano, William Stephenson, Runjing Liu, Michael I. Jordan, and Tamara Broderick.
A Swiss army infinitesimal jackknife. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1139–1147. PMLR, 2019.

[17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In International conference on machine learning, volume 70, pages 1321–1330.
PMLR, 2017.

[18] Hidehiko Ichimura and Whitney K Newey. The influence function of semiparametric estimators.
Quantitative Economics, 13(1):29–61, 2022.

11

[19] Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of Bayesian
neural nets via local linearization. In International conference on artificial intelligence and
statistics, volume 130, pages 703–711. PMLR, 2021.

[20] Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate
inference turns deep networks into Gaussian processes. In Advances in neural information
processing systems, volume 32. Curran Associates, Inc., 2019.

[21] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[22] Michael R Kosorok. Introduction to empirical processes and semiparametric inference. Springer,
2008.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[24] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science & Business
Media, 2006.

[25] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International conference on artificial intelligence and statistics,
pages 1540–1552. PMLR, 2020.

[26] John A Nelder and Roger Mead. A simplex method for function minimization. The computer
journal, 7(4):308–313, 1965.

[27] Whitney K Newey and Daniel McFadden. Large sample estimation and hypothesis testing.
Handbook of econometrics, 4:2111–2245, 1994.

[28] Geir K Nilsen, Antonella Z Munthe-Kaas, Hans J Skaug, and Morten Brun. Epistemic uncer-
tainty quantification in deep learning classification by the delta method. Neural networks, 145:
164–176, 2022.

[29] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa Eschen-
hagen, Richard E Turner, and Rio Yokota. Practical deep learning with Bayesian principles.
Advances in neural information processing systems, 32, 2019.

[30] Ian Osband and Benjamin Van Roy. Bootstrapped Thompson sampling and deep exploration.
arXiv preprint arXiv:1507.00300, 2015.

[31] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. Advances in neural information processing systems, 29:4026–4034, 2016.

[32] Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 6(1):
147–160, 1994.

[33] John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

[34] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[35] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278–1286. PMLR, 2014.

[36] Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adap-
tive coverage. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems, volume 33, pages 3581–3591. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
244edd7e85dc81602b7615cd705545f5-Paper.pdf.

[37] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random
world. Springer Science & Business Media, 2005.

12

https://proceedings.neurips.cc/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf

[38] Larry Wasserman. All of statistics. Springer, 2004.

[39] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th international conference on machine learning, pages 681–688. Citeseer,
2011.

[40] Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes
posterior in deep neural networks really? In International conference on machine learning,
volume 119, pages 10248–10259. PMLR, 2020.

[41] Jeffrey M Wooldridge. Econometric analysis of cross section and panel data. MIT press, 2010.

[42] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient
as variational inference. In International conference on machine learning, pages 5852–5861.
PMLR, 2018.

Checklist
1. (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Proof of consistency in Sec. 3; connections discussed
in Sec. 4; evaluation in Sec. 5

(b) Did you describe the limitations of your work? [Yes] See Sections 2 and 6
(c) Did you discuss any potential negative societal impacts of your work? [N/A] To the

best of the authors’ knowledge, our work does not have negative social impacts
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. (a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec. 3 and

Appendix A
(b) Did you include complete proofs of all theoretical results? [Yes] See Sec. 3 and

Appendix A
3. (a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] See online
repository https://github.com/jamesmcinerney/implicit-delta

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 5, Appendix B and C, and source code

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C

4. (a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Source code
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

13

https://github.com/jamesmcinerney/implicit-delta

	Introduction
	Problem Set Up and the Delta Method
	The Implicit Delta Method
	Extension to Multivariate Evaluations
	Handling Non-differentiable Evaluations and Evaluation Uncertainty
	Implementation

	Alternatives for Uncertainty Quantification and Related Work
	Experiments
	1D Synthetic Examples
	Confidence in Predicted Cost Downstream of Classification
	Down-Weighting KL in Variational Autoencoders

	Discussion, Limitation, and Conclusions
	Omitted Proofs
	Proof of *thm:iidm
	Proof of *thm:fdidm
	Proof of *thm:multivar
	Proof of *thm:fdidm2

	Further Experiments
	Details for Experiments
	Finite-Difference IDM for Multivariate

